xref: /freebsd/sys/dev/aac/aac.c (revision dce6e6518b85561495cff38a3074a69d29d58a55)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #include <sys/ioccom.h>
47 
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/signalvar.h>
51 #include <sys/time.h>
52 #include <sys/eventhandler.h>
53 
54 #include <machine/bus_memio.h>
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 
58 #include <dev/aac/aacreg.h>
59 #include <dev/aac/aac_ioctl.h>
60 #include <dev/aac/aacvar.h>
61 #include <dev/aac/aac_tables.h>
62 
63 static void	aac_startup(void *arg);
64 static void	aac_add_container(struct aac_softc *sc,
65 				  struct aac_mntinforesp *mir, int f);
66 static void	aac_get_bus_info(struct aac_softc *sc);
67 
68 /* Command Processing */
69 static void	aac_timeout(struct aac_softc *sc);
70 static int	aac_start(struct aac_command *cm);
71 static void	aac_complete(void *context, int pending);
72 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73 static void	aac_bio_complete(struct aac_command *cm);
74 static int	aac_wait_command(struct aac_command *cm, int timeout);
75 static void	aac_command_thread(struct aac_softc *sc);
76 
77 /* Command Buffer Management */
78 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79 				       int nseg, int error);
80 static int	aac_alloc_commands(struct aac_softc *sc);
81 static void	aac_free_commands(struct aac_softc *sc);
82 static void	aac_map_command(struct aac_command *cm);
83 static void	aac_unmap_command(struct aac_command *cm);
84 
85 /* Hardware Interface */
86 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87 			       int error);
88 static int	aac_check_firmware(struct aac_softc *sc);
89 static int	aac_init(struct aac_softc *sc);
90 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92 				 u_int32_t arg3, u_int32_t *sp);
93 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94 				struct aac_command *cm);
95 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96 				u_int32_t *fib_size, struct aac_fib **fib_addr);
97 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98 				     struct aac_fib *fib);
99 
100 /* Falcon/PPC interface */
101 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103 static int	aac_fa_get_istatus(struct aac_softc *sc);
104 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106 				   u_int32_t arg0, u_int32_t arg1,
107 				   u_int32_t arg2, u_int32_t arg3);
108 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110 
111 struct aac_interface aac_fa_interface = {
112 	aac_fa_get_fwstatus,
113 	aac_fa_qnotify,
114 	aac_fa_get_istatus,
115 	aac_fa_clear_istatus,
116 	aac_fa_set_mailbox,
117 	aac_fa_get_mailbox,
118 	aac_fa_set_interrupts
119 };
120 
121 /* StrongARM interface */
122 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124 static int	aac_sa_get_istatus(struct aac_softc *sc);
125 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127 				   u_int32_t arg0, u_int32_t arg1,
128 				   u_int32_t arg2, u_int32_t arg3);
129 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131 
132 struct aac_interface aac_sa_interface = {
133 	aac_sa_get_fwstatus,
134 	aac_sa_qnotify,
135 	aac_sa_get_istatus,
136 	aac_sa_clear_istatus,
137 	aac_sa_set_mailbox,
138 	aac_sa_get_mailbox,
139 	aac_sa_set_interrupts
140 };
141 
142 /* i960Rx interface */
143 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145 static int	aac_rx_get_istatus(struct aac_softc *sc);
146 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148 				   u_int32_t arg0, u_int32_t arg1,
149 				   u_int32_t arg2, u_int32_t arg3);
150 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152 
153 struct aac_interface aac_rx_interface = {
154 	aac_rx_get_fwstatus,
155 	aac_rx_qnotify,
156 	aac_rx_get_istatus,
157 	aac_rx_clear_istatus,
158 	aac_rx_set_mailbox,
159 	aac_rx_get_mailbox,
160 	aac_rx_set_interrupts
161 };
162 
163 /* Debugging and Diagnostics */
164 static void	aac_describe_controller(struct aac_softc *sc);
165 static char	*aac_describe_code(struct aac_code_lookup *table,
166 				   u_int32_t code);
167 
168 /* Management Interface */
169 static d_open_t		aac_open;
170 static d_close_t	aac_close;
171 static d_ioctl_t	aac_ioctl;
172 static d_poll_t		aac_poll;
173 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174 static void		aac_handle_aif(struct aac_softc *sc,
175 					   struct aac_fib *fib);
176 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180 
181 #define AAC_CDEV_MAJOR	150
182 
183 static struct cdevsw aac_cdevsw = {
184 	.d_open =	aac_open,
185 	.d_close =	aac_close,
186 	.d_ioctl =	aac_ioctl,
187 	.d_poll =	aac_poll,
188 	.d_name =	"aac",
189 	.d_maj =	AAC_CDEV_MAJOR,
190 };
191 
192 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193 
194 /* sysctl node */
195 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196 
197 /*
198  * Device Interface
199  */
200 
201 /*
202  * Initialise the controller and softc
203  */
204 int
205 aac_attach(struct aac_softc *sc)
206 {
207 	int error, unit;
208 
209 	debug_called(1);
210 
211 	/*
212 	 * Initialise per-controller queues.
213 	 */
214 	aac_initq_free(sc);
215 	aac_initq_ready(sc);
216 	aac_initq_busy(sc);
217 	aac_initq_bio(sc);
218 
219 	/*
220 	 * Initialise command-completion task.
221 	 */
222 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223 
224 	/* disable interrupts before we enable anything */
225 	AAC_MASK_INTERRUPTS(sc);
226 
227 	/* mark controller as suspended until we get ourselves organised */
228 	sc->aac_state |= AAC_STATE_SUSPEND;
229 
230 	/*
231 	 * Check that the firmware on the card is supported.
232 	 */
233 	if ((error = aac_check_firmware(sc)) != 0)
234 		return(error);
235 
236 	/*
237 	 * Initialize locks
238 	 */
239 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
240 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
241 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
242 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
243 	TAILQ_INIT(&sc->aac_container_tqh);
244 
245 
246 	/*
247 	 * Initialise the adapter.
248 	 */
249 	if ((error = aac_init(sc)) != 0)
250 		return(error);
251 
252 	/*
253 	 * Print a little information about the controller.
254 	 */
255 	aac_describe_controller(sc);
256 
257 	/*
258 	 * Register to probe our containers later.
259 	 */
260 	sc->aac_ich.ich_func = aac_startup;
261 	sc->aac_ich.ich_arg = sc;
262 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
263 		device_printf(sc->aac_dev,
264 			      "can't establish configuration hook\n");
265 		return(ENXIO);
266 	}
267 
268 	/*
269 	 * Make the control device.
270 	 */
271 	unit = device_get_unit(sc->aac_dev);
272 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
273 				 0640, "aac%d", unit);
274 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
275 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
276 	sc->aac_dev_t->si_drv1 = sc;
277 
278 	/* Create the AIF thread */
279 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
280 			   &sc->aifthread, 0, 0, "aac%daif", unit))
281 		panic("Could not create AIF thread\n");
282 
283 	/* Register the shutdown method to only be called post-dump */
284 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
285 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
286 		device_printf(sc->aac_dev,
287 			      "shutdown event registration failed\n");
288 
289 	/* Register with CAM for the non-DASD devices */
290 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
291 		TAILQ_INIT(&sc->aac_sim_tqh);
292 		aac_get_bus_info(sc);
293 	}
294 
295 	return(0);
296 }
297 
298 /*
299  * Probe for containers, create disks.
300  */
301 static void
302 aac_startup(void *arg)
303 {
304 	struct aac_softc *sc;
305 	struct aac_fib *fib;
306 	struct aac_mntinfo *mi;
307 	struct aac_mntinforesp *mir = NULL;
308 	int count = 0, i = 0;
309 
310 	debug_called(1);
311 
312 	sc = (struct aac_softc *)arg;
313 
314 	/* disconnect ourselves from the intrhook chain */
315 	config_intrhook_disestablish(&sc->aac_ich);
316 
317 	aac_alloc_sync_fib(sc, &fib, 0);
318 	mi = (struct aac_mntinfo *)&fib->data[0];
319 
320 	/* loop over possible containers */
321 	do {
322 		/* request information on this container */
323 		bzero(mi, sizeof(struct aac_mntinfo));
324 		mi->Command = VM_NameServe;
325 		mi->MntType = FT_FILESYS;
326 		mi->MntCount = i;
327 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
328 				 sizeof(struct aac_mntinfo))) {
329 			printf("error probing container %d", i);
330 			continue;
331 		}
332 
333 		mir = (struct aac_mntinforesp *)&fib->data[0];
334 		/* XXX Need to check if count changed */
335 		count = mir->MntRespCount;
336 		aac_add_container(sc, mir, 0);
337 		i++;
338 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
339 
340 	aac_release_sync_fib(sc);
341 
342 	/* poke the bus to actually attach the child devices */
343 	if (bus_generic_attach(sc->aac_dev))
344 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
345 
346 	/* mark the controller up */
347 	sc->aac_state &= ~AAC_STATE_SUSPEND;
348 
349 	/* enable interrupts now */
350 	AAC_UNMASK_INTERRUPTS(sc);
351 }
352 
353 /*
354  * Create a device to respresent a new container
355  */
356 static void
357 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
358 {
359 	struct aac_container *co;
360 	device_t child;
361 
362 	/*
363 	 * Check container volume type for validity.  Note that many of
364 	 * the possible types may never show up.
365 	 */
366 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
367 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
368 		       M_NOWAIT | M_ZERO);
369 		if (co == NULL)
370 			panic("Out of memory?!\n");
371 		debug(1, "id %x  name '%.16s'  size %u  type %d",
372 		      mir->MntTable[0].ObjectId,
373 		      mir->MntTable[0].FileSystemName,
374 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
375 
376 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
377 			device_printf(sc->aac_dev, "device_add_child failed\n");
378 		else
379 			device_set_ivars(child, co);
380 		device_set_desc(child, aac_describe_code(aac_container_types,
381 				mir->MntTable[0].VolType));
382 		co->co_disk = child;
383 		co->co_found = f;
384 		bcopy(&mir->MntTable[0], &co->co_mntobj,
385 		      sizeof(struct aac_mntobj));
386 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
387 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
388 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
389 	}
390 }
391 
392 /*
393  * Free all of the resources associated with (sc)
394  *
395  * Should not be called if the controller is active.
396  */
397 void
398 aac_free(struct aac_softc *sc)
399 {
400 
401 	debug_called(1);
402 
403 	/* remove the control device */
404 	if (sc->aac_dev_t != NULL)
405 		destroy_dev(sc->aac_dev_t);
406 
407 	/* throw away any FIB buffers, discard the FIB DMA tag */
408 	aac_free_commands(sc);
409 	if (sc->aac_fib_dmat)
410 		bus_dma_tag_destroy(sc->aac_fib_dmat);
411 
412 	free(sc->aac_commands, M_AACBUF);
413 
414 	/* destroy the common area */
415 	if (sc->aac_common) {
416 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
417 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
418 				sc->aac_common_dmamap);
419 	}
420 	if (sc->aac_common_dmat)
421 		bus_dma_tag_destroy(sc->aac_common_dmat);
422 
423 	/* disconnect the interrupt handler */
424 	if (sc->aac_intr)
425 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
426 	if (sc->aac_irq != NULL)
427 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
428 				     sc->aac_irq);
429 
430 	/* destroy data-transfer DMA tag */
431 	if (sc->aac_buffer_dmat)
432 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
433 
434 	/* destroy the parent DMA tag */
435 	if (sc->aac_parent_dmat)
436 		bus_dma_tag_destroy(sc->aac_parent_dmat);
437 
438 	/* release the register window mapping */
439 	if (sc->aac_regs_resource != NULL)
440 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
441 				     sc->aac_regs_rid, sc->aac_regs_resource);
442 }
443 
444 /*
445  * Disconnect from the controller completely, in preparation for unload.
446  */
447 int
448 aac_detach(device_t dev)
449 {
450 	struct aac_softc *sc;
451 	struct aac_container *co;
452 	struct aac_sim	*sim;
453 	int error;
454 
455 	debug_called(1);
456 
457 	sc = device_get_softc(dev);
458 
459 	if (sc->aac_state & AAC_STATE_OPEN)
460 		return(EBUSY);
461 
462 	/* Remove the child containers */
463 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
464 		error = device_delete_child(dev, co->co_disk);
465 		if (error)
466 			return (error);
467 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
468 		free(co, M_AACBUF);
469 	}
470 
471 	/* Remove the CAM SIMs */
472 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
473 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
474 		error = device_delete_child(dev, sim->sim_dev);
475 		if (error)
476 			return (error);
477 		free(sim, M_AACBUF);
478 	}
479 
480 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
481 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
482 		wakeup(sc->aifthread);
483 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
484 	}
485 
486 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
487 		panic("Cannot shutdown AIF thread\n");
488 
489 	if ((error = aac_shutdown(dev)))
490 		return(error);
491 
492 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
493 
494 	aac_free(sc);
495 
496 	return(0);
497 }
498 
499 /*
500  * Bring the controller down to a dormant state and detach all child devices.
501  *
502  * This function is called before detach or system shutdown.
503  *
504  * Note that we can assume that the bioq on the controller is empty, as we won't
505  * allow shutdown if any device is open.
506  */
507 int
508 aac_shutdown(device_t dev)
509 {
510 	struct aac_softc *sc;
511 	struct aac_fib *fib;
512 	struct aac_close_command *cc;
513 
514 	debug_called(1);
515 
516 	sc = device_get_softc(dev);
517 
518 	sc->aac_state |= AAC_STATE_SUSPEND;
519 
520 	/*
521 	 * Send a Container shutdown followed by a HostShutdown FIB to the
522 	 * controller to convince it that we don't want to talk to it anymore.
523 	 * We've been closed and all I/O completed already
524 	 */
525 	device_printf(sc->aac_dev, "shutting down controller...");
526 
527 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
528 	cc = (struct aac_close_command *)&fib->data[0];
529 
530 	bzero(cc, sizeof(struct aac_close_command));
531 	cc->Command = VM_CloseAll;
532 	cc->ContainerId = 0xffffffff;
533 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
534 	    sizeof(struct aac_close_command)))
535 		printf("FAILED.\n");
536 	else
537 		printf("done\n");
538 #if 0
539 	else {
540 		fib->data[0] = 0;
541 		/*
542 		 * XXX Issuing this command to the controller makes it shut down
543 		 * but also keeps it from coming back up without a reset of the
544 		 * PCI bus.  This is not desirable if you are just unloading the
545 		 * driver module with the intent to reload it later.
546 		 */
547 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
548 		    fib, 1)) {
549 			printf("FAILED.\n");
550 		} else {
551 			printf("done.\n");
552 		}
553 	}
554 #endif
555 
556 	AAC_MASK_INTERRUPTS(sc);
557 
558 	return(0);
559 }
560 
561 /*
562  * Bring the controller to a quiescent state, ready for system suspend.
563  */
564 int
565 aac_suspend(device_t dev)
566 {
567 	struct aac_softc *sc;
568 
569 	debug_called(1);
570 
571 	sc = device_get_softc(dev);
572 
573 	sc->aac_state |= AAC_STATE_SUSPEND;
574 
575 	AAC_MASK_INTERRUPTS(sc);
576 	return(0);
577 }
578 
579 /*
580  * Bring the controller back to a state ready for operation.
581  */
582 int
583 aac_resume(device_t dev)
584 {
585 	struct aac_softc *sc;
586 
587 	debug_called(1);
588 
589 	sc = device_get_softc(dev);
590 
591 	sc->aac_state &= ~AAC_STATE_SUSPEND;
592 	AAC_UNMASK_INTERRUPTS(sc);
593 	return(0);
594 }
595 
596 /*
597  * Take an interrupt.
598  */
599 void
600 aac_intr(void *arg)
601 {
602 	struct aac_softc *sc;
603 	u_int32_t *resp_queue;
604 	u_int16_t reason;
605 
606 	debug_called(2);
607 
608 	sc = (struct aac_softc *)arg;
609 
610 	/*
611 	 * Optimize the common case of adapter response interrupts.
612 	 * We must read from the card prior to processing the responses
613 	 * to ensure the clear is flushed prior to accessing the queues.
614 	 * Reading the queues from local memory might save us a PCI read.
615 	 */
616 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
617 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
618 		reason = AAC_DB_RESPONSE_READY;
619 	else
620 		reason = AAC_GET_ISTATUS(sc);
621 	AAC_CLEAR_ISTATUS(sc, reason);
622 	(void)AAC_GET_ISTATUS(sc);
623 
624 	/* It's not ok to return here because of races with the previous step */
625 	if (reason & AAC_DB_RESPONSE_READY)
626 		/* handle completion processing */
627 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
628 
629 	/* controller wants to talk to the log */
630 	if (reason & AAC_DB_PRINTF) {
631 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
633 		} else
634 			aac_print_printf(sc);
635 	}
636 
637 	/* controller has a message for us? */
638 	if (reason & AAC_DB_COMMAND_READY) {
639 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
640 			sc->aifflags |= AAC_AIFFLAGS_AIF;
641 		} else {
642 			/*
643 			 * XXX If the kthread is dead and we're at this point,
644 			 * there are bigger problems than just figuring out
645 			 * what to do with an AIF.
646 			 */
647 		}
648 
649 	}
650 
651 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
652 		/* XXX Should this be done with cv_signal? */
653 		wakeup(sc->aifthread);
654 }
655 
656 /*
657  * Command Processing
658  */
659 
660 /*
661  * Start as much queued I/O as possible on the controller
662  */
663 void
664 aac_startio(struct aac_softc *sc)
665 {
666 	struct aac_command *cm;
667 
668 	debug_called(2);
669 
670 	for (;;) {
671 		/*
672 		 * Try to get a command that's been put off for lack of
673 		 * resources
674 		 */
675 		cm = aac_dequeue_ready(sc);
676 
677 		/*
678 		 * Try to build a command off the bio queue (ignore error
679 		 * return)
680 		 */
681 		if (cm == NULL)
682 			aac_bio_command(sc, &cm);
683 
684 		/* nothing to do? */
685 		if (cm == NULL)
686 			break;
687 
688 		/* try to give the command to the controller */
689 		if (aac_start(cm) == EBUSY) {
690 			/* put it on the ready queue for later */
691 			aac_requeue_ready(cm);
692 			break;
693 		}
694 	}
695 }
696 
697 /*
698  * Deliver a command to the controller; allocate controller resources at the
699  * last moment when possible.
700  */
701 static int
702 aac_start(struct aac_command *cm)
703 {
704 	struct aac_softc *sc;
705 	int error;
706 
707 	debug_called(2);
708 
709 	sc = cm->cm_sc;
710 
711 	/* get the command mapped */
712 	aac_map_command(cm);
713 
714 	/* Fix up the address values in the FIB.  Use the command array index
715 	 * instead of a pointer since these fields are only 32 bits.  Shift
716 	 * the SenderFibAddress over to make room for the fast response bit.
717 	 */
718 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
719 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
720 
721 	/* save a pointer to the command for speedy reverse-lookup */
722 	cm->cm_fib->Header.SenderData = cm->cm_index;
723 	/* put the FIB on the outbound queue */
724 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
725 	return(error);
726 }
727 
728 /*
729  * Handle notification of one or more FIBs coming from the controller.
730  */
731 static void
732 aac_command_thread(struct aac_softc *sc)
733 {
734 	struct aac_fib *fib;
735 	u_int32_t fib_size;
736 	int size;
737 
738 	debug_called(2);
739 
740 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
741 
742 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
743 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
744 			tsleep(sc->aifthread, PRIBIO, "aifthd",
745 			       AAC_PERIODIC_INTERVAL * hz);
746 
747 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
748 			aac_timeout(sc);
749 
750 		/* Check the hardware printf message buffer */
751 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
752 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
753 			aac_print_printf(sc);
754 		}
755 
756 		/* See if any FIBs need to be allocated */
757 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
758 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
759 			aac_alloc_commands(sc);
760 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
761 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
762 		}
763 
764 		/* While we're here, check to see if any commands are stuck */
765 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
766 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
767 					    &fib_size, &fib)) {
768 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
769 				break;	/* nothing to do */
770 			}
771 
772 			AAC_PRINT_FIB(sc, fib);
773 
774 			switch (fib->Header.Command) {
775 			case AifRequest:
776 				aac_handle_aif(sc, fib);
777 				break;
778 			default:
779 				device_printf(sc->aac_dev, "unknown command "
780 					      "from controller\n");
781 				break;
782 			}
783 
784 			if ((fib->Header.XferState == 0) ||
785 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
786 				break;
787 
788 			/* Return the AIF to the controller. */
789 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
790 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
791 				*(AAC_FSAStatus*)fib->data = ST_OK;
792 
793 				/* XXX Compute the Size field? */
794 				size = fib->Header.Size;
795 				if (size > sizeof(struct aac_fib)) {
796 					size = sizeof(struct aac_fib);
797 					fib->Header.Size = size;
798 				}
799 				/*
800 				 * Since we did not generate this command, it
801 				 * cannot go through the normal
802 				 * enqueue->startio chain.
803 				 */
804 				aac_enqueue_response(sc,
805 						     AAC_ADAP_NORM_RESP_QUEUE,
806 						     fib);
807 			}
808 		}
809 	}
810 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
811 	wakeup(sc->aac_dev);
812 
813 	mtx_lock(&Giant);
814 	kthread_exit(0);
815 }
816 
817 /*
818  * Process completed commands.
819  */
820 static void
821 aac_complete(void *context, int pending)
822 {
823 	struct aac_softc *sc;
824 	struct aac_command *cm;
825 	struct aac_fib *fib;
826 	u_int32_t fib_size;
827 
828 	debug_called(2);
829 
830 	sc = (struct aac_softc *)context;
831 
832 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
833 
834 	/* pull completed commands off the queue */
835 	for (;;) {
836 		/* look for completed FIBs on our queue */
837 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
838 				    &fib))
839 			break;	/* nothing to do */
840 
841 		/* get the command, unmap and queue for later processing */
842 		cm = sc->aac_commands + fib->Header.SenderData;
843 		if (cm == NULL) {
844 			AAC_PRINT_FIB(sc, fib);
845 			break;
846 		}
847 
848 		aac_remove_busy(cm);
849 		aac_unmap_command(cm);		/* XXX defer? */
850 		cm->cm_flags |= AAC_CMD_COMPLETED;
851 
852 		/* is there a completion handler? */
853 		if (cm->cm_complete != NULL) {
854 			cm->cm_complete(cm);
855 		} else {
856 			/* assume that someone is sleeping on this command */
857 			wakeup(cm);
858 		}
859 	}
860 
861 	/* see if we can start some more I/O */
862 	aac_startio(sc);
863 
864 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
865 }
866 
867 /*
868  * Handle a bio submitted from a disk device.
869  */
870 void
871 aac_submit_bio(struct bio *bp)
872 {
873 	struct aac_disk *ad;
874 	struct aac_softc *sc;
875 
876 	debug_called(2);
877 
878 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
879 	sc = ad->ad_controller;
880 
881 	/* queue the BIO and try to get some work done */
882 	aac_enqueue_bio(sc, bp);
883 	aac_startio(sc);
884 }
885 
886 /*
887  * Get a bio and build a command to go with it.
888  */
889 static int
890 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
891 {
892 	struct aac_command *cm;
893 	struct aac_fib *fib;
894 	struct aac_disk *ad;
895 	struct bio *bp;
896 
897 	debug_called(2);
898 
899 	/* get the resources we will need */
900 	cm = NULL;
901 	if ((bp = aac_dequeue_bio(sc)) == NULL)
902 		goto fail;
903 	if (aac_alloc_command(sc, &cm))	/* get a command */
904 		goto fail;
905 
906 	/* fill out the command */
907 	cm->cm_data = (void *)bp->bio_data;
908 	cm->cm_datalen = bp->bio_bcount;
909 	cm->cm_complete = aac_bio_complete;
910 	cm->cm_private = bp;
911 	cm->cm_timestamp = time_second;
912 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
913 
914 	/* build the FIB */
915 	fib = cm->cm_fib;
916 	fib->Header.Size = sizeof(struct aac_fib_header);
917 	fib->Header.XferState =
918 		AAC_FIBSTATE_HOSTOWNED   |
919 		AAC_FIBSTATE_INITIALISED |
920 		AAC_FIBSTATE_EMPTY	 |
921 		AAC_FIBSTATE_FROMHOST	 |
922 		AAC_FIBSTATE_REXPECTED   |
923 		AAC_FIBSTATE_NORM	 |
924 		AAC_FIBSTATE_ASYNC	 |
925 		AAC_FIBSTATE_FAST_RESPONSE;
926 
927 	/* build the read/write request */
928 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
929 
930 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
931 		fib->Header.Command = ContainerCommand;
932 		if (bp->bio_cmd == BIO_READ) {
933 			struct aac_blockread *br;
934 			br = (struct aac_blockread *)&fib->data[0];
935 			br->Command = VM_CtBlockRead;
936 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
937 			br->BlockNumber = bp->bio_pblkno;
938 			br->ByteCount = bp->bio_bcount;
939 			fib->Header.Size += sizeof(struct aac_blockread);
940 			cm->cm_sgtable = &br->SgMap;
941 			cm->cm_flags |= AAC_CMD_DATAIN;
942 		} else {
943 			struct aac_blockwrite *bw;
944 			bw = (struct aac_blockwrite *)&fib->data[0];
945 			bw->Command = VM_CtBlockWrite;
946 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
947 			bw->BlockNumber = bp->bio_pblkno;
948 			bw->ByteCount = bp->bio_bcount;
949 			bw->Stable = CUNSTABLE;
950 			fib->Header.Size += sizeof(struct aac_blockwrite);
951 			cm->cm_flags |= AAC_CMD_DATAOUT;
952 			cm->cm_sgtable = &bw->SgMap;
953 		}
954 	} else {
955 		fib->Header.Command = ContainerCommand64;
956 		if (bp->bio_cmd == BIO_READ) {
957 			struct aac_blockread64 *br;
958 			br = (struct aac_blockread64 *)&fib->data[0];
959 			br->Command = VM_CtHostRead64;
960 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
961 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
962 			br->BlockNumber = bp->bio_pblkno;
963 			br->Pad = 0;
964 			br->Flags = 0;
965 			fib->Header.Size += sizeof(struct aac_blockread64);
966 			cm->cm_flags |= AAC_CMD_DATAOUT;
967 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
968 		} else {
969 			struct aac_blockwrite64 *bw;
970 			bw = (struct aac_blockwrite64 *)&fib->data[0];
971 			bw->Command = VM_CtHostWrite64;
972 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
973 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
974 			bw->BlockNumber = bp->bio_pblkno;
975 			bw->Pad = 0;
976 			bw->Flags = 0;
977 			fib->Header.Size += sizeof(struct aac_blockwrite64);
978 			cm->cm_flags |= AAC_CMD_DATAIN;
979 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
980 		}
981 	}
982 
983 	*cmp = cm;
984 	return(0);
985 
986 fail:
987 	if (bp != NULL)
988 		aac_enqueue_bio(sc, bp);
989 	if (cm != NULL)
990 		aac_release_command(cm);
991 	return(ENOMEM);
992 }
993 
994 /*
995  * Handle a bio-instigated command that has been completed.
996  */
997 static void
998 aac_bio_complete(struct aac_command *cm)
999 {
1000 	struct aac_blockread_response *brr;
1001 	struct aac_blockwrite_response *bwr;
1002 	struct bio *bp;
1003 	AAC_FSAStatus status;
1004 
1005 	/* fetch relevant status and then release the command */
1006 	bp = (struct bio *)cm->cm_private;
1007 	if (bp->bio_cmd == BIO_READ) {
1008 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1009 		status = brr->Status;
1010 	} else {
1011 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1012 		status = bwr->Status;
1013 	}
1014 	aac_release_command(cm);
1015 
1016 	/* fix up the bio based on status */
1017 	if (status == ST_OK) {
1018 		bp->bio_resid = 0;
1019 	} else {
1020 		bp->bio_error = EIO;
1021 		bp->bio_flags |= BIO_ERROR;
1022 		/* pass an error string out to the disk layer */
1023 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1024 						    status);
1025 	}
1026 	aac_biodone(bp);
1027 }
1028 
1029 /*
1030  * Submit a command to the controller, return when it completes.
1031  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1032  *     be stuck here forever.  At the same time, signals are not caught
1033  *     because there is a risk that a signal could wakeup the tsleep before
1034  *     the card has a chance to complete the command.  The passed in timeout
1035  *     is ignored for the same reason.  Since there is no way to cancel a
1036  *     command in progress, we should probably create a 'dead' queue where
1037  *     commands go that have been interrupted/timed-out/etc, that keeps them
1038  *     out of the free pool.  That way, if the card is just slow, it won't
1039  *     spam the memory of a command that has been recycled.
1040  */
1041 static int
1042 aac_wait_command(struct aac_command *cm, int timeout)
1043 {
1044 	struct aac_softc *sc;
1045 	int error = 0;
1046 
1047 	debug_called(2);
1048 
1049 	sc = cm->cm_sc;
1050 
1051 	/* Put the command on the ready queue and get things going */
1052 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1053 	aac_enqueue_ready(cm);
1054 	aac_startio(sc);
1055 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1056 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1057 	}
1058 	return(error);
1059 }
1060 
1061 /*
1062  *Command Buffer Management
1063  */
1064 
1065 /*
1066  * Allocate a command.
1067  */
1068 int
1069 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1070 {
1071 	struct aac_command *cm;
1072 
1073 	debug_called(3);
1074 
1075 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1076 		if (sc->total_fibs < sc->aac_max_fibs) {
1077 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1078 			wakeup(sc->aifthread);
1079 		}
1080 		return (EBUSY);
1081 	}
1082 
1083 	*cmp = cm;
1084 	return(0);
1085 }
1086 
1087 /*
1088  * Release a command back to the freelist.
1089  */
1090 void
1091 aac_release_command(struct aac_command *cm)
1092 {
1093 	debug_called(3);
1094 
1095 	/* (re)initialise the command/FIB */
1096 	cm->cm_sgtable = NULL;
1097 	cm->cm_flags = 0;
1098 	cm->cm_complete = NULL;
1099 	cm->cm_private = NULL;
1100 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1101 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1102 	cm->cm_fib->Header.Flags = 0;
1103 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1104 
1105 	/*
1106 	 * These are duplicated in aac_start to cover the case where an
1107 	 * intermediate stage may have destroyed them.  They're left
1108 	 * initialised here for debugging purposes only.
1109 	 */
1110 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1111 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1112 	cm->cm_fib->Header.SenderData = 0;
1113 
1114 	aac_enqueue_free(cm);
1115 }
1116 
1117 /*
1118  * Map helper for command/FIB allocation.
1119  */
1120 static void
1121 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1122 {
1123 	uint32_t	*fibphys;
1124 
1125 	fibphys = (uint32_t *)arg;
1126 
1127 	debug_called(3);
1128 
1129 	*fibphys = segs[0].ds_addr;
1130 }
1131 
1132 /*
1133  * Allocate and initialise commands/FIBs for this adapter.
1134  */
1135 static int
1136 aac_alloc_commands(struct aac_softc *sc)
1137 {
1138 	struct aac_command *cm;
1139 	struct aac_fibmap *fm;
1140 	uint32_t fibphys;
1141 	int i, error;
1142 
1143 	debug_called(2);
1144 
1145 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1146 		return (ENOMEM);
1147 
1148 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1149 	if (fm == NULL)
1150 		return (ENOMEM);
1151 
1152 	/* allocate the FIBs in DMAable memory and load them */
1153 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1154 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1155 		device_printf(sc->aac_dev,
1156 			      "Not enough contiguous memory available.\n");
1157 		free(fm, M_AACBUF);
1158 		return (ENOMEM);
1159 	}
1160 
1161 	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1162 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1163 			aac_map_command_helper, &fibphys, 0);
1164 
1165 	/* initialise constant fields in the command structure */
1166 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1167 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1168 		cm = sc->aac_commands + sc->total_fibs;
1169 		fm->aac_commands = cm;
1170 		cm->cm_sc = sc;
1171 		cm->cm_fib = fm->aac_fibs + i;
1172 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1173 		cm->cm_index = sc->total_fibs;
1174 
1175 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1176 					       &cm->cm_datamap)) == 0)
1177 			aac_release_command(cm);
1178 		else
1179 			break;
1180 		sc->total_fibs++;
1181 	}
1182 
1183 	if (i > 0) {
1184 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1185 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1186 		return (0);
1187 	}
1188 
1189 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1190 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1191 	free(fm, M_AACBUF);
1192 	return (ENOMEM);
1193 }
1194 
1195 /*
1196  * Free FIBs owned by this adapter.
1197  */
1198 static void
1199 aac_free_commands(struct aac_softc *sc)
1200 {
1201 	struct aac_fibmap *fm;
1202 	struct aac_command *cm;
1203 	int i;
1204 
1205 	debug_called(1);
1206 
1207 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1208 
1209 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1210 		/*
1211 		 * We check against total_fibs to handle partially
1212 		 * allocated blocks.
1213 		 */
1214 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1215 			cm = fm->aac_commands + i;
1216 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1217 		}
1218 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1219 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1220 		free(fm, M_AACBUF);
1221 	}
1222 }
1223 
1224 /*
1225  * Command-mapping helper function - populate this command's s/g table.
1226  */
1227 static void
1228 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1229 {
1230 	struct aac_command *cm;
1231 	struct aac_fib *fib;
1232 	int i;
1233 
1234 	debug_called(3);
1235 
1236 	cm = (struct aac_command *)arg;
1237 	fib = cm->cm_fib;
1238 
1239 	/* copy into the FIB */
1240 	if (cm->cm_sgtable != NULL) {
1241 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1242 			struct aac_sg_table *sg;
1243 			sg = cm->cm_sgtable;
1244 			sg->SgCount = nseg;
1245 			for (i = 0; i < nseg; i++) {
1246 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1247 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1248 			}
1249 			/* update the FIB size for the s/g count */
1250 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1251 		} else {
1252 			struct aac_sg_table64 *sg;
1253 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1254 			sg->SgCount = nseg;
1255 			for (i = 0; i < nseg; i++) {
1256 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1257 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1258 			}
1259 			/* update the FIB size for the s/g count */
1260 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1261 		}
1262 	}
1263 }
1264 
1265 /*
1266  * Map a command into controller-visible space.
1267  */
1268 static void
1269 aac_map_command(struct aac_command *cm)
1270 {
1271 	struct aac_softc *sc;
1272 
1273 	debug_called(2);
1274 
1275 	sc = cm->cm_sc;
1276 
1277 	/* don't map more than once */
1278 	if (cm->cm_flags & AAC_CMD_MAPPED)
1279 		return;
1280 
1281 	if (cm->cm_datalen != 0) {
1282 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1283 				cm->cm_data, cm->cm_datalen,
1284 				aac_map_command_sg, cm, 0);
1285 
1286 		if (cm->cm_flags & AAC_CMD_DATAIN)
1287 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1288 					BUS_DMASYNC_PREREAD);
1289 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1290 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1291 					BUS_DMASYNC_PREWRITE);
1292 	}
1293 	cm->cm_flags |= AAC_CMD_MAPPED;
1294 }
1295 
1296 /*
1297  * Unmap a command from controller-visible space.
1298  */
1299 static void
1300 aac_unmap_command(struct aac_command *cm)
1301 {
1302 	struct aac_softc *sc;
1303 
1304 	debug_called(2);
1305 
1306 	sc = cm->cm_sc;
1307 
1308 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1309 		return;
1310 
1311 	if (cm->cm_datalen != 0) {
1312 		if (cm->cm_flags & AAC_CMD_DATAIN)
1313 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1314 					BUS_DMASYNC_POSTREAD);
1315 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1316 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317 					BUS_DMASYNC_POSTWRITE);
1318 
1319 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1320 	}
1321 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1322 }
1323 
1324 /*
1325  * Hardware Interface
1326  */
1327 
1328 /*
1329  * Initialise the adapter.
1330  */
1331 static void
1332 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1333 {
1334 	struct aac_softc *sc;
1335 
1336 	debug_called(1);
1337 
1338 	sc = (struct aac_softc *)arg;
1339 
1340 	sc->aac_common_busaddr = segs[0].ds_addr;
1341 }
1342 
1343 static int
1344 aac_check_firmware(struct aac_softc *sc)
1345 {
1346 	u_int32_t major, minor, options;
1347 
1348 	debug_called(1);
1349 
1350 	/*
1351 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1352 	 * firmware version 1.x are not compatible with this driver.
1353 	 */
1354 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1355 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1356 				     NULL)) {
1357 			device_printf(sc->aac_dev,
1358 				      "Error reading firmware version\n");
1359 			return (EIO);
1360 		}
1361 
1362 		/* These numbers are stored as ASCII! */
1363 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1364 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1365 		if (major == 1) {
1366 			device_printf(sc->aac_dev,
1367 			    "Firmware version %d.%d is not supported.\n",
1368 			    major, minor);
1369 			return (EINVAL);
1370 		}
1371 	}
1372 
1373 	/*
1374 	 * Retrieve the capabilities/supported options word so we know what
1375 	 * work-arounds to enable.
1376 	 */
1377 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1378 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1379 		return (EIO);
1380 	}
1381 	options = AAC_GET_MAILBOX(sc, 1);
1382 	sc->supported_options = options;
1383 
1384 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1385 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1386 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1387 	if (options & AAC_SUPPORTED_NONDASD)
1388 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1389 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1390 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1391 		sc->flags |= AAC_FLAGS_SG_64BIT;
1392 	}
1393 
1394 	/* Check for broken hardware that does a lower number of commands */
1395 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1396 		sc->aac_max_fibs = AAC_MAX_FIBS;
1397 	else
1398 		sc->aac_max_fibs = 256;
1399 
1400 	return (0);
1401 }
1402 
1403 static int
1404 aac_init(struct aac_softc *sc)
1405 {
1406 	struct aac_adapter_init	*ip;
1407 	time_t then;
1408 	u_int32_t code;
1409 	u_int8_t *qaddr;
1410 	int error;
1411 
1412 	debug_called(1);
1413 
1414 	/*
1415 	 * First wait for the adapter to come ready.
1416 	 */
1417 	then = time_second;
1418 	do {
1419 		code = AAC_GET_FWSTATUS(sc);
1420 		if (code & AAC_SELF_TEST_FAILED) {
1421 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1422 			return(ENXIO);
1423 		}
1424 		if (code & AAC_KERNEL_PANIC) {
1425 			device_printf(sc->aac_dev,
1426 				      "FATAL: controller kernel panic\n");
1427 			return(ENXIO);
1428 		}
1429 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1430 			device_printf(sc->aac_dev,
1431 				      "FATAL: controller not coming ready, "
1432 					   "status %x\n", code);
1433 			return(ENXIO);
1434 		}
1435 	} while (!(code & AAC_UP_AND_RUNNING));
1436 
1437 	error = ENOMEM;
1438 	/*
1439 	 * Create DMA tag for mapping buffers into controller-addressable space.
1440 	 */
1441 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1442 			       1, 0, 			/* algnmnt, boundary */
1443 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1444 			       BUS_SPACE_MAXADDR :
1445 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1446 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1447 			       NULL, NULL, 		/* filter, filterarg */
1448 			       MAXBSIZE,		/* maxsize */
1449 			       AAC_MAXSGENTRIES,	/* nsegments */
1450 			       MAXBSIZE,		/* maxsegsize */
1451 			       BUS_DMA_ALLOCNOW,	/* flags */
1452 			       busdma_lock_mutex,	/* lockfunc */
1453 			       &sc->aac_io_lock,	/* lockfuncarg */
1454 			       &sc->aac_buffer_dmat)) {
1455 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1456 		goto out;
1457 	}
1458 
1459 	/*
1460 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1461 	 */
1462 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1463 			       1, 0, 			/* algnmnt, boundary */
1464 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1465 			       BUS_SPACE_MAXADDR_32BIT :
1466 			       0x7fffffff,		/* lowaddr */
1467 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1468 			       NULL, NULL, 		/* filter, filterarg */
1469 			       AAC_FIB_COUNT *
1470 			       sizeof(struct aac_fib),  /* maxsize */
1471 			       1,			/* nsegments */
1472 			       AAC_FIB_COUNT *
1473 			       sizeof(struct aac_fib),	/* maxsegsize */
1474 			       BUS_DMA_ALLOCNOW,	/* flags */
1475 			       NULL, NULL,		/* No locking needed */
1476 			       &sc->aac_fib_dmat)) {
1477 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1478 		goto out;
1479 	}
1480 
1481 	/*
1482 	 * Create DMA tag for the common structure and allocate it.
1483 	 */
1484 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1485 			       1, 0,			/* algnmnt, boundary */
1486 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1487 			       BUS_SPACE_MAXADDR_32BIT :
1488 			       0x7fffffff,		/* lowaddr */
1489 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1490 			       NULL, NULL, 		/* filter, filterarg */
1491 			       8192 + sizeof(struct aac_common), /* maxsize */
1492 			       1,			/* nsegments */
1493 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1494 			       BUS_DMA_ALLOCNOW,	/* flags */
1495 			       NULL, NULL,		/* No locking needed */
1496 			       &sc->aac_common_dmat)) {
1497 		device_printf(sc->aac_dev,
1498 			      "can't allocate common structure DMA tag\n");
1499 		goto out;
1500 	}
1501 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1502 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1503 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1504 		goto out;
1505 	}
1506 
1507 	/*
1508 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1509 	 * below address 8192 in physical memory.
1510 	 * XXX If the padding is not needed, can it be put to use instead
1511 	 * of ignored?
1512 	 */
1513 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1514 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1515 			aac_common_map, sc, 0);
1516 
1517 	if (sc->aac_common_busaddr < 8192) {
1518 		(uint8_t *)sc->aac_common += 8192;
1519 		sc->aac_common_busaddr += 8192;
1520 	}
1521 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1522 
1523 	/* Allocate some FIBs and associated command structs */
1524 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1525 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1526 				  M_AACBUF, M_WAITOK|M_ZERO);
1527 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1528 		if (aac_alloc_commands(sc) != 0)
1529 			break;
1530 	}
1531 	if (sc->total_fibs == 0)
1532 		goto out;
1533 
1534 	/*
1535 	 * Fill in the init structure.  This tells the adapter about the
1536 	 * physical location of various important shared data structures.
1537 	 */
1538 	ip = &sc->aac_common->ac_init;
1539 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1540 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1541 
1542 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1543 					 offsetof(struct aac_common, ac_fibs);
1544 	ip->AdapterFibsVirtualAddress = 0;
1545 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1546 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1547 
1548 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1549 				  offsetof(struct aac_common, ac_printf);
1550 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1551 
1552 	/* The adapter assumes that pages are 4K in size */
1553 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1554 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1555 
1556 	/*
1557 	 * Initialise FIB queues.  Note that it appears that the layout of the
1558 	 * indexes and the segmentation of the entries may be mandated by the
1559 	 * adapter, which is only told about the base of the queue index fields.
1560 	 *
1561 	 * The initial values of the indices are assumed to inform the adapter
1562 	 * of the sizes of the respective queues, and theoretically it could
1563 	 * work out the entire layout of the queue structures from this.  We
1564 	 * take the easy route and just lay this area out like everyone else
1565 	 * does.
1566 	 *
1567 	 * The Linux driver uses a much more complex scheme whereby several
1568 	 * header records are kept for each queue.  We use a couple of generic
1569 	 * list manipulation functions which 'know' the size of each list by
1570 	 * virtue of a table.
1571 	 */
1572 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1573 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1574 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1575 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1576 				((u_int32_t)sc->aac_queues -
1577 				(u_int32_t)sc->aac_common);
1578 
1579 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1580 		AAC_HOST_NORM_CMD_ENTRIES;
1581 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1582 		AAC_HOST_NORM_CMD_ENTRIES;
1583 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1584 		AAC_HOST_HIGH_CMD_ENTRIES;
1585 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1586 		AAC_HOST_HIGH_CMD_ENTRIES;
1587 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1588 		AAC_ADAP_NORM_CMD_ENTRIES;
1589 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1590 		AAC_ADAP_NORM_CMD_ENTRIES;
1591 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592 		AAC_ADAP_HIGH_CMD_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594 		AAC_ADAP_HIGH_CMD_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1596 		AAC_HOST_NORM_RESP_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1598 		AAC_HOST_NORM_RESP_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1600 		AAC_HOST_HIGH_RESP_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1602 		AAC_HOST_HIGH_RESP_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1604 		AAC_ADAP_NORM_RESP_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1606 		AAC_ADAP_NORM_RESP_ENTRIES;
1607 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608 		AAC_ADAP_HIGH_RESP_ENTRIES;
1609 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610 		AAC_ADAP_HIGH_RESP_ENTRIES;
1611 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1612 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1613 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1614 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1615 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1616 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1617 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1618 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1619 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1620 		&sc->aac_queues->qt_HostNormRespQueue[0];
1621 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1622 		&sc->aac_queues->qt_HostHighRespQueue[0];
1623 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1624 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1625 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1626 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1627 
1628 	/*
1629 	 * Do controller-type-specific initialisation
1630 	 */
1631 	switch (sc->aac_hwif) {
1632 	case AAC_HWIF_I960RX:
1633 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1634 		break;
1635 	}
1636 
1637 	/*
1638 	 * Give the init structure to the controller.
1639 	 */
1640 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1641 			     sc->aac_common_busaddr +
1642 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1643 			     NULL)) {
1644 		device_printf(sc->aac_dev,
1645 			      "error establishing init structure\n");
1646 		error = EIO;
1647 		goto out;
1648 	}
1649 
1650 	error = 0;
1651 out:
1652 	return(error);
1653 }
1654 
1655 /*
1656  * Send a synchronous command to the controller and wait for a result.
1657  */
1658 static int
1659 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1660 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1661 		 u_int32_t *sp)
1662 {
1663 	time_t then;
1664 	u_int32_t status;
1665 
1666 	debug_called(3);
1667 
1668 	/* populate the mailbox */
1669 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1670 
1671 	/* ensure the sync command doorbell flag is cleared */
1672 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1673 
1674 	/* then set it to signal the adapter */
1675 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1676 
1677 	/* spin waiting for the command to complete */
1678 	then = time_second;
1679 	do {
1680 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1681 			debug(1, "timed out");
1682 			return(EIO);
1683 		}
1684 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1685 
1686 	/* clear the completion flag */
1687 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1688 
1689 	/* get the command status */
1690 	status = AAC_GET_MAILBOX(sc, 0);
1691 	if (sp != NULL)
1692 		*sp = status;
1693 	return(0);
1694 }
1695 
1696 /*
1697  * Grab the sync fib area.
1698  */
1699 int
1700 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1701 {
1702 
1703 	/*
1704 	 * If the force flag is set, the system is shutting down, or in
1705 	 * trouble.  Ignore the mutex.
1706 	 */
1707 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1708 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1709 
1710 	*fib = &sc->aac_common->ac_sync_fib;
1711 
1712 	return (1);
1713 }
1714 
1715 /*
1716  * Release the sync fib area.
1717  */
1718 void
1719 aac_release_sync_fib(struct aac_softc *sc)
1720 {
1721 
1722 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1723 }
1724 
1725 /*
1726  * Send a synchronous FIB to the controller and wait for a result.
1727  */
1728 int
1729 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1730 		 struct aac_fib *fib, u_int16_t datasize)
1731 {
1732 	debug_called(3);
1733 
1734 	if (datasize > AAC_FIB_DATASIZE)
1735 		return(EINVAL);
1736 
1737 	/*
1738 	 * Set up the sync FIB
1739 	 */
1740 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1741 				AAC_FIBSTATE_INITIALISED |
1742 				AAC_FIBSTATE_EMPTY;
1743 	fib->Header.XferState |= xferstate;
1744 	fib->Header.Command = command;
1745 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1746 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1747 	fib->Header.SenderSize = sizeof(struct aac_fib);
1748 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1749 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1750 					 offsetof(struct aac_common,
1751 						  ac_sync_fib);
1752 
1753 	/*
1754 	 * Give the FIB to the controller, wait for a response.
1755 	 */
1756 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1757 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1758 		debug(2, "IO error");
1759 		return(EIO);
1760 	}
1761 
1762 	return (0);
1763 }
1764 
1765 /*
1766  * Adapter-space FIB queue manipulation
1767  *
1768  * Note that the queue implementation here is a little funky; neither the PI or
1769  * CI will ever be zero.  This behaviour is a controller feature.
1770  */
1771 static struct {
1772 	int		size;
1773 	int		notify;
1774 } aac_qinfo[] = {
1775 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1776 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1777 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1778 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1779 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1780 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1781 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1782 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1783 };
1784 
1785 /*
1786  * Atomically insert an entry into the nominated queue, returns 0 on success or
1787  * EBUSY if the queue is full.
1788  *
1789  * Note: it would be more efficient to defer notifying the controller in
1790  *	 the case where we may be inserting several entries in rapid succession,
1791  *	 but implementing this usefully may be difficult (it would involve a
1792  *	 separate queue/notify interface).
1793  */
1794 static int
1795 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1796 {
1797 	u_int32_t pi, ci;
1798 	int error;
1799 	u_int32_t fib_size;
1800 	u_int32_t fib_addr;
1801 
1802 	debug_called(3);
1803 
1804 	fib_size = cm->cm_fib->Header.Size;
1805 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1806 
1807 	/* get the producer/consumer indices */
1808 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1809 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1810 
1811 	/* wrap the queue? */
1812 	if (pi >= aac_qinfo[queue].size)
1813 		pi = 0;
1814 
1815 	/* check for queue full */
1816 	if ((pi + 1) == ci) {
1817 		error = EBUSY;
1818 		goto out;
1819 	}
1820 
1821 	/* populate queue entry */
1822 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1823 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1824 
1825 	/* update producer index */
1826 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1827 
1828 	/*
1829 	 * To avoid a race with its completion interrupt, place this command on
1830 	 * the busy queue prior to advertising it to the controller.
1831 	 */
1832 	aac_enqueue_busy(cm);
1833 
1834 	/* notify the adapter if we know how */
1835 	if (aac_qinfo[queue].notify != 0)
1836 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1837 
1838 	error = 0;
1839 
1840 out:
1841 	return(error);
1842 }
1843 
1844 /*
1845  * Atomically remove one entry from the nominated queue, returns 0 on
1846  * success or ENOENT if the queue is empty.
1847  */
1848 static int
1849 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1850 		struct aac_fib **fib_addr)
1851 {
1852 	u_int32_t pi, ci;
1853 	u_int32_t fib_index;
1854 	int error;
1855 	int notify;
1856 
1857 	debug_called(3);
1858 
1859 	/* get the producer/consumer indices */
1860 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1861 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1862 
1863 	/* check for queue empty */
1864 	if (ci == pi) {
1865 		error = ENOENT;
1866 		goto out;
1867 	}
1868 
1869 	notify = 0;
1870 	if (ci == pi + 1)
1871 		notify++;
1872 
1873 	/* wrap the queue? */
1874 	if (ci >= aac_qinfo[queue].size)
1875 		ci = 0;
1876 
1877 	/* fetch the entry */
1878 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1879 
1880 	switch (queue) {
1881 	case AAC_HOST_NORM_CMD_QUEUE:
1882 	case AAC_HOST_HIGH_CMD_QUEUE:
1883 		/*
1884 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1885 		 * on to hold an address.  For AIF's, the adapter assumes
1886 		 * that it's giving us an address into the array of AIF fibs.
1887 		 * Therefore, we have to convert it to an index.
1888 		 */
1889 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1890 			sizeof(struct aac_fib);
1891 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1892 		break;
1893 
1894 	case AAC_HOST_NORM_RESP_QUEUE:
1895 	case AAC_HOST_HIGH_RESP_QUEUE:
1896 	{
1897 		struct aac_command *cm;
1898 
1899 		/*
1900 		 * As above, an index is used instead of an actual address.
1901 		 * Gotta shift the index to account for the fast response
1902 		 * bit.  No other correction is needed since this value was
1903 		 * originally provided by the driver via the SenderFibAddress
1904 		 * field.
1905 		 */
1906 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1907 		cm = sc->aac_commands + (fib_index >> 1);
1908 		*fib_addr = cm->cm_fib;
1909 
1910 		/*
1911 		 * Is this a fast response? If it is, update the fib fields in
1912 		 * local memory since the whole fib isn't DMA'd back up.
1913 		 */
1914 		if (fib_index & 0x01) {
1915 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1916 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1917 		}
1918 		break;
1919 	}
1920 	default:
1921 		panic("Invalid queue in aac_dequeue_fib()");
1922 		break;
1923 	}
1924 
1925 	/* update consumer index */
1926 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1927 
1928 	/* if we have made the queue un-full, notify the adapter */
1929 	if (notify && (aac_qinfo[queue].notify != 0))
1930 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1931 	error = 0;
1932 
1933 out:
1934 	return(error);
1935 }
1936 
1937 /*
1938  * Put our response to an Adapter Initialed Fib on the response queue
1939  */
1940 static int
1941 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1942 {
1943 	u_int32_t pi, ci;
1944 	int error;
1945 	u_int32_t fib_size;
1946 	u_int32_t fib_addr;
1947 
1948 	debug_called(1);
1949 
1950 	/* Tell the adapter where the FIB is */
1951 	fib_size = fib->Header.Size;
1952 	fib_addr = fib->Header.SenderFibAddress;
1953 	fib->Header.ReceiverFibAddress = fib_addr;
1954 
1955 	/* get the producer/consumer indices */
1956 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1957 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1958 
1959 	/* wrap the queue? */
1960 	if (pi >= aac_qinfo[queue].size)
1961 		pi = 0;
1962 
1963 	/* check for queue full */
1964 	if ((pi + 1) == ci) {
1965 		error = EBUSY;
1966 		goto out;
1967 	}
1968 
1969 	/* populate queue entry */
1970 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1971 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1972 
1973 	/* update producer index */
1974 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1975 
1976 	/* notify the adapter if we know how */
1977 	if (aac_qinfo[queue].notify != 0)
1978 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1979 
1980 	error = 0;
1981 
1982 out:
1983 	return(error);
1984 }
1985 
1986 /*
1987  * Check for commands that have been outstanding for a suspiciously long time,
1988  * and complain about them.
1989  */
1990 static void
1991 aac_timeout(struct aac_softc *sc)
1992 {
1993 	struct aac_command *cm;
1994 	time_t deadline;
1995 
1996 	/*
1997 	 * Traverse the busy command list, bitch about late commands once
1998 	 * only.
1999 	 */
2000 	deadline = time_second - AAC_CMD_TIMEOUT;
2001 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2002 		if ((cm->cm_timestamp  < deadline)
2003 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2004 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2005 			device_printf(sc->aac_dev,
2006 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2007 				      cm, (int)(time_second-cm->cm_timestamp));
2008 			AAC_PRINT_FIB(sc, cm->cm_fib);
2009 		}
2010 	}
2011 
2012 	return;
2013 }
2014 
2015 /*
2016  * Interface Function Vectors
2017  */
2018 
2019 /*
2020  * Read the current firmware status word.
2021  */
2022 static int
2023 aac_sa_get_fwstatus(struct aac_softc *sc)
2024 {
2025 	debug_called(3);
2026 
2027 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2028 }
2029 
2030 static int
2031 aac_rx_get_fwstatus(struct aac_softc *sc)
2032 {
2033 	debug_called(3);
2034 
2035 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2036 }
2037 
2038 static int
2039 aac_fa_get_fwstatus(struct aac_softc *sc)
2040 {
2041 	int val;
2042 
2043 	debug_called(3);
2044 
2045 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2046 	return (val);
2047 }
2048 
2049 /*
2050  * Notify the controller of a change in a given queue
2051  */
2052 
2053 static void
2054 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2055 {
2056 	debug_called(3);
2057 
2058 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2059 }
2060 
2061 static void
2062 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2063 {
2064 	debug_called(3);
2065 
2066 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2067 }
2068 
2069 static void
2070 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2071 {
2072 	debug_called(3);
2073 
2074 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2075 	AAC_FA_HACK(sc);
2076 }
2077 
2078 /*
2079  * Get the interrupt reason bits
2080  */
2081 static int
2082 aac_sa_get_istatus(struct aac_softc *sc)
2083 {
2084 	debug_called(3);
2085 
2086 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2087 }
2088 
2089 static int
2090 aac_rx_get_istatus(struct aac_softc *sc)
2091 {
2092 	debug_called(3);
2093 
2094 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2095 }
2096 
2097 static int
2098 aac_fa_get_istatus(struct aac_softc *sc)
2099 {
2100 	int val;
2101 
2102 	debug_called(3);
2103 
2104 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2105 	return (val);
2106 }
2107 
2108 /*
2109  * Clear some interrupt reason bits
2110  */
2111 static void
2112 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2113 {
2114 	debug_called(3);
2115 
2116 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2117 }
2118 
2119 static void
2120 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2121 {
2122 	debug_called(3);
2123 
2124 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2125 }
2126 
2127 static void
2128 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2129 {
2130 	debug_called(3);
2131 
2132 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2133 	AAC_FA_HACK(sc);
2134 }
2135 
2136 /*
2137  * Populate the mailbox and set the command word
2138  */
2139 static void
2140 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2141 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2142 {
2143 	debug_called(4);
2144 
2145 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2146 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2147 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2148 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2149 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2150 }
2151 
2152 static void
2153 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2154 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2155 {
2156 	debug_called(4);
2157 
2158 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2159 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2160 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2161 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2162 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2163 }
2164 
2165 static void
2166 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2167 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2168 {
2169 	debug_called(4);
2170 
2171 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2172 	AAC_FA_HACK(sc);
2173 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2174 	AAC_FA_HACK(sc);
2175 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2176 	AAC_FA_HACK(sc);
2177 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2178 	AAC_FA_HACK(sc);
2179 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2180 	AAC_FA_HACK(sc);
2181 }
2182 
2183 /*
2184  * Fetch the immediate command status word
2185  */
2186 static int
2187 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2188 {
2189 	debug_called(4);
2190 
2191 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2192 }
2193 
2194 static int
2195 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2196 {
2197 	debug_called(4);
2198 
2199 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2200 }
2201 
2202 static int
2203 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2204 {
2205 	int val;
2206 
2207 	debug_called(4);
2208 
2209 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2210 	return (val);
2211 }
2212 
2213 /*
2214  * Set/clear interrupt masks
2215  */
2216 static void
2217 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2218 {
2219 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2220 
2221 	if (enable) {
2222 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2223 	} else {
2224 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2225 	}
2226 }
2227 
2228 static void
2229 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2230 {
2231 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2232 
2233 	if (enable) {
2234 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2235 	} else {
2236 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2237 	}
2238 }
2239 
2240 static void
2241 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2242 {
2243 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2244 
2245 	if (enable) {
2246 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2247 		AAC_FA_HACK(sc);
2248 	} else {
2249 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2250 		AAC_FA_HACK(sc);
2251 	}
2252 }
2253 
2254 /*
2255  * Debugging and Diagnostics
2256  */
2257 
2258 /*
2259  * Print some information about the controller.
2260  */
2261 static void
2262 aac_describe_controller(struct aac_softc *sc)
2263 {
2264 	struct aac_fib *fib;
2265 	struct aac_adapter_info	*info;
2266 
2267 	debug_called(2);
2268 
2269 	aac_alloc_sync_fib(sc, &fib, 0);
2270 
2271 	fib->data[0] = 0;
2272 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2273 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2274 		aac_release_sync_fib(sc);
2275 		return;
2276 	}
2277 	info = (struct aac_adapter_info *)&fib->data[0];
2278 
2279 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2280 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2281 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2282 		      aac_describe_code(aac_battery_platform,
2283 					info->batteryPlatform));
2284 
2285 	/* save the kernel revision structure for later use */
2286 	sc->aac_revision = info->KernelRevision;
2287 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2288 		      info->KernelRevision.external.comp.major,
2289 		      info->KernelRevision.external.comp.minor,
2290 		      info->KernelRevision.external.comp.dash,
2291 		      info->KernelRevision.buildNumber,
2292 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2293 
2294 	aac_release_sync_fib(sc);
2295 
2296 	if (1 || bootverbose) {
2297 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2298 			      sc->supported_options,
2299 			      "\20"
2300 			      "\1SNAPSHOT"
2301 			      "\2CLUSTERS"
2302 			      "\3WCACHE"
2303 			      "\4DATA64"
2304 			      "\5HOSTTIME"
2305 			      "\6RAID50"
2306 			      "\7WINDOW4GB"
2307 			      "\10SCSIUPGD"
2308 			      "\11SOFTERR"
2309 			      "\12NORECOND"
2310 			      "\13SGMAP64"
2311 			      "\14ALARM"
2312 			      "\15NONDASD");
2313 	}
2314 }
2315 
2316 /*
2317  * Look up a text description of a numeric error code and return a pointer to
2318  * same.
2319  */
2320 static char *
2321 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2322 {
2323 	int i;
2324 
2325 	for (i = 0; table[i].string != NULL; i++)
2326 		if (table[i].code == code)
2327 			return(table[i].string);
2328 	return(table[i + 1].string);
2329 }
2330 
2331 /*
2332  * Management Interface
2333  */
2334 
2335 static int
2336 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2337 {
2338 	struct aac_softc *sc;
2339 
2340 	debug_called(2);
2341 
2342 	sc = dev->si_drv1;
2343 
2344 	/* Check to make sure the device isn't already open */
2345 	if (sc->aac_state & AAC_STATE_OPEN) {
2346 		return EBUSY;
2347 	}
2348 	sc->aac_state |= AAC_STATE_OPEN;
2349 
2350 	return 0;
2351 }
2352 
2353 static int
2354 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2355 {
2356 	struct aac_softc *sc;
2357 
2358 	debug_called(2);
2359 
2360 	sc = dev->si_drv1;
2361 
2362 	/* Mark this unit as no longer open  */
2363 	sc->aac_state &= ~AAC_STATE_OPEN;
2364 
2365 	return 0;
2366 }
2367 
2368 static int
2369 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2370 {
2371 	union aac_statrequest *as;
2372 	struct aac_softc *sc;
2373 	int error = 0;
2374 	int i;
2375 
2376 	debug_called(2);
2377 
2378 	as = (union aac_statrequest *)arg;
2379 	sc = dev->si_drv1;
2380 
2381 	switch (cmd) {
2382 	case AACIO_STATS:
2383 		switch (as->as_item) {
2384 		case AACQ_FREE:
2385 		case AACQ_BIO:
2386 		case AACQ_READY:
2387 		case AACQ_BUSY:
2388 		case AACQ_COMPLETE:
2389 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2390 			      sizeof(struct aac_qstat));
2391 			break;
2392 		default:
2393 			error = ENOENT;
2394 			break;
2395 		}
2396 	break;
2397 
2398 	case FSACTL_SENDFIB:
2399 		arg = *(caddr_t*)arg;
2400 	case FSACTL_LNX_SENDFIB:
2401 		debug(1, "FSACTL_SENDFIB");
2402 		error = aac_ioctl_sendfib(sc, arg);
2403 		break;
2404 	case FSACTL_AIF_THREAD:
2405 	case FSACTL_LNX_AIF_THREAD:
2406 		debug(1, "FSACTL_AIF_THREAD");
2407 		error = EINVAL;
2408 		break;
2409 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2410 		arg = *(caddr_t*)arg;
2411 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2412 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2413 		/*
2414 		 * Pass the caller out an AdapterFibContext.
2415 		 *
2416 		 * Note that because we only support one opener, we
2417 		 * basically ignore this.  Set the caller's context to a magic
2418 		 * number just in case.
2419 		 *
2420 		 * The Linux code hands the driver a pointer into kernel space,
2421 		 * and then trusts it when the caller hands it back.  Aiee!
2422 		 * Here, we give it the proc pointer of the per-adapter aif
2423 		 * thread. It's only used as a sanity check in other calls.
2424 		 */
2425 		i = (int)sc->aifthread;
2426 		error = copyout(&i, arg, sizeof(i));
2427 		break;
2428 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2429 		arg = *(caddr_t*)arg;
2430 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2431 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2432 		error = aac_getnext_aif(sc, arg);
2433 		break;
2434 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2435 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2436 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2437 		/* don't do anything here */
2438 		break;
2439 	case FSACTL_MINIPORT_REV_CHECK:
2440 		arg = *(caddr_t*)arg;
2441 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2442 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2443 		error = aac_rev_check(sc, arg);
2444 		break;
2445 	case FSACTL_QUERY_DISK:
2446 		arg = *(caddr_t*)arg;
2447 	case FSACTL_LNX_QUERY_DISK:
2448 		debug(1, "FSACTL_QUERY_DISK");
2449 		error = aac_query_disk(sc, arg);
2450 			break;
2451 	case FSACTL_DELETE_DISK:
2452 	case FSACTL_LNX_DELETE_DISK:
2453 		/*
2454 		 * We don't trust the underland to tell us when to delete a
2455 		 * container, rather we rely on an AIF coming from the
2456 		 * controller
2457 		 */
2458 		error = 0;
2459 		break;
2460 	default:
2461 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2462 		error = EINVAL;
2463 		break;
2464 	}
2465 	return(error);
2466 }
2467 
2468 static int
2469 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2470 {
2471 	struct aac_softc *sc;
2472 	int revents;
2473 
2474 	sc = dev->si_drv1;
2475 	revents = 0;
2476 
2477 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2478 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2479 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2480 			revents |= poll_events & (POLLIN | POLLRDNORM);
2481 	}
2482 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2483 
2484 	if (revents == 0) {
2485 		if (poll_events & (POLLIN | POLLRDNORM))
2486 			selrecord(td, &sc->rcv_select);
2487 	}
2488 
2489 	return (revents);
2490 }
2491 
2492 /*
2493  * Send a FIB supplied from userspace
2494  */
2495 static int
2496 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2497 {
2498 	struct aac_command *cm;
2499 	int size, error;
2500 
2501 	debug_called(2);
2502 
2503 	cm = NULL;
2504 
2505 	/*
2506 	 * Get a command
2507 	 */
2508 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2509 	if (aac_alloc_command(sc, &cm)) {
2510 		error = EBUSY;
2511 		goto out;
2512 	}
2513 
2514 	/*
2515 	 * Fetch the FIB header, then re-copy to get data as well.
2516 	 */
2517 	if ((error = copyin(ufib, cm->cm_fib,
2518 			    sizeof(struct aac_fib_header))) != 0)
2519 		goto out;
2520 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2521 	if (size > sizeof(struct aac_fib)) {
2522 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2523 			      size, sizeof(struct aac_fib));
2524 		size = sizeof(struct aac_fib);
2525 	}
2526 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2527 		goto out;
2528 	cm->cm_fib->Header.Size = size;
2529 	cm->cm_timestamp = time_second;
2530 
2531 	/*
2532 	 * Pass the FIB to the controller, wait for it to complete.
2533 	 */
2534 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2535 		device_printf(sc->aac_dev,
2536 			      "aac_wait_command return %d\n", error);
2537 		goto out;
2538 	}
2539 
2540 	/*
2541 	 * Copy the FIB and data back out to the caller.
2542 	 */
2543 	size = cm->cm_fib->Header.Size;
2544 	if (size > sizeof(struct aac_fib)) {
2545 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2546 			      size, sizeof(struct aac_fib));
2547 		size = sizeof(struct aac_fib);
2548 	}
2549 	error = copyout(cm->cm_fib, ufib, size);
2550 
2551 out:
2552 	if (cm != NULL) {
2553 		aac_release_command(cm);
2554 	}
2555 
2556 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2557 	return(error);
2558 }
2559 
2560 /*
2561  * Handle an AIF sent to us by the controller; queue it for later reference.
2562  * If the queue fills up, then drop the older entries.
2563  */
2564 static void
2565 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2566 {
2567 	struct aac_aif_command *aif;
2568 	struct aac_container *co, *co_next;
2569 	struct aac_mntinfo *mi;
2570 	struct aac_mntinforesp *mir = NULL;
2571 	u_int16_t rsize;
2572 	int next, found;
2573 	int count = 0, added = 0, i = 0;
2574 
2575 	debug_called(2);
2576 
2577 	aif = (struct aac_aif_command*)&fib->data[0];
2578 	aac_print_aif(sc, aif);
2579 
2580 	/* Is it an event that we should care about? */
2581 	switch (aif->command) {
2582 	case AifCmdEventNotify:
2583 		switch (aif->data.EN.type) {
2584 		case AifEnAddContainer:
2585 		case AifEnDeleteContainer:
2586 			/*
2587 			 * A container was added or deleted, but the message
2588 			 * doesn't tell us anything else!  Re-enumerate the
2589 			 * containers and sort things out.
2590 			 */
2591 			aac_alloc_sync_fib(sc, &fib, 0);
2592 			mi = (struct aac_mntinfo *)&fib->data[0];
2593 			do {
2594 				/*
2595 				 * Ask the controller for its containers one at
2596 				 * a time.
2597 				 * XXX What if the controller's list changes
2598 				 * midway through this enumaration?
2599 				 * XXX This should be done async.
2600 				 */
2601 				bzero(mi, sizeof(struct aac_mntinfo));
2602 				mi->Command = VM_NameServe;
2603 				mi->MntType = FT_FILESYS;
2604 				mi->MntCount = i;
2605 				rsize = sizeof(mir);
2606 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2607 						 sizeof(struct aac_mntinfo))) {
2608 					printf("Error probing container %d\n",
2609 					      i);
2610 					continue;
2611 				}
2612 				mir = (struct aac_mntinforesp *)&fib->data[0];
2613 				/* XXX Need to check if count changed */
2614 				count = mir->MntRespCount;
2615 				/*
2616 				 * Check the container against our list.
2617 				 * co->co_found was already set to 0 in a
2618 				 * previous run.
2619 				 */
2620 				if ((mir->Status == ST_OK) &&
2621 				    (mir->MntTable[0].VolType != CT_NONE)) {
2622 					found = 0;
2623 					TAILQ_FOREACH(co,
2624 						      &sc->aac_container_tqh,
2625 						      co_link) {
2626 						if (co->co_mntobj.ObjectId ==
2627 						    mir->MntTable[0].ObjectId) {
2628 							co->co_found = 1;
2629 							found = 1;
2630 							break;
2631 						}
2632 					}
2633 					/*
2634 					 * If the container matched, continue
2635 					 * in the list.
2636 					 */
2637 					if (found) {
2638 						i++;
2639 						continue;
2640 					}
2641 
2642 					/*
2643 					 * This is a new container.  Do all the
2644 					 * appropriate things to set it up.
2645 					 */
2646 					aac_add_container(sc, mir, 1);
2647 					added = 1;
2648 				}
2649 				i++;
2650 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2651 			aac_release_sync_fib(sc);
2652 
2653 			/*
2654 			 * Go through our list of containers and see which ones
2655 			 * were not marked 'found'.  Since the controller didn't
2656 			 * list them they must have been deleted.  Do the
2657 			 * appropriate steps to destroy the device.  Also reset
2658 			 * the co->co_found field.
2659 			 */
2660 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2661 			while (co != NULL) {
2662 				if (co->co_found == 0) {
2663 					device_delete_child(sc->aac_dev,
2664 							    co->co_disk);
2665 					co_next = TAILQ_NEXT(co, co_link);
2666 					AAC_LOCK_ACQUIRE(&sc->
2667 							aac_container_lock);
2668 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2669 						     co_link);
2670 					AAC_LOCK_RELEASE(&sc->
2671 							 aac_container_lock);
2672 					FREE(co, M_AACBUF);
2673 					co = co_next;
2674 				} else {
2675 					co->co_found = 0;
2676 					co = TAILQ_NEXT(co, co_link);
2677 				}
2678 			}
2679 
2680 			/* Attach the newly created containers */
2681 			if (added)
2682 				bus_generic_attach(sc->aac_dev);
2683 
2684 			break;
2685 
2686 		default:
2687 			break;
2688 		}
2689 
2690 	default:
2691 		break;
2692 	}
2693 
2694 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2695 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2696 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2697 	if (next != sc->aac_aifq_tail) {
2698 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2699 		sc->aac_aifq_head = next;
2700 
2701 		/* On the off chance that someone is sleeping for an aif... */
2702 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2703 			wakeup(sc->aac_aifq);
2704 		/* Wakeup any poll()ers */
2705 		selwakeup(&sc->rcv_select);
2706 	}
2707 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2708 
2709 	return;
2710 }
2711 
2712 /*
2713  * Return the Revision of the driver to userspace and check to see if the
2714  * userspace app is possibly compatible.  This is extremely bogus since
2715  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2716  * returning what the card reported.
2717  */
2718 static int
2719 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2720 {
2721 	struct aac_rev_check rev_check;
2722 	struct aac_rev_check_resp rev_check_resp;
2723 	int error = 0;
2724 
2725 	debug_called(2);
2726 
2727 	/*
2728 	 * Copyin the revision struct from userspace
2729 	 */
2730 	if ((error = copyin(udata, (caddr_t)&rev_check,
2731 			sizeof(struct aac_rev_check))) != 0) {
2732 		return error;
2733 	}
2734 
2735 	debug(2, "Userland revision= %d\n",
2736 	      rev_check.callingRevision.buildNumber);
2737 
2738 	/*
2739 	 * Doctor up the response struct.
2740 	 */
2741 	rev_check_resp.possiblyCompatible = 1;
2742 	rev_check_resp.adapterSWRevision.external.ul =
2743 	    sc->aac_revision.external.ul;
2744 	rev_check_resp.adapterSWRevision.buildNumber =
2745 	    sc->aac_revision.buildNumber;
2746 
2747 	return(copyout((caddr_t)&rev_check_resp, udata,
2748 			sizeof(struct aac_rev_check_resp)));
2749 }
2750 
2751 /*
2752  * Pass the caller the next AIF in their queue
2753  */
2754 static int
2755 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2756 {
2757 	struct get_adapter_fib_ioctl agf;
2758 	int error;
2759 
2760 	debug_called(2);
2761 
2762 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2763 
2764 		/*
2765 		 * Check the magic number that we gave the caller.
2766 		 */
2767 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2768 			error = EFAULT;
2769 		} else {
2770 			error = aac_return_aif(sc, agf.AifFib);
2771 			if ((error == EAGAIN) && (agf.Wait)) {
2772 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2773 				while (error == EAGAIN) {
2774 					error = tsleep(sc->aac_aifq, PRIBIO |
2775 						       PCATCH, "aacaif", 0);
2776 					if (error == 0)
2777 						error = aac_return_aif(sc,
2778 						    agf.AifFib);
2779 				}
2780 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2781 			}
2782 		}
2783 	}
2784 	return(error);
2785 }
2786 
2787 /*
2788  * Hand the next AIF off the top of the queue out to userspace.
2789  */
2790 static int
2791 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2792 {
2793 	int error;
2794 
2795 	debug_called(2);
2796 
2797 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2798 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2799 		error = EAGAIN;
2800 	} else {
2801 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2802 				sizeof(struct aac_aif_command));
2803 		if (error)
2804 			device_printf(sc->aac_dev,
2805 			    "aac_return_aif: copyout returned %d\n", error);
2806 		if (!error)
2807 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2808 					    AAC_AIFQ_LENGTH;
2809 	}
2810 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2811 	return(error);
2812 }
2813 
2814 /*
2815  * Give the userland some information about the container.  The AAC arch
2816  * expects the driver to be a SCSI passthrough type driver, so it expects
2817  * the containers to have b:t:l numbers.  Fake it.
2818  */
2819 static int
2820 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2821 {
2822 	struct aac_query_disk query_disk;
2823 	struct aac_container *co;
2824 	struct aac_disk	*disk;
2825 	int error, id;
2826 
2827 	debug_called(2);
2828 
2829 	disk = NULL;
2830 
2831 	error = copyin(uptr, (caddr_t)&query_disk,
2832 		       sizeof(struct aac_query_disk));
2833 	if (error)
2834 		return (error);
2835 
2836 	id = query_disk.ContainerNumber;
2837 	if (id == -1)
2838 		return (EINVAL);
2839 
2840 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2841 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2842 		if (co->co_mntobj.ObjectId == id)
2843 			break;
2844 		}
2845 
2846 	if (co == NULL) {
2847 			query_disk.Valid = 0;
2848 			query_disk.Locked = 0;
2849 			query_disk.Deleted = 1;		/* XXX is this right? */
2850 	} else {
2851 		disk = device_get_softc(co->co_disk);
2852 		query_disk.Valid = 1;
2853 		query_disk.Locked =
2854 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2855 		query_disk.Deleted = 0;
2856 		query_disk.Bus = device_get_unit(sc->aac_dev);
2857 		query_disk.Target = disk->unit;
2858 		query_disk.Lun = 0;
2859 		query_disk.UnMapped = 0;
2860 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2861 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2862 	}
2863 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2864 
2865 	error = copyout((caddr_t)&query_disk, uptr,
2866 			sizeof(struct aac_query_disk));
2867 
2868 	return (error);
2869 }
2870 
2871 static void
2872 aac_get_bus_info(struct aac_softc *sc)
2873 {
2874 	struct aac_fib *fib;
2875 	struct aac_ctcfg *c_cmd;
2876 	struct aac_ctcfg_resp *c_resp;
2877 	struct aac_vmioctl *vmi;
2878 	struct aac_vmi_businf_resp *vmi_resp;
2879 	struct aac_getbusinf businfo;
2880 	struct aac_sim *caminf;
2881 	device_t child;
2882 	int i, found, error;
2883 
2884 	aac_alloc_sync_fib(sc, &fib, 0);
2885 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2886 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2887 
2888 	c_cmd->Command = VM_ContainerConfig;
2889 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2890 	c_cmd->param = 0;
2891 
2892 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2893 	    sizeof(struct aac_ctcfg));
2894 	if (error) {
2895 		device_printf(sc->aac_dev, "Error %d sending "
2896 		    "VM_ContainerConfig command\n", error);
2897 		aac_release_sync_fib(sc);
2898 		return;
2899 	}
2900 
2901 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2902 	if (c_resp->Status != ST_OK) {
2903 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2904 		    c_resp->Status);
2905 		aac_release_sync_fib(sc);
2906 		return;
2907 	}
2908 
2909 	sc->scsi_method_id = c_resp->param;
2910 
2911 	vmi = (struct aac_vmioctl *)&fib->data[0];
2912 	bzero(vmi, sizeof(struct aac_vmioctl));
2913 
2914 	vmi->Command = VM_Ioctl;
2915 	vmi->ObjType = FT_DRIVE;
2916 	vmi->MethId = sc->scsi_method_id;
2917 	vmi->ObjId = 0;
2918 	vmi->IoctlCmd = GetBusInfo;
2919 
2920 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2921 	    sizeof(struct aac_vmioctl));
2922 	if (error) {
2923 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2924 		    error);
2925 		aac_release_sync_fib(sc);
2926 		return;
2927 	}
2928 
2929 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2930 	if (vmi_resp->Status != ST_OK) {
2931 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2932 		    vmi_resp->Status);
2933 		aac_release_sync_fib(sc);
2934 		return;
2935 	}
2936 
2937 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2938 	aac_release_sync_fib(sc);
2939 
2940 	found = 0;
2941 	for (i = 0; i < businfo.BusCount; i++) {
2942 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2943 			continue;
2944 
2945 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2946 		    M_AACBUF, M_NOWAIT | M_ZERO);
2947 		if (caminf == NULL)
2948 			continue;
2949 
2950 		child = device_add_child(sc->aac_dev, "aacp", -1);
2951 		if (child == NULL) {
2952 			device_printf(sc->aac_dev, "device_add_child failed\n");
2953 			continue;
2954 		}
2955 
2956 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2957 		caminf->BusNumber = i;
2958 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2959 		caminf->aac_sc = sc;
2960 		caminf->sim_dev = child;
2961 
2962 		device_set_ivars(child, caminf);
2963 		device_set_desc(child, "SCSI Passthrough Bus");
2964 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2965 
2966 		found = 1;
2967 	}
2968 
2969 	if (found)
2970 		bus_generic_attach(sc->aac_dev);
2971 
2972 	return;
2973 }
2974