xref: /freebsd/sys/dev/aac/aac.c (revision dba6dd177bdee890cf445fbe21a5dccefd5de18e)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #include <sys/ioccom.h>
48 
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 #include <sys/eventhandler.h>
54 
55 #include <machine/bus_memio.h>
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 
59 #include <dev/aac/aacreg.h>
60 #include <dev/aac/aac_ioctl.h>
61 #include <dev/aac/aacvar.h>
62 #include <dev/aac/aac_tables.h>
63 
64 static void	aac_startup(void *arg);
65 static void	aac_add_container(struct aac_softc *sc,
66 				  struct aac_mntinforesp *mir, int f);
67 static void	aac_get_bus_info(struct aac_softc *sc);
68 
69 /* Command Processing */
70 static void	aac_timeout(struct aac_softc *sc);
71 static int	aac_map_command(struct aac_command *cm);
72 static void	aac_complete(void *context, int pending);
73 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74 static void	aac_bio_complete(struct aac_command *cm);
75 static int	aac_wait_command(struct aac_command *cm);
76 static void	aac_command_thread(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80 				   int nseg, int error);
81 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82 				       int nseg, int error);
83 static int	aac_alloc_commands(struct aac_softc *sc);
84 static void	aac_free_commands(struct aac_softc *sc);
85 static void	aac_unmap_command(struct aac_command *cm);
86 
87 /* Hardware Interface */
88 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89 			       int error);
90 static int	aac_check_firmware(struct aac_softc *sc);
91 static int	aac_init(struct aac_softc *sc);
92 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94 				 u_int32_t arg3, u_int32_t *sp);
95 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96 				struct aac_command *cm);
97 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98 				u_int32_t *fib_size, struct aac_fib **fib_addr);
99 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100 				     struct aac_fib *fib);
101 
102 /* Falcon/PPC interface */
103 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105 static int	aac_fa_get_istatus(struct aac_softc *sc);
106 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108 				   u_int32_t arg0, u_int32_t arg1,
109 				   u_int32_t arg2, u_int32_t arg3);
110 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112 
113 struct aac_interface aac_fa_interface = {
114 	aac_fa_get_fwstatus,
115 	aac_fa_qnotify,
116 	aac_fa_get_istatus,
117 	aac_fa_clear_istatus,
118 	aac_fa_set_mailbox,
119 	aac_fa_get_mailbox,
120 	aac_fa_set_interrupts
121 };
122 
123 /* StrongARM interface */
124 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126 static int	aac_sa_get_istatus(struct aac_softc *sc);
127 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129 				   u_int32_t arg0, u_int32_t arg1,
130 				   u_int32_t arg2, u_int32_t arg3);
131 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133 
134 struct aac_interface aac_sa_interface = {
135 	aac_sa_get_fwstatus,
136 	aac_sa_qnotify,
137 	aac_sa_get_istatus,
138 	aac_sa_clear_istatus,
139 	aac_sa_set_mailbox,
140 	aac_sa_get_mailbox,
141 	aac_sa_set_interrupts
142 };
143 
144 /* i960Rx interface */
145 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147 static int	aac_rx_get_istatus(struct aac_softc *sc);
148 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150 				   u_int32_t arg0, u_int32_t arg1,
151 				   u_int32_t arg2, u_int32_t arg3);
152 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154 
155 struct aac_interface aac_rx_interface = {
156 	aac_rx_get_fwstatus,
157 	aac_rx_qnotify,
158 	aac_rx_get_istatus,
159 	aac_rx_clear_istatus,
160 	aac_rx_set_mailbox,
161 	aac_rx_get_mailbox,
162 	aac_rx_set_interrupts
163 };
164 
165 /* Debugging and Diagnostics */
166 static void	aac_describe_controller(struct aac_softc *sc);
167 static char	*aac_describe_code(struct aac_code_lookup *table,
168 				   u_int32_t code);
169 
170 /* Management Interface */
171 static d_open_t		aac_open;
172 static d_close_t	aac_close;
173 static d_ioctl_t	aac_ioctl;
174 static d_poll_t		aac_poll;
175 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
176 static void		aac_handle_aif(struct aac_softc *sc,
177 					   struct aac_fib *fib);
178 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
179 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
180 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
181 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182 
183 static struct cdevsw aac_cdevsw = {
184 	.d_version =	D_VERSION,
185 	.d_flags =	D_NEEDGIANT,
186 	.d_open =	aac_open,
187 	.d_close =	aac_close,
188 	.d_ioctl =	aac_ioctl,
189 	.d_poll =	aac_poll,
190 	.d_name =	"aac",
191 };
192 
193 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
194 
195 /* sysctl node */
196 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
197 
198 /*
199  * Device Interface
200  */
201 
202 /*
203  * Initialise the controller and softc
204  */
205 int
206 aac_attach(struct aac_softc *sc)
207 {
208 	int error, unit;
209 
210 	debug_called(1);
211 
212 	/*
213 	 * Initialise per-controller queues.
214 	 */
215 	aac_initq_free(sc);
216 	aac_initq_ready(sc);
217 	aac_initq_busy(sc);
218 	aac_initq_bio(sc);
219 
220 	/*
221 	 * Initialise command-completion task.
222 	 */
223 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
224 
225 	/* disable interrupts before we enable anything */
226 	AAC_MASK_INTERRUPTS(sc);
227 
228 	/* mark controller as suspended until we get ourselves organised */
229 	sc->aac_state |= AAC_STATE_SUSPEND;
230 
231 	/*
232 	 * Check that the firmware on the card is supported.
233 	 */
234 	if ((error = aac_check_firmware(sc)) != 0)
235 		return(error);
236 
237 	/*
238 	 * Initialize locks
239 	 */
240 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
241 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
242 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
243 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
244 	TAILQ_INIT(&sc->aac_container_tqh);
245 
246 	/* Initialize the local AIF queue pointers */
247 	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
248 
249 	/*
250 	 * Initialise the adapter.
251 	 */
252 	if ((error = aac_init(sc)) != 0)
253 		return(error);
254 
255 	/*
256 	 * Print a little information about the controller.
257 	 */
258 	aac_describe_controller(sc);
259 
260 	/*
261 	 * Register to probe our containers later.
262 	 */
263 	sc->aac_ich.ich_func = aac_startup;
264 	sc->aac_ich.ich_arg = sc;
265 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
266 		device_printf(sc->aac_dev,
267 			      "can't establish configuration hook\n");
268 		return(ENXIO);
269 	}
270 
271 	/*
272 	 * Make the control device.
273 	 */
274 	unit = device_get_unit(sc->aac_dev);
275 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
276 				 0640, "aac%d", unit);
277 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
278 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
279 	sc->aac_dev_t->si_drv1 = sc;
280 
281 	/* Create the AIF thread */
282 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
283 			   &sc->aifthread, 0, 0, "aac%daif", unit))
284 		panic("Could not create AIF thread\n");
285 
286 	/* Register the shutdown method to only be called post-dump */
287 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
288 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
289 		device_printf(sc->aac_dev,
290 			      "shutdown event registration failed\n");
291 
292 	/* Register with CAM for the non-DASD devices */
293 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
294 		TAILQ_INIT(&sc->aac_sim_tqh);
295 		aac_get_bus_info(sc);
296 	}
297 
298 	return(0);
299 }
300 
301 /*
302  * Probe for containers, create disks.
303  */
304 static void
305 aac_startup(void *arg)
306 {
307 	struct aac_softc *sc;
308 	struct aac_fib *fib;
309 	struct aac_mntinfo *mi;
310 	struct aac_mntinforesp *mir = NULL;
311 	int count = 0, i = 0;
312 
313 	debug_called(1);
314 
315 	sc = (struct aac_softc *)arg;
316 
317 	/* disconnect ourselves from the intrhook chain */
318 	config_intrhook_disestablish(&sc->aac_ich);
319 
320 	aac_alloc_sync_fib(sc, &fib, 0);
321 	mi = (struct aac_mntinfo *)&fib->data[0];
322 
323 	/* loop over possible containers */
324 	do {
325 		/* request information on this container */
326 		bzero(mi, sizeof(struct aac_mntinfo));
327 		mi->Command = VM_NameServe;
328 		mi->MntType = FT_FILESYS;
329 		mi->MntCount = i;
330 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
331 				 sizeof(struct aac_mntinfo))) {
332 			printf("error probing container %d", i);
333 			continue;
334 		}
335 
336 		mir = (struct aac_mntinforesp *)&fib->data[0];
337 		/* XXX Need to check if count changed */
338 		count = mir->MntRespCount;
339 		aac_add_container(sc, mir, 0);
340 		i++;
341 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
342 
343 	aac_release_sync_fib(sc);
344 
345 	/* poke the bus to actually attach the child devices */
346 	if (bus_generic_attach(sc->aac_dev))
347 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
348 
349 	/* mark the controller up */
350 	sc->aac_state &= ~AAC_STATE_SUSPEND;
351 
352 	/* enable interrupts now */
353 	AAC_UNMASK_INTERRUPTS(sc);
354 }
355 
356 /*
357  * Create a device to respresent a new container
358  */
359 static void
360 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
361 {
362 	struct aac_container *co;
363 	device_t child;
364 
365 	/*
366 	 * Check container volume type for validity.  Note that many of
367 	 * the possible types may never show up.
368 	 */
369 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
370 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
371 		       M_NOWAIT | M_ZERO);
372 		if (co == NULL)
373 			panic("Out of memory?!\n");
374 		debug(1, "id %x  name '%.16s'  size %u  type %d",
375 		      mir->MntTable[0].ObjectId,
376 		      mir->MntTable[0].FileSystemName,
377 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
378 
379 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
380 			device_printf(sc->aac_dev, "device_add_child failed\n");
381 		else
382 			device_set_ivars(child, co);
383 		device_set_desc(child, aac_describe_code(aac_container_types,
384 				mir->MntTable[0].VolType));
385 		co->co_disk = child;
386 		co->co_found = f;
387 		bcopy(&mir->MntTable[0], &co->co_mntobj,
388 		      sizeof(struct aac_mntobj));
389 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
390 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
391 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
392 	}
393 }
394 
395 /*
396  * Free all of the resources associated with (sc)
397  *
398  * Should not be called if the controller is active.
399  */
400 void
401 aac_free(struct aac_softc *sc)
402 {
403 
404 	debug_called(1);
405 
406 	/* remove the control device */
407 	if (sc->aac_dev_t != NULL)
408 		destroy_dev(sc->aac_dev_t);
409 
410 	/* throw away any FIB buffers, discard the FIB DMA tag */
411 	aac_free_commands(sc);
412 	if (sc->aac_fib_dmat)
413 		bus_dma_tag_destroy(sc->aac_fib_dmat);
414 
415 	free(sc->aac_commands, M_AACBUF);
416 
417 	/* destroy the common area */
418 	if (sc->aac_common) {
419 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
420 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
421 				sc->aac_common_dmamap);
422 	}
423 	if (sc->aac_common_dmat)
424 		bus_dma_tag_destroy(sc->aac_common_dmat);
425 
426 	/* disconnect the interrupt handler */
427 	if (sc->aac_intr)
428 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
429 	if (sc->aac_irq != NULL)
430 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
431 				     sc->aac_irq);
432 
433 	/* destroy data-transfer DMA tag */
434 	if (sc->aac_buffer_dmat)
435 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
436 
437 	/* destroy the parent DMA tag */
438 	if (sc->aac_parent_dmat)
439 		bus_dma_tag_destroy(sc->aac_parent_dmat);
440 
441 	/* release the register window mapping */
442 	if (sc->aac_regs_resource != NULL)
443 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
444 				     sc->aac_regs_rid, sc->aac_regs_resource);
445 }
446 
447 /*
448  * Disconnect from the controller completely, in preparation for unload.
449  */
450 int
451 aac_detach(device_t dev)
452 {
453 	struct aac_softc *sc;
454 	struct aac_container *co;
455 	struct aac_sim	*sim;
456 	int error;
457 
458 	debug_called(1);
459 
460 	sc = device_get_softc(dev);
461 
462 	if (sc->aac_state & AAC_STATE_OPEN)
463 		return(EBUSY);
464 
465 	/* Remove the child containers */
466 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
467 		error = device_delete_child(dev, co->co_disk);
468 		if (error)
469 			return (error);
470 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
471 		free(co, M_AACBUF);
472 	}
473 
474 	/* Remove the CAM SIMs */
475 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
476 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
477 		error = device_delete_child(dev, sim->sim_dev);
478 		if (error)
479 			return (error);
480 		free(sim, M_AACBUF);
481 	}
482 
483 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
484 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
485 		wakeup(sc->aifthread);
486 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
487 	}
488 
489 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
490 		panic("Cannot shutdown AIF thread\n");
491 
492 	if ((error = aac_shutdown(dev)))
493 		return(error);
494 
495 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
496 
497 	aac_free(sc);
498 
499 	return(0);
500 }
501 
502 /*
503  * Bring the controller down to a dormant state and detach all child devices.
504  *
505  * This function is called before detach or system shutdown.
506  *
507  * Note that we can assume that the bioq on the controller is empty, as we won't
508  * allow shutdown if any device is open.
509  */
510 int
511 aac_shutdown(device_t dev)
512 {
513 	struct aac_softc *sc;
514 	struct aac_fib *fib;
515 	struct aac_close_command *cc;
516 
517 	debug_called(1);
518 
519 	sc = device_get_softc(dev);
520 
521 	sc->aac_state |= AAC_STATE_SUSPEND;
522 
523 	/*
524 	 * Send a Container shutdown followed by a HostShutdown FIB to the
525 	 * controller to convince it that we don't want to talk to it anymore.
526 	 * We've been closed and all I/O completed already
527 	 */
528 	device_printf(sc->aac_dev, "shutting down controller...");
529 
530 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
531 	cc = (struct aac_close_command *)&fib->data[0];
532 
533 	bzero(cc, sizeof(struct aac_close_command));
534 	cc->Command = VM_CloseAll;
535 	cc->ContainerId = 0xffffffff;
536 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
537 	    sizeof(struct aac_close_command)))
538 		printf("FAILED.\n");
539 	else
540 		printf("done\n");
541 #if 0
542 	else {
543 		fib->data[0] = 0;
544 		/*
545 		 * XXX Issuing this command to the controller makes it shut down
546 		 * but also keeps it from coming back up without a reset of the
547 		 * PCI bus.  This is not desirable if you are just unloading the
548 		 * driver module with the intent to reload it later.
549 		 */
550 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
551 		    fib, 1)) {
552 			printf("FAILED.\n");
553 		} else {
554 			printf("done.\n");
555 		}
556 	}
557 #endif
558 
559 	AAC_MASK_INTERRUPTS(sc);
560 
561 	return(0);
562 }
563 
564 /*
565  * Bring the controller to a quiescent state, ready for system suspend.
566  */
567 int
568 aac_suspend(device_t dev)
569 {
570 	struct aac_softc *sc;
571 
572 	debug_called(1);
573 
574 	sc = device_get_softc(dev);
575 
576 	sc->aac_state |= AAC_STATE_SUSPEND;
577 
578 	AAC_MASK_INTERRUPTS(sc);
579 	return(0);
580 }
581 
582 /*
583  * Bring the controller back to a state ready for operation.
584  */
585 int
586 aac_resume(device_t dev)
587 {
588 	struct aac_softc *sc;
589 
590 	debug_called(1);
591 
592 	sc = device_get_softc(dev);
593 
594 	sc->aac_state &= ~AAC_STATE_SUSPEND;
595 	AAC_UNMASK_INTERRUPTS(sc);
596 	return(0);
597 }
598 
599 /*
600  * Take an interrupt.
601  */
602 void
603 aac_intr(void *arg)
604 {
605 	struct aac_softc *sc;
606 	u_int16_t reason;
607 
608 	debug_called(2);
609 
610 	sc = (struct aac_softc *)arg;
611 
612 	/*
613 	 * Read the status register directly.  This is faster than taking the
614 	 * driver lock and reading the queues directly.  It also saves having
615 	 * to turn parts of the driver lock into a spin mutex, which would be
616 	 * ugly.
617 	 */
618 	reason = AAC_GET_ISTATUS(sc);
619 	AAC_CLEAR_ISTATUS(sc, reason);
620 
621 	/* handle completion processing */
622 	if (reason & AAC_DB_RESPONSE_READY)
623 		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
624 
625 	/* controller wants to talk to us */
626 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
627 		/*
628 		 * XXX Make sure that we don't get fooled by strange messages
629 		 * that start with a NULL.
630 		 */
631 		if ((reason & AAC_DB_PRINTF) &&
632 		    (sc->aac_common->ac_printf[0] == 0))
633 			sc->aac_common->ac_printf[0] = 32;
634 
635 		/*
636 		 * This might miss doing the actual wakeup.  However, the
637 		 * msleep that this is waking up has a timeout, so it will
638 		 * wake up eventually.  AIFs and printfs are low enough
639 		 * priority that they can handle hanging out for a few seconds
640 		 * if needed.
641 		 */
642 		wakeup(sc->aifthread);
643 	}
644 }
645 
646 /*
647  * Command Processing
648  */
649 
650 /*
651  * Start as much queued I/O as possible on the controller
652  */
653 void
654 aac_startio(struct aac_softc *sc)
655 {
656 	struct aac_command *cm;
657 
658 	debug_called(2);
659 
660 	if (sc->flags & AAC_QUEUE_FRZN)
661 		return;
662 
663 	for (;;) {
664 		/*
665 		 * Try to get a command that's been put off for lack of
666 		 * resources
667 		 */
668 		cm = aac_dequeue_ready(sc);
669 
670 		/*
671 		 * Try to build a command off the bio queue (ignore error
672 		 * return)
673 		 */
674 		if (cm == NULL)
675 			aac_bio_command(sc, &cm);
676 
677 		/* nothing to do? */
678 		if (cm == NULL)
679 			break;
680 
681 		/*
682 		 * Try to give the command to the controller.  Any error is
683 		 * catastrophic since it means that bus_dmamap_load() failed.
684 		 */
685 		if (aac_map_command(cm) != 0)
686 			panic("aac: error mapping command %p\n", cm);
687 	}
688 }
689 
690 /*
691  * Deliver a command to the controller; allocate controller resources at the
692  * last moment when possible.
693  */
694 static int
695 aac_map_command(struct aac_command *cm)
696 {
697 	struct aac_softc *sc;
698 	int error;
699 
700 	debug_called(2);
701 
702 	sc = cm->cm_sc;
703 	error = 0;
704 
705 	/* don't map more than once */
706 	if (cm->cm_flags & AAC_CMD_MAPPED)
707 		panic("aac: command %p already mapped", cm);
708 
709 	if (cm->cm_datalen != 0) {
710 		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
711 					cm->cm_data, cm->cm_datalen,
712 					aac_map_command_sg, cm, 0);
713 		if (error == EINPROGRESS) {
714 			debug(1, "freezing queue\n");
715 			sc->flags |= AAC_QUEUE_FRZN;
716 			error = 0;
717 		}
718 	} else {
719 		aac_map_command_sg(cm, NULL, 0, 0);
720 	}
721 	return (error);
722 }
723 
724 /*
725  * Handle notification of one or more FIBs coming from the controller.
726  */
727 static void
728 aac_command_thread(struct aac_softc *sc)
729 {
730 	struct aac_fib *fib;
731 	u_int32_t fib_size;
732 	int size, retval;
733 
734 	debug_called(2);
735 
736 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
737 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
738 
739 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
740 
741 		retval = 0;
742 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
743 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
744 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
745 
746 		/*
747 		 * First see if any FIBs need to be allocated.  This needs
748 		 * to be called without the driver lock because contigmalloc
749 		 * will grab Giant, and would result in an LOR.
750 		 */
751 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
752 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
753 			aac_alloc_commands(sc);
754 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
755 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
756 			aac_startio(sc);
757 		}
758 
759 		/*
760 		 * While we're here, check to see if any commands are stuck.
761 		 * This is pretty low-priority, so it's ok if it doesn't
762 		 * always fire.
763 		 */
764 		if (retval == EWOULDBLOCK)
765 			aac_timeout(sc);
766 
767 		/* Check the hardware printf message buffer */
768 		if (sc->aac_common->ac_printf[0] != 0)
769 			aac_print_printf(sc);
770 
771 		/* Also check to see if the adapter has a command for us. */
772 		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
773 				       &fib_size, &fib) == 0) {
774 
775 			AAC_PRINT_FIB(sc, fib);
776 
777 			switch (fib->Header.Command) {
778 			case AifRequest:
779 				aac_handle_aif(sc, fib);
780 				break;
781 			default:
782 				device_printf(sc->aac_dev, "unknown command "
783 					      "from controller\n");
784 				break;
785 			}
786 
787 			if ((fib->Header.XferState == 0) ||
788 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
789 				break;
790 
791 			/* Return the AIF to the controller. */
792 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
793 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
794 				*(AAC_FSAStatus*)fib->data = ST_OK;
795 
796 				/* XXX Compute the Size field? */
797 				size = fib->Header.Size;
798 				if (size > sizeof(struct aac_fib)) {
799 					size = sizeof(struct aac_fib);
800 					fib->Header.Size = size;
801 				}
802 				/*
803 				 * Since we did not generate this command, it
804 				 * cannot go through the normal
805 				 * enqueue->startio chain.
806 				 */
807 				aac_enqueue_response(sc,
808 						     AAC_ADAP_NORM_RESP_QUEUE,
809 						     fib);
810 			}
811 		}
812 	}
813 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
814 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
815 	wakeup(sc->aac_dev);
816 
817 	kthread_exit(0);
818 }
819 
820 /*
821  * Process completed commands.
822  */
823 static void
824 aac_complete(void *context, int pending)
825 {
826 	struct aac_softc *sc;
827 	struct aac_command *cm;
828 	struct aac_fib *fib;
829 	u_int32_t fib_size;
830 
831 	debug_called(2);
832 
833 	sc = (struct aac_softc *)context;
834 
835 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
836 
837 	/* pull completed commands off the queue */
838 	for (;;) {
839 		/* look for completed FIBs on our queue */
840 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
841 				    &fib))
842 			break;	/* nothing to do */
843 
844 		/* get the command, unmap and hand off for processing */
845 		cm = sc->aac_commands + fib->Header.SenderData;
846 		if (cm == NULL) {
847 			AAC_PRINT_FIB(sc, fib);
848 			break;
849 		}
850 
851 		aac_remove_busy(cm);
852 		aac_unmap_command(cm);
853 		cm->cm_flags |= AAC_CMD_COMPLETED;
854 
855 		/* is there a completion handler? */
856 		if (cm->cm_complete != NULL) {
857 			cm->cm_complete(cm);
858 		} else {
859 			/* assume that someone is sleeping on this command */
860 			wakeup(cm);
861 		}
862 	}
863 
864 	/* see if we can start some more I/O */
865 	sc->flags &= ~AAC_QUEUE_FRZN;
866 	aac_startio(sc);
867 
868 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
869 }
870 
871 /*
872  * Handle a bio submitted from a disk device.
873  */
874 void
875 aac_submit_bio(struct bio *bp)
876 {
877 	struct aac_disk *ad;
878 	struct aac_softc *sc;
879 
880 	debug_called(2);
881 
882 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
883 	sc = ad->ad_controller;
884 
885 	/* queue the BIO and try to get some work done */
886 	aac_enqueue_bio(sc, bp);
887 	aac_startio(sc);
888 }
889 
890 /*
891  * Get a bio and build a command to go with it.
892  */
893 static int
894 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
895 {
896 	struct aac_command *cm;
897 	struct aac_fib *fib;
898 	struct aac_disk *ad;
899 	struct bio *bp;
900 
901 	debug_called(2);
902 
903 	/* get the resources we will need */
904 	cm = NULL;
905 	bp = NULL;
906 	if (aac_alloc_command(sc, &cm))	/* get a command */
907 		goto fail;
908 	if ((bp = aac_dequeue_bio(sc)) == NULL)
909 		goto fail;
910 
911 	/* fill out the command */
912 	cm->cm_data = (void *)bp->bio_data;
913 	cm->cm_datalen = bp->bio_bcount;
914 	cm->cm_complete = aac_bio_complete;
915 	cm->cm_private = bp;
916 	cm->cm_timestamp = time_second;
917 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
918 
919 	/* build the FIB */
920 	fib = cm->cm_fib;
921 	fib->Header.Size = sizeof(struct aac_fib_header);
922 	fib->Header.XferState =
923 		AAC_FIBSTATE_HOSTOWNED   |
924 		AAC_FIBSTATE_INITIALISED |
925 		AAC_FIBSTATE_EMPTY	 |
926 		AAC_FIBSTATE_FROMHOST	 |
927 		AAC_FIBSTATE_REXPECTED   |
928 		AAC_FIBSTATE_NORM	 |
929 		AAC_FIBSTATE_ASYNC	 |
930 		AAC_FIBSTATE_FAST_RESPONSE;
931 
932 	/* build the read/write request */
933 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
934 
935 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
936 		fib->Header.Command = ContainerCommand;
937 		if (bp->bio_cmd == BIO_READ) {
938 			struct aac_blockread *br;
939 			br = (struct aac_blockread *)&fib->data[0];
940 			br->Command = VM_CtBlockRead;
941 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
942 			br->BlockNumber = bp->bio_pblkno;
943 			br->ByteCount = bp->bio_bcount;
944 			fib->Header.Size += sizeof(struct aac_blockread);
945 			cm->cm_sgtable = &br->SgMap;
946 			cm->cm_flags |= AAC_CMD_DATAIN;
947 		} else {
948 			struct aac_blockwrite *bw;
949 			bw = (struct aac_blockwrite *)&fib->data[0];
950 			bw->Command = VM_CtBlockWrite;
951 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
952 			bw->BlockNumber = bp->bio_pblkno;
953 			bw->ByteCount = bp->bio_bcount;
954 			bw->Stable = CUNSTABLE;
955 			fib->Header.Size += sizeof(struct aac_blockwrite);
956 			cm->cm_flags |= AAC_CMD_DATAOUT;
957 			cm->cm_sgtable = &bw->SgMap;
958 		}
959 	} else {
960 		fib->Header.Command = ContainerCommand64;
961 		if (bp->bio_cmd == BIO_READ) {
962 			struct aac_blockread64 *br;
963 			br = (struct aac_blockread64 *)&fib->data[0];
964 			br->Command = VM_CtHostRead64;
965 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
966 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
967 			br->BlockNumber = bp->bio_pblkno;
968 			br->Pad = 0;
969 			br->Flags = 0;
970 			fib->Header.Size += sizeof(struct aac_blockread64);
971 			cm->cm_flags |= AAC_CMD_DATAOUT;
972 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
973 		} else {
974 			struct aac_blockwrite64 *bw;
975 			bw = (struct aac_blockwrite64 *)&fib->data[0];
976 			bw->Command = VM_CtHostWrite64;
977 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
978 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
979 			bw->BlockNumber = bp->bio_pblkno;
980 			bw->Pad = 0;
981 			bw->Flags = 0;
982 			fib->Header.Size += sizeof(struct aac_blockwrite64);
983 			cm->cm_flags |= AAC_CMD_DATAIN;
984 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
985 		}
986 	}
987 
988 	*cmp = cm;
989 	return(0);
990 
991 fail:
992 	if (bp != NULL)
993 		aac_enqueue_bio(sc, bp);
994 	if (cm != NULL)
995 		aac_release_command(cm);
996 	return(ENOMEM);
997 }
998 
999 /*
1000  * Handle a bio-instigated command that has been completed.
1001  */
1002 static void
1003 aac_bio_complete(struct aac_command *cm)
1004 {
1005 	struct aac_blockread_response *brr;
1006 	struct aac_blockwrite_response *bwr;
1007 	struct bio *bp;
1008 	AAC_FSAStatus status;
1009 
1010 	/* fetch relevant status and then release the command */
1011 	bp = (struct bio *)cm->cm_private;
1012 	if (bp->bio_cmd == BIO_READ) {
1013 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1014 		status = brr->Status;
1015 	} else {
1016 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1017 		status = bwr->Status;
1018 	}
1019 	aac_release_command(cm);
1020 
1021 	/* fix up the bio based on status */
1022 	if (status == ST_OK) {
1023 		bp->bio_resid = 0;
1024 	} else {
1025 		bp->bio_error = EIO;
1026 		bp->bio_flags |= BIO_ERROR;
1027 		/* pass an error string out to the disk layer */
1028 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1029 						    status);
1030 	}
1031 	aac_biodone(bp);
1032 }
1033 
1034 /*
1035  * Submit a command to the controller, return when it completes.
1036  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1037  *     be stuck here forever.  At the same time, signals are not caught
1038  *     because there is a risk that a signal could wakeup the sleep before
1039  *     the card has a chance to complete the command.  Since there is no way
1040  *     to cancel a command that is in progress, we can't protect against the
1041  *     card completing a command late and spamming the command and data
1042  *     memory.  So, we are held hostage until the command completes.
1043  */
1044 static int
1045 aac_wait_command(struct aac_command *cm)
1046 {
1047 	struct aac_softc *sc;
1048 	int error;
1049 
1050 	debug_called(2);
1051 
1052 	sc = cm->cm_sc;
1053 
1054 	/* Put the command on the ready queue and get things going */
1055 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1056 	aac_enqueue_ready(cm);
1057 	aac_startio(sc);
1058 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1059 	return(error);
1060 }
1061 
1062 /*
1063  *Command Buffer Management
1064  */
1065 
1066 /*
1067  * Allocate a command.
1068  */
1069 int
1070 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1071 {
1072 	struct aac_command *cm;
1073 
1074 	debug_called(3);
1075 
1076 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1077 		if (sc->total_fibs < sc->aac_max_fibs) {
1078 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1079 			wakeup(sc->aifthread);
1080 		}
1081 		return (EBUSY);
1082 	}
1083 
1084 	*cmp = cm;
1085 	return(0);
1086 }
1087 
1088 /*
1089  * Release a command back to the freelist.
1090  */
1091 void
1092 aac_release_command(struct aac_command *cm)
1093 {
1094 	debug_called(3);
1095 
1096 	/* (re)initialise the command/FIB */
1097 	cm->cm_sgtable = NULL;
1098 	cm->cm_flags = 0;
1099 	cm->cm_complete = NULL;
1100 	cm->cm_private = NULL;
1101 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1102 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1103 	cm->cm_fib->Header.Flags = 0;
1104 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1105 
1106 	/*
1107 	 * These are duplicated in aac_start to cover the case where an
1108 	 * intermediate stage may have destroyed them.  They're left
1109 	 * initialised here for debugging purposes only.
1110 	 */
1111 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1112 	cm->cm_fib->Header.SenderData = 0;
1113 
1114 	aac_enqueue_free(cm);
1115 }
1116 
1117 /*
1118  * Map helper for command/FIB allocation.
1119  */
1120 static void
1121 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1122 {
1123 	uint32_t	*fibphys;
1124 
1125 	fibphys = (uint32_t *)arg;
1126 
1127 	debug_called(3);
1128 
1129 	*fibphys = segs[0].ds_addr;
1130 }
1131 
1132 /*
1133  * Allocate and initialise commands/FIBs for this adapter.
1134  */
1135 static int
1136 aac_alloc_commands(struct aac_softc *sc)
1137 {
1138 	struct aac_command *cm;
1139 	struct aac_fibmap *fm;
1140 	uint32_t fibphys;
1141 	int i, error;
1142 
1143 	debug_called(2);
1144 
1145 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1146 		return (ENOMEM);
1147 
1148 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1149 	if (fm == NULL)
1150 		return (ENOMEM);
1151 
1152 	/* allocate the FIBs in DMAable memory and load them */
1153 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1154 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1155 		device_printf(sc->aac_dev,
1156 			      "Not enough contiguous memory available.\n");
1157 		free(fm, M_AACBUF);
1158 		return (ENOMEM);
1159 	}
1160 
1161 	/* Ignore errors since this doesn't bounce */
1162 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1163 			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1164 			      aac_map_command_helper, &fibphys, 0);
1165 
1166 	/* initialise constant fields in the command structure */
1167 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
1168 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1169 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1170 		cm = sc->aac_commands + sc->total_fibs;
1171 		fm->aac_commands = cm;
1172 		cm->cm_sc = sc;
1173 		cm->cm_fib = fm->aac_fibs + i;
1174 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1175 		cm->cm_index = sc->total_fibs;
1176 
1177 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1178 					       &cm->cm_datamap)) == 0)
1179 			aac_release_command(cm);
1180 		else
1181 			break;
1182 		sc->total_fibs++;
1183 	}
1184 
1185 	if (i > 0) {
1186 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1187 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1188 		AAC_LOCK_RELEASE(&sc->aac_io_lock);
1189 		return (0);
1190 	}
1191 
1192 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
1193 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1194 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1195 	free(fm, M_AACBUF);
1196 	return (ENOMEM);
1197 }
1198 
1199 /*
1200  * Free FIBs owned by this adapter.
1201  */
1202 static void
1203 aac_free_commands(struct aac_softc *sc)
1204 {
1205 	struct aac_fibmap *fm;
1206 	struct aac_command *cm;
1207 	int i;
1208 
1209 	debug_called(1);
1210 
1211 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1212 
1213 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1214 		/*
1215 		 * We check against total_fibs to handle partially
1216 		 * allocated blocks.
1217 		 */
1218 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1219 			cm = fm->aac_commands + i;
1220 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1221 		}
1222 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1223 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1224 		free(fm, M_AACBUF);
1225 	}
1226 }
1227 
1228 /*
1229  * Command-mapping helper function - populate this command's s/g table.
1230  */
1231 static void
1232 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1233 {
1234 	struct aac_softc *sc;
1235 	struct aac_command *cm;
1236 	struct aac_fib *fib;
1237 	int i;
1238 
1239 	debug_called(3);
1240 
1241 	cm = (struct aac_command *)arg;
1242 	sc = cm->cm_sc;
1243 	fib = cm->cm_fib;
1244 
1245 	/* copy into the FIB */
1246 	if (cm->cm_sgtable != NULL) {
1247 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1248 			struct aac_sg_table *sg;
1249 			sg = cm->cm_sgtable;
1250 			sg->SgCount = nseg;
1251 			for (i = 0; i < nseg; i++) {
1252 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1253 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1254 			}
1255 			/* update the FIB size for the s/g count */
1256 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1257 		} else {
1258 			struct aac_sg_table64 *sg;
1259 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1260 			sg->SgCount = nseg;
1261 			for (i = 0; i < nseg; i++) {
1262 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1263 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1264 			}
1265 			/* update the FIB size for the s/g count */
1266 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1267 		}
1268 	}
1269 
1270 	/* Fix up the address values in the FIB.  Use the command array index
1271 	 * instead of a pointer since these fields are only 32 bits.  Shift
1272 	 * the SenderFibAddress over to make room for the fast response bit.
1273 	 */
1274 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1275 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1276 
1277 	/* save a pointer to the command for speedy reverse-lookup */
1278 	cm->cm_fib->Header.SenderData = cm->cm_index;
1279 
1280 	if (cm->cm_flags & AAC_CMD_DATAIN)
1281 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1282 				BUS_DMASYNC_PREREAD);
1283 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1284 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1285 				BUS_DMASYNC_PREWRITE);
1286 	cm->cm_flags |= AAC_CMD_MAPPED;
1287 
1288 	/* put the FIB on the outbound queue */
1289 	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1290 		aac_unmap_command(cm);
1291 		aac_requeue_ready(cm);
1292 	}
1293 
1294 	return;
1295 }
1296 
1297 /*
1298  * Unmap a command from controller-visible space.
1299  */
1300 static void
1301 aac_unmap_command(struct aac_command *cm)
1302 {
1303 	struct aac_softc *sc;
1304 
1305 	debug_called(2);
1306 
1307 	sc = cm->cm_sc;
1308 
1309 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1310 		return;
1311 
1312 	if (cm->cm_datalen != 0) {
1313 		if (cm->cm_flags & AAC_CMD_DATAIN)
1314 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1315 					BUS_DMASYNC_POSTREAD);
1316 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1317 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318 					BUS_DMASYNC_POSTWRITE);
1319 
1320 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1321 	}
1322 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1323 }
1324 
1325 /*
1326  * Hardware Interface
1327  */
1328 
1329 /*
1330  * Initialise the adapter.
1331  */
1332 static void
1333 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1334 {
1335 	struct aac_softc *sc;
1336 
1337 	debug_called(1);
1338 
1339 	sc = (struct aac_softc *)arg;
1340 
1341 	sc->aac_common_busaddr = segs[0].ds_addr;
1342 }
1343 
1344 static int
1345 aac_check_firmware(struct aac_softc *sc)
1346 {
1347 	u_int32_t major, minor, options;
1348 
1349 	debug_called(1);
1350 
1351 	/*
1352 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1353 	 * firmware version 1.x are not compatible with this driver.
1354 	 */
1355 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1356 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1357 				     NULL)) {
1358 			device_printf(sc->aac_dev,
1359 				      "Error reading firmware version\n");
1360 			return (EIO);
1361 		}
1362 
1363 		/* These numbers are stored as ASCII! */
1364 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1365 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1366 		if (major == 1) {
1367 			device_printf(sc->aac_dev,
1368 			    "Firmware version %d.%d is not supported.\n",
1369 			    major, minor);
1370 			return (EINVAL);
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Retrieve the capabilities/supported options word so we know what
1376 	 * work-arounds to enable.
1377 	 */
1378 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1379 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1380 		return (EIO);
1381 	}
1382 	options = AAC_GET_MAILBOX(sc, 1);
1383 	sc->supported_options = options;
1384 
1385 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1386 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1387 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1388 	if (options & AAC_SUPPORTED_NONDASD)
1389 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1390 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1391 	     && (sizeof(bus_addr_t) > 4)) {
1392 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1393 		sc->flags |= AAC_FLAGS_SG_64BIT;
1394 	}
1395 
1396 	/* Check for broken hardware that does a lower number of commands */
1397 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1398 		sc->aac_max_fibs = AAC_MAX_FIBS;
1399 	else
1400 		sc->aac_max_fibs = 256;
1401 
1402 	return (0);
1403 }
1404 
1405 static int
1406 aac_init(struct aac_softc *sc)
1407 {
1408 	struct aac_adapter_init	*ip;
1409 	time_t then;
1410 	u_int32_t code, qoffset;
1411 	int error;
1412 
1413 	debug_called(1);
1414 
1415 	/*
1416 	 * First wait for the adapter to come ready.
1417 	 */
1418 	then = time_second;
1419 	do {
1420 		code = AAC_GET_FWSTATUS(sc);
1421 		if (code & AAC_SELF_TEST_FAILED) {
1422 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1423 			return(ENXIO);
1424 		}
1425 		if (code & AAC_KERNEL_PANIC) {
1426 			device_printf(sc->aac_dev,
1427 				      "FATAL: controller kernel panic\n");
1428 			return(ENXIO);
1429 		}
1430 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1431 			device_printf(sc->aac_dev,
1432 				      "FATAL: controller not coming ready, "
1433 					   "status %x\n", code);
1434 			return(ENXIO);
1435 		}
1436 	} while (!(code & AAC_UP_AND_RUNNING));
1437 
1438 	error = ENOMEM;
1439 	/*
1440 	 * Create DMA tag for mapping buffers into controller-addressable space.
1441 	 */
1442 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1443 			       1, 0, 			/* algnmnt, boundary */
1444 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1445 			       BUS_SPACE_MAXADDR :
1446 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1447 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1448 			       NULL, NULL, 		/* filter, filterarg */
1449 			       MAXBSIZE,		/* maxsize */
1450 			       AAC_MAXSGENTRIES,	/* nsegments */
1451 			       MAXBSIZE,		/* maxsegsize */
1452 			       BUS_DMA_ALLOCNOW,	/* flags */
1453 			       busdma_lock_mutex,	/* lockfunc */
1454 			       &sc->aac_io_lock,	/* lockfuncarg */
1455 			       &sc->aac_buffer_dmat)) {
1456 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1457 		goto out;
1458 	}
1459 
1460 	/*
1461 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1462 	 */
1463 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1464 			       1, 0, 			/* algnmnt, boundary */
1465 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1466 			       BUS_SPACE_MAXADDR_32BIT :
1467 			       0x7fffffff,		/* lowaddr */
1468 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1469 			       NULL, NULL, 		/* filter, filterarg */
1470 			       AAC_FIB_COUNT *
1471 			       sizeof(struct aac_fib),  /* maxsize */
1472 			       1,			/* nsegments */
1473 			       AAC_FIB_COUNT *
1474 			       sizeof(struct aac_fib),	/* maxsegsize */
1475 			       BUS_DMA_ALLOCNOW,	/* flags */
1476 			       NULL, NULL,		/* No locking needed */
1477 			       &sc->aac_fib_dmat)) {
1478 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1479 		goto out;
1480 	}
1481 
1482 	/*
1483 	 * Create DMA tag for the common structure and allocate it.
1484 	 */
1485 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1486 			       1, 0,			/* algnmnt, boundary */
1487 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1488 			       BUS_SPACE_MAXADDR_32BIT :
1489 			       0x7fffffff,		/* lowaddr */
1490 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1491 			       NULL, NULL, 		/* filter, filterarg */
1492 			       8192 + sizeof(struct aac_common), /* maxsize */
1493 			       1,			/* nsegments */
1494 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1495 			       BUS_DMA_ALLOCNOW,	/* flags */
1496 			       NULL, NULL,		/* No locking needed */
1497 			       &sc->aac_common_dmat)) {
1498 		device_printf(sc->aac_dev,
1499 			      "can't allocate common structure DMA tag\n");
1500 		goto out;
1501 	}
1502 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1503 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1504 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1505 		goto out;
1506 	}
1507 
1508 	/*
1509 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1510 	 * below address 8192 in physical memory.
1511 	 * XXX If the padding is not needed, can it be put to use instead
1512 	 * of ignored?
1513 	 */
1514 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1515 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1516 			aac_common_map, sc, 0);
1517 
1518 	if (sc->aac_common_busaddr < 8192) {
1519 		(uint8_t *)sc->aac_common += 8192;
1520 		sc->aac_common_busaddr += 8192;
1521 	}
1522 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1523 
1524 	/* Allocate some FIBs and associated command structs */
1525 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1526 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1527 				  M_AACBUF, M_WAITOK|M_ZERO);
1528 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1529 		if (aac_alloc_commands(sc) != 0)
1530 			break;
1531 	}
1532 	if (sc->total_fibs == 0)
1533 		goto out;
1534 
1535 	/*
1536 	 * Fill in the init structure.  This tells the adapter about the
1537 	 * physical location of various important shared data structures.
1538 	 */
1539 	ip = &sc->aac_common->ac_init;
1540 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1541 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1542 
1543 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1544 					 offsetof(struct aac_common, ac_fibs);
1545 	ip->AdapterFibsVirtualAddress = 0;
1546 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1547 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1548 
1549 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1550 				  offsetof(struct aac_common, ac_printf);
1551 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1552 
1553 	/*
1554 	 * The adapter assumes that pages are 4K in size, except on some
1555  	 * broken firmware versions that do the page->byte conversion twice,
1556 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1557 	 * Round up since the granularity is so high.
1558 	 */
1559 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1560 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1561 		ip->HostPhysMemPages =
1562 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1563 	}
1564 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1565 
1566 	/*
1567 	 * Initialise FIB queues.  Note that it appears that the layout of the
1568 	 * indexes and the segmentation of the entries may be mandated by the
1569 	 * adapter, which is only told about the base of the queue index fields.
1570 	 *
1571 	 * The initial values of the indices are assumed to inform the adapter
1572 	 * of the sizes of the respective queues, and theoretically it could
1573 	 * work out the entire layout of the queue structures from this.  We
1574 	 * take the easy route and just lay this area out like everyone else
1575 	 * does.
1576 	 *
1577 	 * The Linux driver uses a much more complex scheme whereby several
1578 	 * header records are kept for each queue.  We use a couple of generic
1579 	 * list manipulation functions which 'know' the size of each list by
1580 	 * virtue of a table.
1581 	 */
1582 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1583 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1584 	sc->aac_queues =
1585 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1586 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1587 
1588 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589 		AAC_HOST_NORM_CMD_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591 		AAC_HOST_NORM_CMD_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1593 		AAC_HOST_HIGH_CMD_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1595 		AAC_HOST_HIGH_CMD_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1597 		AAC_ADAP_NORM_CMD_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1599 		AAC_ADAP_NORM_CMD_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1601 		AAC_ADAP_HIGH_CMD_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1603 		AAC_ADAP_HIGH_CMD_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605 		AAC_HOST_NORM_RESP_ENTRIES;
1606 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607 		AAC_HOST_NORM_RESP_ENTRIES;
1608 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1609 		AAC_HOST_HIGH_RESP_ENTRIES;
1610 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1611 		AAC_HOST_HIGH_RESP_ENTRIES;
1612 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1613 		AAC_ADAP_NORM_RESP_ENTRIES;
1614 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1615 		AAC_ADAP_NORM_RESP_ENTRIES;
1616 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1617 		AAC_ADAP_HIGH_RESP_ENTRIES;
1618 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1619 		AAC_ADAP_HIGH_RESP_ENTRIES;
1620 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1621 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1622 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1623 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1624 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1625 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1626 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1627 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1628 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1629 		&sc->aac_queues->qt_HostNormRespQueue[0];
1630 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1631 		&sc->aac_queues->qt_HostHighRespQueue[0];
1632 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1633 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1634 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1635 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1636 
1637 	/*
1638 	 * Do controller-type-specific initialisation
1639 	 */
1640 	switch (sc->aac_hwif) {
1641 	case AAC_HWIF_I960RX:
1642 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1643 		break;
1644 	}
1645 
1646 	/*
1647 	 * Give the init structure to the controller.
1648 	 */
1649 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1650 			     sc->aac_common_busaddr +
1651 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1652 			     NULL)) {
1653 		device_printf(sc->aac_dev,
1654 			      "error establishing init structure\n");
1655 		error = EIO;
1656 		goto out;
1657 	}
1658 
1659 	error = 0;
1660 out:
1661 	return(error);
1662 }
1663 
1664 /*
1665  * Send a synchronous command to the controller and wait for a result.
1666  */
1667 static int
1668 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1669 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1670 		 u_int32_t *sp)
1671 {
1672 	time_t then;
1673 	u_int32_t status;
1674 
1675 	debug_called(3);
1676 
1677 	/* populate the mailbox */
1678 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1679 
1680 	/* ensure the sync command doorbell flag is cleared */
1681 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1682 
1683 	/* then set it to signal the adapter */
1684 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1685 
1686 	/* spin waiting for the command to complete */
1687 	then = time_second;
1688 	do {
1689 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1690 			debug(1, "timed out");
1691 			return(EIO);
1692 		}
1693 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1694 
1695 	/* clear the completion flag */
1696 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1697 
1698 	/* get the command status */
1699 	status = AAC_GET_MAILBOX(sc, 0);
1700 	if (sp != NULL)
1701 		*sp = status;
1702 	return(0);
1703 }
1704 
1705 /*
1706  * Grab the sync fib area.
1707  */
1708 int
1709 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1710 {
1711 
1712 	/*
1713 	 * If the force flag is set, the system is shutting down, or in
1714 	 * trouble.  Ignore the mutex.
1715 	 */
1716 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1717 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1718 
1719 	*fib = &sc->aac_common->ac_sync_fib;
1720 
1721 	return (1);
1722 }
1723 
1724 /*
1725  * Release the sync fib area.
1726  */
1727 void
1728 aac_release_sync_fib(struct aac_softc *sc)
1729 {
1730 
1731 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1732 }
1733 
1734 /*
1735  * Send a synchronous FIB to the controller and wait for a result.
1736  */
1737 int
1738 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1739 		 struct aac_fib *fib, u_int16_t datasize)
1740 {
1741 	debug_called(3);
1742 
1743 	if (datasize > AAC_FIB_DATASIZE)
1744 		return(EINVAL);
1745 
1746 	/*
1747 	 * Set up the sync FIB
1748 	 */
1749 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1750 				AAC_FIBSTATE_INITIALISED |
1751 				AAC_FIBSTATE_EMPTY;
1752 	fib->Header.XferState |= xferstate;
1753 	fib->Header.Command = command;
1754 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1755 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1756 	fib->Header.SenderSize = sizeof(struct aac_fib);
1757 	fib->Header.SenderFibAddress = 0;	/* Not needed */
1758 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1759 					 offsetof(struct aac_common,
1760 						  ac_sync_fib);
1761 
1762 	/*
1763 	 * Give the FIB to the controller, wait for a response.
1764 	 */
1765 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1766 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1767 		debug(2, "IO error");
1768 		return(EIO);
1769 	}
1770 
1771 	return (0);
1772 }
1773 
1774 /*
1775  * Adapter-space FIB queue manipulation
1776  *
1777  * Note that the queue implementation here is a little funky; neither the PI or
1778  * CI will ever be zero.  This behaviour is a controller feature.
1779  */
1780 static struct {
1781 	int		size;
1782 	int		notify;
1783 } aac_qinfo[] = {
1784 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1785 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1786 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1787 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1788 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1789 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1790 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1791 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1792 };
1793 
1794 /*
1795  * Atomically insert an entry into the nominated queue, returns 0 on success or
1796  * EBUSY if the queue is full.
1797  *
1798  * Note: it would be more efficient to defer notifying the controller in
1799  *	 the case where we may be inserting several entries in rapid succession,
1800  *	 but implementing this usefully may be difficult (it would involve a
1801  *	 separate queue/notify interface).
1802  */
1803 static int
1804 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1805 {
1806 	u_int32_t pi, ci;
1807 	int error;
1808 	u_int32_t fib_size;
1809 	u_int32_t fib_addr;
1810 
1811 	debug_called(3);
1812 
1813 	fib_size = cm->cm_fib->Header.Size;
1814 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1815 
1816 	/* get the producer/consumer indices */
1817 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1818 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1819 
1820 	/* wrap the queue? */
1821 	if (pi >= aac_qinfo[queue].size)
1822 		pi = 0;
1823 
1824 	/* check for queue full */
1825 	if ((pi + 1) == ci) {
1826 		error = EBUSY;
1827 		goto out;
1828 	}
1829 
1830 	/* populate queue entry */
1831 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1832 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1833 
1834 	/* update producer index */
1835 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1836 
1837 	/*
1838 	 * To avoid a race with its completion interrupt, place this command on
1839 	 * the busy queue prior to advertising it to the controller.
1840 	 */
1841 	aac_enqueue_busy(cm);
1842 
1843 	/* notify the adapter if we know how */
1844 	if (aac_qinfo[queue].notify != 0)
1845 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1846 
1847 	error = 0;
1848 
1849 out:
1850 	return(error);
1851 }
1852 
1853 /*
1854  * Atomically remove one entry from the nominated queue, returns 0 on
1855  * success or ENOENT if the queue is empty.
1856  */
1857 static int
1858 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1859 		struct aac_fib **fib_addr)
1860 {
1861 	u_int32_t pi, ci;
1862 	u_int32_t fib_index;
1863 	int error;
1864 	int notify;
1865 
1866 	debug_called(3);
1867 
1868 	/* get the producer/consumer indices */
1869 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1870 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1871 
1872 	/* check for queue empty */
1873 	if (ci == pi) {
1874 		error = ENOENT;
1875 		goto out;
1876 	}
1877 
1878 	/* wrap the pi so the following test works */
1879 	if (pi >= aac_qinfo[queue].size)
1880 		pi = 0;
1881 
1882 	notify = 0;
1883 	if (ci == pi + 1)
1884 		notify++;
1885 
1886 	/* wrap the queue? */
1887 	if (ci >= aac_qinfo[queue].size)
1888 		ci = 0;
1889 
1890 	/* fetch the entry */
1891 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1892 
1893 	switch (queue) {
1894 	case AAC_HOST_NORM_CMD_QUEUE:
1895 	case AAC_HOST_HIGH_CMD_QUEUE:
1896 		/*
1897 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1898 		 * on to hold an address.  For AIF's, the adapter assumes
1899 		 * that it's giving us an address into the array of AIF fibs.
1900 		 * Therefore, we have to convert it to an index.
1901 		 */
1902 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1903 			sizeof(struct aac_fib);
1904 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1905 		break;
1906 
1907 	case AAC_HOST_NORM_RESP_QUEUE:
1908 	case AAC_HOST_HIGH_RESP_QUEUE:
1909 	{
1910 		struct aac_command *cm;
1911 
1912 		/*
1913 		 * As above, an index is used instead of an actual address.
1914 		 * Gotta shift the index to account for the fast response
1915 		 * bit.  No other correction is needed since this value was
1916 		 * originally provided by the driver via the SenderFibAddress
1917 		 * field.
1918 		 */
1919 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1920 		cm = sc->aac_commands + (fib_index >> 1);
1921 		*fib_addr = cm->cm_fib;
1922 
1923 		/*
1924 		 * Is this a fast response? If it is, update the fib fields in
1925 		 * local memory since the whole fib isn't DMA'd back up.
1926 		 */
1927 		if (fib_index & 0x01) {
1928 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1929 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1930 		}
1931 		break;
1932 	}
1933 	default:
1934 		panic("Invalid queue in aac_dequeue_fib()");
1935 		break;
1936 	}
1937 
1938 	/* update consumer index */
1939 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1940 
1941 	/* if we have made the queue un-full, notify the adapter */
1942 	if (notify && (aac_qinfo[queue].notify != 0))
1943 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1944 	error = 0;
1945 
1946 out:
1947 	return(error);
1948 }
1949 
1950 /*
1951  * Put our response to an Adapter Initialed Fib on the response queue
1952  */
1953 static int
1954 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1955 {
1956 	u_int32_t pi, ci;
1957 	int error;
1958 	u_int32_t fib_size;
1959 	u_int32_t fib_addr;
1960 
1961 	debug_called(1);
1962 
1963 	/* Tell the adapter where the FIB is */
1964 	fib_size = fib->Header.Size;
1965 	fib_addr = fib->Header.SenderFibAddress;
1966 	fib->Header.ReceiverFibAddress = fib_addr;
1967 
1968 	/* get the producer/consumer indices */
1969 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1970 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1971 
1972 	/* wrap the queue? */
1973 	if (pi >= aac_qinfo[queue].size)
1974 		pi = 0;
1975 
1976 	/* check for queue full */
1977 	if ((pi + 1) == ci) {
1978 		error = EBUSY;
1979 		goto out;
1980 	}
1981 
1982 	/* populate queue entry */
1983 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1984 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1985 
1986 	/* update producer index */
1987 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1988 
1989 	/* notify the adapter if we know how */
1990 	if (aac_qinfo[queue].notify != 0)
1991 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1992 
1993 	error = 0;
1994 
1995 out:
1996 	return(error);
1997 }
1998 
1999 /*
2000  * Check for commands that have been outstanding for a suspiciously long time,
2001  * and complain about them.
2002  */
2003 static void
2004 aac_timeout(struct aac_softc *sc)
2005 {
2006 	struct aac_command *cm;
2007 	time_t deadline;
2008 
2009 	/*
2010 	 * Traverse the busy command list, bitch about late commands once
2011 	 * only.
2012 	 */
2013 	deadline = time_second - AAC_CMD_TIMEOUT;
2014 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2015 		if ((cm->cm_timestamp  < deadline)
2016 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2017 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2018 			device_printf(sc->aac_dev,
2019 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2020 				      cm, (int)(time_second-cm->cm_timestamp));
2021 			AAC_PRINT_FIB(sc, cm->cm_fib);
2022 		}
2023 	}
2024 
2025 	return;
2026 }
2027 
2028 /*
2029  * Interface Function Vectors
2030  */
2031 
2032 /*
2033  * Read the current firmware status word.
2034  */
2035 static int
2036 aac_sa_get_fwstatus(struct aac_softc *sc)
2037 {
2038 	debug_called(3);
2039 
2040 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2041 }
2042 
2043 static int
2044 aac_rx_get_fwstatus(struct aac_softc *sc)
2045 {
2046 	debug_called(3);
2047 
2048 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2049 }
2050 
2051 static int
2052 aac_fa_get_fwstatus(struct aac_softc *sc)
2053 {
2054 	int val;
2055 
2056 	debug_called(3);
2057 
2058 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2059 	return (val);
2060 }
2061 
2062 /*
2063  * Notify the controller of a change in a given queue
2064  */
2065 
2066 static void
2067 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2068 {
2069 	debug_called(3);
2070 
2071 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2072 }
2073 
2074 static void
2075 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2076 {
2077 	debug_called(3);
2078 
2079 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2080 }
2081 
2082 static void
2083 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2084 {
2085 	debug_called(3);
2086 
2087 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2088 	AAC_FA_HACK(sc);
2089 }
2090 
2091 /*
2092  * Get the interrupt reason bits
2093  */
2094 static int
2095 aac_sa_get_istatus(struct aac_softc *sc)
2096 {
2097 	debug_called(3);
2098 
2099 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2100 }
2101 
2102 static int
2103 aac_rx_get_istatus(struct aac_softc *sc)
2104 {
2105 	debug_called(3);
2106 
2107 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2108 }
2109 
2110 static int
2111 aac_fa_get_istatus(struct aac_softc *sc)
2112 {
2113 	int val;
2114 
2115 	debug_called(3);
2116 
2117 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2118 	return (val);
2119 }
2120 
2121 /*
2122  * Clear some interrupt reason bits
2123  */
2124 static void
2125 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2126 {
2127 	debug_called(3);
2128 
2129 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2130 }
2131 
2132 static void
2133 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2134 {
2135 	debug_called(3);
2136 
2137 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2138 }
2139 
2140 static void
2141 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2142 {
2143 	debug_called(3);
2144 
2145 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2146 	AAC_FA_HACK(sc);
2147 }
2148 
2149 /*
2150  * Populate the mailbox and set the command word
2151  */
2152 static void
2153 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2154 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2155 {
2156 	debug_called(4);
2157 
2158 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2159 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2160 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2161 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2162 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2163 }
2164 
2165 static void
2166 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2167 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2168 {
2169 	debug_called(4);
2170 
2171 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2172 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2173 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2174 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2175 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2176 }
2177 
2178 static void
2179 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2180 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2181 {
2182 	debug_called(4);
2183 
2184 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2185 	AAC_FA_HACK(sc);
2186 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2187 	AAC_FA_HACK(sc);
2188 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2189 	AAC_FA_HACK(sc);
2190 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2191 	AAC_FA_HACK(sc);
2192 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2193 	AAC_FA_HACK(sc);
2194 }
2195 
2196 /*
2197  * Fetch the immediate command status word
2198  */
2199 static int
2200 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2201 {
2202 	debug_called(4);
2203 
2204 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2205 }
2206 
2207 static int
2208 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2209 {
2210 	debug_called(4);
2211 
2212 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2213 }
2214 
2215 static int
2216 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2217 {
2218 	int val;
2219 
2220 	debug_called(4);
2221 
2222 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2223 	return (val);
2224 }
2225 
2226 /*
2227  * Set/clear interrupt masks
2228  */
2229 static void
2230 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2231 {
2232 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2233 
2234 	if (enable) {
2235 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2236 	} else {
2237 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2238 	}
2239 }
2240 
2241 static void
2242 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2243 {
2244 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2245 
2246 	if (enable) {
2247 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2248 	} else {
2249 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2250 	}
2251 }
2252 
2253 static void
2254 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2255 {
2256 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2257 
2258 	if (enable) {
2259 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2260 		AAC_FA_HACK(sc);
2261 	} else {
2262 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2263 		AAC_FA_HACK(sc);
2264 	}
2265 }
2266 
2267 /*
2268  * Debugging and Diagnostics
2269  */
2270 
2271 /*
2272  * Print some information about the controller.
2273  */
2274 static void
2275 aac_describe_controller(struct aac_softc *sc)
2276 {
2277 	struct aac_fib *fib;
2278 	struct aac_adapter_info	*info;
2279 
2280 	debug_called(2);
2281 
2282 	aac_alloc_sync_fib(sc, &fib, 0);
2283 
2284 	fib->data[0] = 0;
2285 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2286 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2287 		aac_release_sync_fib(sc);
2288 		return;
2289 	}
2290 	info = (struct aac_adapter_info *)&fib->data[0];
2291 
2292 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2293 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2294 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2295 		      aac_describe_code(aac_battery_platform,
2296 					info->batteryPlatform));
2297 
2298 	/* save the kernel revision structure for later use */
2299 	sc->aac_revision = info->KernelRevision;
2300 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2301 		      info->KernelRevision.external.comp.major,
2302 		      info->KernelRevision.external.comp.minor,
2303 		      info->KernelRevision.external.comp.dash,
2304 		      info->KernelRevision.buildNumber,
2305 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2306 
2307 	aac_release_sync_fib(sc);
2308 
2309 	if (1 || bootverbose) {
2310 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2311 			      sc->supported_options,
2312 			      "\20"
2313 			      "\1SNAPSHOT"
2314 			      "\2CLUSTERS"
2315 			      "\3WCACHE"
2316 			      "\4DATA64"
2317 			      "\5HOSTTIME"
2318 			      "\6RAID50"
2319 			      "\7WINDOW4GB"
2320 			      "\10SCSIUPGD"
2321 			      "\11SOFTERR"
2322 			      "\12NORECOND"
2323 			      "\13SGMAP64"
2324 			      "\14ALARM"
2325 			      "\15NONDASD");
2326 	}
2327 }
2328 
2329 /*
2330  * Look up a text description of a numeric error code and return a pointer to
2331  * same.
2332  */
2333 static char *
2334 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2335 {
2336 	int i;
2337 
2338 	for (i = 0; table[i].string != NULL; i++)
2339 		if (table[i].code == code)
2340 			return(table[i].string);
2341 	return(table[i + 1].string);
2342 }
2343 
2344 /*
2345  * Management Interface
2346  */
2347 
2348 static int
2349 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2350 {
2351 	struct aac_softc *sc;
2352 
2353 	debug_called(2);
2354 
2355 	sc = dev->si_drv1;
2356 
2357 	/* Check to make sure the device isn't already open */
2358 	if (sc->aac_state & AAC_STATE_OPEN) {
2359 		return EBUSY;
2360 	}
2361 	sc->aac_state |= AAC_STATE_OPEN;
2362 
2363 	return 0;
2364 }
2365 
2366 static int
2367 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2368 {
2369 	struct aac_softc *sc;
2370 
2371 	debug_called(2);
2372 
2373 	sc = dev->si_drv1;
2374 
2375 	/* Mark this unit as no longer open  */
2376 	sc->aac_state &= ~AAC_STATE_OPEN;
2377 
2378 	return 0;
2379 }
2380 
2381 static int
2382 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2383 {
2384 	union aac_statrequest *as;
2385 	struct aac_softc *sc;
2386 	int error = 0;
2387 	uint32_t cookie;
2388 
2389 	debug_called(2);
2390 
2391 	as = (union aac_statrequest *)arg;
2392 	sc = dev->si_drv1;
2393 
2394 	switch (cmd) {
2395 	case AACIO_STATS:
2396 		switch (as->as_item) {
2397 		case AACQ_FREE:
2398 		case AACQ_BIO:
2399 		case AACQ_READY:
2400 		case AACQ_BUSY:
2401 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2402 			      sizeof(struct aac_qstat));
2403 			break;
2404 		default:
2405 			error = ENOENT;
2406 			break;
2407 		}
2408 	break;
2409 
2410 	case FSACTL_SENDFIB:
2411 		arg = *(caddr_t*)arg;
2412 	case FSACTL_LNX_SENDFIB:
2413 		debug(1, "FSACTL_SENDFIB");
2414 		error = aac_ioctl_sendfib(sc, arg);
2415 		break;
2416 	case FSACTL_AIF_THREAD:
2417 	case FSACTL_LNX_AIF_THREAD:
2418 		debug(1, "FSACTL_AIF_THREAD");
2419 		error = EINVAL;
2420 		break;
2421 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2422 		arg = *(caddr_t*)arg;
2423 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2424 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2425 		/*
2426 		 * Pass the caller out an AdapterFibContext.
2427 		 *
2428 		 * Note that because we only support one opener, we
2429 		 * basically ignore this.  Set the caller's context to a magic
2430 		 * number just in case.
2431 		 *
2432 		 * The Linux code hands the driver a pointer into kernel space,
2433 		 * and then trusts it when the caller hands it back.  Aiee!
2434 		 * Here, we give it the proc pointer of the per-adapter aif
2435 		 * thread. It's only used as a sanity check in other calls.
2436 		 */
2437 		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2438 		error = copyout(&cookie, arg, sizeof(cookie));
2439 		break;
2440 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2441 		arg = *(caddr_t*)arg;
2442 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2443 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2444 		error = aac_getnext_aif(sc, arg);
2445 		break;
2446 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2447 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2448 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2449 		/* don't do anything here */
2450 		break;
2451 	case FSACTL_MINIPORT_REV_CHECK:
2452 		arg = *(caddr_t*)arg;
2453 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2454 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2455 		error = aac_rev_check(sc, arg);
2456 		break;
2457 	case FSACTL_QUERY_DISK:
2458 		arg = *(caddr_t*)arg;
2459 	case FSACTL_LNX_QUERY_DISK:
2460 		debug(1, "FSACTL_QUERY_DISK");
2461 		error = aac_query_disk(sc, arg);
2462 			break;
2463 	case FSACTL_DELETE_DISK:
2464 	case FSACTL_LNX_DELETE_DISK:
2465 		/*
2466 		 * We don't trust the underland to tell us when to delete a
2467 		 * container, rather we rely on an AIF coming from the
2468 		 * controller
2469 		 */
2470 		error = 0;
2471 		break;
2472 	default:
2473 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2474 		error = EINVAL;
2475 		break;
2476 	}
2477 	return(error);
2478 }
2479 
2480 static int
2481 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2482 {
2483 	struct aac_softc *sc;
2484 	int revents;
2485 
2486 	sc = dev->si_drv1;
2487 	revents = 0;
2488 
2489 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2490 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2491 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2492 			revents |= poll_events & (POLLIN | POLLRDNORM);
2493 	}
2494 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2495 
2496 	if (revents == 0) {
2497 		if (poll_events & (POLLIN | POLLRDNORM))
2498 			selrecord(td, &sc->rcv_select);
2499 	}
2500 
2501 	return (revents);
2502 }
2503 
2504 /*
2505  * Send a FIB supplied from userspace
2506  */
2507 static int
2508 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2509 {
2510 	struct aac_command *cm;
2511 	int size, error;
2512 
2513 	debug_called(2);
2514 
2515 	cm = NULL;
2516 
2517 	/*
2518 	 * Get a command
2519 	 */
2520 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2521 	if (aac_alloc_command(sc, &cm)) {
2522 		error = EBUSY;
2523 		goto out;
2524 	}
2525 
2526 	/*
2527 	 * Fetch the FIB header, then re-copy to get data as well.
2528 	 */
2529 	if ((error = copyin(ufib, cm->cm_fib,
2530 			    sizeof(struct aac_fib_header))) != 0)
2531 		goto out;
2532 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2533 	if (size > sizeof(struct aac_fib)) {
2534 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2535 			      size, sizeof(struct aac_fib));
2536 		size = sizeof(struct aac_fib);
2537 	}
2538 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2539 		goto out;
2540 	cm->cm_fib->Header.Size = size;
2541 	cm->cm_timestamp = time_second;
2542 
2543 	/*
2544 	 * Pass the FIB to the controller, wait for it to complete.
2545 	 */
2546 	if ((error = aac_wait_command(cm)) != 0) {
2547 		device_printf(sc->aac_dev,
2548 			      "aac_wait_command return %d\n", error);
2549 		goto out;
2550 	}
2551 
2552 	/*
2553 	 * Copy the FIB and data back out to the caller.
2554 	 */
2555 	size = cm->cm_fib->Header.Size;
2556 	if (size > sizeof(struct aac_fib)) {
2557 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2558 			      size, sizeof(struct aac_fib));
2559 		size = sizeof(struct aac_fib);
2560 	}
2561 	error = copyout(cm->cm_fib, ufib, size);
2562 
2563 out:
2564 	if (cm != NULL) {
2565 		aac_release_command(cm);
2566 	}
2567 
2568 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2569 	return(error);
2570 }
2571 
2572 /*
2573  * Handle an AIF sent to us by the controller; queue it for later reference.
2574  * If the queue fills up, then drop the older entries.
2575  */
2576 static void
2577 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2578 {
2579 	struct aac_aif_command *aif;
2580 	struct aac_container *co, *co_next;
2581 	struct aac_mntinfo *mi;
2582 	struct aac_mntinforesp *mir = NULL;
2583 	u_int16_t rsize;
2584 	int next, found;
2585 	int count = 0, added = 0, i = 0;
2586 
2587 	debug_called(2);
2588 
2589 	aif = (struct aac_aif_command*)&fib->data[0];
2590 	aac_print_aif(sc, aif);
2591 
2592 	/* Is it an event that we should care about? */
2593 	switch (aif->command) {
2594 	case AifCmdEventNotify:
2595 		switch (aif->data.EN.type) {
2596 		case AifEnAddContainer:
2597 		case AifEnDeleteContainer:
2598 			/*
2599 			 * A container was added or deleted, but the message
2600 			 * doesn't tell us anything else!  Re-enumerate the
2601 			 * containers and sort things out.
2602 			 */
2603 			aac_alloc_sync_fib(sc, &fib, 0);
2604 			mi = (struct aac_mntinfo *)&fib->data[0];
2605 			do {
2606 				/*
2607 				 * Ask the controller for its containers one at
2608 				 * a time.
2609 				 * XXX What if the controller's list changes
2610 				 * midway through this enumaration?
2611 				 * XXX This should be done async.
2612 				 */
2613 				bzero(mi, sizeof(struct aac_mntinfo));
2614 				mi->Command = VM_NameServe;
2615 				mi->MntType = FT_FILESYS;
2616 				mi->MntCount = i;
2617 				rsize = sizeof(mir);
2618 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2619 						 sizeof(struct aac_mntinfo))) {
2620 					printf("Error probing container %d\n",
2621 					      i);
2622 					continue;
2623 				}
2624 				mir = (struct aac_mntinforesp *)&fib->data[0];
2625 				/* XXX Need to check if count changed */
2626 				count = mir->MntRespCount;
2627 				/*
2628 				 * Check the container against our list.
2629 				 * co->co_found was already set to 0 in a
2630 				 * previous run.
2631 				 */
2632 				if ((mir->Status == ST_OK) &&
2633 				    (mir->MntTable[0].VolType != CT_NONE)) {
2634 					found = 0;
2635 					TAILQ_FOREACH(co,
2636 						      &sc->aac_container_tqh,
2637 						      co_link) {
2638 						if (co->co_mntobj.ObjectId ==
2639 						    mir->MntTable[0].ObjectId) {
2640 							co->co_found = 1;
2641 							found = 1;
2642 							break;
2643 						}
2644 					}
2645 					/*
2646 					 * If the container matched, continue
2647 					 * in the list.
2648 					 */
2649 					if (found) {
2650 						i++;
2651 						continue;
2652 					}
2653 
2654 					/*
2655 					 * This is a new container.  Do all the
2656 					 * appropriate things to set it up.
2657 					 */
2658 					aac_add_container(sc, mir, 1);
2659 					added = 1;
2660 				}
2661 				i++;
2662 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2663 			aac_release_sync_fib(sc);
2664 
2665 			/*
2666 			 * Go through our list of containers and see which ones
2667 			 * were not marked 'found'.  Since the controller didn't
2668 			 * list them they must have been deleted.  Do the
2669 			 * appropriate steps to destroy the device.  Also reset
2670 			 * the co->co_found field.
2671 			 */
2672 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2673 			while (co != NULL) {
2674 				if (co->co_found == 0) {
2675 					device_delete_child(sc->aac_dev,
2676 							    co->co_disk);
2677 					co_next = TAILQ_NEXT(co, co_link);
2678 					AAC_LOCK_ACQUIRE(&sc->
2679 							aac_container_lock);
2680 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2681 						     co_link);
2682 					AAC_LOCK_RELEASE(&sc->
2683 							 aac_container_lock);
2684 					FREE(co, M_AACBUF);
2685 					co = co_next;
2686 				} else {
2687 					co->co_found = 0;
2688 					co = TAILQ_NEXT(co, co_link);
2689 				}
2690 			}
2691 
2692 			/* Attach the newly created containers */
2693 			if (added)
2694 				bus_generic_attach(sc->aac_dev);
2695 
2696 			break;
2697 
2698 		default:
2699 			break;
2700 		}
2701 
2702 	default:
2703 		break;
2704 	}
2705 
2706 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2707 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2708 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2709 	if (next != sc->aac_aifq_tail) {
2710 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2711 		sc->aac_aifq_head = next;
2712 
2713 		/* On the off chance that someone is sleeping for an aif... */
2714 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2715 			wakeup(sc->aac_aifq);
2716 		/* Wakeup any poll()ers */
2717 		selwakeuppri(&sc->rcv_select, PRIBIO);
2718 	}
2719 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2720 
2721 	return;
2722 }
2723 
2724 /*
2725  * Return the Revision of the driver to userspace and check to see if the
2726  * userspace app is possibly compatible.  This is extremely bogus since
2727  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2728  * returning what the card reported.
2729  */
2730 static int
2731 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2732 {
2733 	struct aac_rev_check rev_check;
2734 	struct aac_rev_check_resp rev_check_resp;
2735 	int error = 0;
2736 
2737 	debug_called(2);
2738 
2739 	/*
2740 	 * Copyin the revision struct from userspace
2741 	 */
2742 	if ((error = copyin(udata, (caddr_t)&rev_check,
2743 			sizeof(struct aac_rev_check))) != 0) {
2744 		return error;
2745 	}
2746 
2747 	debug(2, "Userland revision= %d\n",
2748 	      rev_check.callingRevision.buildNumber);
2749 
2750 	/*
2751 	 * Doctor up the response struct.
2752 	 */
2753 	rev_check_resp.possiblyCompatible = 1;
2754 	rev_check_resp.adapterSWRevision.external.ul =
2755 	    sc->aac_revision.external.ul;
2756 	rev_check_resp.adapterSWRevision.buildNumber =
2757 	    sc->aac_revision.buildNumber;
2758 
2759 	return(copyout((caddr_t)&rev_check_resp, udata,
2760 			sizeof(struct aac_rev_check_resp)));
2761 }
2762 
2763 /*
2764  * Pass the caller the next AIF in their queue
2765  */
2766 static int
2767 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2768 {
2769 	struct get_adapter_fib_ioctl agf;
2770 	int error;
2771 
2772 	debug_called(2);
2773 
2774 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2775 
2776 		/*
2777 		 * Check the magic number that we gave the caller.
2778 		 */
2779 		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2780 			error = EFAULT;
2781 		} else {
2782 			error = aac_return_aif(sc, agf.AifFib);
2783 			if ((error == EAGAIN) && (agf.Wait)) {
2784 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2785 				while (error == EAGAIN) {
2786 					error = tsleep(sc->aac_aifq, PRIBIO |
2787 						       PCATCH, "aacaif", 0);
2788 					if (error == 0)
2789 						error = aac_return_aif(sc,
2790 						    agf.AifFib);
2791 				}
2792 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2793 			}
2794 		}
2795 	}
2796 	return(error);
2797 }
2798 
2799 /*
2800  * Hand the next AIF off the top of the queue out to userspace.
2801  */
2802 static int
2803 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2804 {
2805 	int next, error;
2806 
2807 	debug_called(2);
2808 
2809 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2810 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2811 		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2812 		return (EAGAIN);
2813 	}
2814 
2815 	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2816 	error = copyout(&sc->aac_aifq[next], uptr,
2817 			sizeof(struct aac_aif_command));
2818 	if (error)
2819 		device_printf(sc->aac_dev,
2820 		    "aac_return_aif: copyout returned %d\n", error);
2821 	else
2822 		sc->aac_aifq_tail = next;
2823 
2824 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2825 	return(error);
2826 }
2827 
2828 /*
2829  * Give the userland some information about the container.  The AAC arch
2830  * expects the driver to be a SCSI passthrough type driver, so it expects
2831  * the containers to have b:t:l numbers.  Fake it.
2832  */
2833 static int
2834 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2835 {
2836 	struct aac_query_disk query_disk;
2837 	struct aac_container *co;
2838 	struct aac_disk	*disk;
2839 	int error, id;
2840 
2841 	debug_called(2);
2842 
2843 	disk = NULL;
2844 
2845 	error = copyin(uptr, (caddr_t)&query_disk,
2846 		       sizeof(struct aac_query_disk));
2847 	if (error)
2848 		return (error);
2849 
2850 	id = query_disk.ContainerNumber;
2851 	if (id == -1)
2852 		return (EINVAL);
2853 
2854 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2855 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2856 		if (co->co_mntobj.ObjectId == id)
2857 			break;
2858 		}
2859 
2860 	if (co == NULL) {
2861 			query_disk.Valid = 0;
2862 			query_disk.Locked = 0;
2863 			query_disk.Deleted = 1;		/* XXX is this right? */
2864 	} else {
2865 		disk = device_get_softc(co->co_disk);
2866 		query_disk.Valid = 1;
2867 		query_disk.Locked =
2868 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2869 		query_disk.Deleted = 0;
2870 		query_disk.Bus = device_get_unit(sc->aac_dev);
2871 		query_disk.Target = disk->unit;
2872 		query_disk.Lun = 0;
2873 		query_disk.UnMapped = 0;
2874 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2875 		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2876 	}
2877 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2878 
2879 	error = copyout((caddr_t)&query_disk, uptr,
2880 			sizeof(struct aac_query_disk));
2881 
2882 	return (error);
2883 }
2884 
2885 static void
2886 aac_get_bus_info(struct aac_softc *sc)
2887 {
2888 	struct aac_fib *fib;
2889 	struct aac_ctcfg *c_cmd;
2890 	struct aac_ctcfg_resp *c_resp;
2891 	struct aac_vmioctl *vmi;
2892 	struct aac_vmi_businf_resp *vmi_resp;
2893 	struct aac_getbusinf businfo;
2894 	struct aac_sim *caminf;
2895 	device_t child;
2896 	int i, found, error;
2897 
2898 	aac_alloc_sync_fib(sc, &fib, 0);
2899 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2900 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2901 
2902 	c_cmd->Command = VM_ContainerConfig;
2903 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2904 	c_cmd->param = 0;
2905 
2906 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2907 	    sizeof(struct aac_ctcfg));
2908 	if (error) {
2909 		device_printf(sc->aac_dev, "Error %d sending "
2910 		    "VM_ContainerConfig command\n", error);
2911 		aac_release_sync_fib(sc);
2912 		return;
2913 	}
2914 
2915 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2916 	if (c_resp->Status != ST_OK) {
2917 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2918 		    c_resp->Status);
2919 		aac_release_sync_fib(sc);
2920 		return;
2921 	}
2922 
2923 	sc->scsi_method_id = c_resp->param;
2924 
2925 	vmi = (struct aac_vmioctl *)&fib->data[0];
2926 	bzero(vmi, sizeof(struct aac_vmioctl));
2927 
2928 	vmi->Command = VM_Ioctl;
2929 	vmi->ObjType = FT_DRIVE;
2930 	vmi->MethId = sc->scsi_method_id;
2931 	vmi->ObjId = 0;
2932 	vmi->IoctlCmd = GetBusInfo;
2933 
2934 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2935 	    sizeof(struct aac_vmioctl));
2936 	if (error) {
2937 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2938 		    error);
2939 		aac_release_sync_fib(sc);
2940 		return;
2941 	}
2942 
2943 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2944 	if (vmi_resp->Status != ST_OK) {
2945 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2946 		    vmi_resp->Status);
2947 		aac_release_sync_fib(sc);
2948 		return;
2949 	}
2950 
2951 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2952 	aac_release_sync_fib(sc);
2953 
2954 	found = 0;
2955 	for (i = 0; i < businfo.BusCount; i++) {
2956 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2957 			continue;
2958 
2959 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2960 		    M_AACBUF, M_NOWAIT | M_ZERO);
2961 		if (caminf == NULL)
2962 			continue;
2963 
2964 		child = device_add_child(sc->aac_dev, "aacp", -1);
2965 		if (child == NULL) {
2966 			device_printf(sc->aac_dev, "device_add_child failed\n");
2967 			continue;
2968 		}
2969 
2970 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2971 		caminf->BusNumber = i;
2972 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2973 		caminf->aac_sc = sc;
2974 		caminf->sim_dev = child;
2975 
2976 		device_set_ivars(child, caminf);
2977 		device_set_desc(child, "SCSI Passthrough Bus");
2978 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2979 
2980 		found = 1;
2981 	}
2982 
2983 	if (found)
2984 		bus_generic_attach(sc->aac_dev);
2985 
2986 	return;
2987 }
2988