xref: /freebsd/sys/dev/aac/aac.c (revision ceaec73d406831b1251babb61675df0a1aa54a31)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #include <sys/ioccom.h>
48 
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 #include <sys/eventhandler.h>
54 
55 #include <machine/bus_memio.h>
56 #include <machine/bus.h>
57 #include <sys/bus_dma.h>
58 #include <machine/resource.h>
59 
60 #include <dev/aac/aacreg.h>
61 #include <sys/aac_ioctl.h>
62 #include <dev/aac/aacvar.h>
63 #include <dev/aac/aac_tables.h>
64 
65 static void	aac_startup(void *arg);
66 static void	aac_add_container(struct aac_softc *sc,
67 				  struct aac_mntinforesp *mir, int f);
68 static void	aac_get_bus_info(struct aac_softc *sc);
69 
70 /* Command Processing */
71 static void	aac_timeout(struct aac_softc *sc);
72 static void	aac_complete(void *context, int pending);
73 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74 static void	aac_bio_complete(struct aac_command *cm);
75 static int	aac_wait_command(struct aac_command *cm);
76 static void	aac_command_thread(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80 				   int nseg, int error);
81 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82 				       int nseg, int error);
83 static int	aac_alloc_commands(struct aac_softc *sc);
84 static void	aac_free_commands(struct aac_softc *sc);
85 static void	aac_unmap_command(struct aac_command *cm);
86 
87 /* Hardware Interface */
88 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89 			       int error);
90 static int	aac_check_firmware(struct aac_softc *sc);
91 static int	aac_init(struct aac_softc *sc);
92 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94 				 u_int32_t arg3, u_int32_t *sp);
95 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96 				struct aac_command *cm);
97 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98 				u_int32_t *fib_size, struct aac_fib **fib_addr);
99 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100 				     struct aac_fib *fib);
101 
102 /* Falcon/PPC interface */
103 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105 static int	aac_fa_get_istatus(struct aac_softc *sc);
106 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108 				   u_int32_t arg0, u_int32_t arg1,
109 				   u_int32_t arg2, u_int32_t arg3);
110 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112 
113 struct aac_interface aac_fa_interface = {
114 	aac_fa_get_fwstatus,
115 	aac_fa_qnotify,
116 	aac_fa_get_istatus,
117 	aac_fa_clear_istatus,
118 	aac_fa_set_mailbox,
119 	aac_fa_get_mailbox,
120 	aac_fa_set_interrupts
121 };
122 
123 /* StrongARM interface */
124 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126 static int	aac_sa_get_istatus(struct aac_softc *sc);
127 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129 				   u_int32_t arg0, u_int32_t arg1,
130 				   u_int32_t arg2, u_int32_t arg3);
131 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133 
134 struct aac_interface aac_sa_interface = {
135 	aac_sa_get_fwstatus,
136 	aac_sa_qnotify,
137 	aac_sa_get_istatus,
138 	aac_sa_clear_istatus,
139 	aac_sa_set_mailbox,
140 	aac_sa_get_mailbox,
141 	aac_sa_set_interrupts
142 };
143 
144 /* i960Rx interface */
145 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147 static int	aac_rx_get_istatus(struct aac_softc *sc);
148 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150 				   u_int32_t arg0, u_int32_t arg1,
151 				   u_int32_t arg2, u_int32_t arg3);
152 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154 
155 struct aac_interface aac_rx_interface = {
156 	aac_rx_get_fwstatus,
157 	aac_rx_qnotify,
158 	aac_rx_get_istatus,
159 	aac_rx_clear_istatus,
160 	aac_rx_set_mailbox,
161 	aac_rx_get_mailbox,
162 	aac_rx_set_interrupts
163 };
164 
165 /* Rocket/MIPS interface */
166 static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
167 static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
168 static int	aac_rkt_get_istatus(struct aac_softc *sc);
169 static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
170 static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
171 				    u_int32_t arg0, u_int32_t arg1,
172 				    u_int32_t arg2, u_int32_t arg3);
173 static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
174 static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
175 
176 struct aac_interface aac_rkt_interface = {
177 	aac_rkt_get_fwstatus,
178 	aac_rkt_qnotify,
179 	aac_rkt_get_istatus,
180 	aac_rkt_clear_istatus,
181 	aac_rkt_set_mailbox,
182 	aac_rkt_get_mailbox,
183 	aac_rkt_set_interrupts
184 };
185 
186 /* Debugging and Diagnostics */
187 static void	aac_describe_controller(struct aac_softc *sc);
188 static char	*aac_describe_code(struct aac_code_lookup *table,
189 				   u_int32_t code);
190 
191 /* Management Interface */
192 static d_open_t		aac_open;
193 static d_close_t	aac_close;
194 static d_ioctl_t	aac_ioctl;
195 static d_poll_t		aac_poll;
196 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
197 static void		aac_handle_aif(struct aac_softc *sc,
198 					   struct aac_fib *fib);
199 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
200 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
201 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
202 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
203 
204 static struct cdevsw aac_cdevsw = {
205 	.d_version =	D_VERSION,
206 	.d_flags =	D_NEEDGIANT,
207 	.d_open =	aac_open,
208 	.d_close =	aac_close,
209 	.d_ioctl =	aac_ioctl,
210 	.d_poll =	aac_poll,
211 	.d_name =	"aac",
212 };
213 
214 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
215 
216 /* sysctl node */
217 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
218 
219 /*
220  * Device Interface
221  */
222 
223 /*
224  * Initialise the controller and softc
225  */
226 int
227 aac_attach(struct aac_softc *sc)
228 {
229 	int error, unit;
230 
231 	debug_called(1);
232 
233 	/*
234 	 * Initialise per-controller queues.
235 	 */
236 	aac_initq_free(sc);
237 	aac_initq_ready(sc);
238 	aac_initq_busy(sc);
239 	aac_initq_bio(sc);
240 
241 	/*
242 	 * Initialise command-completion task.
243 	 */
244 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
245 
246 	/* disable interrupts before we enable anything */
247 	AAC_MASK_INTERRUPTS(sc);
248 
249 	/* mark controller as suspended until we get ourselves organised */
250 	sc->aac_state |= AAC_STATE_SUSPEND;
251 
252 	/*
253 	 * Check that the firmware on the card is supported.
254 	 */
255 	if ((error = aac_check_firmware(sc)) != 0)
256 		return(error);
257 
258 	/*
259 	 * Initialize locks
260 	 */
261 	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
262 	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
263 	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
264 	TAILQ_INIT(&sc->aac_container_tqh);
265 
266 	/* Initialize the local AIF queue pointers */
267 	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
268 
269 	/*
270 	 * Initialise the adapter.
271 	 */
272 	if ((error = aac_init(sc)) != 0)
273 		return(error);
274 
275 	/*
276 	 * Print a little information about the controller.
277 	 */
278 	aac_describe_controller(sc);
279 
280 	/*
281 	 * Register to probe our containers later.
282 	 */
283 	sc->aac_ich.ich_func = aac_startup;
284 	sc->aac_ich.ich_arg = sc;
285 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
286 		device_printf(sc->aac_dev,
287 			      "can't establish configuration hook\n");
288 		return(ENXIO);
289 	}
290 
291 	/*
292 	 * Make the control device.
293 	 */
294 	unit = device_get_unit(sc->aac_dev);
295 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
296 				 0640, "aac%d", unit);
297 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
298 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
299 	sc->aac_dev_t->si_drv1 = sc;
300 
301 	/* Create the AIF thread */
302 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
303 			   &sc->aifthread, 0, 0, "aac%daif", unit))
304 		panic("Could not create AIF thread\n");
305 
306 	/* Register the shutdown method to only be called post-dump */
307 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
308 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
309 		device_printf(sc->aac_dev,
310 			      "shutdown event registration failed\n");
311 
312 	/* Register with CAM for the non-DASD devices */
313 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
314 		TAILQ_INIT(&sc->aac_sim_tqh);
315 		aac_get_bus_info(sc);
316 	}
317 
318 	return(0);
319 }
320 
321 /*
322  * Probe for containers, create disks.
323  */
324 static void
325 aac_startup(void *arg)
326 {
327 	struct aac_softc *sc;
328 	struct aac_fib *fib;
329 	struct aac_mntinfo *mi;
330 	struct aac_mntinforesp *mir = NULL;
331 	int count = 0, i = 0;
332 
333 	debug_called(1);
334 
335 	sc = (struct aac_softc *)arg;
336 
337 	/* disconnect ourselves from the intrhook chain */
338 	config_intrhook_disestablish(&sc->aac_ich);
339 
340 	aac_alloc_sync_fib(sc, &fib);
341 	mi = (struct aac_mntinfo *)&fib->data[0];
342 
343 	/* loop over possible containers */
344 	do {
345 		/* request information on this container */
346 		bzero(mi, sizeof(struct aac_mntinfo));
347 		mi->Command = VM_NameServe;
348 		mi->MntType = FT_FILESYS;
349 		mi->MntCount = i;
350 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
351 				 sizeof(struct aac_mntinfo))) {
352 			printf("error probing container %d", i);
353 			continue;
354 		}
355 
356 		mir = (struct aac_mntinforesp *)&fib->data[0];
357 		/* XXX Need to check if count changed */
358 		count = mir->MntRespCount;
359 		aac_add_container(sc, mir, 0);
360 		i++;
361 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
362 
363 	aac_release_sync_fib(sc);
364 
365 	/* poke the bus to actually attach the child devices */
366 	if (bus_generic_attach(sc->aac_dev))
367 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
368 
369 	/* mark the controller up */
370 	sc->aac_state &= ~AAC_STATE_SUSPEND;
371 
372 	/* enable interrupts now */
373 	AAC_UNMASK_INTERRUPTS(sc);
374 }
375 
376 /*
377  * Create a device to respresent a new container
378  */
379 static void
380 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
381 {
382 	struct aac_container *co;
383 	device_t child;
384 
385 	/*
386 	 * Check container volume type for validity.  Note that many of
387 	 * the possible types may never show up.
388 	 */
389 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
390 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
391 		       M_NOWAIT | M_ZERO);
392 		if (co == NULL)
393 			panic("Out of memory?!\n");
394 		debug(1, "id %x  name '%.16s'  size %u  type %d",
395 		      mir->MntTable[0].ObjectId,
396 		      mir->MntTable[0].FileSystemName,
397 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
398 
399 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
400 			device_printf(sc->aac_dev, "device_add_child failed\n");
401 		else
402 			device_set_ivars(child, co);
403 		device_set_desc(child, aac_describe_code(aac_container_types,
404 				mir->MntTable[0].VolType));
405 		co->co_disk = child;
406 		co->co_found = f;
407 		bcopy(&mir->MntTable[0], &co->co_mntobj,
408 		      sizeof(struct aac_mntobj));
409 		mtx_lock(&sc->aac_container_lock);
410 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
411 		mtx_unlock(&sc->aac_container_lock);
412 	}
413 }
414 
415 /*
416  * Free all of the resources associated with (sc)
417  *
418  * Should not be called if the controller is active.
419  */
420 void
421 aac_free(struct aac_softc *sc)
422 {
423 
424 	debug_called(1);
425 
426 	/* remove the control device */
427 	if (sc->aac_dev_t != NULL)
428 		destroy_dev(sc->aac_dev_t);
429 
430 	/* throw away any FIB buffers, discard the FIB DMA tag */
431 	aac_free_commands(sc);
432 	if (sc->aac_fib_dmat)
433 		bus_dma_tag_destroy(sc->aac_fib_dmat);
434 
435 	free(sc->aac_commands, M_AACBUF);
436 
437 	/* destroy the common area */
438 	if (sc->aac_common) {
439 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
440 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
441 				sc->aac_common_dmamap);
442 	}
443 	if (sc->aac_common_dmat)
444 		bus_dma_tag_destroy(sc->aac_common_dmat);
445 
446 	/* disconnect the interrupt handler */
447 	if (sc->aac_intr)
448 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
449 	if (sc->aac_irq != NULL)
450 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
451 				     sc->aac_irq);
452 
453 	/* destroy data-transfer DMA tag */
454 	if (sc->aac_buffer_dmat)
455 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
456 
457 	/* destroy the parent DMA tag */
458 	if (sc->aac_parent_dmat)
459 		bus_dma_tag_destroy(sc->aac_parent_dmat);
460 
461 	/* release the register window mapping */
462 	if (sc->aac_regs_resource != NULL)
463 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
464 				     sc->aac_regs_rid, sc->aac_regs_resource);
465 }
466 
467 /*
468  * Disconnect from the controller completely, in preparation for unload.
469  */
470 int
471 aac_detach(device_t dev)
472 {
473 	struct aac_softc *sc;
474 	struct aac_container *co;
475 	struct aac_sim	*sim;
476 	int error;
477 
478 	debug_called(1);
479 
480 	sc = device_get_softc(dev);
481 
482 	if (sc->aac_state & AAC_STATE_OPEN)
483 		return(EBUSY);
484 
485 	/* Remove the child containers */
486 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
487 		error = device_delete_child(dev, co->co_disk);
488 		if (error)
489 			return (error);
490 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
491 		free(co, M_AACBUF);
492 	}
493 
494 	/* Remove the CAM SIMs */
495 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
496 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
497 		error = device_delete_child(dev, sim->sim_dev);
498 		if (error)
499 			return (error);
500 		free(sim, M_AACBUF);
501 	}
502 
503 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
504 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
505 		wakeup(sc->aifthread);
506 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
507 	}
508 
509 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
510 		panic("Cannot shutdown AIF thread\n");
511 
512 	if ((error = aac_shutdown(dev)))
513 		return(error);
514 
515 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
516 
517 	aac_free(sc);
518 
519 	mtx_destroy(&sc->aac_aifq_lock);
520 	mtx_destroy(&sc->aac_io_lock);
521 	mtx_destroy(&sc->aac_container_lock);
522 
523 	return(0);
524 }
525 
526 /*
527  * Bring the controller down to a dormant state and detach all child devices.
528  *
529  * This function is called before detach or system shutdown.
530  *
531  * Note that we can assume that the bioq on the controller is empty, as we won't
532  * allow shutdown if any device is open.
533  */
534 int
535 aac_shutdown(device_t dev)
536 {
537 	struct aac_softc *sc;
538 	struct aac_fib *fib;
539 	struct aac_close_command *cc;
540 
541 	debug_called(1);
542 
543 	sc = device_get_softc(dev);
544 
545 	sc->aac_state |= AAC_STATE_SUSPEND;
546 
547 	/*
548 	 * Send a Container shutdown followed by a HostShutdown FIB to the
549 	 * controller to convince it that we don't want to talk to it anymore.
550 	 * We've been closed and all I/O completed already
551 	 */
552 	device_printf(sc->aac_dev, "shutting down controller...");
553 
554 	aac_alloc_sync_fib(sc, &fib);
555 	cc = (struct aac_close_command *)&fib->data[0];
556 
557 	bzero(cc, sizeof(struct aac_close_command));
558 	cc->Command = VM_CloseAll;
559 	cc->ContainerId = 0xffffffff;
560 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
561 	    sizeof(struct aac_close_command)))
562 		printf("FAILED.\n");
563 	else
564 		printf("done\n");
565 #if 0
566 	else {
567 		fib->data[0] = 0;
568 		/*
569 		 * XXX Issuing this command to the controller makes it shut down
570 		 * but also keeps it from coming back up without a reset of the
571 		 * PCI bus.  This is not desirable if you are just unloading the
572 		 * driver module with the intent to reload it later.
573 		 */
574 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
575 		    fib, 1)) {
576 			printf("FAILED.\n");
577 		} else {
578 			printf("done.\n");
579 		}
580 	}
581 #endif
582 
583 	AAC_MASK_INTERRUPTS(sc);
584 	aac_release_sync_fib(sc);
585 
586 	return(0);
587 }
588 
589 /*
590  * Bring the controller to a quiescent state, ready for system suspend.
591  */
592 int
593 aac_suspend(device_t dev)
594 {
595 	struct aac_softc *sc;
596 
597 	debug_called(1);
598 
599 	sc = device_get_softc(dev);
600 
601 	sc->aac_state |= AAC_STATE_SUSPEND;
602 
603 	AAC_MASK_INTERRUPTS(sc);
604 	return(0);
605 }
606 
607 /*
608  * Bring the controller back to a state ready for operation.
609  */
610 int
611 aac_resume(device_t dev)
612 {
613 	struct aac_softc *sc;
614 
615 	debug_called(1);
616 
617 	sc = device_get_softc(dev);
618 
619 	sc->aac_state &= ~AAC_STATE_SUSPEND;
620 	AAC_UNMASK_INTERRUPTS(sc);
621 	return(0);
622 }
623 
624 /*
625  * Take an interrupt.
626  */
627 void
628 aac_intr(void *arg)
629 {
630 	struct aac_softc *sc;
631 	u_int16_t reason;
632 
633 	debug_called(2);
634 
635 	sc = (struct aac_softc *)arg;
636 
637 	/*
638 	 * Read the status register directly.  This is faster than taking the
639 	 * driver lock and reading the queues directly.  It also saves having
640 	 * to turn parts of the driver lock into a spin mutex, which would be
641 	 * ugly.
642 	 */
643 	reason = AAC_GET_ISTATUS(sc);
644 	AAC_CLEAR_ISTATUS(sc, reason);
645 
646 	/* handle completion processing */
647 	if (reason & AAC_DB_RESPONSE_READY)
648 		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
649 
650 	/* controller wants to talk to us */
651 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
652 		/*
653 		 * XXX Make sure that we don't get fooled by strange messages
654 		 * that start with a NULL.
655 		 */
656 		if ((reason & AAC_DB_PRINTF) &&
657 		    (sc->aac_common->ac_printf[0] == 0))
658 			sc->aac_common->ac_printf[0] = 32;
659 
660 		/*
661 		 * This might miss doing the actual wakeup.  However, the
662 		 * msleep that this is waking up has a timeout, so it will
663 		 * wake up eventually.  AIFs and printfs are low enough
664 		 * priority that they can handle hanging out for a few seconds
665 		 * if needed.
666 		 */
667 		wakeup(sc->aifthread);
668 	}
669 }
670 
671 /*
672  * Command Processing
673  */
674 
675 /*
676  * Start as much queued I/O as possible on the controller
677  */
678 void
679 aac_startio(struct aac_softc *sc)
680 {
681 	struct aac_command *cm;
682 	int error;
683 
684 	debug_called(2);
685 
686 	for (;;) {
687 		/*
688 		 * This flag might be set if the card is out of resources.
689 		 * Checking it here prevents an infinite loop of deferrals.
690 		 */
691 		if (sc->flags & AAC_QUEUE_FRZN)
692 			break;
693 
694 		/*
695 		 * Try to get a command that's been put off for lack of
696 		 * resources
697 		 */
698 		cm = aac_dequeue_ready(sc);
699 
700 		/*
701 		 * Try to build a command off the bio queue (ignore error
702 		 * return)
703 		 */
704 		if (cm == NULL)
705 			aac_bio_command(sc, &cm);
706 
707 		/* nothing to do? */
708 		if (cm == NULL)
709 			break;
710 
711 		/* don't map more than once */
712 		if (cm->cm_flags & AAC_CMD_MAPPED)
713 			panic("aac: command %p already mapped", cm);
714 
715 		/*
716 		 * Set up the command to go to the controller.  If there are no
717 		 * data buffers associated with the command then it can bypass
718 		 * busdma.
719 		 */
720 		if (cm->cm_datalen != 0) {
721 			error = bus_dmamap_load(sc->aac_buffer_dmat,
722 						cm->cm_datamap, cm->cm_data,
723 						cm->cm_datalen,
724 						aac_map_command_sg, cm, 0);
725 			if (error == EINPROGRESS) {
726 				debug(1, "freezing queue\n");
727 				sc->flags |= AAC_QUEUE_FRZN;
728 				error = 0;
729 			} else if (error != 0)
730 				panic("aac_startio: unexpected error %d from "
731 				      "busdma\n", error);
732 		} else
733 			aac_map_command_sg(cm, NULL, 0, 0);
734 	}
735 }
736 
737 /*
738  * Handle notification of one or more FIBs coming from the controller.
739  */
740 static void
741 aac_command_thread(struct aac_softc *sc)
742 {
743 	struct aac_fib *fib;
744 	u_int32_t fib_size;
745 	int size, retval;
746 
747 	debug_called(2);
748 
749 	mtx_lock(&sc->aac_io_lock);
750 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
751 
752 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
753 
754 		retval = 0;
755 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
756 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
757 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
758 
759 		/*
760 		 * First see if any FIBs need to be allocated.  This needs
761 		 * to be called without the driver lock because contigmalloc
762 		 * will grab Giant, and would result in an LOR.
763 		 */
764 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
765 			mtx_unlock(&sc->aac_io_lock);
766 			aac_alloc_commands(sc);
767 			mtx_lock(&sc->aac_io_lock);
768 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
769 			aac_startio(sc);
770 		}
771 
772 		/*
773 		 * While we're here, check to see if any commands are stuck.
774 		 * This is pretty low-priority, so it's ok if it doesn't
775 		 * always fire.
776 		 */
777 		if (retval == EWOULDBLOCK)
778 			aac_timeout(sc);
779 
780 		/* Check the hardware printf message buffer */
781 		if (sc->aac_common->ac_printf[0] != 0)
782 			aac_print_printf(sc);
783 
784 		/* Also check to see if the adapter has a command for us. */
785 		while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
786 				       &fib_size, &fib) == 0) {
787 
788 			AAC_PRINT_FIB(sc, fib);
789 
790 			switch (fib->Header.Command) {
791 			case AifRequest:
792 				aac_handle_aif(sc, fib);
793 				break;
794 			default:
795 				device_printf(sc->aac_dev, "unknown command "
796 					      "from controller\n");
797 				break;
798 			}
799 
800 			if ((fib->Header.XferState == 0) ||
801 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
802 				break;
803 
804 			/* Return the AIF to the controller. */
805 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
806 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
807 				*(AAC_FSAStatus*)fib->data = ST_OK;
808 
809 				/* XXX Compute the Size field? */
810 				size = fib->Header.Size;
811 				if (size > sizeof(struct aac_fib)) {
812 					size = sizeof(struct aac_fib);
813 					fib->Header.Size = size;
814 				}
815 				/*
816 				 * Since we did not generate this command, it
817 				 * cannot go through the normal
818 				 * enqueue->startio chain.
819 				 */
820 				aac_enqueue_response(sc,
821 						     AAC_ADAP_NORM_RESP_QUEUE,
822 						     fib);
823 			}
824 		}
825 	}
826 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
827 	mtx_unlock(&sc->aac_io_lock);
828 	wakeup(sc->aac_dev);
829 
830 	kthread_exit(0);
831 }
832 
833 /*
834  * Process completed commands.
835  */
836 static void
837 aac_complete(void *context, int pending)
838 {
839 	struct aac_softc *sc;
840 	struct aac_command *cm;
841 	struct aac_fib *fib;
842 	u_int32_t fib_size;
843 
844 	debug_called(2);
845 
846 	sc = (struct aac_softc *)context;
847 
848 	mtx_lock(&sc->aac_io_lock);
849 
850 	/* pull completed commands off the queue */
851 	for (;;) {
852 		/* look for completed FIBs on our queue */
853 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
854 				    &fib))
855 			break;	/* nothing to do */
856 
857 		/* get the command, unmap and hand off for processing */
858 		cm = sc->aac_commands + fib->Header.SenderData;
859 		if (cm == NULL) {
860 			AAC_PRINT_FIB(sc, fib);
861 			break;
862 		}
863 
864 		aac_remove_busy(cm);
865 		aac_unmap_command(cm);
866 		cm->cm_flags |= AAC_CMD_COMPLETED;
867 
868 		/* is there a completion handler? */
869 		if (cm->cm_complete != NULL) {
870 			cm->cm_complete(cm);
871 		} else {
872 			/* assume that someone is sleeping on this command */
873 			wakeup(cm);
874 		}
875 	}
876 
877 	/* see if we can start some more I/O */
878 	sc->flags &= ~AAC_QUEUE_FRZN;
879 	aac_startio(sc);
880 
881 	mtx_unlock(&sc->aac_io_lock);
882 }
883 
884 /*
885  * Handle a bio submitted from a disk device.
886  */
887 void
888 aac_submit_bio(struct bio *bp)
889 {
890 	struct aac_disk *ad;
891 	struct aac_softc *sc;
892 
893 	debug_called(2);
894 
895 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
896 	sc = ad->ad_controller;
897 
898 	/* queue the BIO and try to get some work done */
899 	aac_enqueue_bio(sc, bp);
900 	aac_startio(sc);
901 }
902 
903 /*
904  * Get a bio and build a command to go with it.
905  */
906 static int
907 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
908 {
909 	struct aac_command *cm;
910 	struct aac_fib *fib;
911 	struct aac_disk *ad;
912 	struct bio *bp;
913 
914 	debug_called(2);
915 
916 	/* get the resources we will need */
917 	cm = NULL;
918 	bp = NULL;
919 	if (aac_alloc_command(sc, &cm))	/* get a command */
920 		goto fail;
921 	if ((bp = aac_dequeue_bio(sc)) == NULL)
922 		goto fail;
923 
924 	/* fill out the command */
925 	cm->cm_data = (void *)bp->bio_data;
926 	cm->cm_datalen = bp->bio_bcount;
927 	cm->cm_complete = aac_bio_complete;
928 	cm->cm_private = bp;
929 	cm->cm_timestamp = time_second;
930 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
931 
932 	/* build the FIB */
933 	fib = cm->cm_fib;
934 	fib->Header.Size = sizeof(struct aac_fib_header);
935 	fib->Header.XferState =
936 		AAC_FIBSTATE_HOSTOWNED   |
937 		AAC_FIBSTATE_INITIALISED |
938 		AAC_FIBSTATE_EMPTY	 |
939 		AAC_FIBSTATE_FROMHOST	 |
940 		AAC_FIBSTATE_REXPECTED   |
941 		AAC_FIBSTATE_NORM	 |
942 		AAC_FIBSTATE_ASYNC	 |
943 		AAC_FIBSTATE_FAST_RESPONSE;
944 
945 	/* build the read/write request */
946 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
947 
948 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
949 		fib->Header.Command = ContainerCommand;
950 		if (bp->bio_cmd == BIO_READ) {
951 			struct aac_blockread *br;
952 			br = (struct aac_blockread *)&fib->data[0];
953 			br->Command = VM_CtBlockRead;
954 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955 			br->BlockNumber = bp->bio_pblkno;
956 			br->ByteCount = bp->bio_bcount;
957 			fib->Header.Size += sizeof(struct aac_blockread);
958 			cm->cm_sgtable = &br->SgMap;
959 			cm->cm_flags |= AAC_CMD_DATAIN;
960 		} else {
961 			struct aac_blockwrite *bw;
962 			bw = (struct aac_blockwrite *)&fib->data[0];
963 			bw->Command = VM_CtBlockWrite;
964 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
965 			bw->BlockNumber = bp->bio_pblkno;
966 			bw->ByteCount = bp->bio_bcount;
967 			bw->Stable = CUNSTABLE;
968 			fib->Header.Size += sizeof(struct aac_blockwrite);
969 			cm->cm_flags |= AAC_CMD_DATAOUT;
970 			cm->cm_sgtable = &bw->SgMap;
971 		}
972 	} else {
973 		fib->Header.Command = ContainerCommand64;
974 		if (bp->bio_cmd == BIO_READ) {
975 			struct aac_blockread64 *br;
976 			br = (struct aac_blockread64 *)&fib->data[0];
977 			br->Command = VM_CtHostRead64;
978 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
979 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
980 			br->BlockNumber = bp->bio_pblkno;
981 			br->Pad = 0;
982 			br->Flags = 0;
983 			fib->Header.Size += sizeof(struct aac_blockread64);
984 			cm->cm_flags |= AAC_CMD_DATAOUT;
985 			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
986 		} else {
987 			struct aac_blockwrite64 *bw;
988 			bw = (struct aac_blockwrite64 *)&fib->data[0];
989 			bw->Command = VM_CtHostWrite64;
990 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
991 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
992 			bw->BlockNumber = bp->bio_pblkno;
993 			bw->Pad = 0;
994 			bw->Flags = 0;
995 			fib->Header.Size += sizeof(struct aac_blockwrite64);
996 			cm->cm_flags |= AAC_CMD_DATAIN;
997 			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
998 		}
999 	}
1000 
1001 	*cmp = cm;
1002 	return(0);
1003 
1004 fail:
1005 	if (cm != NULL)
1006 		aac_release_command(cm);
1007 	return(ENOMEM);
1008 }
1009 
1010 /*
1011  * Handle a bio-instigated command that has been completed.
1012  */
1013 static void
1014 aac_bio_complete(struct aac_command *cm)
1015 {
1016 	struct aac_blockread_response *brr;
1017 	struct aac_blockwrite_response *bwr;
1018 	struct bio *bp;
1019 	AAC_FSAStatus status;
1020 
1021 	/* fetch relevant status and then release the command */
1022 	bp = (struct bio *)cm->cm_private;
1023 	if (bp->bio_cmd == BIO_READ) {
1024 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1025 		status = brr->Status;
1026 	} else {
1027 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1028 		status = bwr->Status;
1029 	}
1030 	aac_release_command(cm);
1031 
1032 	/* fix up the bio based on status */
1033 	if (status == ST_OK) {
1034 		bp->bio_resid = 0;
1035 	} else {
1036 		bp->bio_error = EIO;
1037 		bp->bio_flags |= BIO_ERROR;
1038 		/* pass an error string out to the disk layer */
1039 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1040 						    status);
1041 	}
1042 	aac_biodone(bp);
1043 }
1044 
1045 /*
1046  * Submit a command to the controller, return when it completes.
1047  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1048  *     be stuck here forever.  At the same time, signals are not caught
1049  *     because there is a risk that a signal could wakeup the sleep before
1050  *     the card has a chance to complete the command.  Since there is no way
1051  *     to cancel a command that is in progress, we can't protect against the
1052  *     card completing a command late and spamming the command and data
1053  *     memory.  So, we are held hostage until the command completes.
1054  */
1055 static int
1056 aac_wait_command(struct aac_command *cm)
1057 {
1058 	struct aac_softc *sc;
1059 	int error;
1060 
1061 	debug_called(2);
1062 
1063 	sc = cm->cm_sc;
1064 
1065 	/* Put the command on the ready queue and get things going */
1066 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1067 	aac_enqueue_ready(cm);
1068 	aac_startio(sc);
1069 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1070 	return(error);
1071 }
1072 
1073 /*
1074  *Command Buffer Management
1075  */
1076 
1077 /*
1078  * Allocate a command.
1079  */
1080 int
1081 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1082 {
1083 	struct aac_command *cm;
1084 
1085 	debug_called(3);
1086 
1087 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1088 		if (sc->total_fibs < sc->aac_max_fibs) {
1089 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1090 			wakeup(sc->aifthread);
1091 		}
1092 		return (EBUSY);
1093 	}
1094 
1095 	*cmp = cm;
1096 	return(0);
1097 }
1098 
1099 /*
1100  * Release a command back to the freelist.
1101  */
1102 void
1103 aac_release_command(struct aac_command *cm)
1104 {
1105 	debug_called(3);
1106 
1107 	/* (re)initialise the command/FIB */
1108 	cm->cm_sgtable = NULL;
1109 	cm->cm_flags = 0;
1110 	cm->cm_complete = NULL;
1111 	cm->cm_private = NULL;
1112 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1113 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1114 	cm->cm_fib->Header.Flags = 0;
1115 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1116 
1117 	/*
1118 	 * These are duplicated in aac_start to cover the case where an
1119 	 * intermediate stage may have destroyed them.  They're left
1120 	 * initialised here for debugging purposes only.
1121 	 */
1122 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1123 	cm->cm_fib->Header.SenderData = 0;
1124 
1125 	aac_enqueue_free(cm);
1126 }
1127 
1128 /*
1129  * Map helper for command/FIB allocation.
1130  */
1131 static void
1132 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1133 {
1134 	uint32_t	*fibphys;
1135 
1136 	fibphys = (uint32_t *)arg;
1137 
1138 	debug_called(3);
1139 
1140 	*fibphys = segs[0].ds_addr;
1141 }
1142 
1143 /*
1144  * Allocate and initialise commands/FIBs for this adapter.
1145  */
1146 static int
1147 aac_alloc_commands(struct aac_softc *sc)
1148 {
1149 	struct aac_command *cm;
1150 	struct aac_fibmap *fm;
1151 	uint32_t fibphys;
1152 	int i, error;
1153 
1154 	debug_called(2);
1155 
1156 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1157 		return (ENOMEM);
1158 
1159 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1160 	if (fm == NULL)
1161 		return (ENOMEM);
1162 
1163 	/* allocate the FIBs in DMAable memory and load them */
1164 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1165 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1166 		device_printf(sc->aac_dev,
1167 			      "Not enough contiguous memory available.\n");
1168 		free(fm, M_AACBUF);
1169 		return (ENOMEM);
1170 	}
1171 
1172 	/* Ignore errors since this doesn't bounce */
1173 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1174 			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1175 			      aac_map_command_helper, &fibphys, 0);
1176 
1177 	/* initialise constant fields in the command structure */
1178 	mtx_lock(&sc->aac_io_lock);
1179 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1180 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1181 		cm = sc->aac_commands + sc->total_fibs;
1182 		fm->aac_commands = cm;
1183 		cm->cm_sc = sc;
1184 		cm->cm_fib = fm->aac_fibs + i;
1185 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1186 		cm->cm_index = sc->total_fibs;
1187 
1188 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1189 					       &cm->cm_datamap)) == 0)
1190 			aac_release_command(cm);
1191 		else
1192 			break;
1193 		sc->total_fibs++;
1194 	}
1195 
1196 	if (i > 0) {
1197 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1198 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1199 		mtx_unlock(&sc->aac_io_lock);
1200 		return (0);
1201 	}
1202 
1203 	mtx_unlock(&sc->aac_io_lock);
1204 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1205 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1206 	free(fm, M_AACBUF);
1207 	return (ENOMEM);
1208 }
1209 
1210 /*
1211  * Free FIBs owned by this adapter.
1212  */
1213 static void
1214 aac_free_commands(struct aac_softc *sc)
1215 {
1216 	struct aac_fibmap *fm;
1217 	struct aac_command *cm;
1218 	int i;
1219 
1220 	debug_called(1);
1221 
1222 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1223 
1224 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1225 		/*
1226 		 * We check against total_fibs to handle partially
1227 		 * allocated blocks.
1228 		 */
1229 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1230 			cm = fm->aac_commands + i;
1231 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1232 		}
1233 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1234 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1235 		free(fm, M_AACBUF);
1236 	}
1237 }
1238 
1239 /*
1240  * Command-mapping helper function - populate this command's s/g table.
1241  */
1242 static void
1243 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1244 {
1245 	struct aac_softc *sc;
1246 	struct aac_command *cm;
1247 	struct aac_fib *fib;
1248 	int i;
1249 
1250 	debug_called(3);
1251 
1252 	cm = (struct aac_command *)arg;
1253 	sc = cm->cm_sc;
1254 	fib = cm->cm_fib;
1255 
1256 	/* copy into the FIB */
1257 	if (cm->cm_sgtable != NULL) {
1258 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1259 			struct aac_sg_table *sg;
1260 			sg = cm->cm_sgtable;
1261 			sg->SgCount = nseg;
1262 			for (i = 0; i < nseg; i++) {
1263 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1264 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1265 			}
1266 			/* update the FIB size for the s/g count */
1267 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1268 		} else {
1269 			struct aac_sg_table64 *sg;
1270 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1271 			sg->SgCount = nseg;
1272 			for (i = 0; i < nseg; i++) {
1273 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1274 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1275 			}
1276 			/* update the FIB size for the s/g count */
1277 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1278 		}
1279 	}
1280 
1281 	/* Fix up the address values in the FIB.  Use the command array index
1282 	 * instead of a pointer since these fields are only 32 bits.  Shift
1283 	 * the SenderFibAddress over to make room for the fast response bit.
1284 	 */
1285 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1286 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1287 
1288 	/* save a pointer to the command for speedy reverse-lookup */
1289 	cm->cm_fib->Header.SenderData = cm->cm_index;
1290 
1291 	if (cm->cm_flags & AAC_CMD_DATAIN)
1292 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1293 				BUS_DMASYNC_PREREAD);
1294 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1295 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1296 				BUS_DMASYNC_PREWRITE);
1297 	cm->cm_flags |= AAC_CMD_MAPPED;
1298 
1299 	/* Put the FIB on the outbound queue */
1300 	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1301 		aac_unmap_command(cm);
1302 		sc->flags |= AAC_QUEUE_FRZN;
1303 		aac_requeue_ready(cm);
1304 	}
1305 
1306 	return;
1307 }
1308 
1309 /*
1310  * Unmap a command from controller-visible space.
1311  */
1312 static void
1313 aac_unmap_command(struct aac_command *cm)
1314 {
1315 	struct aac_softc *sc;
1316 
1317 	debug_called(2);
1318 
1319 	sc = cm->cm_sc;
1320 
1321 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1322 		return;
1323 
1324 	if (cm->cm_datalen != 0) {
1325 		if (cm->cm_flags & AAC_CMD_DATAIN)
1326 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1327 					BUS_DMASYNC_POSTREAD);
1328 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1329 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1330 					BUS_DMASYNC_POSTWRITE);
1331 
1332 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1333 	}
1334 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1335 }
1336 
1337 /*
1338  * Hardware Interface
1339  */
1340 
1341 /*
1342  * Initialise the adapter.
1343  */
1344 static void
1345 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1346 {
1347 	struct aac_softc *sc;
1348 
1349 	debug_called(1);
1350 
1351 	sc = (struct aac_softc *)arg;
1352 
1353 	sc->aac_common_busaddr = segs[0].ds_addr;
1354 }
1355 
1356 static int
1357 aac_check_firmware(struct aac_softc *sc)
1358 {
1359 	u_int32_t major, minor, options;
1360 
1361 	debug_called(1);
1362 
1363 	/*
1364 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1365 	 * firmware version 1.x are not compatible with this driver.
1366 	 */
1367 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1368 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1369 				     NULL)) {
1370 			device_printf(sc->aac_dev,
1371 				      "Error reading firmware version\n");
1372 			return (EIO);
1373 		}
1374 
1375 		/* These numbers are stored as ASCII! */
1376 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1377 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1378 		if (major == 1) {
1379 			device_printf(sc->aac_dev,
1380 			    "Firmware version %d.%d is not supported.\n",
1381 			    major, minor);
1382 			return (EINVAL);
1383 		}
1384 	}
1385 
1386 	/*
1387 	 * Retrieve the capabilities/supported options word so we know what
1388 	 * work-arounds to enable.
1389 	 */
1390 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1391 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1392 		return (EIO);
1393 	}
1394 	options = AAC_GET_MAILBOX(sc, 1);
1395 	sc->supported_options = options;
1396 
1397 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1398 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1399 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1400 	if (options & AAC_SUPPORTED_NONDASD)
1401 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1402 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1403 	     && (sizeof(bus_addr_t) > 4)) {
1404 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1405 		sc->flags |= AAC_FLAGS_SG_64BIT;
1406 	}
1407 
1408 	/* Check for broken hardware that does a lower number of commands */
1409 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1410 		sc->aac_max_fibs = AAC_MAX_FIBS;
1411 	else
1412 		sc->aac_max_fibs = 256;
1413 
1414 	return (0);
1415 }
1416 
1417 static int
1418 aac_init(struct aac_softc *sc)
1419 {
1420 	struct aac_adapter_init	*ip;
1421 	time_t then;
1422 	u_int32_t code, qoffset;
1423 	int error;
1424 
1425 	debug_called(1);
1426 
1427 	/*
1428 	 * First wait for the adapter to come ready.
1429 	 */
1430 	then = time_second;
1431 	do {
1432 		code = AAC_GET_FWSTATUS(sc);
1433 		if (code & AAC_SELF_TEST_FAILED) {
1434 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1435 			return(ENXIO);
1436 		}
1437 		if (code & AAC_KERNEL_PANIC) {
1438 			device_printf(sc->aac_dev,
1439 				      "FATAL: controller kernel panic\n");
1440 			return(ENXIO);
1441 		}
1442 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1443 			device_printf(sc->aac_dev,
1444 				      "FATAL: controller not coming ready, "
1445 					   "status %x\n", code);
1446 			return(ENXIO);
1447 		}
1448 	} while (!(code & AAC_UP_AND_RUNNING));
1449 
1450 	error = ENOMEM;
1451 	/*
1452 	 * Create DMA tag for mapping buffers into controller-addressable space.
1453 	 */
1454 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1455 			       1, 0, 			/* algnmnt, boundary */
1456 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1457 			       BUS_SPACE_MAXADDR :
1458 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1459 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1460 			       NULL, NULL, 		/* filter, filterarg */
1461 			       MAXBSIZE,		/* maxsize */
1462 			       AAC_MAXSGENTRIES,	/* nsegments */
1463 			       MAXBSIZE,		/* maxsegsize */
1464 			       BUS_DMA_ALLOCNOW,	/* flags */
1465 			       busdma_lock_mutex,	/* lockfunc */
1466 			       &sc->aac_io_lock,	/* lockfuncarg */
1467 			       &sc->aac_buffer_dmat)) {
1468 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1474 	 */
1475 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1476 			       1, 0, 			/* algnmnt, boundary */
1477 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1478 			       BUS_SPACE_MAXADDR_32BIT :
1479 			       0x7fffffff,		/* lowaddr */
1480 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1481 			       NULL, NULL, 		/* filter, filterarg */
1482 			       AAC_FIB_COUNT *
1483 			       sizeof(struct aac_fib),  /* maxsize */
1484 			       1,			/* nsegments */
1485 			       AAC_FIB_COUNT *
1486 			       sizeof(struct aac_fib),	/* maxsegsize */
1487 			       0,			/* flags */
1488 			       NULL, NULL,		/* No locking needed */
1489 			       &sc->aac_fib_dmat)) {
1490 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1491 		goto out;
1492 	}
1493 
1494 	/*
1495 	 * Create DMA tag for the common structure and allocate it.
1496 	 */
1497 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1498 			       1, 0,			/* algnmnt, boundary */
1499 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1500 			       BUS_SPACE_MAXADDR_32BIT :
1501 			       0x7fffffff,		/* lowaddr */
1502 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1503 			       NULL, NULL, 		/* filter, filterarg */
1504 			       8192 + sizeof(struct aac_common), /* maxsize */
1505 			       1,			/* nsegments */
1506 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1507 			       0,			/* flags */
1508 			       NULL, NULL,		/* No locking needed */
1509 			       &sc->aac_common_dmat)) {
1510 		device_printf(sc->aac_dev,
1511 			      "can't allocate common structure DMA tag\n");
1512 		goto out;
1513 	}
1514 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1515 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1516 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1517 		goto out;
1518 	}
1519 
1520 	/*
1521 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1522 	 * below address 8192 in physical memory.
1523 	 * XXX If the padding is not needed, can it be put to use instead
1524 	 * of ignored?
1525 	 */
1526 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1527 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1528 			aac_common_map, sc, 0);
1529 
1530 	if (sc->aac_common_busaddr < 8192) {
1531 		sc->aac_common = (struct aac_common *)
1532 		    ((uint8_t *)sc->aac_common + 8192);
1533 		sc->aac_common_busaddr += 8192;
1534 	}
1535 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1536 
1537 	/* Allocate some FIBs and associated command structs */
1538 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1539 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1540 				  M_AACBUF, M_WAITOK|M_ZERO);
1541 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1542 		if (aac_alloc_commands(sc) != 0)
1543 			break;
1544 	}
1545 	if (sc->total_fibs == 0)
1546 		goto out;
1547 
1548 	/*
1549 	 * Fill in the init structure.  This tells the adapter about the
1550 	 * physical location of various important shared data structures.
1551 	 */
1552 	ip = &sc->aac_common->ac_init;
1553 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1554 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1555 
1556 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1557 					 offsetof(struct aac_common, ac_fibs);
1558 	ip->AdapterFibsVirtualAddress = 0;
1559 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1560 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1561 
1562 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1563 				  offsetof(struct aac_common, ac_printf);
1564 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1565 
1566 	/*
1567 	 * The adapter assumes that pages are 4K in size, except on some
1568  	 * broken firmware versions that do the page->byte conversion twice,
1569 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1570 	 * Round up since the granularity is so high.
1571 	 */
1572 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1573 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1574 		ip->HostPhysMemPages =
1575 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1576 	}
1577 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1578 
1579 	/*
1580 	 * Initialise FIB queues.  Note that it appears that the layout of the
1581 	 * indexes and the segmentation of the entries may be mandated by the
1582 	 * adapter, which is only told about the base of the queue index fields.
1583 	 *
1584 	 * The initial values of the indices are assumed to inform the adapter
1585 	 * of the sizes of the respective queues, and theoretically it could
1586 	 * work out the entire layout of the queue structures from this.  We
1587 	 * take the easy route and just lay this area out like everyone else
1588 	 * does.
1589 	 *
1590 	 * The Linux driver uses a much more complex scheme whereby several
1591 	 * header records are kept for each queue.  We use a couple of generic
1592 	 * list manipulation functions which 'know' the size of each list by
1593 	 * virtue of a table.
1594 	 */
1595 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1596 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1597 	sc->aac_queues =
1598 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1599 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1600 
1601 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1602 		AAC_HOST_NORM_CMD_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1604 		AAC_HOST_NORM_CMD_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1606 		AAC_HOST_HIGH_CMD_ENTRIES;
1607 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1608 		AAC_HOST_HIGH_CMD_ENTRIES;
1609 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1610 		AAC_ADAP_NORM_CMD_ENTRIES;
1611 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1612 		AAC_ADAP_NORM_CMD_ENTRIES;
1613 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1614 		AAC_ADAP_HIGH_CMD_ENTRIES;
1615 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1616 		AAC_ADAP_HIGH_CMD_ENTRIES;
1617 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1618 		AAC_HOST_NORM_RESP_ENTRIES;
1619 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1620 		AAC_HOST_NORM_RESP_ENTRIES;
1621 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1622 		AAC_HOST_HIGH_RESP_ENTRIES;
1623 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1624 		AAC_HOST_HIGH_RESP_ENTRIES;
1625 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1626 		AAC_ADAP_NORM_RESP_ENTRIES;
1627 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1628 		AAC_ADAP_NORM_RESP_ENTRIES;
1629 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1630 		AAC_ADAP_HIGH_RESP_ENTRIES;
1631 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1632 		AAC_ADAP_HIGH_RESP_ENTRIES;
1633 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1634 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1635 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1636 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1637 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1638 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1639 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1640 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1641 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1642 		&sc->aac_queues->qt_HostNormRespQueue[0];
1643 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1644 		&sc->aac_queues->qt_HostHighRespQueue[0];
1645 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1646 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1647 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1648 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1649 
1650 	/*
1651 	 * Do controller-type-specific initialisation
1652 	 */
1653 	switch (sc->aac_hwif) {
1654 	case AAC_HWIF_I960RX:
1655 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1656 		break;
1657 	case AAC_HWIF_RKT:
1658 		AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
1659 		break;
1660 	default:
1661 		break;
1662 	}
1663 
1664 	/*
1665 	 * Give the init structure to the controller.
1666 	 */
1667 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1668 			     sc->aac_common_busaddr +
1669 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1670 			     NULL)) {
1671 		device_printf(sc->aac_dev,
1672 			      "error establishing init structure\n");
1673 		error = EIO;
1674 		goto out;
1675 	}
1676 
1677 	error = 0;
1678 out:
1679 	return(error);
1680 }
1681 
1682 /*
1683  * Send a synchronous command to the controller and wait for a result.
1684  */
1685 static int
1686 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1687 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1688 		 u_int32_t *sp)
1689 {
1690 	time_t then;
1691 	u_int32_t status;
1692 
1693 	debug_called(3);
1694 
1695 	/* populate the mailbox */
1696 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1697 
1698 	/* ensure the sync command doorbell flag is cleared */
1699 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1700 
1701 	/* then set it to signal the adapter */
1702 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1703 
1704 	/* spin waiting for the command to complete */
1705 	then = time_second;
1706 	do {
1707 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1708 			debug(1, "timed out");
1709 			return(EIO);
1710 		}
1711 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1712 
1713 	/* clear the completion flag */
1714 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1715 
1716 	/* get the command status */
1717 	status = AAC_GET_MAILBOX(sc, 0);
1718 	if (sp != NULL)
1719 		*sp = status;
1720 	return(0);
1721 }
1722 
1723 int
1724 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1725 		 struct aac_fib *fib, u_int16_t datasize)
1726 {
1727 	debug_called(3);
1728 
1729 	if (datasize > AAC_FIB_DATASIZE)
1730 		return(EINVAL);
1731 
1732 	/*
1733 	 * Set up the sync FIB
1734 	 */
1735 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1736 				AAC_FIBSTATE_INITIALISED |
1737 				AAC_FIBSTATE_EMPTY;
1738 	fib->Header.XferState |= xferstate;
1739 	fib->Header.Command = command;
1740 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1741 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1742 	fib->Header.SenderSize = sizeof(struct aac_fib);
1743 	fib->Header.SenderFibAddress = 0;	/* Not needed */
1744 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1745 					 offsetof(struct aac_common,
1746 						  ac_sync_fib);
1747 
1748 	/*
1749 	 * Give the FIB to the controller, wait for a response.
1750 	 */
1751 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1752 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1753 		debug(2, "IO error");
1754 		return(EIO);
1755 	}
1756 
1757 	return (0);
1758 }
1759 
1760 /*
1761  * Adapter-space FIB queue manipulation
1762  *
1763  * Note that the queue implementation here is a little funky; neither the PI or
1764  * CI will ever be zero.  This behaviour is a controller feature.
1765  */
1766 static struct {
1767 	int		size;
1768 	int		notify;
1769 } aac_qinfo[] = {
1770 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1771 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1772 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1773 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1774 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1775 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1776 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1777 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1778 };
1779 
1780 /*
1781  * Atomically insert an entry into the nominated queue, returns 0 on success or
1782  * EBUSY if the queue is full.
1783  *
1784  * Note: it would be more efficient to defer notifying the controller in
1785  *	 the case where we may be inserting several entries in rapid succession,
1786  *	 but implementing this usefully may be difficult (it would involve a
1787  *	 separate queue/notify interface).
1788  */
1789 static int
1790 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1791 {
1792 	u_int32_t pi, ci;
1793 	int error;
1794 	u_int32_t fib_size;
1795 	u_int32_t fib_addr;
1796 
1797 	debug_called(3);
1798 
1799 	fib_size = cm->cm_fib->Header.Size;
1800 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1801 
1802 	/* get the producer/consumer indices */
1803 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1804 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1805 
1806 	/* wrap the queue? */
1807 	if (pi >= aac_qinfo[queue].size)
1808 		pi = 0;
1809 
1810 	/* check for queue full */
1811 	if ((pi + 1) == ci) {
1812 		error = EBUSY;
1813 		goto out;
1814 	}
1815 
1816 	/*
1817 	 * To avoid a race with its completion interrupt, place this command on
1818 	 * the busy queue prior to advertising it to the controller.
1819 	 */
1820 	aac_enqueue_busy(cm);
1821 
1822 	/* populate queue entry */
1823 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1824 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1825 
1826 	/* update producer index */
1827 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1828 
1829 	/* notify the adapter if we know how */
1830 	if (aac_qinfo[queue].notify != 0)
1831 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1832 
1833 	error = 0;
1834 
1835 out:
1836 	return(error);
1837 }
1838 
1839 /*
1840  * Atomically remove one entry from the nominated queue, returns 0 on
1841  * success or ENOENT if the queue is empty.
1842  */
1843 static int
1844 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1845 		struct aac_fib **fib_addr)
1846 {
1847 	u_int32_t pi, ci;
1848 	u_int32_t fib_index;
1849 	int error;
1850 	int notify;
1851 
1852 	debug_called(3);
1853 
1854 	/* get the producer/consumer indices */
1855 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1856 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1857 
1858 	/* check for queue empty */
1859 	if (ci == pi) {
1860 		error = ENOENT;
1861 		goto out;
1862 	}
1863 
1864 	/* wrap the pi so the following test works */
1865 	if (pi >= aac_qinfo[queue].size)
1866 		pi = 0;
1867 
1868 	notify = 0;
1869 	if (ci == pi + 1)
1870 		notify++;
1871 
1872 	/* wrap the queue? */
1873 	if (ci >= aac_qinfo[queue].size)
1874 		ci = 0;
1875 
1876 	/* fetch the entry */
1877 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1878 
1879 	switch (queue) {
1880 	case AAC_HOST_NORM_CMD_QUEUE:
1881 	case AAC_HOST_HIGH_CMD_QUEUE:
1882 		/*
1883 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1884 		 * on to hold an address.  For AIF's, the adapter assumes
1885 		 * that it's giving us an address into the array of AIF fibs.
1886 		 * Therefore, we have to convert it to an index.
1887 		 */
1888 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1889 			sizeof(struct aac_fib);
1890 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1891 		break;
1892 
1893 	case AAC_HOST_NORM_RESP_QUEUE:
1894 	case AAC_HOST_HIGH_RESP_QUEUE:
1895 	{
1896 		struct aac_command *cm;
1897 
1898 		/*
1899 		 * As above, an index is used instead of an actual address.
1900 		 * Gotta shift the index to account for the fast response
1901 		 * bit.  No other correction is needed since this value was
1902 		 * originally provided by the driver via the SenderFibAddress
1903 		 * field.
1904 		 */
1905 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1906 		cm = sc->aac_commands + (fib_index >> 1);
1907 		*fib_addr = cm->cm_fib;
1908 
1909 		/*
1910 		 * Is this a fast response? If it is, update the fib fields in
1911 		 * local memory since the whole fib isn't DMA'd back up.
1912 		 */
1913 		if (fib_index & 0x01) {
1914 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1915 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1916 		}
1917 		break;
1918 	}
1919 	default:
1920 		panic("Invalid queue in aac_dequeue_fib()");
1921 		break;
1922 	}
1923 
1924 	/* update consumer index */
1925 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1926 
1927 	/* if we have made the queue un-full, notify the adapter */
1928 	if (notify && (aac_qinfo[queue].notify != 0))
1929 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1930 	error = 0;
1931 
1932 out:
1933 	return(error);
1934 }
1935 
1936 /*
1937  * Put our response to an Adapter Initialed Fib on the response queue
1938  */
1939 static int
1940 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1941 {
1942 	u_int32_t pi, ci;
1943 	int error;
1944 	u_int32_t fib_size;
1945 	u_int32_t fib_addr;
1946 
1947 	debug_called(1);
1948 
1949 	/* Tell the adapter where the FIB is */
1950 	fib_size = fib->Header.Size;
1951 	fib_addr = fib->Header.SenderFibAddress;
1952 	fib->Header.ReceiverFibAddress = fib_addr;
1953 
1954 	/* get the producer/consumer indices */
1955 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1956 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1957 
1958 	/* wrap the queue? */
1959 	if (pi >= aac_qinfo[queue].size)
1960 		pi = 0;
1961 
1962 	/* check for queue full */
1963 	if ((pi + 1) == ci) {
1964 		error = EBUSY;
1965 		goto out;
1966 	}
1967 
1968 	/* populate queue entry */
1969 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1970 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1971 
1972 	/* update producer index */
1973 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1974 
1975 	/* notify the adapter if we know how */
1976 	if (aac_qinfo[queue].notify != 0)
1977 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1978 
1979 	error = 0;
1980 
1981 out:
1982 	return(error);
1983 }
1984 
1985 /*
1986  * Check for commands that have been outstanding for a suspiciously long time,
1987  * and complain about them.
1988  */
1989 static void
1990 aac_timeout(struct aac_softc *sc)
1991 {
1992 	struct aac_command *cm;
1993 	time_t deadline;
1994 	int timedout, code;
1995 
1996 	/*
1997 	 * Traverse the busy command list, bitch about late commands once
1998 	 * only.
1999 	 */
2000 	timedout = 0;
2001 	deadline = time_second - AAC_CMD_TIMEOUT;
2002 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2003 		if ((cm->cm_timestamp  < deadline)
2004 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2005 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2006 			device_printf(sc->aac_dev,
2007 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2008 				      cm, (int)(time_second-cm->cm_timestamp));
2009 			AAC_PRINT_FIB(sc, cm->cm_fib);
2010 			timedout++;
2011 		}
2012 	}
2013 
2014 	if (timedout) {
2015 		code = AAC_GET_FWSTATUS(sc);
2016 		if (code != AAC_UP_AND_RUNNING) {
2017 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2018 				      "longer running! code= 0x%x\n", code);
2019 		}
2020 	}
2021 	return;
2022 }
2023 
2024 /*
2025  * Interface Function Vectors
2026  */
2027 
2028 /*
2029  * Read the current firmware status word.
2030  */
2031 static int
2032 aac_sa_get_fwstatus(struct aac_softc *sc)
2033 {
2034 	debug_called(3);
2035 
2036 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2037 }
2038 
2039 static int
2040 aac_rx_get_fwstatus(struct aac_softc *sc)
2041 {
2042 	debug_called(3);
2043 
2044 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2045 }
2046 
2047 static int
2048 aac_fa_get_fwstatus(struct aac_softc *sc)
2049 {
2050 	int val;
2051 
2052 	debug_called(3);
2053 
2054 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2055 	return (val);
2056 }
2057 
2058 static int
2059 aac_rkt_get_fwstatus(struct aac_softc *sc)
2060 {
2061 	debug_called(3);
2062 
2063 	return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
2064 }
2065 
2066 /*
2067  * Notify the controller of a change in a given queue
2068  */
2069 
2070 static void
2071 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2072 {
2073 	debug_called(3);
2074 
2075 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2076 }
2077 
2078 static void
2079 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2080 {
2081 	debug_called(3);
2082 
2083 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2084 }
2085 
2086 static void
2087 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2088 {
2089 	debug_called(3);
2090 
2091 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2092 	AAC_FA_HACK(sc);
2093 }
2094 
2095 static void
2096 aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2097 {
2098 	debug_called(3);
2099 
2100 	AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
2101 }
2102 
2103 /*
2104  * Get the interrupt reason bits
2105  */
2106 static int
2107 aac_sa_get_istatus(struct aac_softc *sc)
2108 {
2109 	debug_called(3);
2110 
2111 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2112 }
2113 
2114 static int
2115 aac_rx_get_istatus(struct aac_softc *sc)
2116 {
2117 	debug_called(3);
2118 
2119 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2120 }
2121 
2122 static int
2123 aac_fa_get_istatus(struct aac_softc *sc)
2124 {
2125 	int val;
2126 
2127 	debug_called(3);
2128 
2129 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2130 	return (val);
2131 }
2132 
2133 static int
2134 aac_rkt_get_istatus(struct aac_softc *sc)
2135 {
2136 	debug_called(3);
2137 
2138 	return(AAC_GETREG4(sc, AAC_RKT_ODBR));
2139 }
2140 
2141 /*
2142  * Clear some interrupt reason bits
2143  */
2144 static void
2145 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2146 {
2147 	debug_called(3);
2148 
2149 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2150 }
2151 
2152 static void
2153 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2154 {
2155 	debug_called(3);
2156 
2157 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2158 }
2159 
2160 static void
2161 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2162 {
2163 	debug_called(3);
2164 
2165 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2166 	AAC_FA_HACK(sc);
2167 }
2168 
2169 static void
2170 aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2171 {
2172 	debug_called(3);
2173 
2174 	AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
2175 }
2176 
2177 /*
2178  * Populate the mailbox and set the command word
2179  */
2180 static void
2181 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2182 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2183 {
2184 	debug_called(4);
2185 
2186 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2187 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2188 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2189 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2190 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2191 }
2192 
2193 static void
2194 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2195 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2196 {
2197 	debug_called(4);
2198 
2199 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2200 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2201 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2202 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2203 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2204 }
2205 
2206 static void
2207 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2208 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2209 {
2210 	debug_called(4);
2211 
2212 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2213 	AAC_FA_HACK(sc);
2214 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2215 	AAC_FA_HACK(sc);
2216 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2217 	AAC_FA_HACK(sc);
2218 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2219 	AAC_FA_HACK(sc);
2220 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2221 	AAC_FA_HACK(sc);
2222 }
2223 
2224 static void
2225 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2226 		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2227 {
2228 	debug_called(4);
2229 
2230 	AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
2231 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2232 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2233 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2234 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2235 }
2236 
2237 /*
2238  * Fetch the immediate command status word
2239  */
2240 static int
2241 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2242 {
2243 	debug_called(4);
2244 
2245 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2246 }
2247 
2248 static int
2249 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2250 {
2251 	debug_called(4);
2252 
2253 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2254 }
2255 
2256 static int
2257 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2258 {
2259 	int val;
2260 
2261 	debug_called(4);
2262 
2263 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2264 	return (val);
2265 }
2266 
2267 static int
2268 aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2269 {
2270 	debug_called(4);
2271 
2272 	return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2273 }
2274 
2275 /*
2276  * Set/clear interrupt masks
2277  */
2278 static void
2279 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2280 {
2281 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2282 
2283 	if (enable) {
2284 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2285 	} else {
2286 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2287 	}
2288 }
2289 
2290 static void
2291 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2292 {
2293 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2294 
2295 	if (enable) {
2296 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2297 	} else {
2298 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2299 	}
2300 }
2301 
2302 static void
2303 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2304 {
2305 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2306 
2307 	if (enable) {
2308 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2309 		AAC_FA_HACK(sc);
2310 	} else {
2311 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2312 		AAC_FA_HACK(sc);
2313 	}
2314 }
2315 
2316 static void
2317 aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2318 {
2319 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2320 
2321 	if (enable) {
2322 		AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2323 	} else {
2324 		AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
2325 	}
2326 }
2327 
2328 /*
2329  * Debugging and Diagnostics
2330  */
2331 
2332 /*
2333  * Print some information about the controller.
2334  */
2335 static void
2336 aac_describe_controller(struct aac_softc *sc)
2337 {
2338 	struct aac_fib *fib;
2339 	struct aac_adapter_info	*info;
2340 
2341 	debug_called(2);
2342 
2343 	aac_alloc_sync_fib(sc, &fib);
2344 
2345 	fib->data[0] = 0;
2346 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2347 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2348 		aac_release_sync_fib(sc);
2349 		return;
2350 	}
2351 
2352 	/* save the kernel revision structure for later use */
2353 	info = (struct aac_adapter_info *)&fib->data[0];
2354 	sc->aac_revision = info->KernelRevision;
2355 
2356 	if (bootverbose) {
2357 		device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2358 		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2359 		    info->ClockSpeed, info->BufferMem / (1024 * 1024),
2360 		    aac_describe_code(aac_battery_platform,
2361 		    info->batteryPlatform));
2362 
2363 		device_printf(sc->aac_dev,
2364 		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2365 		    info->KernelRevision.external.comp.major,
2366 		    info->KernelRevision.external.comp.minor,
2367 		    info->KernelRevision.external.comp.dash,
2368 		    info->KernelRevision.buildNumber,
2369 		    (u_int32_t)(info->SerialNumber & 0xffffff));
2370 
2371 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2372 			      sc->supported_options,
2373 			      "\20"
2374 			      "\1SNAPSHOT"
2375 			      "\2CLUSTERS"
2376 			      "\3WCACHE"
2377 			      "\4DATA64"
2378 			      "\5HOSTTIME"
2379 			      "\6RAID50"
2380 			      "\7WINDOW4GB"
2381 			      "\10SCSIUPGD"
2382 			      "\11SOFTERR"
2383 			      "\12NORECOND"
2384 			      "\13SGMAP64"
2385 			      "\14ALARM"
2386 			      "\15NONDASD");
2387 	}
2388 	aac_release_sync_fib(sc);
2389 }
2390 
2391 /*
2392  * Look up a text description of a numeric error code and return a pointer to
2393  * same.
2394  */
2395 static char *
2396 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2397 {
2398 	int i;
2399 
2400 	for (i = 0; table[i].string != NULL; i++)
2401 		if (table[i].code == code)
2402 			return(table[i].string);
2403 	return(table[i + 1].string);
2404 }
2405 
2406 /*
2407  * Management Interface
2408  */
2409 
2410 static int
2411 aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2412 {
2413 	struct aac_softc *sc;
2414 
2415 	debug_called(2);
2416 
2417 	sc = dev->si_drv1;
2418 
2419 	/* Check to make sure the device isn't already open */
2420 	if (sc->aac_state & AAC_STATE_OPEN) {
2421 		return EBUSY;
2422 	}
2423 	sc->aac_state |= AAC_STATE_OPEN;
2424 
2425 	return 0;
2426 }
2427 
2428 static int
2429 aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2430 {
2431 	struct aac_softc *sc;
2432 
2433 	debug_called(2);
2434 
2435 	sc = dev->si_drv1;
2436 
2437 	/* Mark this unit as no longer open  */
2438 	sc->aac_state &= ~AAC_STATE_OPEN;
2439 
2440 	return 0;
2441 }
2442 
2443 static int
2444 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2445 {
2446 	union aac_statrequest *as;
2447 	struct aac_softc *sc;
2448 	int error = 0;
2449 	uint32_t cookie;
2450 
2451 	debug_called(2);
2452 
2453 	as = (union aac_statrequest *)arg;
2454 	sc = dev->si_drv1;
2455 
2456 	switch (cmd) {
2457 	case AACIO_STATS:
2458 		switch (as->as_item) {
2459 		case AACQ_FREE:
2460 		case AACQ_BIO:
2461 		case AACQ_READY:
2462 		case AACQ_BUSY:
2463 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2464 			      sizeof(struct aac_qstat));
2465 			break;
2466 		default:
2467 			error = ENOENT;
2468 			break;
2469 		}
2470 	break;
2471 
2472 	case FSACTL_SENDFIB:
2473 		arg = *(caddr_t*)arg;
2474 	case FSACTL_LNX_SENDFIB:
2475 		debug(1, "FSACTL_SENDFIB");
2476 		error = aac_ioctl_sendfib(sc, arg);
2477 		break;
2478 	case FSACTL_AIF_THREAD:
2479 	case FSACTL_LNX_AIF_THREAD:
2480 		debug(1, "FSACTL_AIF_THREAD");
2481 		error = EINVAL;
2482 		break;
2483 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2484 		arg = *(caddr_t*)arg;
2485 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2486 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2487 		/*
2488 		 * Pass the caller out an AdapterFibContext.
2489 		 *
2490 		 * Note that because we only support one opener, we
2491 		 * basically ignore this.  Set the caller's context to a magic
2492 		 * number just in case.
2493 		 *
2494 		 * The Linux code hands the driver a pointer into kernel space,
2495 		 * and then trusts it when the caller hands it back.  Aiee!
2496 		 * Here, we give it the proc pointer of the per-adapter aif
2497 		 * thread. It's only used as a sanity check in other calls.
2498 		 */
2499 		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2500 		error = copyout(&cookie, arg, sizeof(cookie));
2501 		break;
2502 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2503 		arg = *(caddr_t*)arg;
2504 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2505 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2506 		error = aac_getnext_aif(sc, arg);
2507 		break;
2508 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2509 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2510 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2511 		/* don't do anything here */
2512 		break;
2513 	case FSACTL_MINIPORT_REV_CHECK:
2514 		arg = *(caddr_t*)arg;
2515 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2516 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2517 		error = aac_rev_check(sc, arg);
2518 		break;
2519 	case FSACTL_QUERY_DISK:
2520 		arg = *(caddr_t*)arg;
2521 	case FSACTL_LNX_QUERY_DISK:
2522 		debug(1, "FSACTL_QUERY_DISK");
2523 		error = aac_query_disk(sc, arg);
2524 			break;
2525 	case FSACTL_DELETE_DISK:
2526 	case FSACTL_LNX_DELETE_DISK:
2527 		/*
2528 		 * We don't trust the underland to tell us when to delete a
2529 		 * container, rather we rely on an AIF coming from the
2530 		 * controller
2531 		 */
2532 		error = 0;
2533 		break;
2534 	default:
2535 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2536 		error = EINVAL;
2537 		break;
2538 	}
2539 	return(error);
2540 }
2541 
2542 static int
2543 aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2544 {
2545 	struct aac_softc *sc;
2546 	int revents;
2547 
2548 	sc = dev->si_drv1;
2549 	revents = 0;
2550 
2551 	mtx_lock(&sc->aac_aifq_lock);
2552 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2553 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2554 			revents |= poll_events & (POLLIN | POLLRDNORM);
2555 	}
2556 	mtx_unlock(&sc->aac_aifq_lock);
2557 
2558 	if (revents == 0) {
2559 		if (poll_events & (POLLIN | POLLRDNORM))
2560 			selrecord(td, &sc->rcv_select);
2561 	}
2562 
2563 	return (revents);
2564 }
2565 
2566 /*
2567  * Send a FIB supplied from userspace
2568  */
2569 static int
2570 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2571 {
2572 	struct aac_command *cm;
2573 	int size, error;
2574 
2575 	debug_called(2);
2576 
2577 	cm = NULL;
2578 
2579 	/*
2580 	 * Get a command
2581 	 */
2582 	mtx_lock(&sc->aac_io_lock);
2583 	if (aac_alloc_command(sc, &cm)) {
2584 		error = EBUSY;
2585 		goto out;
2586 	}
2587 
2588 	/*
2589 	 * Fetch the FIB header, then re-copy to get data as well.
2590 	 */
2591 	if ((error = copyin(ufib, cm->cm_fib,
2592 			    sizeof(struct aac_fib_header))) != 0)
2593 		goto out;
2594 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2595 	if (size > sizeof(struct aac_fib)) {
2596 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2597 			      size, sizeof(struct aac_fib));
2598 		size = sizeof(struct aac_fib);
2599 	}
2600 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2601 		goto out;
2602 	cm->cm_fib->Header.Size = size;
2603 	cm->cm_timestamp = time_second;
2604 
2605 	/*
2606 	 * Pass the FIB to the controller, wait for it to complete.
2607 	 */
2608 	if ((error = aac_wait_command(cm)) != 0) {
2609 		device_printf(sc->aac_dev,
2610 			      "aac_wait_command return %d\n", error);
2611 		goto out;
2612 	}
2613 
2614 	/*
2615 	 * Copy the FIB and data back out to the caller.
2616 	 */
2617 	size = cm->cm_fib->Header.Size;
2618 	if (size > sizeof(struct aac_fib)) {
2619 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2620 			      size, sizeof(struct aac_fib));
2621 		size = sizeof(struct aac_fib);
2622 	}
2623 	error = copyout(cm->cm_fib, ufib, size);
2624 
2625 out:
2626 	if (cm != NULL) {
2627 		aac_release_command(cm);
2628 	}
2629 
2630 	mtx_unlock(&sc->aac_io_lock);
2631 	return(error);
2632 }
2633 
2634 /*
2635  * Handle an AIF sent to us by the controller; queue it for later reference.
2636  * If the queue fills up, then drop the older entries.
2637  */
2638 static void
2639 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2640 {
2641 	struct aac_aif_command *aif;
2642 	struct aac_container *co, *co_next;
2643 	struct aac_mntinfo *mi;
2644 	struct aac_mntinforesp *mir = NULL;
2645 	u_int16_t rsize;
2646 	int next, found;
2647 	int count = 0, added = 0, i = 0;
2648 
2649 	debug_called(2);
2650 
2651 	aif = (struct aac_aif_command*)&fib->data[0];
2652 	aac_print_aif(sc, aif);
2653 
2654 	/* Is it an event that we should care about? */
2655 	switch (aif->command) {
2656 	case AifCmdEventNotify:
2657 		switch (aif->data.EN.type) {
2658 		case AifEnAddContainer:
2659 		case AifEnDeleteContainer:
2660 			/*
2661 			 * A container was added or deleted, but the message
2662 			 * doesn't tell us anything else!  Re-enumerate the
2663 			 * containers and sort things out.
2664 			 */
2665 			aac_alloc_sync_fib(sc, &fib);
2666 			mi = (struct aac_mntinfo *)&fib->data[0];
2667 			do {
2668 				/*
2669 				 * Ask the controller for its containers one at
2670 				 * a time.
2671 				 * XXX What if the controller's list changes
2672 				 * midway through this enumaration?
2673 				 * XXX This should be done async.
2674 				 */
2675 				bzero(mi, sizeof(struct aac_mntinfo));
2676 				mi->Command = VM_NameServe;
2677 				mi->MntType = FT_FILESYS;
2678 				mi->MntCount = i;
2679 				rsize = sizeof(mir);
2680 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2681 						 sizeof(struct aac_mntinfo))) {
2682 					printf("Error probing container %d\n",
2683 					      i);
2684 					continue;
2685 				}
2686 				mir = (struct aac_mntinforesp *)&fib->data[0];
2687 				/* XXX Need to check if count changed */
2688 				count = mir->MntRespCount;
2689 				/*
2690 				 * Check the container against our list.
2691 				 * co->co_found was already set to 0 in a
2692 				 * previous run.
2693 				 */
2694 				if ((mir->Status == ST_OK) &&
2695 				    (mir->MntTable[0].VolType != CT_NONE)) {
2696 					found = 0;
2697 					TAILQ_FOREACH(co,
2698 						      &sc->aac_container_tqh,
2699 						      co_link) {
2700 						if (co->co_mntobj.ObjectId ==
2701 						    mir->MntTable[0].ObjectId) {
2702 							co->co_found = 1;
2703 							found = 1;
2704 							break;
2705 						}
2706 					}
2707 					/*
2708 					 * If the container matched, continue
2709 					 * in the list.
2710 					 */
2711 					if (found) {
2712 						i++;
2713 						continue;
2714 					}
2715 
2716 					/*
2717 					 * This is a new container.  Do all the
2718 					 * appropriate things to set it up.
2719 					 */
2720 					aac_add_container(sc, mir, 1);
2721 					added = 1;
2722 				}
2723 				i++;
2724 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2725 			aac_release_sync_fib(sc);
2726 
2727 			/*
2728 			 * Go through our list of containers and see which ones
2729 			 * were not marked 'found'.  Since the controller didn't
2730 			 * list them they must have been deleted.  Do the
2731 			 * appropriate steps to destroy the device.  Also reset
2732 			 * the co->co_found field.
2733 			 */
2734 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2735 			while (co != NULL) {
2736 				if (co->co_found == 0) {
2737 					device_delete_child(sc->aac_dev,
2738 							    co->co_disk);
2739 					co_next = TAILQ_NEXT(co, co_link);
2740 					mtx_lock(&sc->aac_container_lock);
2741 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2742 						     co_link);
2743 					mtx_unlock(&sc->aac_container_lock);
2744 					free(co, M_AACBUF);
2745 					co = co_next;
2746 				} else {
2747 					co->co_found = 0;
2748 					co = TAILQ_NEXT(co, co_link);
2749 				}
2750 			}
2751 
2752 			/* Attach the newly created containers */
2753 			if (added)
2754 				bus_generic_attach(sc->aac_dev);
2755 
2756 			break;
2757 
2758 		default:
2759 			break;
2760 		}
2761 
2762 	default:
2763 		break;
2764 	}
2765 
2766 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2767 	mtx_lock(&sc->aac_aifq_lock);
2768 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2769 	if (next != sc->aac_aifq_tail) {
2770 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2771 		sc->aac_aifq_head = next;
2772 
2773 		/* On the off chance that someone is sleeping for an aif... */
2774 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2775 			wakeup(sc->aac_aifq);
2776 		/* Wakeup any poll()ers */
2777 		selwakeuppri(&sc->rcv_select, PRIBIO);
2778 	}
2779 	mtx_unlock(&sc->aac_aifq_lock);
2780 
2781 	return;
2782 }
2783 
2784 /*
2785  * Return the Revision of the driver to userspace and check to see if the
2786  * userspace app is possibly compatible.  This is extremely bogus since
2787  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2788  * returning what the card reported.
2789  */
2790 static int
2791 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2792 {
2793 	struct aac_rev_check rev_check;
2794 	struct aac_rev_check_resp rev_check_resp;
2795 	int error = 0;
2796 
2797 	debug_called(2);
2798 
2799 	/*
2800 	 * Copyin the revision struct from userspace
2801 	 */
2802 	if ((error = copyin(udata, (caddr_t)&rev_check,
2803 			sizeof(struct aac_rev_check))) != 0) {
2804 		return error;
2805 	}
2806 
2807 	debug(2, "Userland revision= %d\n",
2808 	      rev_check.callingRevision.buildNumber);
2809 
2810 	/*
2811 	 * Doctor up the response struct.
2812 	 */
2813 	rev_check_resp.possiblyCompatible = 1;
2814 	rev_check_resp.adapterSWRevision.external.ul =
2815 	    sc->aac_revision.external.ul;
2816 	rev_check_resp.adapterSWRevision.buildNumber =
2817 	    sc->aac_revision.buildNumber;
2818 
2819 	return(copyout((caddr_t)&rev_check_resp, udata,
2820 			sizeof(struct aac_rev_check_resp)));
2821 }
2822 
2823 /*
2824  * Pass the caller the next AIF in their queue
2825  */
2826 static int
2827 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2828 {
2829 	struct get_adapter_fib_ioctl agf;
2830 	int error;
2831 
2832 	debug_called(2);
2833 
2834 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2835 
2836 		/*
2837 		 * Check the magic number that we gave the caller.
2838 		 */
2839 		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2840 			error = EFAULT;
2841 		} else {
2842 			error = aac_return_aif(sc, agf.AifFib);
2843 			if ((error == EAGAIN) && (agf.Wait)) {
2844 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2845 				while (error == EAGAIN) {
2846 					error = tsleep(sc->aac_aifq, PRIBIO |
2847 						       PCATCH, "aacaif", 0);
2848 					if (error == 0)
2849 						error = aac_return_aif(sc,
2850 						    agf.AifFib);
2851 				}
2852 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2853 			}
2854 		}
2855 	}
2856 	return(error);
2857 }
2858 
2859 /*
2860  * Hand the next AIF off the top of the queue out to userspace.
2861  */
2862 static int
2863 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2864 {
2865 	int next, error;
2866 
2867 	debug_called(2);
2868 
2869 	mtx_lock(&sc->aac_aifq_lock);
2870 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2871 		mtx_unlock(&sc->aac_aifq_lock);
2872 		return (EAGAIN);
2873 	}
2874 
2875 	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2876 	error = copyout(&sc->aac_aifq[next], uptr,
2877 			sizeof(struct aac_aif_command));
2878 	if (error)
2879 		device_printf(sc->aac_dev,
2880 		    "aac_return_aif: copyout returned %d\n", error);
2881 	else
2882 		sc->aac_aifq_tail = next;
2883 
2884 	mtx_unlock(&sc->aac_aifq_lock);
2885 	return(error);
2886 }
2887 
2888 /*
2889  * Give the userland some information about the container.  The AAC arch
2890  * expects the driver to be a SCSI passthrough type driver, so it expects
2891  * the containers to have b:t:l numbers.  Fake it.
2892  */
2893 static int
2894 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2895 {
2896 	struct aac_query_disk query_disk;
2897 	struct aac_container *co;
2898 	struct aac_disk	*disk;
2899 	int error, id;
2900 
2901 	debug_called(2);
2902 
2903 	disk = NULL;
2904 
2905 	error = copyin(uptr, (caddr_t)&query_disk,
2906 		       sizeof(struct aac_query_disk));
2907 	if (error)
2908 		return (error);
2909 
2910 	id = query_disk.ContainerNumber;
2911 	if (id == -1)
2912 		return (EINVAL);
2913 
2914 	mtx_lock(&sc->aac_container_lock);
2915 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2916 		if (co->co_mntobj.ObjectId == id)
2917 			break;
2918 		}
2919 
2920 	if (co == NULL) {
2921 			query_disk.Valid = 0;
2922 			query_disk.Locked = 0;
2923 			query_disk.Deleted = 1;		/* XXX is this right? */
2924 	} else {
2925 		disk = device_get_softc(co->co_disk);
2926 		query_disk.Valid = 1;
2927 		query_disk.Locked =
2928 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2929 		query_disk.Deleted = 0;
2930 		query_disk.Bus = device_get_unit(sc->aac_dev);
2931 		query_disk.Target = disk->unit;
2932 		query_disk.Lun = 0;
2933 		query_disk.UnMapped = 0;
2934 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2935 		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
2936 	}
2937 	mtx_unlock(&sc->aac_container_lock);
2938 
2939 	error = copyout((caddr_t)&query_disk, uptr,
2940 			sizeof(struct aac_query_disk));
2941 
2942 	return (error);
2943 }
2944 
2945 static void
2946 aac_get_bus_info(struct aac_softc *sc)
2947 {
2948 	struct aac_fib *fib;
2949 	struct aac_ctcfg *c_cmd;
2950 	struct aac_ctcfg_resp *c_resp;
2951 	struct aac_vmioctl *vmi;
2952 	struct aac_vmi_businf_resp *vmi_resp;
2953 	struct aac_getbusinf businfo;
2954 	struct aac_sim *caminf;
2955 	device_t child;
2956 	int i, found, error;
2957 
2958 	aac_alloc_sync_fib(sc, &fib);
2959 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2960 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2961 
2962 	c_cmd->Command = VM_ContainerConfig;
2963 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2964 	c_cmd->param = 0;
2965 
2966 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2967 	    sizeof(struct aac_ctcfg));
2968 	if (error) {
2969 		device_printf(sc->aac_dev, "Error %d sending "
2970 		    "VM_ContainerConfig command\n", error);
2971 		aac_release_sync_fib(sc);
2972 		return;
2973 	}
2974 
2975 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2976 	if (c_resp->Status != ST_OK) {
2977 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2978 		    c_resp->Status);
2979 		aac_release_sync_fib(sc);
2980 		return;
2981 	}
2982 
2983 	sc->scsi_method_id = c_resp->param;
2984 
2985 	vmi = (struct aac_vmioctl *)&fib->data[0];
2986 	bzero(vmi, sizeof(struct aac_vmioctl));
2987 
2988 	vmi->Command = VM_Ioctl;
2989 	vmi->ObjType = FT_DRIVE;
2990 	vmi->MethId = sc->scsi_method_id;
2991 	vmi->ObjId = 0;
2992 	vmi->IoctlCmd = GetBusInfo;
2993 
2994 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2995 	    sizeof(struct aac_vmioctl));
2996 	if (error) {
2997 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2998 		    error);
2999 		aac_release_sync_fib(sc);
3000 		return;
3001 	}
3002 
3003 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3004 	if (vmi_resp->Status != ST_OK) {
3005 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3006 		    vmi_resp->Status);
3007 		aac_release_sync_fib(sc);
3008 		return;
3009 	}
3010 
3011 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3012 	aac_release_sync_fib(sc);
3013 
3014 	found = 0;
3015 	for (i = 0; i < businfo.BusCount; i++) {
3016 		if (businfo.BusValid[i] != AAC_BUS_VALID)
3017 			continue;
3018 
3019 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3020 		    M_AACBUF, M_NOWAIT | M_ZERO);
3021 		if (caminf == NULL) {
3022 			device_printf(sc->aac_dev,
3023 			    "No memory to add passthrough bus %d\n", i);
3024 			break;
3025 		}
3026 
3027 		child = device_add_child(sc->aac_dev, "aacp", -1);
3028 		if (child == NULL) {
3029 			device_printf(sc->aac_dev,
3030 			    "device_add_child failed for passthrough bus %d\n",
3031 			    i);
3032 			free(caminf, M_AACBUF);
3033 			break;
3034 		}
3035 
3036 		caminf->TargetsPerBus = businfo.TargetsPerBus;
3037 		caminf->BusNumber = i;
3038 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3039 		caminf->aac_sc = sc;
3040 		caminf->sim_dev = child;
3041 
3042 		device_set_ivars(child, caminf);
3043 		device_set_desc(child, "SCSI Passthrough Bus");
3044 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3045 
3046 		found = 1;
3047 	}
3048 
3049 	if (found)
3050 		bus_generic_attach(sc->aac_dev);
3051 
3052 	return;
3053 }
3054