1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 34 */ 35 36 #include "opt_aac.h" 37 38 /* #include <stddef.h> */ 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/poll.h> 48 #if __FreeBSD_version >= 500005 49 #include <sys/selinfo.h> 50 #else 51 #include <sys/select.h> 52 #endif 53 54 #include <dev/aac/aac_compat.h> 55 56 #include <sys/bus.h> 57 #include <sys/conf.h> 58 #include <sys/devicestat.h> 59 #include <sys/disk.h> 60 #include <sys/file.h> 61 #include <sys/signalvar.h> 62 #include <sys/time.h> 63 #include <sys/eventhandler.h> 64 65 #include <machine/bus_memio.h> 66 #include <machine/bus.h> 67 #include <machine/resource.h> 68 69 #include <dev/aac/aacreg.h> 70 #include <dev/aac/aac_ioctl.h> 71 #include <dev/aac/aacvar.h> 72 #include <dev/aac/aac_tables.h> 73 74 static void aac_startup(void *arg); 75 static void aac_add_container(struct aac_softc *sc, 76 struct aac_mntinforesp *mir, int f); 77 78 /* Command Processing */ 79 static void aac_startio(struct aac_softc *sc); 80 static void aac_timeout(struct aac_softc *sc); 81 static int aac_start(struct aac_command *cm); 82 static void aac_complete(void *context, int pending); 83 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 84 static void aac_bio_complete(struct aac_command *cm); 85 static int aac_wait_command(struct aac_command *cm, int timeout); 86 static void aac_host_command(struct aac_softc *sc); 87 static void aac_host_response(struct aac_softc *sc); 88 89 /* Command Buffer Management */ 90 static int aac_alloc_command(struct aac_softc *sc, 91 struct aac_command **cmp); 92 static void aac_release_command(struct aac_command *cm); 93 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 94 int nseg, int error); 95 static int aac_alloc_commands(struct aac_softc *sc); 96 static void aac_free_commands(struct aac_softc *sc); 97 static void aac_map_command(struct aac_command *cm); 98 static void aac_unmap_command(struct aac_command *cm); 99 100 /* Hardware Interface */ 101 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 102 int error); 103 static int aac_check_firmware(struct aac_softc *sc); 104 static int aac_init(struct aac_softc *sc); 105 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 106 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 107 u_int32_t arg3, u_int32_t *sp); 108 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 109 struct aac_command *cm); 110 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 111 u_int32_t *fib_size, struct aac_fib **fib_addr); 112 static int aac_enqueue_response(struct aac_softc *sc, int queue, 113 struct aac_fib *fib); 114 115 /* Falcon/PPC interface */ 116 static int aac_fa_get_fwstatus(struct aac_softc *sc); 117 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 118 static int aac_fa_get_istatus(struct aac_softc *sc); 119 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 120 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 121 u_int32_t arg0, u_int32_t arg1, 122 u_int32_t arg2, u_int32_t arg3); 123 static int aac_fa_get_mailboxstatus(struct aac_softc *sc); 124 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 125 126 struct aac_interface aac_fa_interface = { 127 aac_fa_get_fwstatus, 128 aac_fa_qnotify, 129 aac_fa_get_istatus, 130 aac_fa_clear_istatus, 131 aac_fa_set_mailbox, 132 aac_fa_get_mailboxstatus, 133 aac_fa_set_interrupts 134 }; 135 136 /* StrongARM interface */ 137 static int aac_sa_get_fwstatus(struct aac_softc *sc); 138 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 139 static int aac_sa_get_istatus(struct aac_softc *sc); 140 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 141 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 142 u_int32_t arg0, u_int32_t arg1, 143 u_int32_t arg2, u_int32_t arg3); 144 static int aac_sa_get_mailboxstatus(struct aac_softc *sc); 145 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 146 147 struct aac_interface aac_sa_interface = { 148 aac_sa_get_fwstatus, 149 aac_sa_qnotify, 150 aac_sa_get_istatus, 151 aac_sa_clear_istatus, 152 aac_sa_set_mailbox, 153 aac_sa_get_mailboxstatus, 154 aac_sa_set_interrupts 155 }; 156 157 /* i960Rx interface */ 158 static int aac_rx_get_fwstatus(struct aac_softc *sc); 159 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 160 static int aac_rx_get_istatus(struct aac_softc *sc); 161 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 162 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 163 u_int32_t arg0, u_int32_t arg1, 164 u_int32_t arg2, u_int32_t arg3); 165 static int aac_rx_get_mailboxstatus(struct aac_softc *sc); 166 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 167 168 struct aac_interface aac_rx_interface = { 169 aac_rx_get_fwstatus, 170 aac_rx_qnotify, 171 aac_rx_get_istatus, 172 aac_rx_clear_istatus, 173 aac_rx_set_mailbox, 174 aac_rx_get_mailboxstatus, 175 aac_rx_set_interrupts 176 }; 177 178 /* Debugging and Diagnostics */ 179 static void aac_describe_controller(struct aac_softc *sc); 180 static char *aac_describe_code(struct aac_code_lookup *table, 181 u_int32_t code); 182 183 /* Management Interface */ 184 static d_open_t aac_open; 185 static d_close_t aac_close; 186 static d_ioctl_t aac_ioctl; 187 static d_poll_t aac_poll; 188 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 189 static void aac_handle_aif(struct aac_softc *sc, 190 struct aac_fib *fib); 191 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 192 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 193 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 194 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 195 196 #define AAC_CDEV_MAJOR 150 197 198 static struct cdevsw aac_cdevsw = { 199 aac_open, /* open */ 200 aac_close, /* close */ 201 noread, /* read */ 202 nowrite, /* write */ 203 aac_ioctl, /* ioctl */ 204 aac_poll, /* poll */ 205 nommap, /* mmap */ 206 nostrategy, /* strategy */ 207 "aac", /* name */ 208 AAC_CDEV_MAJOR, /* major */ 209 nodump, /* dump */ 210 nopsize, /* psize */ 211 0, /* flags */ 212 #if __FreeBSD_version < 500005 213 -1, /* bmaj */ 214 #endif 215 }; 216 217 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 218 219 /* sysctl node */ 220 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 221 222 /* 223 * Device Interface 224 */ 225 226 /* 227 * Initialise the controller and softc 228 */ 229 int 230 aac_attach(struct aac_softc *sc) 231 { 232 int error, unit; 233 234 debug_called(1); 235 236 /* 237 * Initialise per-controller queues. 238 */ 239 aac_initq_free(sc); 240 aac_initq_ready(sc); 241 aac_initq_busy(sc); 242 aac_initq_complete(sc); 243 aac_initq_bio(sc); 244 245 #if __FreeBSD_version >= 500005 246 /* 247 * Initialise command-completion task. 248 */ 249 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 250 #endif 251 252 /* disable interrupts before we enable anything */ 253 AAC_MASK_INTERRUPTS(sc); 254 255 /* mark controller as suspended until we get ourselves organised */ 256 sc->aac_state |= AAC_STATE_SUSPEND; 257 258 /* 259 * Check that the firmware on the card is supported. 260 */ 261 if ((error = aac_check_firmware(sc)) != 0) 262 return(error); 263 264 /* 265 * Allocate command structures. 266 */ 267 if ((error = aac_alloc_commands(sc)) != 0) 268 return(error); 269 270 /* Init the sync fib lock */ 271 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 272 273 /* 274 * Initialise the adapter. 275 */ 276 if ((error = aac_init(sc)) != 0) 277 return(error); 278 279 /* 280 * Print a little information about the controller. 281 */ 282 aac_describe_controller(sc); 283 284 /* 285 * Register to probe our containers later. 286 */ 287 TAILQ_INIT(&sc->aac_container_tqh); 288 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 289 290 /* 291 * Lock for the AIF queue 292 */ 293 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 294 295 sc->aac_ich.ich_func = aac_startup; 296 sc->aac_ich.ich_arg = sc; 297 if (config_intrhook_establish(&sc->aac_ich) != 0) { 298 device_printf(sc->aac_dev, 299 "can't establish configuration hook\n"); 300 return(ENXIO); 301 } 302 303 /* 304 * Make the control device. 305 */ 306 unit = device_get_unit(sc->aac_dev); 307 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644, 308 "aac%d", unit); 309 #if __FreeBSD_version > 500005 310 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 311 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 312 #endif 313 sc->aac_dev_t->si_drv1 = sc; 314 315 /* Create the AIF thread */ 316 #if __FreeBSD_version > 500005 317 if (kthread_create((void(*)(void *))aac_host_command, sc, 318 &sc->aifthread, 0, "aac%daif", unit)) 319 #else 320 if (kthread_create((void(*)(void *))aac_host_command, sc, 321 &sc->aifthread, "aac%daif", unit)) 322 #endif 323 panic("Could not create AIF thread\n"); 324 325 /* Register the shutdown method to only be called post-dump */ 326 if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev, 327 SHUTDOWN_PRI_DEFAULT)) == NULL) 328 device_printf(sc->aac_dev, "shutdown event registration failed\n"); 329 330 return(0); 331 } 332 333 /* 334 * Probe for containers, create disks. 335 */ 336 static void 337 aac_startup(void *arg) 338 { 339 struct aac_softc *sc; 340 struct aac_fib *fib; 341 struct aac_mntinfo *mi; 342 struct aac_mntinforesp *mir = NULL; 343 int i = 0; 344 345 debug_called(1); 346 347 sc = (struct aac_softc *)arg; 348 349 /* disconnect ourselves from the intrhook chain */ 350 config_intrhook_disestablish(&sc->aac_ich); 351 352 aac_get_sync_fib(sc, &fib, 0); 353 mi = (struct aac_mntinfo *)&fib->data[0]; 354 355 /* loop over possible containers */ 356 mi->Command = VM_NameServe; 357 mi->MntType = FT_FILESYS; 358 do { 359 /* request information on this container */ 360 mi->MntCount = i; 361 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 362 sizeof(struct aac_mntinfo))) { 363 debug(2, "error probing container %d", i); 364 continue; 365 } 366 /* check response size */ 367 368 mir = (struct aac_mntinforesp *)&fib->data[0]; 369 aac_add_container(sc, mir, 0); 370 i++; 371 } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS)); 372 373 aac_release_sync_fib(sc); 374 375 /* poke the bus to actually attach the child devices */ 376 if (bus_generic_attach(sc->aac_dev)) 377 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 378 379 /* mark the controller up */ 380 sc->aac_state &= ~AAC_STATE_SUSPEND; 381 382 /* enable interrupts now */ 383 AAC_UNMASK_INTERRUPTS(sc); 384 385 /* enable the timeout watchdog */ 386 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 387 } 388 389 /* 390 * Create a device to respresent a new container 391 */ 392 static void 393 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 394 { 395 struct aac_container *co; 396 device_t child; 397 398 /* 399 * Check container volume type for validity. Note that many of 400 * the possible types may never show up. 401 */ 402 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 403 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, 404 M_NOWAIT); 405 if (co == NULL) 406 panic("Out of memory?!\n"); 407 debug(1, "id %x name '%.16s' size %u type %d", 408 mir->MntTable[0].ObjectId, 409 mir->MntTable[0].FileSystemName, 410 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 411 412 if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL) 413 device_printf(sc->aac_dev, "device_add_child failed\n"); 414 else 415 device_set_ivars(child, co); 416 device_set_desc(child, aac_describe_code(aac_container_types, 417 mir->MntTable[0].VolType)); 418 co->co_disk = child; 419 co->co_found = f; 420 bcopy(&mir->MntTable[0], &co->co_mntobj, 421 sizeof(struct aac_mntobj)); 422 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 423 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 424 AAC_LOCK_RELEASE(&sc->aac_container_lock); 425 } 426 } 427 428 /* 429 * Free all of the resources associated with (sc) 430 * 431 * Should not be called if the controller is active. 432 */ 433 void 434 aac_free(struct aac_softc *sc) 435 { 436 debug_called(1); 437 438 /* remove the control device */ 439 if (sc->aac_dev_t != NULL) 440 destroy_dev(sc->aac_dev_t); 441 442 /* throw away any FIB buffers, discard the FIB DMA tag */ 443 if (sc->aac_fibs != NULL) 444 aac_free_commands(sc); 445 if (sc->aac_fib_dmat) 446 bus_dma_tag_destroy(sc->aac_fib_dmat); 447 448 /* destroy the common area */ 449 if (sc->aac_common) { 450 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 451 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 452 sc->aac_common_dmamap); 453 } 454 if (sc->aac_common_dmat) 455 bus_dma_tag_destroy(sc->aac_common_dmat); 456 457 /* disconnect the interrupt handler */ 458 if (sc->aac_intr) 459 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 460 if (sc->aac_irq != NULL) 461 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 462 sc->aac_irq); 463 464 /* destroy data-transfer DMA tag */ 465 if (sc->aac_buffer_dmat) 466 bus_dma_tag_destroy(sc->aac_buffer_dmat); 467 468 /* destroy the parent DMA tag */ 469 if (sc->aac_parent_dmat) 470 bus_dma_tag_destroy(sc->aac_parent_dmat); 471 472 /* release the register window mapping */ 473 if (sc->aac_regs_resource != NULL) 474 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 475 sc->aac_regs_rid, sc->aac_regs_resource); 476 } 477 478 /* 479 * Disconnect from the controller completely, in preparation for unload. 480 */ 481 int 482 aac_detach(device_t dev) 483 { 484 struct aac_softc *sc; 485 #if AAC_BROKEN 486 int error; 487 #endif 488 489 debug_called(1); 490 491 sc = device_get_softc(dev); 492 493 if (sc->aac_state & AAC_STATE_OPEN) 494 return(EBUSY); 495 496 #if AAC_BROKEN 497 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 498 sc->aifflags |= AAC_AIFFLAGS_EXIT; 499 wakeup(sc->aifthread); 500 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 501 } 502 503 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 504 panic("Cannot shutdown AIF thread\n"); 505 506 if ((error = aac_shutdown(dev))) 507 return(error); 508 509 aac_free(sc); 510 511 return(0); 512 #else 513 return (EBUSY); 514 #endif 515 } 516 517 /* 518 * Bring the controller down to a dormant state and detach all child devices. 519 * 520 * This function is called before detach or system shutdown. 521 * 522 * Note that we can assume that the bioq on the controller is empty, as we won't 523 * allow shutdown if any device is open. 524 */ 525 int 526 aac_shutdown(device_t dev) 527 { 528 struct aac_softc *sc; 529 struct aac_fib *fib; 530 struct aac_close_command *cc; 531 int s; 532 533 debug_called(1); 534 535 sc = device_get_softc(dev); 536 537 s = splbio(); 538 539 sc->aac_state |= AAC_STATE_SUSPEND; 540 541 /* 542 * Send a Container shutdown followed by a HostShutdown FIB to the 543 * controller to convince it that we don't want to talk to it anymore. 544 * We've been closed and all I/O completed already 545 */ 546 device_printf(sc->aac_dev, "shutting down controller..."); 547 548 aac_get_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 549 cc = (struct aac_close_command *)&fib->data[0]; 550 551 cc->Command = VM_CloseAll; 552 cc->ContainerId = 0xffffffff; 553 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 554 sizeof(struct aac_close_command))) 555 printf("FAILED.\n"); 556 else { 557 fib->data[0] = 0; 558 /* 559 * XXX Issuing this command to the controller makes it shut down 560 * but also keeps it from coming back up without a reset of the 561 * PCI bus. This is not desirable if you are just unloading the 562 * driver module with the intent to reload it later. 563 */ 564 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 565 fib, 1)) { 566 printf("FAILED.\n"); 567 } else { 568 printf("done.\n"); 569 } 570 } 571 572 AAC_MASK_INTERRUPTS(sc); 573 574 splx(s); 575 return(0); 576 } 577 578 /* 579 * Bring the controller to a quiescent state, ready for system suspend. 580 */ 581 int 582 aac_suspend(device_t dev) 583 { 584 struct aac_softc *sc; 585 int s; 586 587 debug_called(1); 588 589 sc = device_get_softc(dev); 590 591 s = splbio(); 592 593 sc->aac_state |= AAC_STATE_SUSPEND; 594 595 AAC_MASK_INTERRUPTS(sc); 596 splx(s); 597 return(0); 598 } 599 600 /* 601 * Bring the controller back to a state ready for operation. 602 */ 603 int 604 aac_resume(device_t dev) 605 { 606 struct aac_softc *sc; 607 608 debug_called(1); 609 610 sc = device_get_softc(dev); 611 612 sc->aac_state &= ~AAC_STATE_SUSPEND; 613 AAC_UNMASK_INTERRUPTS(sc); 614 return(0); 615 } 616 617 /* 618 * Take an interrupt. 619 */ 620 void 621 aac_intr(void *arg) 622 { 623 struct aac_softc *sc; 624 u_int16_t reason; 625 626 debug_called(2); 627 628 sc = (struct aac_softc *)arg; 629 630 reason = AAC_GET_ISTATUS(sc); 631 632 /* controller wants to talk to the log */ 633 if (reason & AAC_DB_PRINTF) { 634 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 635 aac_print_printf(sc); 636 } 637 638 /* controller has a message for us? */ 639 if (reason & AAC_DB_COMMAND_READY) { 640 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY); 641 /* XXX What happens if the thread is already awake? */ 642 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 643 sc->aifflags |= AAC_AIFFLAGS_PENDING; 644 wakeup(sc->aifthread); 645 } 646 } 647 648 /* controller has a response for us? */ 649 if (reason & AAC_DB_RESPONSE_READY) { 650 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 651 aac_host_response(sc); 652 } 653 654 /* 655 * spurious interrupts that we don't use - reset the mask and clear the 656 * interrupts 657 */ 658 if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) { 659 AAC_UNMASK_INTERRUPTS(sc); 660 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL | 661 AAC_DB_RESPONSE_NOT_FULL); 662 } 663 }; 664 665 /* 666 * Command Processing 667 */ 668 669 /* 670 * Start as much queued I/O as possible on the controller 671 */ 672 static void 673 aac_startio(struct aac_softc *sc) 674 { 675 struct aac_command *cm; 676 677 debug_called(2); 678 679 for (;;) { 680 /* 681 * Try to get a command that's been put off for lack of 682 * resources 683 */ 684 cm = aac_dequeue_ready(sc); 685 686 /* 687 * Try to build a command off the bio queue (ignore error 688 * return) 689 */ 690 if (cm == NULL) 691 aac_bio_command(sc, &cm); 692 693 /* nothing to do? */ 694 if (cm == NULL) 695 break; 696 697 /* try to give the command to the controller */ 698 if (aac_start(cm) == EBUSY) { 699 /* put it on the ready queue for later */ 700 aac_requeue_ready(cm); 701 break; 702 } 703 } 704 } 705 706 /* 707 * Deliver a command to the controller; allocate controller resources at the 708 * last moment when possible. 709 */ 710 static int 711 aac_start(struct aac_command *cm) 712 { 713 struct aac_softc *sc; 714 int error; 715 716 debug_called(2); 717 718 sc = cm->cm_sc; 719 720 /* get the command mapped */ 721 aac_map_command(cm); 722 723 /* fix up the address values in the FIB */ 724 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 725 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 726 727 /* save a pointer to the command for speedy reverse-lookup */ 728 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 729 * address issue */ 730 731 /* put the FIB on the outbound queue */ 732 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 733 return(error); 734 } 735 736 /* 737 * Handle notification of one or more FIBs coming from the controller. 738 */ 739 static void 740 aac_host_command(struct aac_softc *sc) 741 { 742 struct aac_fib *fib; 743 u_int32_t fib_size; 744 int size; 745 746 debug_called(2); 747 748 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 749 750 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 751 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING)) 752 tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz); 753 754 sc->aifflags &= ~AAC_AIFFLAGS_PENDING; 755 for (;;) { 756 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 757 &fib_size, &fib)) 758 break; /* nothing to do */ 759 760 AAC_PRINT_FIB(sc, fib); 761 762 switch (fib->Header.Command) { 763 case AifRequest: 764 aac_handle_aif(sc, fib); 765 break; 766 default: 767 device_printf(sc->aac_dev, "unknown command " 768 "from controller\n"); 769 break; 770 } 771 772 /* Return the AIF to the controller. */ 773 if ((fib->Header.XferState == 0) || 774 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 775 break; 776 777 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 778 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 779 *(AAC_FSAStatus*)fib->data = ST_OK; 780 781 /* XXX Compute the Size field? */ 782 size = fib->Header.Size; 783 if (size > sizeof(struct aac_fib)) { 784 size = sizeof(struct aac_fib); 785 fib->Header.Size = size; 786 } 787 /* 788 * Since we did not generate this command, it 789 * cannot go through the normal 790 * enqueue->startio chain. 791 */ 792 aac_enqueue_response(sc, 793 AAC_ADAP_NORM_RESP_QUEUE, 794 fib); 795 } 796 } 797 } 798 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 799 wakeup(sc->aac_dev); 800 801 #if __FreeBSD_version > 500005 802 mtx_lock(&Giant); 803 #endif 804 kthread_exit(0); 805 } 806 807 /* 808 * Handle notification of one or more FIBs completed by the controller 809 */ 810 static void 811 aac_host_response(struct aac_softc *sc) 812 { 813 struct aac_command *cm; 814 struct aac_fib *fib; 815 u_int32_t fib_size; 816 817 debug_called(2); 818 819 for (;;) { 820 /* look for completed FIBs on our queue */ 821 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 822 &fib)) 823 break; /* nothing to do */ 824 825 /* get the command, unmap and queue for later processing */ 826 cm = (struct aac_command *)fib->Header.SenderData; 827 if (cm == NULL) { 828 AAC_PRINT_FIB(sc, fib); 829 } else { 830 aac_remove_busy(cm); 831 aac_unmap_command(cm); /* XXX defer? */ 832 aac_enqueue_complete(cm); 833 } 834 } 835 836 /* handle completion processing */ 837 #if __FreeBSD_version >= 500005 838 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 839 #else 840 aac_complete(sc, 0); 841 #endif 842 } 843 844 /* 845 * Process completed commands. 846 */ 847 static void 848 aac_complete(void *context, int pending) 849 { 850 struct aac_softc *sc; 851 struct aac_command *cm; 852 853 debug_called(2); 854 855 sc = (struct aac_softc *)context; 856 857 /* pull completed commands off the queue */ 858 for (;;) { 859 cm = aac_dequeue_complete(sc); 860 if (cm == NULL) 861 break; 862 cm->cm_flags |= AAC_CMD_COMPLETED; 863 864 /* is there a completion handler? */ 865 if (cm->cm_complete != NULL) { 866 cm->cm_complete(cm); 867 } else { 868 /* assume that someone is sleeping on this command */ 869 wakeup(cm); 870 } 871 } 872 873 /* see if we can start some more I/O */ 874 aac_startio(sc); 875 } 876 877 /* 878 * Handle a bio submitted from a disk device. 879 */ 880 void 881 aac_submit_bio(struct bio *bp) 882 { 883 struct aac_disk *ad; 884 struct aac_softc *sc; 885 886 debug_called(2); 887 888 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 889 sc = ad->ad_controller; 890 891 /* queue the BIO and try to get some work done */ 892 aac_enqueue_bio(sc, bp); 893 aac_startio(sc); 894 } 895 896 /* 897 * Get a bio and build a command to go with it. 898 */ 899 static int 900 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 901 { 902 struct aac_command *cm; 903 struct aac_fib *fib; 904 struct aac_blockread *br; 905 struct aac_blockwrite *bw; 906 struct aac_disk *ad; 907 struct bio *bp; 908 909 debug_called(2); 910 911 /* get the resources we will need */ 912 cm = NULL; 913 if ((bp = aac_dequeue_bio(sc)) == NULL) 914 goto fail; 915 if (aac_alloc_command(sc, &cm)) /* get a command */ 916 goto fail; 917 918 /* fill out the command */ 919 cm->cm_data = (void *)bp->bio_data; 920 cm->cm_datalen = bp->bio_bcount; 921 cm->cm_complete = aac_bio_complete; 922 cm->cm_private = bp; 923 cm->cm_timestamp = time_second; 924 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 925 926 /* build the FIB */ 927 fib = cm->cm_fib; 928 fib->Header.XferState = 929 AAC_FIBSTATE_HOSTOWNED | 930 AAC_FIBSTATE_INITIALISED | 931 AAC_FIBSTATE_FROMHOST | 932 AAC_FIBSTATE_REXPECTED | 933 AAC_FIBSTATE_NORM; 934 fib->Header.Command = ContainerCommand; 935 fib->Header.Size = sizeof(struct aac_fib_header); 936 937 /* build the read/write request */ 938 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 939 if (BIO_IS_READ(bp)) { 940 br = (struct aac_blockread *)&fib->data[0]; 941 br->Command = VM_CtBlockRead; 942 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 943 br->BlockNumber = bp->bio_pblkno; 944 br->ByteCount = bp->bio_bcount; 945 fib->Header.Size += sizeof(struct aac_blockread); 946 cm->cm_sgtable = &br->SgMap; 947 cm->cm_flags |= AAC_CMD_DATAIN; 948 } else { 949 bw = (struct aac_blockwrite *)&fib->data[0]; 950 bw->Command = VM_CtBlockWrite; 951 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 952 bw->BlockNumber = bp->bio_pblkno; 953 bw->ByteCount = bp->bio_bcount; 954 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 955 fib->Header.Size += sizeof(struct aac_blockwrite); 956 cm->cm_flags |= AAC_CMD_DATAOUT; 957 cm->cm_sgtable = &bw->SgMap; 958 } 959 960 *cmp = cm; 961 return(0); 962 963 fail: 964 if (bp != NULL) 965 aac_enqueue_bio(sc, bp); 966 if (cm != NULL) 967 aac_release_command(cm); 968 return(ENOMEM); 969 } 970 971 /* 972 * Handle a bio-instigated command that has been completed. 973 */ 974 static void 975 aac_bio_complete(struct aac_command *cm) 976 { 977 struct aac_blockread_response *brr; 978 struct aac_blockwrite_response *bwr; 979 struct bio *bp; 980 AAC_FSAStatus status; 981 982 /* fetch relevant status and then release the command */ 983 bp = (struct bio *)cm->cm_private; 984 if (BIO_IS_READ(bp)) { 985 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 986 status = brr->Status; 987 } else { 988 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 989 status = bwr->Status; 990 } 991 aac_release_command(cm); 992 993 /* fix up the bio based on status */ 994 if (status == ST_OK) { 995 bp->bio_resid = 0; 996 } else { 997 bp->bio_error = EIO; 998 bp->bio_flags |= BIO_ERROR; 999 /* pass an error string out to the disk layer */ 1000 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1001 status); 1002 } 1003 aac_biodone(bp); 1004 } 1005 1006 /* 1007 * Submit a command to the controller, return when it completes. 1008 * XXX This is very dangerous! If the card has gone out to lunch, we could 1009 * be stuck here forever. At the same time, signals are not caught 1010 * because there is a risk that a signal could wakeup the tsleep before 1011 * the card has a chance to complete the command. The passed in timeout 1012 * is ignored for the same reason. Since there is no way to cancel a 1013 * command in progress, we should probably create a 'dead' queue where 1014 * commands go that have been interrupted/timed-out/etc, that keeps them 1015 * out of the free pool. That way, if the card is just slow, it won't 1016 * spam the memory of a command that has been recycled. 1017 */ 1018 static int 1019 aac_wait_command(struct aac_command *cm, int timeout) 1020 { 1021 int s, error = 0; 1022 1023 debug_called(2); 1024 1025 /* Put the command on the ready queue and get things going */ 1026 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1027 aac_enqueue_ready(cm); 1028 aac_startio(cm->cm_sc); 1029 s = splbio(); 1030 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1031 error = tsleep(cm, PRIBIO, "aacwait", 0); 1032 } 1033 splx(s); 1034 return(error); 1035 } 1036 1037 /* 1038 *Command Buffer Management 1039 */ 1040 1041 /* 1042 * Allocate a command. 1043 */ 1044 static int 1045 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1046 { 1047 struct aac_command *cm; 1048 1049 debug_called(3); 1050 1051 if ((cm = aac_dequeue_free(sc)) == NULL) 1052 return(ENOMEM); 1053 1054 *cmp = cm; 1055 return(0); 1056 } 1057 1058 /* 1059 * Release a command back to the freelist. 1060 */ 1061 static void 1062 aac_release_command(struct aac_command *cm) 1063 { 1064 debug_called(3); 1065 1066 /* (re)initialise the command/FIB */ 1067 cm->cm_sgtable = NULL; 1068 cm->cm_flags = 0; 1069 cm->cm_complete = NULL; 1070 cm->cm_private = NULL; 1071 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1072 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1073 cm->cm_fib->Header.Flags = 0; 1074 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1075 1076 /* 1077 * These are duplicated in aac_start to cover the case where an 1078 * intermediate stage may have destroyed them. They're left 1079 * initialised here for debugging purposes only. 1080 */ 1081 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1082 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1083 1084 aac_enqueue_free(cm); 1085 } 1086 1087 /* 1088 * Map helper for command/FIB allocation. 1089 */ 1090 static void 1091 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1092 { 1093 struct aac_softc *sc; 1094 1095 sc = (struct aac_softc *)arg; 1096 1097 debug_called(3); 1098 1099 sc->aac_fibphys = segs[0].ds_addr; 1100 } 1101 1102 /* 1103 * Allocate and initialise commands/FIBs for this adapter. 1104 */ 1105 static int 1106 aac_alloc_commands(struct aac_softc *sc) 1107 { 1108 struct aac_command *cm; 1109 int i; 1110 1111 debug_called(1); 1112 1113 /* allocate the FIBs in DMAable memory and load them */ 1114 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1115 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1116 return(ENOMEM); 1117 } 1118 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1119 AAC_FIB_COUNT * sizeof(struct aac_fib), 1120 aac_map_command_helper, sc, 0); 1121 1122 /* initialise constant fields in the command structure */ 1123 for (i = 0; i < AAC_FIB_COUNT; i++) { 1124 cm = &sc->aac_command[i]; 1125 cm->cm_sc = sc; 1126 cm->cm_fib = sc->aac_fibs + i; 1127 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1128 1129 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1130 aac_release_command(cm); 1131 } 1132 return(0); 1133 } 1134 1135 /* 1136 * Free FIBs owned by this adapter. 1137 */ 1138 static void 1139 aac_free_commands(struct aac_softc *sc) 1140 { 1141 int i; 1142 1143 debug_called(1); 1144 1145 for (i = 0; i < AAC_FIB_COUNT; i++) 1146 bus_dmamap_destroy(sc->aac_buffer_dmat, 1147 sc->aac_command[i].cm_datamap); 1148 1149 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1150 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1151 } 1152 1153 /* 1154 * Command-mapping helper function - populate this command's s/g table. 1155 */ 1156 static void 1157 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1158 { 1159 struct aac_command *cm; 1160 struct aac_fib *fib; 1161 struct aac_sg_table *sg; 1162 int i; 1163 1164 debug_called(3); 1165 1166 cm = (struct aac_command *)arg; 1167 fib = cm->cm_fib; 1168 1169 /* find the s/g table */ 1170 sg = cm->cm_sgtable; 1171 1172 /* copy into the FIB */ 1173 if (sg != NULL) { 1174 sg->SgCount = nseg; 1175 for (i = 0; i < nseg; i++) { 1176 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1177 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1178 } 1179 /* update the FIB size for the s/g count */ 1180 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1181 } 1182 1183 } 1184 1185 /* 1186 * Map a command into controller-visible space. 1187 */ 1188 static void 1189 aac_map_command(struct aac_command *cm) 1190 { 1191 struct aac_softc *sc; 1192 1193 debug_called(2); 1194 1195 sc = cm->cm_sc; 1196 1197 /* don't map more than once */ 1198 if (cm->cm_flags & AAC_CMD_MAPPED) 1199 return; 1200 1201 if (cm->cm_datalen != 0) { 1202 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 1203 cm->cm_data, cm->cm_datalen, 1204 aac_map_command_sg, cm, 0); 1205 1206 if (cm->cm_flags & AAC_CMD_DATAIN) 1207 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1208 BUS_DMASYNC_PREREAD); 1209 if (cm->cm_flags & AAC_CMD_DATAOUT) 1210 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1211 BUS_DMASYNC_PREWRITE); 1212 } 1213 cm->cm_flags |= AAC_CMD_MAPPED; 1214 } 1215 1216 /* 1217 * Unmap a command from controller-visible space. 1218 */ 1219 static void 1220 aac_unmap_command(struct aac_command *cm) 1221 { 1222 struct aac_softc *sc; 1223 1224 debug_called(2); 1225 1226 sc = cm->cm_sc; 1227 1228 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1229 return; 1230 1231 if (cm->cm_datalen != 0) { 1232 if (cm->cm_flags & AAC_CMD_DATAIN) 1233 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1234 BUS_DMASYNC_POSTREAD); 1235 if (cm->cm_flags & AAC_CMD_DATAOUT) 1236 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1237 BUS_DMASYNC_POSTWRITE); 1238 1239 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1240 } 1241 cm->cm_flags &= ~AAC_CMD_MAPPED; 1242 } 1243 1244 /* 1245 * Hardware Interface 1246 */ 1247 1248 /* 1249 * Initialise the adapter. 1250 */ 1251 static void 1252 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1253 { 1254 struct aac_softc *sc; 1255 1256 debug_called(1); 1257 1258 sc = (struct aac_softc *)arg; 1259 1260 sc->aac_common_busaddr = segs[0].ds_addr; 1261 } 1262 1263 /* 1264 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1265 * firmware version 1.x are not compatible with this driver. 1266 */ 1267 static int 1268 aac_check_firmware(struct aac_softc *sc) 1269 { 1270 u_int32_t major, minor; 1271 1272 debug_called(1); 1273 1274 if (sc->quirks & AAC_QUIRK_PERC2QC) { 1275 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1276 NULL)) { 1277 device_printf(sc->aac_dev, 1278 "Error reading firmware version\n"); 1279 return (EIO); 1280 } 1281 1282 /* These numbers are stored as ASCII! */ 1283 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30; 1284 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30; 1285 if (major == 1) { 1286 device_printf(sc->aac_dev, 1287 "Firmware version %d.%d is not supported.\n", 1288 major, minor); 1289 return (EINVAL); 1290 } 1291 } 1292 1293 return (0); 1294 } 1295 1296 static int 1297 aac_init(struct aac_softc *sc) 1298 { 1299 struct aac_adapter_init *ip; 1300 time_t then; 1301 u_int32_t code; 1302 u_int8_t *qaddr; 1303 1304 debug_called(1); 1305 1306 /* 1307 * First wait for the adapter to come ready. 1308 */ 1309 then = time_second; 1310 do { 1311 code = AAC_GET_FWSTATUS(sc); 1312 if (code & AAC_SELF_TEST_FAILED) { 1313 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1314 return(ENXIO); 1315 } 1316 if (code & AAC_KERNEL_PANIC) { 1317 device_printf(sc->aac_dev, 1318 "FATAL: controller kernel panic\n"); 1319 return(ENXIO); 1320 } 1321 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1322 device_printf(sc->aac_dev, 1323 "FATAL: controller not coming ready, " 1324 "status %x\n", code); 1325 return(ENXIO); 1326 } 1327 } while (!(code & AAC_UP_AND_RUNNING)); 1328 1329 /* 1330 * Create DMA tag for the common structure and allocate it. 1331 */ 1332 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1333 1, 0, /* algnmnt, boundary */ 1334 BUS_SPACE_MAXADDR, /* lowaddr */ 1335 BUS_SPACE_MAXADDR, /* highaddr */ 1336 NULL, NULL, /* filter, filterarg */ 1337 sizeof(struct aac_common), /* maxsize */ 1338 1, /* nsegments */ 1339 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1340 0, /* flags */ 1341 &sc->aac_common_dmat)) { 1342 device_printf(sc->aac_dev, 1343 "can't allocate common structure DMA tag\n"); 1344 return(ENOMEM); 1345 } 1346 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1347 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1348 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1349 return(ENOMEM); 1350 } 1351 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1352 sc->aac_common, sizeof(*sc->aac_common), aac_common_map, 1353 sc, 0); 1354 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1355 1356 /* 1357 * Fill in the init structure. This tells the adapter about the 1358 * physical location of various important shared data structures. 1359 */ 1360 ip = &sc->aac_common->ac_init; 1361 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1362 1363 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1364 offsetof(struct aac_common, ac_fibs); 1365 ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0]; 1366 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1367 ip->AdapterFibAlign = sizeof(struct aac_fib); 1368 1369 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1370 offsetof(struct aac_common, ac_printf); 1371 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1372 1373 ip->HostPhysMemPages = 0; /* not used? */ 1374 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1375 1376 /* 1377 * Initialise FIB queues. Note that it appears that the layout of the 1378 * indexes and the segmentation of the entries may be mandated by the 1379 * adapter, which is only told about the base of the queue index fields. 1380 * 1381 * The initial values of the indices are assumed to inform the adapter 1382 * of the sizes of the respective queues, and theoretically it could 1383 * work out the entire layout of the queue structures from this. We 1384 * take the easy route and just lay this area out like everyone else 1385 * does. 1386 * 1387 * The Linux driver uses a much more complex scheme whereby several 1388 * header records are kept for each queue. We use a couple of generic 1389 * list manipulation functions which 'know' the size of each list by 1390 * virtue of a table. 1391 */ 1392 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1393 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1394 sc->aac_queues = (struct aac_queue_table *)qaddr; 1395 ip->CommHeaderAddress = sc->aac_common_busaddr + 1396 ((u_int32_t)sc->aac_queues - 1397 (u_int32_t)sc->aac_common); 1398 bzero(sc->aac_queues, sizeof(struct aac_queue_table)); 1399 1400 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1401 AAC_HOST_NORM_CMD_ENTRIES; 1402 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1403 AAC_HOST_NORM_CMD_ENTRIES; 1404 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1405 AAC_HOST_HIGH_CMD_ENTRIES; 1406 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1407 AAC_HOST_HIGH_CMD_ENTRIES; 1408 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1409 AAC_ADAP_NORM_CMD_ENTRIES; 1410 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1411 AAC_ADAP_NORM_CMD_ENTRIES; 1412 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1413 AAC_ADAP_HIGH_CMD_ENTRIES; 1414 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1415 AAC_ADAP_HIGH_CMD_ENTRIES; 1416 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1417 AAC_HOST_NORM_RESP_ENTRIES; 1418 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1419 AAC_HOST_NORM_RESP_ENTRIES; 1420 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1421 AAC_HOST_HIGH_RESP_ENTRIES; 1422 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1423 AAC_HOST_HIGH_RESP_ENTRIES; 1424 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1425 AAC_ADAP_NORM_RESP_ENTRIES; 1426 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1427 AAC_ADAP_NORM_RESP_ENTRIES; 1428 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1429 AAC_ADAP_HIGH_RESP_ENTRIES; 1430 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1431 AAC_ADAP_HIGH_RESP_ENTRIES; 1432 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1433 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1434 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1435 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1436 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1437 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1438 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1439 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1440 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1441 &sc->aac_queues->qt_HostNormRespQueue[0]; 1442 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1443 &sc->aac_queues->qt_HostHighRespQueue[0]; 1444 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1445 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1446 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1447 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1448 1449 /* 1450 * Do controller-type-specific initialisation 1451 */ 1452 switch (sc->aac_hwif) { 1453 case AAC_HWIF_I960RX: 1454 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1455 break; 1456 } 1457 1458 /* 1459 * Give the init structure to the controller. 1460 */ 1461 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1462 sc->aac_common_busaddr + 1463 offsetof(struct aac_common, ac_init), 0, 0, 0, 1464 NULL)) { 1465 device_printf(sc->aac_dev, 1466 "error establishing init structure\n"); 1467 return(EIO); 1468 } 1469 1470 return(0); 1471 } 1472 1473 /* 1474 * Send a synchronous command to the controller and wait for a result. 1475 */ 1476 static int 1477 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1478 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1479 u_int32_t *sp) 1480 { 1481 time_t then; 1482 u_int32_t status; 1483 1484 debug_called(3); 1485 1486 /* populate the mailbox */ 1487 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1488 1489 /* ensure the sync command doorbell flag is cleared */ 1490 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1491 1492 /* then set it to signal the adapter */ 1493 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1494 1495 /* spin waiting for the command to complete */ 1496 then = time_second; 1497 do { 1498 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1499 debug(2, "timed out"); 1500 return(EIO); 1501 } 1502 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1503 1504 /* clear the completion flag */ 1505 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1506 1507 /* get the command status */ 1508 status = AAC_GET_MAILBOXSTATUS(sc); 1509 if (sp != NULL) 1510 *sp = status; 1511 return(0); 1512 } 1513 1514 /* 1515 * Grab the sync fib area. 1516 */ 1517 int 1518 aac_get_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1519 { 1520 1521 /* 1522 * If the force flag is set, the system is shutting down, or in 1523 * trouble. Ignore the mutex. 1524 */ 1525 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1526 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1527 1528 *fib = &sc->aac_common->ac_sync_fib; 1529 1530 return (1); 1531 } 1532 1533 /* 1534 * Release the sync fib area. 1535 */ 1536 void 1537 aac_release_sync_fib(struct aac_softc *sc) 1538 { 1539 1540 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1541 } 1542 1543 /* 1544 * Send a synchronous FIB to the controller and wait for a result. 1545 */ 1546 int 1547 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1548 struct aac_fib *fib, u_int16_t datasize) 1549 { 1550 debug_called(3); 1551 1552 if (datasize > AAC_FIB_DATASIZE) 1553 return(EINVAL); 1554 1555 /* 1556 * Set up the sync FIB 1557 */ 1558 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1559 AAC_FIBSTATE_INITIALISED | 1560 AAC_FIBSTATE_EMPTY; 1561 fib->Header.XferState |= xferstate; 1562 fib->Header.Command = command; 1563 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1564 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1565 fib->Header.SenderSize = sizeof(struct aac_fib); 1566 fib->Header.SenderFibAddress = (u_int32_t)fib; 1567 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1568 offsetof(struct aac_common, 1569 ac_sync_fib); 1570 1571 /* 1572 * Give the FIB to the controller, wait for a response. 1573 */ 1574 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1575 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1576 debug(2, "IO error"); 1577 return(EIO); 1578 } 1579 1580 return (0); 1581 } 1582 1583 /* 1584 * Adapter-space FIB queue manipulation 1585 * 1586 * Note that the queue implementation here is a little funky; neither the PI or 1587 * CI will ever be zero. This behaviour is a controller feature. 1588 */ 1589 static struct { 1590 int size; 1591 int notify; 1592 } aac_qinfo[] = { 1593 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1594 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1595 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1596 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1597 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1598 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1599 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1600 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1601 }; 1602 1603 /* 1604 * Atomically insert an entry into the nominated queue, returns 0 on success or 1605 * EBUSY if the queue is full. 1606 * 1607 * Note: it would be more efficient to defer notifying the controller in 1608 * the case where we may be inserting several entries in rapid succession, 1609 * but implementing this usefully may be difficult (it would involve a 1610 * separate queue/notify interface). 1611 */ 1612 static int 1613 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1614 { 1615 u_int32_t pi, ci; 1616 int s, error; 1617 u_int32_t fib_size; 1618 u_int32_t fib_addr; 1619 1620 debug_called(3); 1621 1622 fib_size = cm->cm_fib->Header.Size; 1623 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1624 1625 s = splbio(); 1626 1627 /* get the producer/consumer indices */ 1628 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1629 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1630 1631 /* wrap the queue? */ 1632 if (pi >= aac_qinfo[queue].size) 1633 pi = 0; 1634 1635 /* check for queue full */ 1636 if ((pi + 1) == ci) { 1637 error = EBUSY; 1638 goto out; 1639 } 1640 1641 /* populate queue entry */ 1642 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1643 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1644 1645 /* update producer index */ 1646 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1647 1648 /* 1649 * To avoid a race with its completion interrupt, place this command on 1650 * the busy queue prior to advertising it to the controller. 1651 */ 1652 aac_enqueue_busy(cm); 1653 1654 /* notify the adapter if we know how */ 1655 if (aac_qinfo[queue].notify != 0) 1656 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1657 1658 error = 0; 1659 1660 out: 1661 splx(s); 1662 return(error); 1663 } 1664 1665 /* 1666 * Atomically remove one entry from the nominated queue, returns 0 on 1667 * success or ENOENT if the queue is empty. 1668 */ 1669 static int 1670 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1671 struct aac_fib **fib_addr) 1672 { 1673 u_int32_t pi, ci; 1674 int s, error; 1675 int notify; 1676 1677 debug_called(3); 1678 1679 s = splbio(); 1680 1681 /* get the producer/consumer indices */ 1682 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1683 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1684 1685 /* check for queue empty */ 1686 if (ci == pi) { 1687 error = ENOENT; 1688 goto out; 1689 } 1690 1691 notify = 0; 1692 if (ci == pi + 1) 1693 notify++; 1694 1695 /* wrap the queue? */ 1696 if (ci >= aac_qinfo[queue].size) 1697 ci = 0; 1698 1699 /* fetch the entry */ 1700 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1701 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + 1702 ci)->aq_fib_addr; 1703 1704 /* update consumer index */ 1705 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1706 1707 /* if we have made the queue un-full, notify the adapter */ 1708 if (notify && (aac_qinfo[queue].notify != 0)) 1709 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1710 error = 0; 1711 1712 out: 1713 splx(s); 1714 return(error); 1715 } 1716 1717 /* 1718 * Put our response to an Adapter Initialed Fib on the response queue 1719 */ 1720 static int 1721 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1722 { 1723 u_int32_t pi, ci; 1724 int s, error; 1725 u_int32_t fib_size; 1726 u_int32_t fib_addr; 1727 1728 debug_called(1); 1729 1730 /* Tell the adapter where the FIB is */ 1731 fib_size = fib->Header.Size; 1732 fib_addr = fib->Header.SenderFibAddress; 1733 fib->Header.ReceiverFibAddress = fib_addr; 1734 1735 s = splbio(); 1736 1737 /* get the producer/consumer indices */ 1738 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1739 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1740 1741 /* wrap the queue? */ 1742 if (pi >= aac_qinfo[queue].size) 1743 pi = 0; 1744 1745 /* check for queue full */ 1746 if ((pi + 1) == ci) { 1747 error = EBUSY; 1748 goto out; 1749 } 1750 1751 /* populate queue entry */ 1752 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1753 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1754 1755 /* update producer index */ 1756 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1757 1758 /* notify the adapter if we know how */ 1759 if (aac_qinfo[queue].notify != 0) 1760 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1761 1762 error = 0; 1763 1764 out: 1765 splx(s); 1766 return(error); 1767 } 1768 1769 /* 1770 * Check for commands that have been outstanding for a suspiciously long time, 1771 * and complain about them. 1772 */ 1773 static void 1774 aac_timeout(struct aac_softc *sc) 1775 { 1776 int s; 1777 struct aac_command *cm; 1778 time_t deadline; 1779 1780 #if 0 1781 /* simulate an interrupt to handle possibly-missed interrupts */ 1782 /* 1783 * XXX This was done to work around another bug which has since been 1784 * fixed. It is dangerous anyways because you don't want multiple 1785 * threads in the interrupt handler at the same time! If calling 1786 * is deamed neccesary in the future, proper mutexes must be used. 1787 */ 1788 s = splbio(); 1789 aac_intr(sc); 1790 splx(s); 1791 1792 /* kick the I/O queue to restart it in the case of deadlock */ 1793 aac_startio(sc); 1794 #endif 1795 1796 /* 1797 * traverse the busy command list, bitch about late commands once 1798 * only. 1799 */ 1800 deadline = time_second - AAC_CMD_TIMEOUT; 1801 s = splbio(); 1802 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1803 if ((cm->cm_timestamp < deadline) 1804 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1805 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1806 device_printf(sc->aac_dev, 1807 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1808 cm, (int)(time_second-cm->cm_timestamp)); 1809 AAC_PRINT_FIB(sc, cm->cm_fib); 1810 } 1811 } 1812 splx(s); 1813 1814 /* reset the timer for next time */ 1815 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 1816 return; 1817 } 1818 1819 /* 1820 * Interface Function Vectors 1821 */ 1822 1823 /* 1824 * Read the current firmware status word. 1825 */ 1826 static int 1827 aac_sa_get_fwstatus(struct aac_softc *sc) 1828 { 1829 debug_called(3); 1830 1831 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 1832 } 1833 1834 static int 1835 aac_rx_get_fwstatus(struct aac_softc *sc) 1836 { 1837 debug_called(3); 1838 1839 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 1840 } 1841 1842 static int 1843 aac_fa_get_fwstatus(struct aac_softc *sc) 1844 { 1845 int val; 1846 1847 debug_called(3); 1848 1849 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 1850 return (val); 1851 } 1852 1853 /* 1854 * Notify the controller of a change in a given queue 1855 */ 1856 1857 static void 1858 aac_sa_qnotify(struct aac_softc *sc, int qbit) 1859 { 1860 debug_called(3); 1861 1862 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 1863 } 1864 1865 static void 1866 aac_rx_qnotify(struct aac_softc *sc, int qbit) 1867 { 1868 debug_called(3); 1869 1870 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 1871 } 1872 1873 static void 1874 aac_fa_qnotify(struct aac_softc *sc, int qbit) 1875 { 1876 debug_called(3); 1877 1878 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 1879 AAC_FA_HACK(sc); 1880 } 1881 1882 /* 1883 * Get the interrupt reason bits 1884 */ 1885 static int 1886 aac_sa_get_istatus(struct aac_softc *sc) 1887 { 1888 debug_called(3); 1889 1890 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 1891 } 1892 1893 static int 1894 aac_rx_get_istatus(struct aac_softc *sc) 1895 { 1896 debug_called(3); 1897 1898 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 1899 } 1900 1901 static int 1902 aac_fa_get_istatus(struct aac_softc *sc) 1903 { 1904 int val; 1905 1906 debug_called(3); 1907 1908 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 1909 return (val); 1910 } 1911 1912 /* 1913 * Clear some interrupt reason bits 1914 */ 1915 static void 1916 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 1917 { 1918 debug_called(3); 1919 1920 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 1921 } 1922 1923 static void 1924 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 1925 { 1926 debug_called(3); 1927 1928 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 1929 } 1930 1931 static void 1932 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 1933 { 1934 debug_called(3); 1935 1936 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 1937 AAC_FA_HACK(sc); 1938 } 1939 1940 /* 1941 * Populate the mailbox and set the command word 1942 */ 1943 static void 1944 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1945 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1946 { 1947 debug_called(4); 1948 1949 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 1950 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 1951 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 1952 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 1953 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 1954 } 1955 1956 static void 1957 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 1958 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1959 { 1960 debug_called(4); 1961 1962 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 1963 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 1964 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 1965 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 1966 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 1967 } 1968 1969 static void 1970 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1971 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1972 { 1973 debug_called(4); 1974 1975 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 1976 AAC_FA_HACK(sc); 1977 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 1978 AAC_FA_HACK(sc); 1979 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 1980 AAC_FA_HACK(sc); 1981 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 1982 AAC_FA_HACK(sc); 1983 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 1984 AAC_FA_HACK(sc); 1985 } 1986 1987 /* 1988 * Fetch the immediate command status word 1989 */ 1990 static int 1991 aac_sa_get_mailboxstatus(struct aac_softc *sc) 1992 { 1993 debug_called(4); 1994 1995 return(AAC_GETREG4(sc, AAC_SA_MAILBOX)); 1996 } 1997 1998 static int 1999 aac_rx_get_mailboxstatus(struct aac_softc *sc) 2000 { 2001 debug_called(4); 2002 2003 return(AAC_GETREG4(sc, AAC_RX_MAILBOX)); 2004 } 2005 2006 static int 2007 aac_fa_get_mailboxstatus(struct aac_softc *sc) 2008 { 2009 int val; 2010 2011 debug_called(4); 2012 2013 val = AAC_GETREG4(sc, AAC_FA_MAILBOX); 2014 return (val); 2015 } 2016 2017 /* 2018 * Set/clear interrupt masks 2019 */ 2020 static void 2021 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2022 { 2023 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2024 2025 if (enable) { 2026 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2027 } else { 2028 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2029 } 2030 } 2031 2032 static void 2033 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2034 { 2035 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2036 2037 if (enable) { 2038 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2039 } else { 2040 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2041 } 2042 } 2043 2044 static void 2045 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2046 { 2047 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2048 2049 if (enable) { 2050 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2051 AAC_FA_HACK(sc); 2052 } else { 2053 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2054 AAC_FA_HACK(sc); 2055 } 2056 } 2057 2058 /* 2059 * Debugging and Diagnostics 2060 */ 2061 2062 /* 2063 * Print some information about the controller. 2064 */ 2065 static void 2066 aac_describe_controller(struct aac_softc *sc) 2067 { 2068 struct aac_fib *fib; 2069 struct aac_adapter_info *info; 2070 2071 debug_called(2); 2072 2073 aac_get_sync_fib(sc, &fib, 0); 2074 2075 fib->data[0] = 0; 2076 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2077 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2078 return; 2079 } 2080 info = (struct aac_adapter_info *)&fib->data[0]; 2081 2082 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2083 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2084 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2085 aac_describe_code(aac_battery_platform, 2086 info->batteryPlatform)); 2087 2088 /* save the kernel revision structure for later use */ 2089 sc->aac_revision = info->KernelRevision; 2090 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2091 info->KernelRevision.external.comp.major, 2092 info->KernelRevision.external.comp.minor, 2093 info->KernelRevision.external.comp.dash, 2094 info->KernelRevision.buildNumber, 2095 (u_int32_t)(info->SerialNumber & 0xffffff)); 2096 } 2097 2098 /* 2099 * Look up a text description of a numeric error code and return a pointer to 2100 * same. 2101 */ 2102 static char * 2103 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2104 { 2105 int i; 2106 2107 for (i = 0; table[i].string != NULL; i++) 2108 if (table[i].code == code) 2109 return(table[i].string); 2110 return(table[i + 1].string); 2111 } 2112 2113 /* 2114 * Management Interface 2115 */ 2116 2117 static int 2118 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td) 2119 { 2120 struct aac_softc *sc; 2121 2122 debug_called(2); 2123 2124 sc = dev->si_drv1; 2125 2126 /* Check to make sure the device isn't already open */ 2127 if (sc->aac_state & AAC_STATE_OPEN) { 2128 return EBUSY; 2129 } 2130 sc->aac_state |= AAC_STATE_OPEN; 2131 2132 return 0; 2133 } 2134 2135 static int 2136 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td) 2137 { 2138 struct aac_softc *sc; 2139 2140 debug_called(2); 2141 2142 sc = dev->si_drv1; 2143 2144 /* Mark this unit as no longer open */ 2145 sc->aac_state &= ~AAC_STATE_OPEN; 2146 2147 return 0; 2148 } 2149 2150 static int 2151 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2152 { 2153 union aac_statrequest *as; 2154 struct aac_softc *sc; 2155 int error = 0; 2156 int i; 2157 2158 debug_called(2); 2159 2160 as = (union aac_statrequest *)arg; 2161 sc = dev->si_drv1; 2162 2163 switch (cmd) { 2164 case AACIO_STATS: 2165 switch (as->as_item) { 2166 case AACQ_FREE: 2167 case AACQ_BIO: 2168 case AACQ_READY: 2169 case AACQ_BUSY: 2170 case AACQ_COMPLETE: 2171 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2172 sizeof(struct aac_qstat)); 2173 break; 2174 default: 2175 error = ENOENT; 2176 break; 2177 } 2178 break; 2179 2180 case FSACTL_SENDFIB: 2181 arg = *(caddr_t*)arg; 2182 case FSACTL_LNX_SENDFIB: 2183 debug(1, "FSACTL_SENDFIB"); 2184 error = aac_ioctl_sendfib(sc, arg); 2185 break; 2186 case FSACTL_AIF_THREAD: 2187 case FSACTL_LNX_AIF_THREAD: 2188 debug(1, "FSACTL_AIF_THREAD"); 2189 error = EINVAL; 2190 break; 2191 case FSACTL_OPEN_GET_ADAPTER_FIB: 2192 arg = *(caddr_t*)arg; 2193 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2194 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2195 /* 2196 * Pass the caller out an AdapterFibContext. 2197 * 2198 * Note that because we only support one opener, we 2199 * basically ignore this. Set the caller's context to a magic 2200 * number just in case. 2201 * 2202 * The Linux code hands the driver a pointer into kernel space, 2203 * and then trusts it when the caller hands it back. Aiee! 2204 * Here, we give it the proc pointer of the per-adapter aif 2205 * thread. It's only used as a sanity check in other calls. 2206 */ 2207 i = (int)sc->aifthread; 2208 error = copyout(&i, arg, sizeof(i)); 2209 break; 2210 case FSACTL_GET_NEXT_ADAPTER_FIB: 2211 arg = *(caddr_t*)arg; 2212 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2213 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2214 error = aac_getnext_aif(sc, arg); 2215 break; 2216 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2217 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2218 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2219 /* don't do anything here */ 2220 break; 2221 case FSACTL_MINIPORT_REV_CHECK: 2222 arg = *(caddr_t*)arg; 2223 case FSACTL_LNX_MINIPORT_REV_CHECK: 2224 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2225 error = aac_rev_check(sc, arg); 2226 break; 2227 case FSACTL_QUERY_DISK: 2228 arg = *(caddr_t*)arg; 2229 case FSACTL_LNX_QUERY_DISK: 2230 debug(1, "FSACTL_QUERY_DISK"); 2231 error = aac_query_disk(sc, arg); 2232 break; 2233 case FSACTL_DELETE_DISK: 2234 case FSACTL_LNX_DELETE_DISK: 2235 /* 2236 * We don't trust the underland to tell us when to delete a 2237 * container, rather we rely on an AIF coming from the 2238 * controller 2239 */ 2240 error = 0; 2241 break; 2242 default: 2243 debug(1, "unsupported cmd 0x%lx\n", cmd); 2244 error = EINVAL; 2245 break; 2246 } 2247 return(error); 2248 } 2249 2250 static int 2251 aac_poll(dev_t dev, int poll_events, d_thread_t *td) 2252 { 2253 struct aac_softc *sc; 2254 int revents; 2255 2256 sc = dev->si_drv1; 2257 revents = 0; 2258 2259 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2260 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2261 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2262 revents |= poll_events & (POLLIN | POLLRDNORM); 2263 } 2264 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2265 2266 if (revents == 0) { 2267 if (poll_events & (POLLIN | POLLRDNORM)) 2268 selrecord(td, &sc->rcv_select); 2269 } 2270 2271 return (revents); 2272 } 2273 2274 /* 2275 * Send a FIB supplied from userspace 2276 */ 2277 static int 2278 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2279 { 2280 struct aac_command *cm; 2281 int size, error; 2282 2283 debug_called(2); 2284 2285 cm = NULL; 2286 2287 /* 2288 * Get a command 2289 */ 2290 if (aac_alloc_command(sc, &cm)) { 2291 error = EBUSY; 2292 goto out; 2293 } 2294 2295 /* 2296 * Fetch the FIB header, then re-copy to get data as well. 2297 */ 2298 if ((error = copyin(ufib, cm->cm_fib, 2299 sizeof(struct aac_fib_header))) != 0) 2300 goto out; 2301 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2302 if (size > sizeof(struct aac_fib)) { 2303 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 2304 size, sizeof(struct aac_fib)); 2305 size = sizeof(struct aac_fib); 2306 } 2307 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2308 goto out; 2309 cm->cm_fib->Header.Size = size; 2310 cm->cm_timestamp = time_second; 2311 2312 /* 2313 * Pass the FIB to the controller, wait for it to complete. 2314 */ 2315 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */ 2316 printf("aac_wait_command return %d\n", error); 2317 goto out; 2318 } 2319 2320 /* 2321 * Copy the FIB and data back out to the caller. 2322 */ 2323 size = cm->cm_fib->Header.Size; 2324 if (size > sizeof(struct aac_fib)) { 2325 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 2326 size, sizeof(struct aac_fib)); 2327 size = sizeof(struct aac_fib); 2328 } 2329 error = copyout(cm->cm_fib, ufib, size); 2330 2331 out: 2332 if (cm != NULL) { 2333 aac_release_command(cm); 2334 } 2335 return(error); 2336 } 2337 2338 /* 2339 * Handle an AIF sent to us by the controller; queue it for later reference. 2340 * If the queue fills up, then drop the older entries. 2341 */ 2342 static void 2343 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2344 { 2345 struct aac_aif_command *aif; 2346 struct aac_container *co, *co_next; 2347 struct aac_mntinfo *mi; 2348 struct aac_mntinforesp *mir = NULL; 2349 u_int16_t rsize; 2350 int next, found; 2351 int added = 0, i = 0; 2352 2353 debug_called(2); 2354 2355 aif = (struct aac_aif_command*)&fib->data[0]; 2356 aac_print_aif(sc, aif); 2357 2358 /* Is it an event that we should care about? */ 2359 switch (aif->command) { 2360 case AifCmdEventNotify: 2361 switch (aif->data.EN.type) { 2362 case AifEnAddContainer: 2363 case AifEnDeleteContainer: 2364 /* 2365 * A container was added or deleted, but the message 2366 * doesn't tell us anything else! Re-enumerate the 2367 * containers and sort things out. 2368 */ 2369 aac_get_sync_fib(sc, &fib, 0); 2370 mi = (struct aac_mntinfo *)&fib->data[0]; 2371 mi->Command = VM_NameServe; 2372 mi->MntType = FT_FILESYS; 2373 do { 2374 /* 2375 * Ask the controller for its containers one at 2376 * a time. 2377 * XXX What if the controller's list changes 2378 * midway through this enumaration? 2379 * XXX This should be done async. 2380 */ 2381 mi->MntCount = i; 2382 rsize = sizeof(mir); 2383 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2384 sizeof(struct aac_mntinfo))) { 2385 debug(2, "Error probing container %d\n", 2386 i); 2387 continue; 2388 } 2389 mir = (struct aac_mntinforesp *)&fib->data[0]; 2390 /* 2391 * Check the container against our list. 2392 * co->co_found was already set to 0 in a 2393 * previous run. 2394 */ 2395 if ((mir->Status == ST_OK) && 2396 (mir->MntTable[0].VolType != CT_NONE)) { 2397 found = 0; 2398 TAILQ_FOREACH(co, 2399 &sc->aac_container_tqh, 2400 co_link) { 2401 if (co->co_mntobj.ObjectId == 2402 mir->MntTable[0].ObjectId) { 2403 co->co_found = 1; 2404 found = 1; 2405 break; 2406 } 2407 } 2408 /* 2409 * If the container matched, continue 2410 * in the list. 2411 */ 2412 if (found) { 2413 i++; 2414 continue; 2415 } 2416 2417 /* 2418 * This is a new container. Do all the 2419 * appropriate things to set it up. */ 2420 aac_add_container(sc, mir, 1); 2421 added = 1; 2422 } 2423 i++; 2424 } while ((i < mir->MntRespCount) && 2425 (i < AAC_MAX_CONTAINERS)); 2426 aac_release_sync_fib(sc); 2427 2428 /* 2429 * Go through our list of containers and see which ones 2430 * were not marked 'found'. Since the controller didn't 2431 * list them they must have been deleted. Do the 2432 * appropriate steps to destroy the device. Also reset 2433 * the co->co_found field. 2434 */ 2435 co = TAILQ_FIRST(&sc->aac_container_tqh); 2436 while (co != NULL) { 2437 if (co->co_found == 0) { 2438 device_delete_child(sc->aac_dev, 2439 co->co_disk); 2440 co_next = TAILQ_NEXT(co, co_link); 2441 AAC_LOCK_ACQUIRE(&sc-> 2442 aac_container_lock); 2443 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2444 co_link); 2445 AAC_LOCK_RELEASE(&sc-> 2446 aac_container_lock); 2447 FREE(co, M_AACBUF); 2448 co = co_next; 2449 } else { 2450 co->co_found = 0; 2451 co = TAILQ_NEXT(co, co_link); 2452 } 2453 } 2454 2455 /* Attach the newly created containers */ 2456 if (added) 2457 bus_generic_attach(sc->aac_dev); 2458 2459 break; 2460 2461 default: 2462 break; 2463 } 2464 2465 default: 2466 break; 2467 } 2468 2469 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2470 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2471 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2472 if (next != sc->aac_aifq_tail) { 2473 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2474 sc->aac_aifq_head = next; 2475 2476 /* On the off chance that someone is sleeping for an aif... */ 2477 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2478 wakeup(sc->aac_aifq); 2479 /* Wakeup any poll()ers */ 2480 selwakeup(&sc->rcv_select); 2481 } 2482 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2483 2484 return; 2485 } 2486 2487 /* 2488 * Linux Management Interface 2489 * This is soon to be removed! 2490 */ 2491 2492 #ifdef AAC_COMPAT_LINUX 2493 2494 #include <sys/proc.h> 2495 #include <machine/../linux/linux.h> 2496 #include <machine/../linux/linux_proto.h> 2497 #include <compat/linux/linux_ioctl.h> 2498 2499 /* There are multiple ioctl number ranges that need to be handled */ 2500 #define AAC_LINUX_IOCTL_MIN 0x0000 2501 #define AAC_LINUX_IOCTL_MAX 0x21ff 2502 2503 static linux_ioctl_function_t aac_linux_ioctl; 2504 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl, 2505 AAC_LINUX_IOCTL_MIN, 2506 AAC_LINUX_IOCTL_MAX}; 2507 2508 SYSINIT (aac_register, SI_SUB_KLD, SI_ORDER_MIDDLE, 2509 linux_ioctl_register_handler, &aac_handler); 2510 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE, 2511 linux_ioctl_unregister_handler, &aac_handler); 2512 2513 MODULE_DEPEND(aac, linux, 1, 1, 1); 2514 2515 static int 2516 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args) 2517 { 2518 struct file *fp; 2519 u_long cmd; 2520 int error; 2521 2522 debug_called(2); 2523 2524 if ((error = fget(td, args->fd, &fp)) != 0) 2525 return (error); 2526 cmd = args->cmd; 2527 2528 /* 2529 * Pass the ioctl off to our standard handler. 2530 */ 2531 error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td)); 2532 fdrop(fp, td); 2533 return (error); 2534 } 2535 2536 #endif 2537 2538 /* 2539 * Return the Revision of the driver to userspace and check to see if the 2540 * userspace app is possibly compatible. This is extremely bogus since 2541 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2542 * returning what the card reported. 2543 */ 2544 static int 2545 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2546 { 2547 struct aac_rev_check rev_check; 2548 struct aac_rev_check_resp rev_check_resp; 2549 int error = 0; 2550 2551 debug_called(2); 2552 2553 /* 2554 * Copyin the revision struct from userspace 2555 */ 2556 if ((error = copyin(udata, (caddr_t)&rev_check, 2557 sizeof(struct aac_rev_check))) != 0) { 2558 return error; 2559 } 2560 2561 debug(2, "Userland revision= %d\n", 2562 rev_check.callingRevision.buildNumber); 2563 2564 /* 2565 * Doctor up the response struct. 2566 */ 2567 rev_check_resp.possiblyCompatible = 1; 2568 rev_check_resp.adapterSWRevision.external.ul = 2569 sc->aac_revision.external.ul; 2570 rev_check_resp.adapterSWRevision.buildNumber = 2571 sc->aac_revision.buildNumber; 2572 2573 return(copyout((caddr_t)&rev_check_resp, udata, 2574 sizeof(struct aac_rev_check_resp))); 2575 } 2576 2577 /* 2578 * Pass the caller the next AIF in their queue 2579 */ 2580 static int 2581 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2582 { 2583 struct get_adapter_fib_ioctl agf; 2584 int error, s; 2585 2586 debug_called(2); 2587 2588 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2589 2590 /* 2591 * Check the magic number that we gave the caller. 2592 */ 2593 if (agf.AdapterFibContext != (int)sc->aifthread) { 2594 error = EFAULT; 2595 } else { 2596 2597 s = splbio(); 2598 error = aac_return_aif(sc, agf.AifFib); 2599 2600 if ((error == EAGAIN) && (agf.Wait)) { 2601 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2602 while (error == EAGAIN) { 2603 error = tsleep(sc->aac_aifq, PRIBIO | 2604 PCATCH, "aacaif", 0); 2605 if (error == 0) 2606 error = aac_return_aif(sc, 2607 agf.AifFib); 2608 } 2609 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2610 } 2611 splx(s); 2612 } 2613 } 2614 return(error); 2615 } 2616 2617 /* 2618 * Hand the next AIF off the top of the queue out to userspace. 2619 */ 2620 static int 2621 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2622 { 2623 int error; 2624 2625 debug_called(2); 2626 2627 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2628 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2629 error = EAGAIN; 2630 } else { 2631 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2632 sizeof(struct aac_aif_command)); 2633 if (error) 2634 printf("aac_return_aif: copyout returned %d\n", error); 2635 if (!error) 2636 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % 2637 AAC_AIFQ_LENGTH; 2638 } 2639 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2640 return(error); 2641 } 2642 2643 /* 2644 * Give the userland some information about the container. The AAC arch 2645 * expects the driver to be a SCSI passthrough type driver, so it expects 2646 * the containers to have b:t:l numbers. Fake it. 2647 */ 2648 static int 2649 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2650 { 2651 struct aac_query_disk query_disk; 2652 struct aac_container *co; 2653 struct aac_disk *disk; 2654 int error, id; 2655 2656 debug_called(2); 2657 2658 disk = NULL; 2659 2660 error = copyin(uptr, (caddr_t)&query_disk, 2661 sizeof(struct aac_query_disk)); 2662 if (error) 2663 return (error); 2664 2665 id = query_disk.ContainerNumber; 2666 if (id == -1) 2667 return (EINVAL); 2668 2669 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2670 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2671 if (co->co_mntobj.ObjectId == id) 2672 break; 2673 } 2674 2675 if (co == NULL) { 2676 query_disk.Valid = 0; 2677 query_disk.Locked = 0; 2678 query_disk.Deleted = 1; /* XXX is this right? */ 2679 } else { 2680 disk = device_get_softc(co->co_disk); 2681 query_disk.Valid = 1; 2682 query_disk.Locked = 2683 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2684 query_disk.Deleted = 0; 2685 query_disk.Bus = device_get_unit(sc->aac_dev); 2686 query_disk.Target = disk->unit; 2687 query_disk.Lun = 0; 2688 query_disk.UnMapped = 0; 2689 bcopy(disk->ad_dev_t->si_name, 2690 &query_disk.diskDeviceName[0], 10); 2691 } 2692 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2693 2694 error = copyout((caddr_t)&query_disk, uptr, 2695 sizeof(struct aac_query_disk)); 2696 2697 return (error); 2698 } 2699 2700