1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 35 */ 36 37 #include "opt_aac.h" 38 39 /* #include <stddef.h> */ 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/kthread.h> 45 #include <sys/sysctl.h> 46 #include <sys/poll.h> 47 #include <sys/ioccom.h> 48 49 #include <sys/bus.h> 50 #include <sys/conf.h> 51 #include <sys/signalvar.h> 52 #include <sys/time.h> 53 #include <sys/eventhandler.h> 54 55 #include <machine/bus_memio.h> 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 59 #include <dev/aac/aacreg.h> 60 #include <dev/aac/aac_ioctl.h> 61 #include <dev/aac/aacvar.h> 62 #include <dev/aac/aac_tables.h> 63 64 static void aac_startup(void *arg); 65 static void aac_add_container(struct aac_softc *sc, 66 struct aac_mntinforesp *mir, int f); 67 static void aac_get_bus_info(struct aac_softc *sc); 68 69 /* Command Processing */ 70 static void aac_timeout(struct aac_softc *sc); 71 static int aac_map_command(struct aac_command *cm); 72 static void aac_complete(void *context, int pending); 73 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 74 static void aac_bio_complete(struct aac_command *cm); 75 static int aac_wait_command(struct aac_command *cm); 76 static void aac_command_thread(struct aac_softc *sc); 77 78 /* Command Buffer Management */ 79 static void aac_map_command_sg(void *arg, bus_dma_segment_t *segs, 80 int nseg, int error); 81 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 82 int nseg, int error); 83 static int aac_alloc_commands(struct aac_softc *sc); 84 static void aac_free_commands(struct aac_softc *sc); 85 static void aac_unmap_command(struct aac_command *cm); 86 87 /* Hardware Interface */ 88 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 89 int error); 90 static int aac_check_firmware(struct aac_softc *sc); 91 static int aac_init(struct aac_softc *sc); 92 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 93 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 94 u_int32_t arg3, u_int32_t *sp); 95 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 96 struct aac_command *cm); 97 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 98 u_int32_t *fib_size, struct aac_fib **fib_addr); 99 static int aac_enqueue_response(struct aac_softc *sc, int queue, 100 struct aac_fib *fib); 101 102 /* Falcon/PPC interface */ 103 static int aac_fa_get_fwstatus(struct aac_softc *sc); 104 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 105 static int aac_fa_get_istatus(struct aac_softc *sc); 106 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 107 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 108 u_int32_t arg0, u_int32_t arg1, 109 u_int32_t arg2, u_int32_t arg3); 110 static int aac_fa_get_mailbox(struct aac_softc *sc, int mb); 111 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 112 113 struct aac_interface aac_fa_interface = { 114 aac_fa_get_fwstatus, 115 aac_fa_qnotify, 116 aac_fa_get_istatus, 117 aac_fa_clear_istatus, 118 aac_fa_set_mailbox, 119 aac_fa_get_mailbox, 120 aac_fa_set_interrupts 121 }; 122 123 /* StrongARM interface */ 124 static int aac_sa_get_fwstatus(struct aac_softc *sc); 125 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 126 static int aac_sa_get_istatus(struct aac_softc *sc); 127 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 128 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 129 u_int32_t arg0, u_int32_t arg1, 130 u_int32_t arg2, u_int32_t arg3); 131 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb); 132 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 133 134 struct aac_interface aac_sa_interface = { 135 aac_sa_get_fwstatus, 136 aac_sa_qnotify, 137 aac_sa_get_istatus, 138 aac_sa_clear_istatus, 139 aac_sa_set_mailbox, 140 aac_sa_get_mailbox, 141 aac_sa_set_interrupts 142 }; 143 144 /* i960Rx interface */ 145 static int aac_rx_get_fwstatus(struct aac_softc *sc); 146 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 147 static int aac_rx_get_istatus(struct aac_softc *sc); 148 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 149 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 150 u_int32_t arg0, u_int32_t arg1, 151 u_int32_t arg2, u_int32_t arg3); 152 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb); 153 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 154 155 struct aac_interface aac_rx_interface = { 156 aac_rx_get_fwstatus, 157 aac_rx_qnotify, 158 aac_rx_get_istatus, 159 aac_rx_clear_istatus, 160 aac_rx_set_mailbox, 161 aac_rx_get_mailbox, 162 aac_rx_set_interrupts 163 }; 164 165 /* Debugging and Diagnostics */ 166 static void aac_describe_controller(struct aac_softc *sc); 167 static char *aac_describe_code(struct aac_code_lookup *table, 168 u_int32_t code); 169 170 /* Management Interface */ 171 static d_open_t aac_open; 172 static d_close_t aac_close; 173 static d_ioctl_t aac_ioctl; 174 static d_poll_t aac_poll; 175 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 176 static void aac_handle_aif(struct aac_softc *sc, 177 struct aac_fib *fib); 178 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 179 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 180 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 181 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 182 183 static struct cdevsw aac_cdevsw = { 184 .d_version = D_VERSION, 185 .d_flags = D_NEEDGIANT, 186 .d_open = aac_open, 187 .d_close = aac_close, 188 .d_ioctl = aac_ioctl, 189 .d_poll = aac_poll, 190 .d_name = "aac", 191 }; 192 193 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 194 195 /* sysctl node */ 196 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 197 198 /* 199 * Device Interface 200 */ 201 202 /* 203 * Initialise the controller and softc 204 */ 205 int 206 aac_attach(struct aac_softc *sc) 207 { 208 int error, unit; 209 210 debug_called(1); 211 212 /* 213 * Initialise per-controller queues. 214 */ 215 aac_initq_free(sc); 216 aac_initq_ready(sc); 217 aac_initq_busy(sc); 218 aac_initq_bio(sc); 219 220 /* 221 * Initialise command-completion task. 222 */ 223 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 224 225 /* disable interrupts before we enable anything */ 226 AAC_MASK_INTERRUPTS(sc); 227 228 /* mark controller as suspended until we get ourselves organised */ 229 sc->aac_state |= AAC_STATE_SUSPEND; 230 231 /* 232 * Check that the firmware on the card is supported. 233 */ 234 if ((error = aac_check_firmware(sc)) != 0) 235 return(error); 236 237 /* 238 * Initialize locks 239 */ 240 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 241 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 242 AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock"); 243 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 244 TAILQ_INIT(&sc->aac_container_tqh); 245 246 /* Initialize the local AIF queue pointers */ 247 sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH; 248 249 /* 250 * Initialise the adapter. 251 */ 252 if ((error = aac_init(sc)) != 0) 253 return(error); 254 255 /* 256 * Print a little information about the controller. 257 */ 258 aac_describe_controller(sc); 259 260 /* 261 * Register to probe our containers later. 262 */ 263 sc->aac_ich.ich_func = aac_startup; 264 sc->aac_ich.ich_arg = sc; 265 if (config_intrhook_establish(&sc->aac_ich) != 0) { 266 device_printf(sc->aac_dev, 267 "can't establish configuration hook\n"); 268 return(ENXIO); 269 } 270 271 /* 272 * Make the control device. 273 */ 274 unit = device_get_unit(sc->aac_dev); 275 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR, 276 0640, "aac%d", unit); 277 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 278 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 279 sc->aac_dev_t->si_drv1 = sc; 280 281 /* Create the AIF thread */ 282 if (kthread_create((void(*)(void *))aac_command_thread, sc, 283 &sc->aifthread, 0, 0, "aac%daif", unit)) 284 panic("Could not create AIF thread\n"); 285 286 /* Register the shutdown method to only be called post-dump */ 287 if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, 288 sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL) 289 device_printf(sc->aac_dev, 290 "shutdown event registration failed\n"); 291 292 /* Register with CAM for the non-DASD devices */ 293 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) { 294 TAILQ_INIT(&sc->aac_sim_tqh); 295 aac_get_bus_info(sc); 296 } 297 298 return(0); 299 } 300 301 /* 302 * Probe for containers, create disks. 303 */ 304 static void 305 aac_startup(void *arg) 306 { 307 struct aac_softc *sc; 308 struct aac_fib *fib; 309 struct aac_mntinfo *mi; 310 struct aac_mntinforesp *mir = NULL; 311 int count = 0, i = 0; 312 313 debug_called(1); 314 315 sc = (struct aac_softc *)arg; 316 317 /* disconnect ourselves from the intrhook chain */ 318 config_intrhook_disestablish(&sc->aac_ich); 319 320 aac_alloc_sync_fib(sc, &fib, 0); 321 mi = (struct aac_mntinfo *)&fib->data[0]; 322 323 /* loop over possible containers */ 324 do { 325 /* request information on this container */ 326 bzero(mi, sizeof(struct aac_mntinfo)); 327 mi->Command = VM_NameServe; 328 mi->MntType = FT_FILESYS; 329 mi->MntCount = i; 330 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 331 sizeof(struct aac_mntinfo))) { 332 printf("error probing container %d", i); 333 continue; 334 } 335 336 mir = (struct aac_mntinforesp *)&fib->data[0]; 337 /* XXX Need to check if count changed */ 338 count = mir->MntRespCount; 339 aac_add_container(sc, mir, 0); 340 i++; 341 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 342 343 aac_release_sync_fib(sc); 344 345 /* poke the bus to actually attach the child devices */ 346 if (bus_generic_attach(sc->aac_dev)) 347 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 348 349 /* mark the controller up */ 350 sc->aac_state &= ~AAC_STATE_SUSPEND; 351 352 /* enable interrupts now */ 353 AAC_UNMASK_INTERRUPTS(sc); 354 } 355 356 /* 357 * Create a device to respresent a new container 358 */ 359 static void 360 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 361 { 362 struct aac_container *co; 363 device_t child; 364 365 /* 366 * Check container volume type for validity. Note that many of 367 * the possible types may never show up. 368 */ 369 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 370 co = (struct aac_container *)malloc(sizeof *co, M_AACBUF, 371 M_NOWAIT | M_ZERO); 372 if (co == NULL) 373 panic("Out of memory?!\n"); 374 debug(1, "id %x name '%.16s' size %u type %d", 375 mir->MntTable[0].ObjectId, 376 mir->MntTable[0].FileSystemName, 377 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 378 379 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 380 device_printf(sc->aac_dev, "device_add_child failed\n"); 381 else 382 device_set_ivars(child, co); 383 device_set_desc(child, aac_describe_code(aac_container_types, 384 mir->MntTable[0].VolType)); 385 co->co_disk = child; 386 co->co_found = f; 387 bcopy(&mir->MntTable[0], &co->co_mntobj, 388 sizeof(struct aac_mntobj)); 389 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 390 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 391 AAC_LOCK_RELEASE(&sc->aac_container_lock); 392 } 393 } 394 395 /* 396 * Free all of the resources associated with (sc) 397 * 398 * Should not be called if the controller is active. 399 */ 400 void 401 aac_free(struct aac_softc *sc) 402 { 403 404 debug_called(1); 405 406 /* remove the control device */ 407 if (sc->aac_dev_t != NULL) 408 destroy_dev(sc->aac_dev_t); 409 410 /* throw away any FIB buffers, discard the FIB DMA tag */ 411 aac_free_commands(sc); 412 if (sc->aac_fib_dmat) 413 bus_dma_tag_destroy(sc->aac_fib_dmat); 414 415 free(sc->aac_commands, M_AACBUF); 416 417 /* destroy the common area */ 418 if (sc->aac_common) { 419 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 420 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 421 sc->aac_common_dmamap); 422 } 423 if (sc->aac_common_dmat) 424 bus_dma_tag_destroy(sc->aac_common_dmat); 425 426 /* disconnect the interrupt handler */ 427 if (sc->aac_intr) 428 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 429 if (sc->aac_irq != NULL) 430 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 431 sc->aac_irq); 432 433 /* destroy data-transfer DMA tag */ 434 if (sc->aac_buffer_dmat) 435 bus_dma_tag_destroy(sc->aac_buffer_dmat); 436 437 /* destroy the parent DMA tag */ 438 if (sc->aac_parent_dmat) 439 bus_dma_tag_destroy(sc->aac_parent_dmat); 440 441 /* release the register window mapping */ 442 if (sc->aac_regs_resource != NULL) 443 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 444 sc->aac_regs_rid, sc->aac_regs_resource); 445 } 446 447 /* 448 * Disconnect from the controller completely, in preparation for unload. 449 */ 450 int 451 aac_detach(device_t dev) 452 { 453 struct aac_softc *sc; 454 struct aac_container *co; 455 struct aac_sim *sim; 456 int error; 457 458 debug_called(1); 459 460 sc = device_get_softc(dev); 461 462 if (sc->aac_state & AAC_STATE_OPEN) 463 return(EBUSY); 464 465 /* Remove the child containers */ 466 while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) { 467 error = device_delete_child(dev, co->co_disk); 468 if (error) 469 return (error); 470 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 471 free(co, M_AACBUF); 472 } 473 474 /* Remove the CAM SIMs */ 475 while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) { 476 TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link); 477 error = device_delete_child(dev, sim->sim_dev); 478 if (error) 479 return (error); 480 free(sim, M_AACBUF); 481 } 482 483 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 484 sc->aifflags |= AAC_AIFFLAGS_EXIT; 485 wakeup(sc->aifthread); 486 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 487 } 488 489 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 490 panic("Cannot shutdown AIF thread\n"); 491 492 if ((error = aac_shutdown(dev))) 493 return(error); 494 495 EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh); 496 497 aac_free(sc); 498 499 return(0); 500 } 501 502 /* 503 * Bring the controller down to a dormant state and detach all child devices. 504 * 505 * This function is called before detach or system shutdown. 506 * 507 * Note that we can assume that the bioq on the controller is empty, as we won't 508 * allow shutdown if any device is open. 509 */ 510 int 511 aac_shutdown(device_t dev) 512 { 513 struct aac_softc *sc; 514 struct aac_fib *fib; 515 struct aac_close_command *cc; 516 517 debug_called(1); 518 519 sc = device_get_softc(dev); 520 521 sc->aac_state |= AAC_STATE_SUSPEND; 522 523 /* 524 * Send a Container shutdown followed by a HostShutdown FIB to the 525 * controller to convince it that we don't want to talk to it anymore. 526 * We've been closed and all I/O completed already 527 */ 528 device_printf(sc->aac_dev, "shutting down controller..."); 529 530 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 531 cc = (struct aac_close_command *)&fib->data[0]; 532 533 bzero(cc, sizeof(struct aac_close_command)); 534 cc->Command = VM_CloseAll; 535 cc->ContainerId = 0xffffffff; 536 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 537 sizeof(struct aac_close_command))) 538 printf("FAILED.\n"); 539 else 540 printf("done\n"); 541 #if 0 542 else { 543 fib->data[0] = 0; 544 /* 545 * XXX Issuing this command to the controller makes it shut down 546 * but also keeps it from coming back up without a reset of the 547 * PCI bus. This is not desirable if you are just unloading the 548 * driver module with the intent to reload it later. 549 */ 550 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 551 fib, 1)) { 552 printf("FAILED.\n"); 553 } else { 554 printf("done.\n"); 555 } 556 } 557 #endif 558 559 AAC_MASK_INTERRUPTS(sc); 560 561 return(0); 562 } 563 564 /* 565 * Bring the controller to a quiescent state, ready for system suspend. 566 */ 567 int 568 aac_suspend(device_t dev) 569 { 570 struct aac_softc *sc; 571 572 debug_called(1); 573 574 sc = device_get_softc(dev); 575 576 sc->aac_state |= AAC_STATE_SUSPEND; 577 578 AAC_MASK_INTERRUPTS(sc); 579 return(0); 580 } 581 582 /* 583 * Bring the controller back to a state ready for operation. 584 */ 585 int 586 aac_resume(device_t dev) 587 { 588 struct aac_softc *sc; 589 590 debug_called(1); 591 592 sc = device_get_softc(dev); 593 594 sc->aac_state &= ~AAC_STATE_SUSPEND; 595 AAC_UNMASK_INTERRUPTS(sc); 596 return(0); 597 } 598 599 /* 600 * Take an interrupt. 601 */ 602 void 603 aac_intr(void *arg) 604 { 605 struct aac_softc *sc; 606 u_int16_t reason; 607 608 debug_called(2); 609 610 sc = (struct aac_softc *)arg; 611 612 /* 613 * Read the status register directly. This is faster than taking the 614 * driver lock and reading the queues directly. It also saves having 615 * to turn parts of the driver lock into a spin mutex, which would be 616 * ugly. 617 */ 618 reason = AAC_GET_ISTATUS(sc); 619 AAC_CLEAR_ISTATUS(sc, reason); 620 621 /* handle completion processing */ 622 if (reason & AAC_DB_RESPONSE_READY) 623 taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete); 624 625 /* controller wants to talk to us */ 626 if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) { 627 /* 628 * XXX Make sure that we don't get fooled by strange messages 629 * that start with a NULL. 630 */ 631 if ((reason & AAC_DB_PRINTF) && 632 (sc->aac_common->ac_printf[0] == 0)) 633 sc->aac_common->ac_printf[0] = 32; 634 635 /* 636 * This might miss doing the actual wakeup. However, the 637 * msleep that this is waking up has a timeout, so it will 638 * wake up eventually. AIFs and printfs are low enough 639 * priority that they can handle hanging out for a few seconds 640 * if needed. 641 */ 642 wakeup(sc->aifthread); 643 } 644 } 645 646 /* 647 * Command Processing 648 */ 649 650 /* 651 * Start as much queued I/O as possible on the controller 652 */ 653 void 654 aac_startio(struct aac_softc *sc) 655 { 656 struct aac_command *cm; 657 658 debug_called(2); 659 660 if (sc->flags & AAC_QUEUE_FRZN) 661 return; 662 663 for (;;) { 664 /* 665 * Try to get a command that's been put off for lack of 666 * resources 667 */ 668 cm = aac_dequeue_ready(sc); 669 670 /* 671 * Try to build a command off the bio queue (ignore error 672 * return) 673 */ 674 if (cm == NULL) 675 aac_bio_command(sc, &cm); 676 677 /* nothing to do? */ 678 if (cm == NULL) 679 break; 680 681 /* 682 * Try to give the command to the controller. Any error is 683 * catastrophic since it means that bus_dmamap_load() failed. 684 */ 685 if (aac_map_command(cm) != 0) 686 panic("aac: error mapping command %p\n", cm); 687 } 688 } 689 690 /* 691 * Deliver a command to the controller; allocate controller resources at the 692 * last moment when possible. 693 */ 694 static int 695 aac_map_command(struct aac_command *cm) 696 { 697 struct aac_softc *sc; 698 int error; 699 700 debug_called(2); 701 702 sc = cm->cm_sc; 703 error = 0; 704 705 /* don't map more than once */ 706 if (cm->cm_flags & AAC_CMD_MAPPED) 707 panic("aac: command %p already mapped", cm); 708 709 if (cm->cm_datalen != 0) { 710 error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 711 cm->cm_data, cm->cm_datalen, 712 aac_map_command_sg, cm, 0); 713 if (error == EINPROGRESS) { 714 debug(1, "freezing queue\n"); 715 sc->flags |= AAC_QUEUE_FRZN; 716 error = 0; 717 } 718 } else { 719 aac_map_command_sg(cm, NULL, 0, 0); 720 } 721 return (error); 722 } 723 724 /* 725 * Handle notification of one or more FIBs coming from the controller. 726 */ 727 static void 728 aac_command_thread(struct aac_softc *sc) 729 { 730 struct aac_fib *fib; 731 u_int32_t fib_size; 732 int size, retval; 733 734 debug_called(2); 735 736 AAC_LOCK_ACQUIRE(&sc->aac_io_lock); 737 sc->aifflags = AAC_AIFFLAGS_RUNNING; 738 739 while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) { 740 741 retval = 0; 742 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 743 retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO, 744 "aifthd", AAC_PERIODIC_INTERVAL * hz); 745 746 /* 747 * First see if any FIBs need to be allocated. This needs 748 * to be called without the driver lock because contigmalloc 749 * will grab Giant, and would result in an LOR. 750 */ 751 if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) { 752 AAC_LOCK_RELEASE(&sc->aac_io_lock); 753 aac_alloc_commands(sc); 754 AAC_LOCK_ACQUIRE(&sc->aac_io_lock); 755 sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS; 756 aac_startio(sc); 757 } 758 759 /* 760 * While we're here, check to see if any commands are stuck. 761 * This is pretty low-priority, so it's ok if it doesn't 762 * always fire. 763 */ 764 if (retval == EWOULDBLOCK) 765 aac_timeout(sc); 766 767 /* Check the hardware printf message buffer */ 768 if (sc->aac_common->ac_printf[0] != 0) 769 aac_print_printf(sc); 770 771 /* Also check to see if the adapter has a command for us. */ 772 while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 773 &fib_size, &fib) == 0) { 774 775 AAC_PRINT_FIB(sc, fib); 776 777 switch (fib->Header.Command) { 778 case AifRequest: 779 aac_handle_aif(sc, fib); 780 break; 781 default: 782 device_printf(sc->aac_dev, "unknown command " 783 "from controller\n"); 784 break; 785 } 786 787 if ((fib->Header.XferState == 0) || 788 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 789 break; 790 791 /* Return the AIF to the controller. */ 792 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 793 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 794 *(AAC_FSAStatus*)fib->data = ST_OK; 795 796 /* XXX Compute the Size field? */ 797 size = fib->Header.Size; 798 if (size > sizeof(struct aac_fib)) { 799 size = sizeof(struct aac_fib); 800 fib->Header.Size = size; 801 } 802 /* 803 * Since we did not generate this command, it 804 * cannot go through the normal 805 * enqueue->startio chain. 806 */ 807 aac_enqueue_response(sc, 808 AAC_ADAP_NORM_RESP_QUEUE, 809 fib); 810 } 811 } 812 } 813 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 814 AAC_LOCK_RELEASE(&sc->aac_io_lock); 815 wakeup(sc->aac_dev); 816 817 kthread_exit(0); 818 } 819 820 /* 821 * Process completed commands. 822 */ 823 static void 824 aac_complete(void *context, int pending) 825 { 826 struct aac_softc *sc; 827 struct aac_command *cm; 828 struct aac_fib *fib; 829 u_int32_t fib_size; 830 831 debug_called(2); 832 833 sc = (struct aac_softc *)context; 834 835 AAC_LOCK_ACQUIRE(&sc->aac_io_lock); 836 837 /* pull completed commands off the queue */ 838 for (;;) { 839 /* look for completed FIBs on our queue */ 840 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 841 &fib)) 842 break; /* nothing to do */ 843 844 /* get the command, unmap and hand off for processing */ 845 cm = sc->aac_commands + fib->Header.SenderData; 846 if (cm == NULL) { 847 AAC_PRINT_FIB(sc, fib); 848 break; 849 } 850 851 aac_remove_busy(cm); 852 aac_unmap_command(cm); 853 cm->cm_flags |= AAC_CMD_COMPLETED; 854 855 /* is there a completion handler? */ 856 if (cm->cm_complete != NULL) { 857 cm->cm_complete(cm); 858 } else { 859 /* assume that someone is sleeping on this command */ 860 wakeup(cm); 861 } 862 } 863 864 /* see if we can start some more I/O */ 865 sc->flags &= ~AAC_QUEUE_FRZN; 866 aac_startio(sc); 867 868 AAC_LOCK_RELEASE(&sc->aac_io_lock); 869 } 870 871 /* 872 * Handle a bio submitted from a disk device. 873 */ 874 void 875 aac_submit_bio(struct bio *bp) 876 { 877 struct aac_disk *ad; 878 struct aac_softc *sc; 879 880 debug_called(2); 881 882 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 883 sc = ad->ad_controller; 884 885 /* queue the BIO and try to get some work done */ 886 aac_enqueue_bio(sc, bp); 887 aac_startio(sc); 888 } 889 890 /* 891 * Get a bio and build a command to go with it. 892 */ 893 static int 894 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 895 { 896 struct aac_command *cm; 897 struct aac_fib *fib; 898 struct aac_disk *ad; 899 struct bio *bp; 900 901 debug_called(2); 902 903 /* get the resources we will need */ 904 cm = NULL; 905 bp = NULL; 906 if (aac_alloc_command(sc, &cm)) /* get a command */ 907 goto fail; 908 if ((bp = aac_dequeue_bio(sc)) == NULL) 909 goto fail; 910 911 /* fill out the command */ 912 cm->cm_data = (void *)bp->bio_data; 913 cm->cm_datalen = bp->bio_bcount; 914 cm->cm_complete = aac_bio_complete; 915 cm->cm_private = bp; 916 cm->cm_timestamp = time_second; 917 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 918 919 /* build the FIB */ 920 fib = cm->cm_fib; 921 fib->Header.Size = sizeof(struct aac_fib_header); 922 fib->Header.XferState = 923 AAC_FIBSTATE_HOSTOWNED | 924 AAC_FIBSTATE_INITIALISED | 925 AAC_FIBSTATE_EMPTY | 926 AAC_FIBSTATE_FROMHOST | 927 AAC_FIBSTATE_REXPECTED | 928 AAC_FIBSTATE_NORM | 929 AAC_FIBSTATE_ASYNC | 930 AAC_FIBSTATE_FAST_RESPONSE; 931 932 /* build the read/write request */ 933 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 934 935 if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 936 fib->Header.Command = ContainerCommand; 937 if (bp->bio_cmd == BIO_READ) { 938 struct aac_blockread *br; 939 br = (struct aac_blockread *)&fib->data[0]; 940 br->Command = VM_CtBlockRead; 941 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 942 br->BlockNumber = bp->bio_pblkno; 943 br->ByteCount = bp->bio_bcount; 944 fib->Header.Size += sizeof(struct aac_blockread); 945 cm->cm_sgtable = &br->SgMap; 946 cm->cm_flags |= AAC_CMD_DATAIN; 947 } else { 948 struct aac_blockwrite *bw; 949 bw = (struct aac_blockwrite *)&fib->data[0]; 950 bw->Command = VM_CtBlockWrite; 951 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 952 bw->BlockNumber = bp->bio_pblkno; 953 bw->ByteCount = bp->bio_bcount; 954 bw->Stable = CUNSTABLE; 955 fib->Header.Size += sizeof(struct aac_blockwrite); 956 cm->cm_flags |= AAC_CMD_DATAOUT; 957 cm->cm_sgtable = &bw->SgMap; 958 } 959 } else { 960 fib->Header.Command = ContainerCommand64; 961 if (bp->bio_cmd == BIO_READ) { 962 struct aac_blockread64 *br; 963 br = (struct aac_blockread64 *)&fib->data[0]; 964 br->Command = VM_CtHostRead64; 965 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 966 br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 967 br->BlockNumber = bp->bio_pblkno; 968 br->Pad = 0; 969 br->Flags = 0; 970 fib->Header.Size += sizeof(struct aac_blockread64); 971 cm->cm_flags |= AAC_CMD_DATAOUT; 972 (struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64; 973 } else { 974 struct aac_blockwrite64 *bw; 975 bw = (struct aac_blockwrite64 *)&fib->data[0]; 976 bw->Command = VM_CtHostWrite64; 977 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 978 bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 979 bw->BlockNumber = bp->bio_pblkno; 980 bw->Pad = 0; 981 bw->Flags = 0; 982 fib->Header.Size += sizeof(struct aac_blockwrite64); 983 cm->cm_flags |= AAC_CMD_DATAIN; 984 (struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64; 985 } 986 } 987 988 *cmp = cm; 989 return(0); 990 991 fail: 992 if (bp != NULL) 993 aac_enqueue_bio(sc, bp); 994 if (cm != NULL) 995 aac_release_command(cm); 996 return(ENOMEM); 997 } 998 999 /* 1000 * Handle a bio-instigated command that has been completed. 1001 */ 1002 static void 1003 aac_bio_complete(struct aac_command *cm) 1004 { 1005 struct aac_blockread_response *brr; 1006 struct aac_blockwrite_response *bwr; 1007 struct bio *bp; 1008 AAC_FSAStatus status; 1009 1010 /* fetch relevant status and then release the command */ 1011 bp = (struct bio *)cm->cm_private; 1012 if (bp->bio_cmd == BIO_READ) { 1013 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 1014 status = brr->Status; 1015 } else { 1016 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 1017 status = bwr->Status; 1018 } 1019 aac_release_command(cm); 1020 1021 /* fix up the bio based on status */ 1022 if (status == ST_OK) { 1023 bp->bio_resid = 0; 1024 } else { 1025 bp->bio_error = EIO; 1026 bp->bio_flags |= BIO_ERROR; 1027 /* pass an error string out to the disk layer */ 1028 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1029 status); 1030 } 1031 aac_biodone(bp); 1032 } 1033 1034 /* 1035 * Submit a command to the controller, return when it completes. 1036 * XXX This is very dangerous! If the card has gone out to lunch, we could 1037 * be stuck here forever. At the same time, signals are not caught 1038 * because there is a risk that a signal could wakeup the sleep before 1039 * the card has a chance to complete the command. Since there is no way 1040 * to cancel a command that is in progress, we can't protect against the 1041 * card completing a command late and spamming the command and data 1042 * memory. So, we are held hostage until the command completes. 1043 */ 1044 static int 1045 aac_wait_command(struct aac_command *cm) 1046 { 1047 struct aac_softc *sc; 1048 int error; 1049 1050 debug_called(2); 1051 1052 sc = cm->cm_sc; 1053 1054 /* Put the command on the ready queue and get things going */ 1055 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1056 aac_enqueue_ready(cm); 1057 aac_startio(sc); 1058 error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0); 1059 return(error); 1060 } 1061 1062 /* 1063 *Command Buffer Management 1064 */ 1065 1066 /* 1067 * Allocate a command. 1068 */ 1069 int 1070 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1071 { 1072 struct aac_command *cm; 1073 1074 debug_called(3); 1075 1076 if ((cm = aac_dequeue_free(sc)) == NULL) { 1077 if (sc->total_fibs < sc->aac_max_fibs) { 1078 sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS; 1079 wakeup(sc->aifthread); 1080 } 1081 return (EBUSY); 1082 } 1083 1084 *cmp = cm; 1085 return(0); 1086 } 1087 1088 /* 1089 * Release a command back to the freelist. 1090 */ 1091 void 1092 aac_release_command(struct aac_command *cm) 1093 { 1094 debug_called(3); 1095 1096 /* (re)initialise the command/FIB */ 1097 cm->cm_sgtable = NULL; 1098 cm->cm_flags = 0; 1099 cm->cm_complete = NULL; 1100 cm->cm_private = NULL; 1101 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1102 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1103 cm->cm_fib->Header.Flags = 0; 1104 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1105 1106 /* 1107 * These are duplicated in aac_start to cover the case where an 1108 * intermediate stage may have destroyed them. They're left 1109 * initialised here for debugging purposes only. 1110 */ 1111 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1112 cm->cm_fib->Header.SenderData = 0; 1113 1114 aac_enqueue_free(cm); 1115 } 1116 1117 /* 1118 * Map helper for command/FIB allocation. 1119 */ 1120 static void 1121 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1122 { 1123 uint32_t *fibphys; 1124 1125 fibphys = (uint32_t *)arg; 1126 1127 debug_called(3); 1128 1129 *fibphys = segs[0].ds_addr; 1130 } 1131 1132 /* 1133 * Allocate and initialise commands/FIBs for this adapter. 1134 */ 1135 static int 1136 aac_alloc_commands(struct aac_softc *sc) 1137 { 1138 struct aac_command *cm; 1139 struct aac_fibmap *fm; 1140 uint32_t fibphys; 1141 int i, error; 1142 1143 debug_called(2); 1144 1145 if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs) 1146 return (ENOMEM); 1147 1148 fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO); 1149 if (fm == NULL) 1150 return (ENOMEM); 1151 1152 /* allocate the FIBs in DMAable memory and load them */ 1153 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs, 1154 BUS_DMA_NOWAIT, &fm->aac_fibmap)) { 1155 device_printf(sc->aac_dev, 1156 "Not enough contiguous memory available.\n"); 1157 free(fm, M_AACBUF); 1158 return (ENOMEM); 1159 } 1160 1161 /* Ignore errors since this doesn't bounce */ 1162 (void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs, 1163 AAC_FIB_COUNT * sizeof(struct aac_fib), 1164 aac_map_command_helper, &fibphys, 0); 1165 1166 /* initialise constant fields in the command structure */ 1167 AAC_LOCK_ACQUIRE(&sc->aac_io_lock); 1168 bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib)); 1169 for (i = 0; i < AAC_FIB_COUNT; i++) { 1170 cm = sc->aac_commands + sc->total_fibs; 1171 fm->aac_commands = cm; 1172 cm->cm_sc = sc; 1173 cm->cm_fib = fm->aac_fibs + i; 1174 cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib)); 1175 cm->cm_index = sc->total_fibs; 1176 1177 if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0, 1178 &cm->cm_datamap)) == 0) 1179 aac_release_command(cm); 1180 else 1181 break; 1182 sc->total_fibs++; 1183 } 1184 1185 if (i > 0) { 1186 TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link); 1187 debug(1, "total_fibs= %d\n", sc->total_fibs); 1188 AAC_LOCK_RELEASE(&sc->aac_io_lock); 1189 return (0); 1190 } 1191 1192 AAC_LOCK_RELEASE(&sc->aac_io_lock); 1193 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1194 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1195 free(fm, M_AACBUF); 1196 return (ENOMEM); 1197 } 1198 1199 /* 1200 * Free FIBs owned by this adapter. 1201 */ 1202 static void 1203 aac_free_commands(struct aac_softc *sc) 1204 { 1205 struct aac_fibmap *fm; 1206 struct aac_command *cm; 1207 int i; 1208 1209 debug_called(1); 1210 1211 while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) { 1212 1213 TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link); 1214 /* 1215 * We check against total_fibs to handle partially 1216 * allocated blocks. 1217 */ 1218 for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) { 1219 cm = fm->aac_commands + i; 1220 bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap); 1221 } 1222 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1223 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1224 free(fm, M_AACBUF); 1225 } 1226 } 1227 1228 /* 1229 * Command-mapping helper function - populate this command's s/g table. 1230 */ 1231 static void 1232 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1233 { 1234 struct aac_softc *sc; 1235 struct aac_command *cm; 1236 struct aac_fib *fib; 1237 int i; 1238 1239 debug_called(3); 1240 1241 cm = (struct aac_command *)arg; 1242 sc = cm->cm_sc; 1243 fib = cm->cm_fib; 1244 1245 /* copy into the FIB */ 1246 if (cm->cm_sgtable != NULL) { 1247 if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1248 struct aac_sg_table *sg; 1249 sg = cm->cm_sgtable; 1250 sg->SgCount = nseg; 1251 for (i = 0; i < nseg; i++) { 1252 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1253 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1254 } 1255 /* update the FIB size for the s/g count */ 1256 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1257 } else { 1258 struct aac_sg_table64 *sg; 1259 sg = (struct aac_sg_table64 *)cm->cm_sgtable; 1260 sg->SgCount = nseg; 1261 for (i = 0; i < nseg; i++) { 1262 sg->SgEntry64[i].SgAddress = segs[i].ds_addr; 1263 sg->SgEntry64[i].SgByteCount = segs[i].ds_len; 1264 } 1265 /* update the FIB size for the s/g count */ 1266 fib->Header.Size += nseg*sizeof(struct aac_sg_entry64); 1267 } 1268 } 1269 1270 /* Fix up the address values in the FIB. Use the command array index 1271 * instead of a pointer since these fields are only 32 bits. Shift 1272 * the SenderFibAddress over to make room for the fast response bit. 1273 */ 1274 cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1); 1275 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1276 1277 /* save a pointer to the command for speedy reverse-lookup */ 1278 cm->cm_fib->Header.SenderData = cm->cm_index; 1279 1280 if (cm->cm_flags & AAC_CMD_DATAIN) 1281 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1282 BUS_DMASYNC_PREREAD); 1283 if (cm->cm_flags & AAC_CMD_DATAOUT) 1284 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1285 BUS_DMASYNC_PREWRITE); 1286 cm->cm_flags |= AAC_CMD_MAPPED; 1287 1288 /* put the FIB on the outbound queue */ 1289 if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) { 1290 aac_unmap_command(cm); 1291 aac_requeue_ready(cm); 1292 } 1293 1294 return; 1295 } 1296 1297 /* 1298 * Unmap a command from controller-visible space. 1299 */ 1300 static void 1301 aac_unmap_command(struct aac_command *cm) 1302 { 1303 struct aac_softc *sc; 1304 1305 debug_called(2); 1306 1307 sc = cm->cm_sc; 1308 1309 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1310 return; 1311 1312 if (cm->cm_datalen != 0) { 1313 if (cm->cm_flags & AAC_CMD_DATAIN) 1314 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1315 BUS_DMASYNC_POSTREAD); 1316 if (cm->cm_flags & AAC_CMD_DATAOUT) 1317 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1318 BUS_DMASYNC_POSTWRITE); 1319 1320 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1321 } 1322 cm->cm_flags &= ~AAC_CMD_MAPPED; 1323 } 1324 1325 /* 1326 * Hardware Interface 1327 */ 1328 1329 /* 1330 * Initialise the adapter. 1331 */ 1332 static void 1333 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1334 { 1335 struct aac_softc *sc; 1336 1337 debug_called(1); 1338 1339 sc = (struct aac_softc *)arg; 1340 1341 sc->aac_common_busaddr = segs[0].ds_addr; 1342 } 1343 1344 static int 1345 aac_check_firmware(struct aac_softc *sc) 1346 { 1347 u_int32_t major, minor, options; 1348 1349 debug_called(1); 1350 1351 /* 1352 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1353 * firmware version 1.x are not compatible with this driver. 1354 */ 1355 if (sc->flags & AAC_FLAGS_PERC2QC) { 1356 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1357 NULL)) { 1358 device_printf(sc->aac_dev, 1359 "Error reading firmware version\n"); 1360 return (EIO); 1361 } 1362 1363 /* These numbers are stored as ASCII! */ 1364 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30; 1365 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30; 1366 if (major == 1) { 1367 device_printf(sc->aac_dev, 1368 "Firmware version %d.%d is not supported.\n", 1369 major, minor); 1370 return (EINVAL); 1371 } 1372 } 1373 1374 /* 1375 * Retrieve the capabilities/supported options word so we know what 1376 * work-arounds to enable. 1377 */ 1378 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) { 1379 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 1380 return (EIO); 1381 } 1382 options = AAC_GET_MAILBOX(sc, 1); 1383 sc->supported_options = options; 1384 1385 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 && 1386 (sc->flags & AAC_FLAGS_NO4GB) == 0) 1387 sc->flags |= AAC_FLAGS_4GB_WINDOW; 1388 if (options & AAC_SUPPORTED_NONDASD) 1389 sc->flags |= AAC_FLAGS_ENABLE_CAM; 1390 if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 1391 && (sizeof(bus_addr_t) > 4)) { 1392 device_printf(sc->aac_dev, "Enabling 64-bit address support\n"); 1393 sc->flags |= AAC_FLAGS_SG_64BIT; 1394 } 1395 1396 /* Check for broken hardware that does a lower number of commands */ 1397 if ((sc->flags & AAC_FLAGS_256FIBS) == 0) 1398 sc->aac_max_fibs = AAC_MAX_FIBS; 1399 else 1400 sc->aac_max_fibs = 256; 1401 1402 return (0); 1403 } 1404 1405 static int 1406 aac_init(struct aac_softc *sc) 1407 { 1408 struct aac_adapter_init *ip; 1409 time_t then; 1410 u_int32_t code, qoffset; 1411 int error; 1412 1413 debug_called(1); 1414 1415 /* 1416 * First wait for the adapter to come ready. 1417 */ 1418 then = time_second; 1419 do { 1420 code = AAC_GET_FWSTATUS(sc); 1421 if (code & AAC_SELF_TEST_FAILED) { 1422 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1423 return(ENXIO); 1424 } 1425 if (code & AAC_KERNEL_PANIC) { 1426 device_printf(sc->aac_dev, 1427 "FATAL: controller kernel panic\n"); 1428 return(ENXIO); 1429 } 1430 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1431 device_printf(sc->aac_dev, 1432 "FATAL: controller not coming ready, " 1433 "status %x\n", code); 1434 return(ENXIO); 1435 } 1436 } while (!(code & AAC_UP_AND_RUNNING)); 1437 1438 error = ENOMEM; 1439 /* 1440 * Create DMA tag for mapping buffers into controller-addressable space. 1441 */ 1442 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1443 1, 0, /* algnmnt, boundary */ 1444 (sc->flags & AAC_FLAGS_SG_64BIT) ? 1445 BUS_SPACE_MAXADDR : 1446 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1447 BUS_SPACE_MAXADDR, /* highaddr */ 1448 NULL, NULL, /* filter, filterarg */ 1449 MAXBSIZE, /* maxsize */ 1450 AAC_MAXSGENTRIES, /* nsegments */ 1451 MAXBSIZE, /* maxsegsize */ 1452 BUS_DMA_ALLOCNOW, /* flags */ 1453 busdma_lock_mutex, /* lockfunc */ 1454 &sc->aac_io_lock, /* lockfuncarg */ 1455 &sc->aac_buffer_dmat)) { 1456 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n"); 1457 goto out; 1458 } 1459 1460 /* 1461 * Create DMA tag for mapping FIBs into controller-addressable space.. 1462 */ 1463 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1464 1, 0, /* algnmnt, boundary */ 1465 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1466 BUS_SPACE_MAXADDR_32BIT : 1467 0x7fffffff, /* lowaddr */ 1468 BUS_SPACE_MAXADDR, /* highaddr */ 1469 NULL, NULL, /* filter, filterarg */ 1470 AAC_FIB_COUNT * 1471 sizeof(struct aac_fib), /* maxsize */ 1472 1, /* nsegments */ 1473 AAC_FIB_COUNT * 1474 sizeof(struct aac_fib), /* maxsegsize */ 1475 BUS_DMA_ALLOCNOW, /* flags */ 1476 NULL, NULL, /* No locking needed */ 1477 &sc->aac_fib_dmat)) { 1478 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");; 1479 goto out; 1480 } 1481 1482 /* 1483 * Create DMA tag for the common structure and allocate it. 1484 */ 1485 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1486 1, 0, /* algnmnt, boundary */ 1487 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1488 BUS_SPACE_MAXADDR_32BIT : 1489 0x7fffffff, /* lowaddr */ 1490 BUS_SPACE_MAXADDR, /* highaddr */ 1491 NULL, NULL, /* filter, filterarg */ 1492 8192 + sizeof(struct aac_common), /* maxsize */ 1493 1, /* nsegments */ 1494 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1495 BUS_DMA_ALLOCNOW, /* flags */ 1496 NULL, NULL, /* No locking needed */ 1497 &sc->aac_common_dmat)) { 1498 device_printf(sc->aac_dev, 1499 "can't allocate common structure DMA tag\n"); 1500 goto out; 1501 } 1502 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1503 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1504 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1505 goto out; 1506 } 1507 1508 /* 1509 * Work around a bug in the 2120 and 2200 that cannot DMA commands 1510 * below address 8192 in physical memory. 1511 * XXX If the padding is not needed, can it be put to use instead 1512 * of ignored? 1513 */ 1514 (void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1515 sc->aac_common, 8192 + sizeof(*sc->aac_common), 1516 aac_common_map, sc, 0); 1517 1518 if (sc->aac_common_busaddr < 8192) { 1519 (uint8_t *)sc->aac_common += 8192; 1520 sc->aac_common_busaddr += 8192; 1521 } 1522 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1523 1524 /* Allocate some FIBs and associated command structs */ 1525 TAILQ_INIT(&sc->aac_fibmap_tqh); 1526 sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command), 1527 M_AACBUF, M_WAITOK|M_ZERO); 1528 while (sc->total_fibs < AAC_PREALLOCATE_FIBS) { 1529 if (aac_alloc_commands(sc) != 0) 1530 break; 1531 } 1532 if (sc->total_fibs == 0) 1533 goto out; 1534 1535 /* 1536 * Fill in the init structure. This tells the adapter about the 1537 * physical location of various important shared data structures. 1538 */ 1539 ip = &sc->aac_common->ac_init; 1540 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1541 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1542 1543 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1544 offsetof(struct aac_common, ac_fibs); 1545 ip->AdapterFibsVirtualAddress = 0; 1546 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1547 ip->AdapterFibAlign = sizeof(struct aac_fib); 1548 1549 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1550 offsetof(struct aac_common, ac_printf); 1551 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1552 1553 /* 1554 * The adapter assumes that pages are 4K in size, except on some 1555 * broken firmware versions that do the page->byte conversion twice, 1556 * therefore 'assuming' that this value is in 16MB units (2^24). 1557 * Round up since the granularity is so high. 1558 */ 1559 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1560 if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) { 1561 ip->HostPhysMemPages = 1562 (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE; 1563 } 1564 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1565 1566 /* 1567 * Initialise FIB queues. Note that it appears that the layout of the 1568 * indexes and the segmentation of the entries may be mandated by the 1569 * adapter, which is only told about the base of the queue index fields. 1570 * 1571 * The initial values of the indices are assumed to inform the adapter 1572 * of the sizes of the respective queues, and theoretically it could 1573 * work out the entire layout of the queue structures from this. We 1574 * take the easy route and just lay this area out like everyone else 1575 * does. 1576 * 1577 * The Linux driver uses a much more complex scheme whereby several 1578 * header records are kept for each queue. We use a couple of generic 1579 * list manipulation functions which 'know' the size of each list by 1580 * virtue of a table. 1581 */ 1582 qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN; 1583 qoffset &= ~(AAC_QUEUE_ALIGN - 1); 1584 sc->aac_queues = 1585 (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset); 1586 ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset; 1587 1588 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1589 AAC_HOST_NORM_CMD_ENTRIES; 1590 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1591 AAC_HOST_NORM_CMD_ENTRIES; 1592 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1593 AAC_HOST_HIGH_CMD_ENTRIES; 1594 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1595 AAC_HOST_HIGH_CMD_ENTRIES; 1596 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1597 AAC_ADAP_NORM_CMD_ENTRIES; 1598 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1599 AAC_ADAP_NORM_CMD_ENTRIES; 1600 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1601 AAC_ADAP_HIGH_CMD_ENTRIES; 1602 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1603 AAC_ADAP_HIGH_CMD_ENTRIES; 1604 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1605 AAC_HOST_NORM_RESP_ENTRIES; 1606 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1607 AAC_HOST_NORM_RESP_ENTRIES; 1608 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1609 AAC_HOST_HIGH_RESP_ENTRIES; 1610 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1611 AAC_HOST_HIGH_RESP_ENTRIES; 1612 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1613 AAC_ADAP_NORM_RESP_ENTRIES; 1614 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1615 AAC_ADAP_NORM_RESP_ENTRIES; 1616 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1617 AAC_ADAP_HIGH_RESP_ENTRIES; 1618 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1619 AAC_ADAP_HIGH_RESP_ENTRIES; 1620 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1621 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1622 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1623 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1624 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1625 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1626 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1627 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1628 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1629 &sc->aac_queues->qt_HostNormRespQueue[0]; 1630 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1631 &sc->aac_queues->qt_HostHighRespQueue[0]; 1632 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1633 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1634 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1635 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1636 1637 /* 1638 * Do controller-type-specific initialisation 1639 */ 1640 switch (sc->aac_hwif) { 1641 case AAC_HWIF_I960RX: 1642 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1643 break; 1644 } 1645 1646 /* 1647 * Give the init structure to the controller. 1648 */ 1649 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1650 sc->aac_common_busaddr + 1651 offsetof(struct aac_common, ac_init), 0, 0, 0, 1652 NULL)) { 1653 device_printf(sc->aac_dev, 1654 "error establishing init structure\n"); 1655 error = EIO; 1656 goto out; 1657 } 1658 1659 error = 0; 1660 out: 1661 return(error); 1662 } 1663 1664 /* 1665 * Send a synchronous command to the controller and wait for a result. 1666 */ 1667 static int 1668 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1669 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1670 u_int32_t *sp) 1671 { 1672 time_t then; 1673 u_int32_t status; 1674 1675 debug_called(3); 1676 1677 /* populate the mailbox */ 1678 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1679 1680 /* ensure the sync command doorbell flag is cleared */ 1681 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1682 1683 /* then set it to signal the adapter */ 1684 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1685 1686 /* spin waiting for the command to complete */ 1687 then = time_second; 1688 do { 1689 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1690 debug(1, "timed out"); 1691 return(EIO); 1692 } 1693 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1694 1695 /* clear the completion flag */ 1696 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1697 1698 /* get the command status */ 1699 status = AAC_GET_MAILBOX(sc, 0); 1700 if (sp != NULL) 1701 *sp = status; 1702 return(0); 1703 } 1704 1705 /* 1706 * Grab the sync fib area. 1707 */ 1708 int 1709 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1710 { 1711 1712 /* 1713 * If the force flag is set, the system is shutting down, or in 1714 * trouble. Ignore the mutex. 1715 */ 1716 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1717 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1718 1719 *fib = &sc->aac_common->ac_sync_fib; 1720 1721 return (1); 1722 } 1723 1724 /* 1725 * Release the sync fib area. 1726 */ 1727 void 1728 aac_release_sync_fib(struct aac_softc *sc) 1729 { 1730 1731 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1732 } 1733 1734 /* 1735 * Send a synchronous FIB to the controller and wait for a result. 1736 */ 1737 int 1738 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1739 struct aac_fib *fib, u_int16_t datasize) 1740 { 1741 debug_called(3); 1742 1743 if (datasize > AAC_FIB_DATASIZE) 1744 return(EINVAL); 1745 1746 /* 1747 * Set up the sync FIB 1748 */ 1749 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1750 AAC_FIBSTATE_INITIALISED | 1751 AAC_FIBSTATE_EMPTY; 1752 fib->Header.XferState |= xferstate; 1753 fib->Header.Command = command; 1754 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1755 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1756 fib->Header.SenderSize = sizeof(struct aac_fib); 1757 fib->Header.SenderFibAddress = 0; /* Not needed */ 1758 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1759 offsetof(struct aac_common, 1760 ac_sync_fib); 1761 1762 /* 1763 * Give the FIB to the controller, wait for a response. 1764 */ 1765 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1766 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1767 debug(2, "IO error"); 1768 return(EIO); 1769 } 1770 1771 return (0); 1772 } 1773 1774 /* 1775 * Adapter-space FIB queue manipulation 1776 * 1777 * Note that the queue implementation here is a little funky; neither the PI or 1778 * CI will ever be zero. This behaviour is a controller feature. 1779 */ 1780 static struct { 1781 int size; 1782 int notify; 1783 } aac_qinfo[] = { 1784 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1785 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1786 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1787 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1788 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1789 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1790 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1791 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1792 }; 1793 1794 /* 1795 * Atomically insert an entry into the nominated queue, returns 0 on success or 1796 * EBUSY if the queue is full. 1797 * 1798 * Note: it would be more efficient to defer notifying the controller in 1799 * the case where we may be inserting several entries in rapid succession, 1800 * but implementing this usefully may be difficult (it would involve a 1801 * separate queue/notify interface). 1802 */ 1803 static int 1804 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1805 { 1806 u_int32_t pi, ci; 1807 int error; 1808 u_int32_t fib_size; 1809 u_int32_t fib_addr; 1810 1811 debug_called(3); 1812 1813 fib_size = cm->cm_fib->Header.Size; 1814 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1815 1816 /* get the producer/consumer indices */ 1817 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1818 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1819 1820 /* wrap the queue? */ 1821 if (pi >= aac_qinfo[queue].size) 1822 pi = 0; 1823 1824 /* check for queue full */ 1825 if ((pi + 1) == ci) { 1826 error = EBUSY; 1827 goto out; 1828 } 1829 1830 /* populate queue entry */ 1831 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1832 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1833 1834 /* update producer index */ 1835 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1836 1837 /* 1838 * To avoid a race with its completion interrupt, place this command on 1839 * the busy queue prior to advertising it to the controller. 1840 */ 1841 aac_enqueue_busy(cm); 1842 1843 /* notify the adapter if we know how */ 1844 if (aac_qinfo[queue].notify != 0) 1845 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1846 1847 error = 0; 1848 1849 out: 1850 return(error); 1851 } 1852 1853 /* 1854 * Atomically remove one entry from the nominated queue, returns 0 on 1855 * success or ENOENT if the queue is empty. 1856 */ 1857 static int 1858 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1859 struct aac_fib **fib_addr) 1860 { 1861 u_int32_t pi, ci; 1862 u_int32_t fib_index; 1863 int error; 1864 int notify; 1865 1866 debug_called(3); 1867 1868 /* get the producer/consumer indices */ 1869 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1870 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1871 1872 /* check for queue empty */ 1873 if (ci == pi) { 1874 error = ENOENT; 1875 goto out; 1876 } 1877 1878 /* wrap the pi so the following test works */ 1879 if (pi >= aac_qinfo[queue].size) 1880 pi = 0; 1881 1882 notify = 0; 1883 if (ci == pi + 1) 1884 notify++; 1885 1886 /* wrap the queue? */ 1887 if (ci >= aac_qinfo[queue].size) 1888 ci = 0; 1889 1890 /* fetch the entry */ 1891 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1892 1893 switch (queue) { 1894 case AAC_HOST_NORM_CMD_QUEUE: 1895 case AAC_HOST_HIGH_CMD_QUEUE: 1896 /* 1897 * The aq_fib_addr is only 32 bits wide so it can't be counted 1898 * on to hold an address. For AIF's, the adapter assumes 1899 * that it's giving us an address into the array of AIF fibs. 1900 * Therefore, we have to convert it to an index. 1901 */ 1902 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr / 1903 sizeof(struct aac_fib); 1904 *fib_addr = &sc->aac_common->ac_fibs[fib_index]; 1905 break; 1906 1907 case AAC_HOST_NORM_RESP_QUEUE: 1908 case AAC_HOST_HIGH_RESP_QUEUE: 1909 { 1910 struct aac_command *cm; 1911 1912 /* 1913 * As above, an index is used instead of an actual address. 1914 * Gotta shift the index to account for the fast response 1915 * bit. No other correction is needed since this value was 1916 * originally provided by the driver via the SenderFibAddress 1917 * field. 1918 */ 1919 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr; 1920 cm = sc->aac_commands + (fib_index >> 1); 1921 *fib_addr = cm->cm_fib; 1922 1923 /* 1924 * Is this a fast response? If it is, update the fib fields in 1925 * local memory since the whole fib isn't DMA'd back up. 1926 */ 1927 if (fib_index & 0x01) { 1928 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 1929 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 1930 } 1931 break; 1932 } 1933 default: 1934 panic("Invalid queue in aac_dequeue_fib()"); 1935 break; 1936 } 1937 1938 /* update consumer index */ 1939 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1940 1941 /* if we have made the queue un-full, notify the adapter */ 1942 if (notify && (aac_qinfo[queue].notify != 0)) 1943 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1944 error = 0; 1945 1946 out: 1947 return(error); 1948 } 1949 1950 /* 1951 * Put our response to an Adapter Initialed Fib on the response queue 1952 */ 1953 static int 1954 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1955 { 1956 u_int32_t pi, ci; 1957 int error; 1958 u_int32_t fib_size; 1959 u_int32_t fib_addr; 1960 1961 debug_called(1); 1962 1963 /* Tell the adapter where the FIB is */ 1964 fib_size = fib->Header.Size; 1965 fib_addr = fib->Header.SenderFibAddress; 1966 fib->Header.ReceiverFibAddress = fib_addr; 1967 1968 /* get the producer/consumer indices */ 1969 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1970 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1971 1972 /* wrap the queue? */ 1973 if (pi >= aac_qinfo[queue].size) 1974 pi = 0; 1975 1976 /* check for queue full */ 1977 if ((pi + 1) == ci) { 1978 error = EBUSY; 1979 goto out; 1980 } 1981 1982 /* populate queue entry */ 1983 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1984 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1985 1986 /* update producer index */ 1987 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1988 1989 /* notify the adapter if we know how */ 1990 if (aac_qinfo[queue].notify != 0) 1991 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1992 1993 error = 0; 1994 1995 out: 1996 return(error); 1997 } 1998 1999 /* 2000 * Check for commands that have been outstanding for a suspiciously long time, 2001 * and complain about them. 2002 */ 2003 static void 2004 aac_timeout(struct aac_softc *sc) 2005 { 2006 struct aac_command *cm; 2007 time_t deadline; 2008 2009 /* 2010 * Traverse the busy command list, bitch about late commands once 2011 * only. 2012 */ 2013 deadline = time_second - AAC_CMD_TIMEOUT; 2014 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 2015 if ((cm->cm_timestamp < deadline) 2016 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 2017 cm->cm_flags |= AAC_CMD_TIMEDOUT; 2018 device_printf(sc->aac_dev, 2019 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 2020 cm, (int)(time_second-cm->cm_timestamp)); 2021 AAC_PRINT_FIB(sc, cm->cm_fib); 2022 } 2023 } 2024 2025 return; 2026 } 2027 2028 /* 2029 * Interface Function Vectors 2030 */ 2031 2032 /* 2033 * Read the current firmware status word. 2034 */ 2035 static int 2036 aac_sa_get_fwstatus(struct aac_softc *sc) 2037 { 2038 debug_called(3); 2039 2040 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 2041 } 2042 2043 static int 2044 aac_rx_get_fwstatus(struct aac_softc *sc) 2045 { 2046 debug_called(3); 2047 2048 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 2049 } 2050 2051 static int 2052 aac_fa_get_fwstatus(struct aac_softc *sc) 2053 { 2054 int val; 2055 2056 debug_called(3); 2057 2058 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 2059 return (val); 2060 } 2061 2062 /* 2063 * Notify the controller of a change in a given queue 2064 */ 2065 2066 static void 2067 aac_sa_qnotify(struct aac_softc *sc, int qbit) 2068 { 2069 debug_called(3); 2070 2071 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 2072 } 2073 2074 static void 2075 aac_rx_qnotify(struct aac_softc *sc, int qbit) 2076 { 2077 debug_called(3); 2078 2079 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 2080 } 2081 2082 static void 2083 aac_fa_qnotify(struct aac_softc *sc, int qbit) 2084 { 2085 debug_called(3); 2086 2087 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 2088 AAC_FA_HACK(sc); 2089 } 2090 2091 /* 2092 * Get the interrupt reason bits 2093 */ 2094 static int 2095 aac_sa_get_istatus(struct aac_softc *sc) 2096 { 2097 debug_called(3); 2098 2099 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 2100 } 2101 2102 static int 2103 aac_rx_get_istatus(struct aac_softc *sc) 2104 { 2105 debug_called(3); 2106 2107 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 2108 } 2109 2110 static int 2111 aac_fa_get_istatus(struct aac_softc *sc) 2112 { 2113 int val; 2114 2115 debug_called(3); 2116 2117 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 2118 return (val); 2119 } 2120 2121 /* 2122 * Clear some interrupt reason bits 2123 */ 2124 static void 2125 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 2126 { 2127 debug_called(3); 2128 2129 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 2130 } 2131 2132 static void 2133 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 2134 { 2135 debug_called(3); 2136 2137 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 2138 } 2139 2140 static void 2141 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 2142 { 2143 debug_called(3); 2144 2145 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 2146 AAC_FA_HACK(sc); 2147 } 2148 2149 /* 2150 * Populate the mailbox and set the command word 2151 */ 2152 static void 2153 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2154 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2155 { 2156 debug_called(4); 2157 2158 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 2159 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2160 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2161 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2162 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2163 } 2164 2165 static void 2166 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2167 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2168 { 2169 debug_called(4); 2170 2171 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 2172 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2173 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2174 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2175 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2176 } 2177 2178 static void 2179 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2180 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2181 { 2182 debug_called(4); 2183 2184 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 2185 AAC_FA_HACK(sc); 2186 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 2187 AAC_FA_HACK(sc); 2188 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 2189 AAC_FA_HACK(sc); 2190 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 2191 AAC_FA_HACK(sc); 2192 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 2193 AAC_FA_HACK(sc); 2194 } 2195 2196 /* 2197 * Fetch the immediate command status word 2198 */ 2199 static int 2200 aac_sa_get_mailbox(struct aac_softc *sc, int mb) 2201 { 2202 debug_called(4); 2203 2204 return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4))); 2205 } 2206 2207 static int 2208 aac_rx_get_mailbox(struct aac_softc *sc, int mb) 2209 { 2210 debug_called(4); 2211 2212 return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4))); 2213 } 2214 2215 static int 2216 aac_fa_get_mailbox(struct aac_softc *sc, int mb) 2217 { 2218 int val; 2219 2220 debug_called(4); 2221 2222 val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4)); 2223 return (val); 2224 } 2225 2226 /* 2227 * Set/clear interrupt masks 2228 */ 2229 static void 2230 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2231 { 2232 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2233 2234 if (enable) { 2235 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2236 } else { 2237 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2238 } 2239 } 2240 2241 static void 2242 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2243 { 2244 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2245 2246 if (enable) { 2247 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2248 } else { 2249 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2250 } 2251 } 2252 2253 static void 2254 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2255 { 2256 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2257 2258 if (enable) { 2259 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2260 AAC_FA_HACK(sc); 2261 } else { 2262 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2263 AAC_FA_HACK(sc); 2264 } 2265 } 2266 2267 /* 2268 * Debugging and Diagnostics 2269 */ 2270 2271 /* 2272 * Print some information about the controller. 2273 */ 2274 static void 2275 aac_describe_controller(struct aac_softc *sc) 2276 { 2277 struct aac_fib *fib; 2278 struct aac_adapter_info *info; 2279 2280 debug_called(2); 2281 2282 aac_alloc_sync_fib(sc, &fib, 0); 2283 2284 fib->data[0] = 0; 2285 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2286 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2287 aac_release_sync_fib(sc); 2288 return; 2289 } 2290 info = (struct aac_adapter_info *)&fib->data[0]; 2291 2292 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2293 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2294 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2295 aac_describe_code(aac_battery_platform, 2296 info->batteryPlatform)); 2297 2298 /* save the kernel revision structure for later use */ 2299 sc->aac_revision = info->KernelRevision; 2300 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2301 info->KernelRevision.external.comp.major, 2302 info->KernelRevision.external.comp.minor, 2303 info->KernelRevision.external.comp.dash, 2304 info->KernelRevision.buildNumber, 2305 (u_int32_t)(info->SerialNumber & 0xffffff)); 2306 2307 aac_release_sync_fib(sc); 2308 2309 if (1 || bootverbose) { 2310 device_printf(sc->aac_dev, "Supported Options=%b\n", 2311 sc->supported_options, 2312 "\20" 2313 "\1SNAPSHOT" 2314 "\2CLUSTERS" 2315 "\3WCACHE" 2316 "\4DATA64" 2317 "\5HOSTTIME" 2318 "\6RAID50" 2319 "\7WINDOW4GB" 2320 "\10SCSIUPGD" 2321 "\11SOFTERR" 2322 "\12NORECOND" 2323 "\13SGMAP64" 2324 "\14ALARM" 2325 "\15NONDASD"); 2326 } 2327 } 2328 2329 /* 2330 * Look up a text description of a numeric error code and return a pointer to 2331 * same. 2332 */ 2333 static char * 2334 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2335 { 2336 int i; 2337 2338 for (i = 0; table[i].string != NULL; i++) 2339 if (table[i].code == code) 2340 return(table[i].string); 2341 return(table[i + 1].string); 2342 } 2343 2344 /* 2345 * Management Interface 2346 */ 2347 2348 static int 2349 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td) 2350 { 2351 struct aac_softc *sc; 2352 2353 debug_called(2); 2354 2355 sc = dev->si_drv1; 2356 2357 /* Check to make sure the device isn't already open */ 2358 if (sc->aac_state & AAC_STATE_OPEN) { 2359 return EBUSY; 2360 } 2361 sc->aac_state |= AAC_STATE_OPEN; 2362 2363 return 0; 2364 } 2365 2366 static int 2367 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td) 2368 { 2369 struct aac_softc *sc; 2370 2371 debug_called(2); 2372 2373 sc = dev->si_drv1; 2374 2375 /* Mark this unit as no longer open */ 2376 sc->aac_state &= ~AAC_STATE_OPEN; 2377 2378 return 0; 2379 } 2380 2381 static int 2382 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2383 { 2384 union aac_statrequest *as; 2385 struct aac_softc *sc; 2386 int error = 0; 2387 uint32_t cookie; 2388 2389 debug_called(2); 2390 2391 as = (union aac_statrequest *)arg; 2392 sc = dev->si_drv1; 2393 2394 switch (cmd) { 2395 case AACIO_STATS: 2396 switch (as->as_item) { 2397 case AACQ_FREE: 2398 case AACQ_BIO: 2399 case AACQ_READY: 2400 case AACQ_BUSY: 2401 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2402 sizeof(struct aac_qstat)); 2403 break; 2404 default: 2405 error = ENOENT; 2406 break; 2407 } 2408 break; 2409 2410 case FSACTL_SENDFIB: 2411 arg = *(caddr_t*)arg; 2412 case FSACTL_LNX_SENDFIB: 2413 debug(1, "FSACTL_SENDFIB"); 2414 error = aac_ioctl_sendfib(sc, arg); 2415 break; 2416 case FSACTL_AIF_THREAD: 2417 case FSACTL_LNX_AIF_THREAD: 2418 debug(1, "FSACTL_AIF_THREAD"); 2419 error = EINVAL; 2420 break; 2421 case FSACTL_OPEN_GET_ADAPTER_FIB: 2422 arg = *(caddr_t*)arg; 2423 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2424 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2425 /* 2426 * Pass the caller out an AdapterFibContext. 2427 * 2428 * Note that because we only support one opener, we 2429 * basically ignore this. Set the caller's context to a magic 2430 * number just in case. 2431 * 2432 * The Linux code hands the driver a pointer into kernel space, 2433 * and then trusts it when the caller hands it back. Aiee! 2434 * Here, we give it the proc pointer of the per-adapter aif 2435 * thread. It's only used as a sanity check in other calls. 2436 */ 2437 cookie = (uint32_t)(uintptr_t)sc->aifthread; 2438 error = copyout(&cookie, arg, sizeof(cookie)); 2439 break; 2440 case FSACTL_GET_NEXT_ADAPTER_FIB: 2441 arg = *(caddr_t*)arg; 2442 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2443 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2444 error = aac_getnext_aif(sc, arg); 2445 break; 2446 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2447 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2448 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2449 /* don't do anything here */ 2450 break; 2451 case FSACTL_MINIPORT_REV_CHECK: 2452 arg = *(caddr_t*)arg; 2453 case FSACTL_LNX_MINIPORT_REV_CHECK: 2454 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2455 error = aac_rev_check(sc, arg); 2456 break; 2457 case FSACTL_QUERY_DISK: 2458 arg = *(caddr_t*)arg; 2459 case FSACTL_LNX_QUERY_DISK: 2460 debug(1, "FSACTL_QUERY_DISK"); 2461 error = aac_query_disk(sc, arg); 2462 break; 2463 case FSACTL_DELETE_DISK: 2464 case FSACTL_LNX_DELETE_DISK: 2465 /* 2466 * We don't trust the underland to tell us when to delete a 2467 * container, rather we rely on an AIF coming from the 2468 * controller 2469 */ 2470 error = 0; 2471 break; 2472 default: 2473 debug(1, "unsupported cmd 0x%lx\n", cmd); 2474 error = EINVAL; 2475 break; 2476 } 2477 return(error); 2478 } 2479 2480 static int 2481 aac_poll(dev_t dev, int poll_events, d_thread_t *td) 2482 { 2483 struct aac_softc *sc; 2484 int revents; 2485 2486 sc = dev->si_drv1; 2487 revents = 0; 2488 2489 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2490 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2491 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2492 revents |= poll_events & (POLLIN | POLLRDNORM); 2493 } 2494 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2495 2496 if (revents == 0) { 2497 if (poll_events & (POLLIN | POLLRDNORM)) 2498 selrecord(td, &sc->rcv_select); 2499 } 2500 2501 return (revents); 2502 } 2503 2504 /* 2505 * Send a FIB supplied from userspace 2506 */ 2507 static int 2508 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2509 { 2510 struct aac_command *cm; 2511 int size, error; 2512 2513 debug_called(2); 2514 2515 cm = NULL; 2516 2517 /* 2518 * Get a command 2519 */ 2520 AAC_LOCK_ACQUIRE(&sc->aac_io_lock); 2521 if (aac_alloc_command(sc, &cm)) { 2522 error = EBUSY; 2523 goto out; 2524 } 2525 2526 /* 2527 * Fetch the FIB header, then re-copy to get data as well. 2528 */ 2529 if ((error = copyin(ufib, cm->cm_fib, 2530 sizeof(struct aac_fib_header))) != 0) 2531 goto out; 2532 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2533 if (size > sizeof(struct aac_fib)) { 2534 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n", 2535 size, sizeof(struct aac_fib)); 2536 size = sizeof(struct aac_fib); 2537 } 2538 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2539 goto out; 2540 cm->cm_fib->Header.Size = size; 2541 cm->cm_timestamp = time_second; 2542 2543 /* 2544 * Pass the FIB to the controller, wait for it to complete. 2545 */ 2546 if ((error = aac_wait_command(cm)) != 0) { 2547 device_printf(sc->aac_dev, 2548 "aac_wait_command return %d\n", error); 2549 goto out; 2550 } 2551 2552 /* 2553 * Copy the FIB and data back out to the caller. 2554 */ 2555 size = cm->cm_fib->Header.Size; 2556 if (size > sizeof(struct aac_fib)) { 2557 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n", 2558 size, sizeof(struct aac_fib)); 2559 size = sizeof(struct aac_fib); 2560 } 2561 error = copyout(cm->cm_fib, ufib, size); 2562 2563 out: 2564 if (cm != NULL) { 2565 aac_release_command(cm); 2566 } 2567 2568 AAC_LOCK_RELEASE(&sc->aac_io_lock); 2569 return(error); 2570 } 2571 2572 /* 2573 * Handle an AIF sent to us by the controller; queue it for later reference. 2574 * If the queue fills up, then drop the older entries. 2575 */ 2576 static void 2577 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2578 { 2579 struct aac_aif_command *aif; 2580 struct aac_container *co, *co_next; 2581 struct aac_mntinfo *mi; 2582 struct aac_mntinforesp *mir = NULL; 2583 u_int16_t rsize; 2584 int next, found; 2585 int count = 0, added = 0, i = 0; 2586 2587 debug_called(2); 2588 2589 aif = (struct aac_aif_command*)&fib->data[0]; 2590 aac_print_aif(sc, aif); 2591 2592 /* Is it an event that we should care about? */ 2593 switch (aif->command) { 2594 case AifCmdEventNotify: 2595 switch (aif->data.EN.type) { 2596 case AifEnAddContainer: 2597 case AifEnDeleteContainer: 2598 /* 2599 * A container was added or deleted, but the message 2600 * doesn't tell us anything else! Re-enumerate the 2601 * containers and sort things out. 2602 */ 2603 aac_alloc_sync_fib(sc, &fib, 0); 2604 mi = (struct aac_mntinfo *)&fib->data[0]; 2605 do { 2606 /* 2607 * Ask the controller for its containers one at 2608 * a time. 2609 * XXX What if the controller's list changes 2610 * midway through this enumaration? 2611 * XXX This should be done async. 2612 */ 2613 bzero(mi, sizeof(struct aac_mntinfo)); 2614 mi->Command = VM_NameServe; 2615 mi->MntType = FT_FILESYS; 2616 mi->MntCount = i; 2617 rsize = sizeof(mir); 2618 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2619 sizeof(struct aac_mntinfo))) { 2620 printf("Error probing container %d\n", 2621 i); 2622 continue; 2623 } 2624 mir = (struct aac_mntinforesp *)&fib->data[0]; 2625 /* XXX Need to check if count changed */ 2626 count = mir->MntRespCount; 2627 /* 2628 * Check the container against our list. 2629 * co->co_found was already set to 0 in a 2630 * previous run. 2631 */ 2632 if ((mir->Status == ST_OK) && 2633 (mir->MntTable[0].VolType != CT_NONE)) { 2634 found = 0; 2635 TAILQ_FOREACH(co, 2636 &sc->aac_container_tqh, 2637 co_link) { 2638 if (co->co_mntobj.ObjectId == 2639 mir->MntTable[0].ObjectId) { 2640 co->co_found = 1; 2641 found = 1; 2642 break; 2643 } 2644 } 2645 /* 2646 * If the container matched, continue 2647 * in the list. 2648 */ 2649 if (found) { 2650 i++; 2651 continue; 2652 } 2653 2654 /* 2655 * This is a new container. Do all the 2656 * appropriate things to set it up. 2657 */ 2658 aac_add_container(sc, mir, 1); 2659 added = 1; 2660 } 2661 i++; 2662 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 2663 aac_release_sync_fib(sc); 2664 2665 /* 2666 * Go through our list of containers and see which ones 2667 * were not marked 'found'. Since the controller didn't 2668 * list them they must have been deleted. Do the 2669 * appropriate steps to destroy the device. Also reset 2670 * the co->co_found field. 2671 */ 2672 co = TAILQ_FIRST(&sc->aac_container_tqh); 2673 while (co != NULL) { 2674 if (co->co_found == 0) { 2675 device_delete_child(sc->aac_dev, 2676 co->co_disk); 2677 co_next = TAILQ_NEXT(co, co_link); 2678 AAC_LOCK_ACQUIRE(&sc-> 2679 aac_container_lock); 2680 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2681 co_link); 2682 AAC_LOCK_RELEASE(&sc-> 2683 aac_container_lock); 2684 FREE(co, M_AACBUF); 2685 co = co_next; 2686 } else { 2687 co->co_found = 0; 2688 co = TAILQ_NEXT(co, co_link); 2689 } 2690 } 2691 2692 /* Attach the newly created containers */ 2693 if (added) 2694 bus_generic_attach(sc->aac_dev); 2695 2696 break; 2697 2698 default: 2699 break; 2700 } 2701 2702 default: 2703 break; 2704 } 2705 2706 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2707 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2708 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2709 if (next != sc->aac_aifq_tail) { 2710 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2711 sc->aac_aifq_head = next; 2712 2713 /* On the off chance that someone is sleeping for an aif... */ 2714 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2715 wakeup(sc->aac_aifq); 2716 /* Wakeup any poll()ers */ 2717 selwakeuppri(&sc->rcv_select, PRIBIO); 2718 } 2719 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2720 2721 return; 2722 } 2723 2724 /* 2725 * Return the Revision of the driver to userspace and check to see if the 2726 * userspace app is possibly compatible. This is extremely bogus since 2727 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2728 * returning what the card reported. 2729 */ 2730 static int 2731 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2732 { 2733 struct aac_rev_check rev_check; 2734 struct aac_rev_check_resp rev_check_resp; 2735 int error = 0; 2736 2737 debug_called(2); 2738 2739 /* 2740 * Copyin the revision struct from userspace 2741 */ 2742 if ((error = copyin(udata, (caddr_t)&rev_check, 2743 sizeof(struct aac_rev_check))) != 0) { 2744 return error; 2745 } 2746 2747 debug(2, "Userland revision= %d\n", 2748 rev_check.callingRevision.buildNumber); 2749 2750 /* 2751 * Doctor up the response struct. 2752 */ 2753 rev_check_resp.possiblyCompatible = 1; 2754 rev_check_resp.adapterSWRevision.external.ul = 2755 sc->aac_revision.external.ul; 2756 rev_check_resp.adapterSWRevision.buildNumber = 2757 sc->aac_revision.buildNumber; 2758 2759 return(copyout((caddr_t)&rev_check_resp, udata, 2760 sizeof(struct aac_rev_check_resp))); 2761 } 2762 2763 /* 2764 * Pass the caller the next AIF in their queue 2765 */ 2766 static int 2767 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2768 { 2769 struct get_adapter_fib_ioctl agf; 2770 int error; 2771 2772 debug_called(2); 2773 2774 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2775 2776 /* 2777 * Check the magic number that we gave the caller. 2778 */ 2779 if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) { 2780 error = EFAULT; 2781 } else { 2782 error = aac_return_aif(sc, agf.AifFib); 2783 if ((error == EAGAIN) && (agf.Wait)) { 2784 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2785 while (error == EAGAIN) { 2786 error = tsleep(sc->aac_aifq, PRIBIO | 2787 PCATCH, "aacaif", 0); 2788 if (error == 0) 2789 error = aac_return_aif(sc, 2790 agf.AifFib); 2791 } 2792 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2793 } 2794 } 2795 } 2796 return(error); 2797 } 2798 2799 /* 2800 * Hand the next AIF off the top of the queue out to userspace. 2801 */ 2802 static int 2803 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2804 { 2805 int next, error; 2806 2807 debug_called(2); 2808 2809 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2810 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2811 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2812 return (EAGAIN); 2813 } 2814 2815 next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH; 2816 error = copyout(&sc->aac_aifq[next], uptr, 2817 sizeof(struct aac_aif_command)); 2818 if (error) 2819 device_printf(sc->aac_dev, 2820 "aac_return_aif: copyout returned %d\n", error); 2821 else 2822 sc->aac_aifq_tail = next; 2823 2824 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2825 return(error); 2826 } 2827 2828 /* 2829 * Give the userland some information about the container. The AAC arch 2830 * expects the driver to be a SCSI passthrough type driver, so it expects 2831 * the containers to have b:t:l numbers. Fake it. 2832 */ 2833 static int 2834 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2835 { 2836 struct aac_query_disk query_disk; 2837 struct aac_container *co; 2838 struct aac_disk *disk; 2839 int error, id; 2840 2841 debug_called(2); 2842 2843 disk = NULL; 2844 2845 error = copyin(uptr, (caddr_t)&query_disk, 2846 sizeof(struct aac_query_disk)); 2847 if (error) 2848 return (error); 2849 2850 id = query_disk.ContainerNumber; 2851 if (id == -1) 2852 return (EINVAL); 2853 2854 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2855 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2856 if (co->co_mntobj.ObjectId == id) 2857 break; 2858 } 2859 2860 if (co == NULL) { 2861 query_disk.Valid = 0; 2862 query_disk.Locked = 0; 2863 query_disk.Deleted = 1; /* XXX is this right? */ 2864 } else { 2865 disk = device_get_softc(co->co_disk); 2866 query_disk.Valid = 1; 2867 query_disk.Locked = 2868 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2869 query_disk.Deleted = 0; 2870 query_disk.Bus = device_get_unit(sc->aac_dev); 2871 query_disk.Target = disk->unit; 2872 query_disk.Lun = 0; 2873 query_disk.UnMapped = 0; 2874 sprintf(&query_disk.diskDeviceName[0], "%s%d", 2875 disk->ad_disk->d_name, disk->ad_disk->d_unit); 2876 } 2877 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2878 2879 error = copyout((caddr_t)&query_disk, uptr, 2880 sizeof(struct aac_query_disk)); 2881 2882 return (error); 2883 } 2884 2885 static void 2886 aac_get_bus_info(struct aac_softc *sc) 2887 { 2888 struct aac_fib *fib; 2889 struct aac_ctcfg *c_cmd; 2890 struct aac_ctcfg_resp *c_resp; 2891 struct aac_vmioctl *vmi; 2892 struct aac_vmi_businf_resp *vmi_resp; 2893 struct aac_getbusinf businfo; 2894 struct aac_sim *caminf; 2895 device_t child; 2896 int i, found, error; 2897 2898 aac_alloc_sync_fib(sc, &fib, 0); 2899 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2900 bzero(c_cmd, sizeof(struct aac_ctcfg)); 2901 2902 c_cmd->Command = VM_ContainerConfig; 2903 c_cmd->cmd = CT_GET_SCSI_METHOD; 2904 c_cmd->param = 0; 2905 2906 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2907 sizeof(struct aac_ctcfg)); 2908 if (error) { 2909 device_printf(sc->aac_dev, "Error %d sending " 2910 "VM_ContainerConfig command\n", error); 2911 aac_release_sync_fib(sc); 2912 return; 2913 } 2914 2915 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2916 if (c_resp->Status != ST_OK) { 2917 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2918 c_resp->Status); 2919 aac_release_sync_fib(sc); 2920 return; 2921 } 2922 2923 sc->scsi_method_id = c_resp->param; 2924 2925 vmi = (struct aac_vmioctl *)&fib->data[0]; 2926 bzero(vmi, sizeof(struct aac_vmioctl)); 2927 2928 vmi->Command = VM_Ioctl; 2929 vmi->ObjType = FT_DRIVE; 2930 vmi->MethId = sc->scsi_method_id; 2931 vmi->ObjId = 0; 2932 vmi->IoctlCmd = GetBusInfo; 2933 2934 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2935 sizeof(struct aac_vmioctl)); 2936 if (error) { 2937 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2938 error); 2939 aac_release_sync_fib(sc); 2940 return; 2941 } 2942 2943 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2944 if (vmi_resp->Status != ST_OK) { 2945 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 2946 vmi_resp->Status); 2947 aac_release_sync_fib(sc); 2948 return; 2949 } 2950 2951 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 2952 aac_release_sync_fib(sc); 2953 2954 found = 0; 2955 for (i = 0; i < businfo.BusCount; i++) { 2956 if (businfo.BusValid[i] != AAC_BUS_VALID) 2957 continue; 2958 2959 caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim), 2960 M_AACBUF, M_NOWAIT | M_ZERO); 2961 if (caminf == NULL) 2962 continue; 2963 2964 child = device_add_child(sc->aac_dev, "aacp", -1); 2965 if (child == NULL) { 2966 device_printf(sc->aac_dev, "device_add_child failed\n"); 2967 continue; 2968 } 2969 2970 caminf->TargetsPerBus = businfo.TargetsPerBus; 2971 caminf->BusNumber = i; 2972 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 2973 caminf->aac_sc = sc; 2974 caminf->sim_dev = child; 2975 2976 device_set_ivars(child, caminf); 2977 device_set_desc(child, "SCSI Passthrough Bus"); 2978 TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link); 2979 2980 found = 1; 2981 } 2982 2983 if (found) 2984 bus_generic_attach(sc->aac_dev); 2985 2986 return; 2987 } 2988