1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 35 */ 36 37 #include "opt_aac.h" 38 39 /* #include <stddef.h> */ 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/malloc.h> 43 #include <sys/kernel.h> 44 #include <sys/kthread.h> 45 #include <sys/sysctl.h> 46 #include <sys/poll.h> 47 #include <sys/ioccom.h> 48 49 #include <sys/bus.h> 50 #include <sys/conf.h> 51 #include <sys/signalvar.h> 52 #include <sys/time.h> 53 #include <sys/eventhandler.h> 54 55 #include <machine/bus_memio.h> 56 #include <machine/bus.h> 57 #include <machine/resource.h> 58 59 #include <dev/aac/aacreg.h> 60 #include <dev/aac/aac_ioctl.h> 61 #include <dev/aac/aacvar.h> 62 #include <dev/aac/aac_tables.h> 63 64 static void aac_startup(void *arg); 65 static void aac_add_container(struct aac_softc *sc, 66 struct aac_mntinforesp *mir, int f); 67 static void aac_get_bus_info(struct aac_softc *sc); 68 69 /* Command Processing */ 70 static void aac_timeout(struct aac_softc *sc); 71 static void aac_complete(void *context, int pending); 72 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 73 static void aac_bio_complete(struct aac_command *cm); 74 static int aac_wait_command(struct aac_command *cm); 75 static void aac_command_thread(struct aac_softc *sc); 76 77 /* Command Buffer Management */ 78 static void aac_map_command_sg(void *arg, bus_dma_segment_t *segs, 79 int nseg, int error); 80 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 81 int nseg, int error); 82 static int aac_alloc_commands(struct aac_softc *sc); 83 static void aac_free_commands(struct aac_softc *sc); 84 static void aac_unmap_command(struct aac_command *cm); 85 86 /* Hardware Interface */ 87 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 88 int error); 89 static int aac_check_firmware(struct aac_softc *sc); 90 static int aac_init(struct aac_softc *sc); 91 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 92 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 93 u_int32_t arg3, u_int32_t *sp); 94 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 95 struct aac_command *cm); 96 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 97 u_int32_t *fib_size, struct aac_fib **fib_addr); 98 static int aac_enqueue_response(struct aac_softc *sc, int queue, 99 struct aac_fib *fib); 100 101 /* Falcon/PPC interface */ 102 static int aac_fa_get_fwstatus(struct aac_softc *sc); 103 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 104 static int aac_fa_get_istatus(struct aac_softc *sc); 105 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 106 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 107 u_int32_t arg0, u_int32_t arg1, 108 u_int32_t arg2, u_int32_t arg3); 109 static int aac_fa_get_mailbox(struct aac_softc *sc, int mb); 110 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 111 112 struct aac_interface aac_fa_interface = { 113 aac_fa_get_fwstatus, 114 aac_fa_qnotify, 115 aac_fa_get_istatus, 116 aac_fa_clear_istatus, 117 aac_fa_set_mailbox, 118 aac_fa_get_mailbox, 119 aac_fa_set_interrupts 120 }; 121 122 /* StrongARM interface */ 123 static int aac_sa_get_fwstatus(struct aac_softc *sc); 124 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 125 static int aac_sa_get_istatus(struct aac_softc *sc); 126 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 127 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 128 u_int32_t arg0, u_int32_t arg1, 129 u_int32_t arg2, u_int32_t arg3); 130 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb); 131 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 132 133 struct aac_interface aac_sa_interface = { 134 aac_sa_get_fwstatus, 135 aac_sa_qnotify, 136 aac_sa_get_istatus, 137 aac_sa_clear_istatus, 138 aac_sa_set_mailbox, 139 aac_sa_get_mailbox, 140 aac_sa_set_interrupts 141 }; 142 143 /* i960Rx interface */ 144 static int aac_rx_get_fwstatus(struct aac_softc *sc); 145 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 146 static int aac_rx_get_istatus(struct aac_softc *sc); 147 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 148 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 149 u_int32_t arg0, u_int32_t arg1, 150 u_int32_t arg2, u_int32_t arg3); 151 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb); 152 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 153 154 struct aac_interface aac_rx_interface = { 155 aac_rx_get_fwstatus, 156 aac_rx_qnotify, 157 aac_rx_get_istatus, 158 aac_rx_clear_istatus, 159 aac_rx_set_mailbox, 160 aac_rx_get_mailbox, 161 aac_rx_set_interrupts 162 }; 163 164 /* Rocket/MIPS interface */ 165 static int aac_rkt_get_fwstatus(struct aac_softc *sc); 166 static void aac_rkt_qnotify(struct aac_softc *sc, int qbit); 167 static int aac_rkt_get_istatus(struct aac_softc *sc); 168 static void aac_rkt_clear_istatus(struct aac_softc *sc, int mask); 169 static void aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, 170 u_int32_t arg0, u_int32_t arg1, 171 u_int32_t arg2, u_int32_t arg3); 172 static int aac_rkt_get_mailbox(struct aac_softc *sc, int mb); 173 static void aac_rkt_set_interrupts(struct aac_softc *sc, int enable); 174 175 struct aac_interface aac_rkt_interface = { 176 aac_rkt_get_fwstatus, 177 aac_rkt_qnotify, 178 aac_rkt_get_istatus, 179 aac_rkt_clear_istatus, 180 aac_rkt_set_mailbox, 181 aac_rkt_get_mailbox, 182 aac_rkt_set_interrupts 183 }; 184 185 /* Debugging and Diagnostics */ 186 static void aac_describe_controller(struct aac_softc *sc); 187 static char *aac_describe_code(struct aac_code_lookup *table, 188 u_int32_t code); 189 190 /* Management Interface */ 191 static d_open_t aac_open; 192 static d_close_t aac_close; 193 static d_ioctl_t aac_ioctl; 194 static d_poll_t aac_poll; 195 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 196 static void aac_handle_aif(struct aac_softc *sc, 197 struct aac_fib *fib); 198 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 199 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 200 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 201 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 202 203 static struct cdevsw aac_cdevsw = { 204 .d_version = D_VERSION, 205 .d_flags = D_NEEDGIANT, 206 .d_open = aac_open, 207 .d_close = aac_close, 208 .d_ioctl = aac_ioctl, 209 .d_poll = aac_poll, 210 .d_name = "aac", 211 }; 212 213 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 214 215 /* sysctl node */ 216 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 217 218 /* 219 * Device Interface 220 */ 221 222 /* 223 * Initialise the controller and softc 224 */ 225 int 226 aac_attach(struct aac_softc *sc) 227 { 228 int error, unit; 229 230 debug_called(1); 231 232 /* 233 * Initialise per-controller queues. 234 */ 235 aac_initq_free(sc); 236 aac_initq_ready(sc); 237 aac_initq_busy(sc); 238 aac_initq_bio(sc); 239 240 /* 241 * Initialise command-completion task. 242 */ 243 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 244 245 /* disable interrupts before we enable anything */ 246 AAC_MASK_INTERRUPTS(sc); 247 248 /* mark controller as suspended until we get ourselves organised */ 249 sc->aac_state |= AAC_STATE_SUSPEND; 250 251 /* 252 * Check that the firmware on the card is supported. 253 */ 254 if ((error = aac_check_firmware(sc)) != 0) 255 return(error); 256 257 /* 258 * Initialize locks 259 */ 260 mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF); 261 mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF); 262 mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF); 263 TAILQ_INIT(&sc->aac_container_tqh); 264 265 /* Initialize the local AIF queue pointers */ 266 sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH; 267 268 /* 269 * Initialise the adapter. 270 */ 271 if ((error = aac_init(sc)) != 0) 272 return(error); 273 274 /* 275 * Print a little information about the controller. 276 */ 277 aac_describe_controller(sc); 278 279 /* 280 * Register to probe our containers later. 281 */ 282 sc->aac_ich.ich_func = aac_startup; 283 sc->aac_ich.ich_arg = sc; 284 if (config_intrhook_establish(&sc->aac_ich) != 0) { 285 device_printf(sc->aac_dev, 286 "can't establish configuration hook\n"); 287 return(ENXIO); 288 } 289 290 /* 291 * Make the control device. 292 */ 293 unit = device_get_unit(sc->aac_dev); 294 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR, 295 0640, "aac%d", unit); 296 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 297 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 298 sc->aac_dev_t->si_drv1 = sc; 299 300 /* Create the AIF thread */ 301 if (kthread_create((void(*)(void *))aac_command_thread, sc, 302 &sc->aifthread, 0, 0, "aac%daif", unit)) 303 panic("Could not create AIF thread\n"); 304 305 /* Register the shutdown method to only be called post-dump */ 306 if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, 307 sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL) 308 device_printf(sc->aac_dev, 309 "shutdown event registration failed\n"); 310 311 /* Register with CAM for the non-DASD devices */ 312 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) { 313 TAILQ_INIT(&sc->aac_sim_tqh); 314 aac_get_bus_info(sc); 315 } 316 317 return(0); 318 } 319 320 /* 321 * Probe for containers, create disks. 322 */ 323 static void 324 aac_startup(void *arg) 325 { 326 struct aac_softc *sc; 327 struct aac_fib *fib; 328 struct aac_mntinfo *mi; 329 struct aac_mntinforesp *mir = NULL; 330 int count = 0, i = 0; 331 332 debug_called(1); 333 334 sc = (struct aac_softc *)arg; 335 336 /* disconnect ourselves from the intrhook chain */ 337 config_intrhook_disestablish(&sc->aac_ich); 338 339 aac_alloc_sync_fib(sc, &fib); 340 mi = (struct aac_mntinfo *)&fib->data[0]; 341 342 /* loop over possible containers */ 343 do { 344 /* request information on this container */ 345 bzero(mi, sizeof(struct aac_mntinfo)); 346 mi->Command = VM_NameServe; 347 mi->MntType = FT_FILESYS; 348 mi->MntCount = i; 349 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 350 sizeof(struct aac_mntinfo))) { 351 printf("error probing container %d", i); 352 continue; 353 } 354 355 mir = (struct aac_mntinforesp *)&fib->data[0]; 356 /* XXX Need to check if count changed */ 357 count = mir->MntRespCount; 358 aac_add_container(sc, mir, 0); 359 i++; 360 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 361 362 aac_release_sync_fib(sc); 363 364 /* poke the bus to actually attach the child devices */ 365 if (bus_generic_attach(sc->aac_dev)) 366 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 367 368 /* mark the controller up */ 369 sc->aac_state &= ~AAC_STATE_SUSPEND; 370 371 /* enable interrupts now */ 372 AAC_UNMASK_INTERRUPTS(sc); 373 } 374 375 /* 376 * Create a device to respresent a new container 377 */ 378 static void 379 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 380 { 381 struct aac_container *co; 382 device_t child; 383 384 /* 385 * Check container volume type for validity. Note that many of 386 * the possible types may never show up. 387 */ 388 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 389 co = (struct aac_container *)malloc(sizeof *co, M_AACBUF, 390 M_NOWAIT | M_ZERO); 391 if (co == NULL) 392 panic("Out of memory?!\n"); 393 debug(1, "id %x name '%.16s' size %u type %d", 394 mir->MntTable[0].ObjectId, 395 mir->MntTable[0].FileSystemName, 396 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 397 398 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 399 device_printf(sc->aac_dev, "device_add_child failed\n"); 400 else 401 device_set_ivars(child, co); 402 device_set_desc(child, aac_describe_code(aac_container_types, 403 mir->MntTable[0].VolType)); 404 co->co_disk = child; 405 co->co_found = f; 406 bcopy(&mir->MntTable[0], &co->co_mntobj, 407 sizeof(struct aac_mntobj)); 408 mtx_lock(&sc->aac_container_lock); 409 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 410 mtx_unlock(&sc->aac_container_lock); 411 } 412 } 413 414 /* 415 * Free all of the resources associated with (sc) 416 * 417 * Should not be called if the controller is active. 418 */ 419 void 420 aac_free(struct aac_softc *sc) 421 { 422 423 debug_called(1); 424 425 /* remove the control device */ 426 if (sc->aac_dev_t != NULL) 427 destroy_dev(sc->aac_dev_t); 428 429 /* throw away any FIB buffers, discard the FIB DMA tag */ 430 aac_free_commands(sc); 431 if (sc->aac_fib_dmat) 432 bus_dma_tag_destroy(sc->aac_fib_dmat); 433 434 free(sc->aac_commands, M_AACBUF); 435 436 /* destroy the common area */ 437 if (sc->aac_common) { 438 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 439 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 440 sc->aac_common_dmamap); 441 } 442 if (sc->aac_common_dmat) 443 bus_dma_tag_destroy(sc->aac_common_dmat); 444 445 /* disconnect the interrupt handler */ 446 if (sc->aac_intr) 447 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 448 if (sc->aac_irq != NULL) 449 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 450 sc->aac_irq); 451 452 /* destroy data-transfer DMA tag */ 453 if (sc->aac_buffer_dmat) 454 bus_dma_tag_destroy(sc->aac_buffer_dmat); 455 456 /* destroy the parent DMA tag */ 457 if (sc->aac_parent_dmat) 458 bus_dma_tag_destroy(sc->aac_parent_dmat); 459 460 /* release the register window mapping */ 461 if (sc->aac_regs_resource != NULL) 462 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 463 sc->aac_regs_rid, sc->aac_regs_resource); 464 } 465 466 /* 467 * Disconnect from the controller completely, in preparation for unload. 468 */ 469 int 470 aac_detach(device_t dev) 471 { 472 struct aac_softc *sc; 473 struct aac_container *co; 474 struct aac_sim *sim; 475 int error; 476 477 debug_called(1); 478 479 sc = device_get_softc(dev); 480 481 if (sc->aac_state & AAC_STATE_OPEN) 482 return(EBUSY); 483 484 /* Remove the child containers */ 485 while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) { 486 error = device_delete_child(dev, co->co_disk); 487 if (error) 488 return (error); 489 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 490 free(co, M_AACBUF); 491 } 492 493 /* Remove the CAM SIMs */ 494 while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) { 495 TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link); 496 error = device_delete_child(dev, sim->sim_dev); 497 if (error) 498 return (error); 499 free(sim, M_AACBUF); 500 } 501 502 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 503 sc->aifflags |= AAC_AIFFLAGS_EXIT; 504 wakeup(sc->aifthread); 505 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 506 } 507 508 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 509 panic("Cannot shutdown AIF thread\n"); 510 511 if ((error = aac_shutdown(dev))) 512 return(error); 513 514 EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh); 515 516 aac_free(sc); 517 518 mtx_destroy(&sc->aac_aifq_lock); 519 mtx_destroy(&sc->aac_io_lock); 520 mtx_destroy(&sc->aac_container_lock); 521 522 return(0); 523 } 524 525 /* 526 * Bring the controller down to a dormant state and detach all child devices. 527 * 528 * This function is called before detach or system shutdown. 529 * 530 * Note that we can assume that the bioq on the controller is empty, as we won't 531 * allow shutdown if any device is open. 532 */ 533 int 534 aac_shutdown(device_t dev) 535 { 536 struct aac_softc *sc; 537 struct aac_fib *fib; 538 struct aac_close_command *cc; 539 540 debug_called(1); 541 542 sc = device_get_softc(dev); 543 544 sc->aac_state |= AAC_STATE_SUSPEND; 545 546 /* 547 * Send a Container shutdown followed by a HostShutdown FIB to the 548 * controller to convince it that we don't want to talk to it anymore. 549 * We've been closed and all I/O completed already 550 */ 551 device_printf(sc->aac_dev, "shutting down controller..."); 552 553 aac_alloc_sync_fib(sc, &fib); 554 cc = (struct aac_close_command *)&fib->data[0]; 555 556 bzero(cc, sizeof(struct aac_close_command)); 557 cc->Command = VM_CloseAll; 558 cc->ContainerId = 0xffffffff; 559 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 560 sizeof(struct aac_close_command))) 561 printf("FAILED.\n"); 562 else 563 printf("done\n"); 564 #if 0 565 else { 566 fib->data[0] = 0; 567 /* 568 * XXX Issuing this command to the controller makes it shut down 569 * but also keeps it from coming back up without a reset of the 570 * PCI bus. This is not desirable if you are just unloading the 571 * driver module with the intent to reload it later. 572 */ 573 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 574 fib, 1)) { 575 printf("FAILED.\n"); 576 } else { 577 printf("done.\n"); 578 } 579 } 580 #endif 581 582 AAC_MASK_INTERRUPTS(sc); 583 aac_release_sync_fib(sc); 584 585 return(0); 586 } 587 588 /* 589 * Bring the controller to a quiescent state, ready for system suspend. 590 */ 591 int 592 aac_suspend(device_t dev) 593 { 594 struct aac_softc *sc; 595 596 debug_called(1); 597 598 sc = device_get_softc(dev); 599 600 sc->aac_state |= AAC_STATE_SUSPEND; 601 602 AAC_MASK_INTERRUPTS(sc); 603 return(0); 604 } 605 606 /* 607 * Bring the controller back to a state ready for operation. 608 */ 609 int 610 aac_resume(device_t dev) 611 { 612 struct aac_softc *sc; 613 614 debug_called(1); 615 616 sc = device_get_softc(dev); 617 618 sc->aac_state &= ~AAC_STATE_SUSPEND; 619 AAC_UNMASK_INTERRUPTS(sc); 620 return(0); 621 } 622 623 /* 624 * Take an interrupt. 625 */ 626 void 627 aac_intr(void *arg) 628 { 629 struct aac_softc *sc; 630 u_int16_t reason; 631 632 debug_called(2); 633 634 sc = (struct aac_softc *)arg; 635 636 /* 637 * Read the status register directly. This is faster than taking the 638 * driver lock and reading the queues directly. It also saves having 639 * to turn parts of the driver lock into a spin mutex, which would be 640 * ugly. 641 */ 642 reason = AAC_GET_ISTATUS(sc); 643 AAC_CLEAR_ISTATUS(sc, reason); 644 645 /* handle completion processing */ 646 if (reason & AAC_DB_RESPONSE_READY) 647 taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete); 648 649 /* controller wants to talk to us */ 650 if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) { 651 /* 652 * XXX Make sure that we don't get fooled by strange messages 653 * that start with a NULL. 654 */ 655 if ((reason & AAC_DB_PRINTF) && 656 (sc->aac_common->ac_printf[0] == 0)) 657 sc->aac_common->ac_printf[0] = 32; 658 659 /* 660 * This might miss doing the actual wakeup. However, the 661 * msleep that this is waking up has a timeout, so it will 662 * wake up eventually. AIFs and printfs are low enough 663 * priority that they can handle hanging out for a few seconds 664 * if needed. 665 */ 666 wakeup(sc->aifthread); 667 } 668 } 669 670 /* 671 * Command Processing 672 */ 673 674 /* 675 * Start as much queued I/O as possible on the controller 676 */ 677 void 678 aac_startio(struct aac_softc *sc) 679 { 680 struct aac_command *cm; 681 int error; 682 683 debug_called(2); 684 685 for (;;) { 686 /* 687 * This flag might be set if the card is out of resources. 688 * Checking it here prevents an infinite loop of deferrals. 689 */ 690 if (sc->flags & AAC_QUEUE_FRZN) 691 break; 692 693 /* 694 * Try to get a command that's been put off for lack of 695 * resources 696 */ 697 cm = aac_dequeue_ready(sc); 698 699 /* 700 * Try to build a command off the bio queue (ignore error 701 * return) 702 */ 703 if (cm == NULL) 704 aac_bio_command(sc, &cm); 705 706 /* nothing to do? */ 707 if (cm == NULL) 708 break; 709 710 /* don't map more than once */ 711 if (cm->cm_flags & AAC_CMD_MAPPED) 712 panic("aac: command %p already mapped", cm); 713 714 /* 715 * Set up the command to go to the controller. If there are no 716 * data buffers associated with the command then it can bypass 717 * busdma. 718 */ 719 if (cm->cm_datalen != 0) { 720 error = bus_dmamap_load(sc->aac_buffer_dmat, 721 cm->cm_datamap, cm->cm_data, 722 cm->cm_datalen, 723 aac_map_command_sg, cm, 0); 724 if (error == EINPROGRESS) { 725 debug(1, "freezing queue\n"); 726 sc->flags |= AAC_QUEUE_FRZN; 727 error = 0; 728 } else if (error != 0) 729 panic("aac_startio: unexpected error %d from " 730 "busdma\n", error); 731 } else 732 aac_map_command_sg(cm, NULL, 0, 0); 733 } 734 } 735 736 /* 737 * Handle notification of one or more FIBs coming from the controller. 738 */ 739 static void 740 aac_command_thread(struct aac_softc *sc) 741 { 742 struct aac_fib *fib; 743 u_int32_t fib_size; 744 int size, retval; 745 746 debug_called(2); 747 748 mtx_lock(&sc->aac_io_lock); 749 sc->aifflags = AAC_AIFFLAGS_RUNNING; 750 751 while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) { 752 753 retval = 0; 754 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 755 retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO, 756 "aifthd", AAC_PERIODIC_INTERVAL * hz); 757 758 /* 759 * First see if any FIBs need to be allocated. This needs 760 * to be called without the driver lock because contigmalloc 761 * will grab Giant, and would result in an LOR. 762 */ 763 if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) { 764 mtx_unlock(&sc->aac_io_lock); 765 aac_alloc_commands(sc); 766 mtx_lock(&sc->aac_io_lock); 767 sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS; 768 aac_startio(sc); 769 } 770 771 /* 772 * While we're here, check to see if any commands are stuck. 773 * This is pretty low-priority, so it's ok if it doesn't 774 * always fire. 775 */ 776 if (retval == EWOULDBLOCK) 777 aac_timeout(sc); 778 779 /* Check the hardware printf message buffer */ 780 if (sc->aac_common->ac_printf[0] != 0) 781 aac_print_printf(sc); 782 783 /* Also check to see if the adapter has a command for us. */ 784 while (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 785 &fib_size, &fib) == 0) { 786 787 AAC_PRINT_FIB(sc, fib); 788 789 switch (fib->Header.Command) { 790 case AifRequest: 791 aac_handle_aif(sc, fib); 792 break; 793 default: 794 device_printf(sc->aac_dev, "unknown command " 795 "from controller\n"); 796 break; 797 } 798 799 if ((fib->Header.XferState == 0) || 800 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 801 break; 802 803 /* Return the AIF to the controller. */ 804 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 805 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 806 *(AAC_FSAStatus*)fib->data = ST_OK; 807 808 /* XXX Compute the Size field? */ 809 size = fib->Header.Size; 810 if (size > sizeof(struct aac_fib)) { 811 size = sizeof(struct aac_fib); 812 fib->Header.Size = size; 813 } 814 /* 815 * Since we did not generate this command, it 816 * cannot go through the normal 817 * enqueue->startio chain. 818 */ 819 aac_enqueue_response(sc, 820 AAC_ADAP_NORM_RESP_QUEUE, 821 fib); 822 } 823 } 824 } 825 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 826 mtx_unlock(&sc->aac_io_lock); 827 wakeup(sc->aac_dev); 828 829 kthread_exit(0); 830 } 831 832 /* 833 * Process completed commands. 834 */ 835 static void 836 aac_complete(void *context, int pending) 837 { 838 struct aac_softc *sc; 839 struct aac_command *cm; 840 struct aac_fib *fib; 841 u_int32_t fib_size; 842 843 debug_called(2); 844 845 sc = (struct aac_softc *)context; 846 847 mtx_lock(&sc->aac_io_lock); 848 849 /* pull completed commands off the queue */ 850 for (;;) { 851 /* look for completed FIBs on our queue */ 852 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 853 &fib)) 854 break; /* nothing to do */ 855 856 /* get the command, unmap and hand off for processing */ 857 cm = sc->aac_commands + fib->Header.SenderData; 858 if (cm == NULL) { 859 AAC_PRINT_FIB(sc, fib); 860 break; 861 } 862 863 aac_remove_busy(cm); 864 aac_unmap_command(cm); 865 cm->cm_flags |= AAC_CMD_COMPLETED; 866 867 /* is there a completion handler? */ 868 if (cm->cm_complete != NULL) { 869 cm->cm_complete(cm); 870 } else { 871 /* assume that someone is sleeping on this command */ 872 wakeup(cm); 873 } 874 } 875 876 /* see if we can start some more I/O */ 877 sc->flags &= ~AAC_QUEUE_FRZN; 878 aac_startio(sc); 879 880 mtx_unlock(&sc->aac_io_lock); 881 } 882 883 /* 884 * Handle a bio submitted from a disk device. 885 */ 886 void 887 aac_submit_bio(struct bio *bp) 888 { 889 struct aac_disk *ad; 890 struct aac_softc *sc; 891 892 debug_called(2); 893 894 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 895 sc = ad->ad_controller; 896 897 /* queue the BIO and try to get some work done */ 898 aac_enqueue_bio(sc, bp); 899 aac_startio(sc); 900 } 901 902 /* 903 * Get a bio and build a command to go with it. 904 */ 905 static int 906 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 907 { 908 struct aac_command *cm; 909 struct aac_fib *fib; 910 struct aac_disk *ad; 911 struct bio *bp; 912 913 debug_called(2); 914 915 /* get the resources we will need */ 916 cm = NULL; 917 bp = NULL; 918 if (aac_alloc_command(sc, &cm)) /* get a command */ 919 goto fail; 920 if ((bp = aac_dequeue_bio(sc)) == NULL) 921 goto fail; 922 923 /* fill out the command */ 924 cm->cm_data = (void *)bp->bio_data; 925 cm->cm_datalen = bp->bio_bcount; 926 cm->cm_complete = aac_bio_complete; 927 cm->cm_private = bp; 928 cm->cm_timestamp = time_second; 929 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 930 931 /* build the FIB */ 932 fib = cm->cm_fib; 933 fib->Header.Size = sizeof(struct aac_fib_header); 934 fib->Header.XferState = 935 AAC_FIBSTATE_HOSTOWNED | 936 AAC_FIBSTATE_INITIALISED | 937 AAC_FIBSTATE_EMPTY | 938 AAC_FIBSTATE_FROMHOST | 939 AAC_FIBSTATE_REXPECTED | 940 AAC_FIBSTATE_NORM | 941 AAC_FIBSTATE_ASYNC | 942 AAC_FIBSTATE_FAST_RESPONSE; 943 944 /* build the read/write request */ 945 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 946 947 if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 948 fib->Header.Command = ContainerCommand; 949 if (bp->bio_cmd == BIO_READ) { 950 struct aac_blockread *br; 951 br = (struct aac_blockread *)&fib->data[0]; 952 br->Command = VM_CtBlockRead; 953 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 954 br->BlockNumber = bp->bio_pblkno; 955 br->ByteCount = bp->bio_bcount; 956 fib->Header.Size += sizeof(struct aac_blockread); 957 cm->cm_sgtable = &br->SgMap; 958 cm->cm_flags |= AAC_CMD_DATAIN; 959 } else { 960 struct aac_blockwrite *bw; 961 bw = (struct aac_blockwrite *)&fib->data[0]; 962 bw->Command = VM_CtBlockWrite; 963 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 964 bw->BlockNumber = bp->bio_pblkno; 965 bw->ByteCount = bp->bio_bcount; 966 bw->Stable = CUNSTABLE; 967 fib->Header.Size += sizeof(struct aac_blockwrite); 968 cm->cm_flags |= AAC_CMD_DATAOUT; 969 cm->cm_sgtable = &bw->SgMap; 970 } 971 } else { 972 fib->Header.Command = ContainerCommand64; 973 if (bp->bio_cmd == BIO_READ) { 974 struct aac_blockread64 *br; 975 br = (struct aac_blockread64 *)&fib->data[0]; 976 br->Command = VM_CtHostRead64; 977 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 978 br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 979 br->BlockNumber = bp->bio_pblkno; 980 br->Pad = 0; 981 br->Flags = 0; 982 fib->Header.Size += sizeof(struct aac_blockread64); 983 cm->cm_flags |= AAC_CMD_DATAOUT; 984 cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64; 985 } else { 986 struct aac_blockwrite64 *bw; 987 bw = (struct aac_blockwrite64 *)&fib->data[0]; 988 bw->Command = VM_CtHostWrite64; 989 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 990 bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 991 bw->BlockNumber = bp->bio_pblkno; 992 bw->Pad = 0; 993 bw->Flags = 0; 994 fib->Header.Size += sizeof(struct aac_blockwrite64); 995 cm->cm_flags |= AAC_CMD_DATAIN; 996 cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64; 997 } 998 } 999 1000 *cmp = cm; 1001 return(0); 1002 1003 fail: 1004 if (bp != NULL) 1005 aac_enqueue_bio(sc, bp); 1006 if (cm != NULL) 1007 aac_release_command(cm); 1008 return(ENOMEM); 1009 } 1010 1011 /* 1012 * Handle a bio-instigated command that has been completed. 1013 */ 1014 static void 1015 aac_bio_complete(struct aac_command *cm) 1016 { 1017 struct aac_blockread_response *brr; 1018 struct aac_blockwrite_response *bwr; 1019 struct bio *bp; 1020 AAC_FSAStatus status; 1021 1022 /* fetch relevant status and then release the command */ 1023 bp = (struct bio *)cm->cm_private; 1024 if (bp->bio_cmd == BIO_READ) { 1025 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 1026 status = brr->Status; 1027 } else { 1028 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 1029 status = bwr->Status; 1030 } 1031 aac_release_command(cm); 1032 1033 /* fix up the bio based on status */ 1034 if (status == ST_OK) { 1035 bp->bio_resid = 0; 1036 } else { 1037 bp->bio_error = EIO; 1038 bp->bio_flags |= BIO_ERROR; 1039 /* pass an error string out to the disk layer */ 1040 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1041 status); 1042 } 1043 aac_biodone(bp); 1044 } 1045 1046 /* 1047 * Submit a command to the controller, return when it completes. 1048 * XXX This is very dangerous! If the card has gone out to lunch, we could 1049 * be stuck here forever. At the same time, signals are not caught 1050 * because there is a risk that a signal could wakeup the sleep before 1051 * the card has a chance to complete the command. Since there is no way 1052 * to cancel a command that is in progress, we can't protect against the 1053 * card completing a command late and spamming the command and data 1054 * memory. So, we are held hostage until the command completes. 1055 */ 1056 static int 1057 aac_wait_command(struct aac_command *cm) 1058 { 1059 struct aac_softc *sc; 1060 int error; 1061 1062 debug_called(2); 1063 1064 sc = cm->cm_sc; 1065 1066 /* Put the command on the ready queue and get things going */ 1067 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1068 aac_enqueue_ready(cm); 1069 aac_startio(sc); 1070 error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0); 1071 return(error); 1072 } 1073 1074 /* 1075 *Command Buffer Management 1076 */ 1077 1078 /* 1079 * Allocate a command. 1080 */ 1081 int 1082 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1083 { 1084 struct aac_command *cm; 1085 1086 debug_called(3); 1087 1088 if ((cm = aac_dequeue_free(sc)) == NULL) { 1089 if (sc->total_fibs < sc->aac_max_fibs) { 1090 sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS; 1091 wakeup(sc->aifthread); 1092 } 1093 return (EBUSY); 1094 } 1095 1096 *cmp = cm; 1097 return(0); 1098 } 1099 1100 /* 1101 * Release a command back to the freelist. 1102 */ 1103 void 1104 aac_release_command(struct aac_command *cm) 1105 { 1106 debug_called(3); 1107 1108 /* (re)initialise the command/FIB */ 1109 cm->cm_sgtable = NULL; 1110 cm->cm_flags = 0; 1111 cm->cm_complete = NULL; 1112 cm->cm_private = NULL; 1113 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1114 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1115 cm->cm_fib->Header.Flags = 0; 1116 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1117 1118 /* 1119 * These are duplicated in aac_start to cover the case where an 1120 * intermediate stage may have destroyed them. They're left 1121 * initialised here for debugging purposes only. 1122 */ 1123 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1124 cm->cm_fib->Header.SenderData = 0; 1125 1126 aac_enqueue_free(cm); 1127 } 1128 1129 /* 1130 * Map helper for command/FIB allocation. 1131 */ 1132 static void 1133 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1134 { 1135 uint32_t *fibphys; 1136 1137 fibphys = (uint32_t *)arg; 1138 1139 debug_called(3); 1140 1141 *fibphys = segs[0].ds_addr; 1142 } 1143 1144 /* 1145 * Allocate and initialise commands/FIBs for this adapter. 1146 */ 1147 static int 1148 aac_alloc_commands(struct aac_softc *sc) 1149 { 1150 struct aac_command *cm; 1151 struct aac_fibmap *fm; 1152 uint32_t fibphys; 1153 int i, error; 1154 1155 debug_called(2); 1156 1157 if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs) 1158 return (ENOMEM); 1159 1160 fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO); 1161 if (fm == NULL) 1162 return (ENOMEM); 1163 1164 /* allocate the FIBs in DMAable memory and load them */ 1165 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs, 1166 BUS_DMA_NOWAIT, &fm->aac_fibmap)) { 1167 device_printf(sc->aac_dev, 1168 "Not enough contiguous memory available.\n"); 1169 free(fm, M_AACBUF); 1170 return (ENOMEM); 1171 } 1172 1173 /* Ignore errors since this doesn't bounce */ 1174 (void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs, 1175 AAC_FIB_COUNT * sizeof(struct aac_fib), 1176 aac_map_command_helper, &fibphys, 0); 1177 1178 /* initialise constant fields in the command structure */ 1179 mtx_lock(&sc->aac_io_lock); 1180 bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib)); 1181 for (i = 0; i < AAC_FIB_COUNT; i++) { 1182 cm = sc->aac_commands + sc->total_fibs; 1183 fm->aac_commands = cm; 1184 cm->cm_sc = sc; 1185 cm->cm_fib = fm->aac_fibs + i; 1186 cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib)); 1187 cm->cm_index = sc->total_fibs; 1188 1189 if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0, 1190 &cm->cm_datamap)) == 0) 1191 aac_release_command(cm); 1192 else 1193 break; 1194 sc->total_fibs++; 1195 } 1196 1197 if (i > 0) { 1198 TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link); 1199 debug(1, "total_fibs= %d\n", sc->total_fibs); 1200 mtx_unlock(&sc->aac_io_lock); 1201 return (0); 1202 } 1203 1204 mtx_unlock(&sc->aac_io_lock); 1205 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1206 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1207 free(fm, M_AACBUF); 1208 return (ENOMEM); 1209 } 1210 1211 /* 1212 * Free FIBs owned by this adapter. 1213 */ 1214 static void 1215 aac_free_commands(struct aac_softc *sc) 1216 { 1217 struct aac_fibmap *fm; 1218 struct aac_command *cm; 1219 int i; 1220 1221 debug_called(1); 1222 1223 while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) { 1224 1225 TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link); 1226 /* 1227 * We check against total_fibs to handle partially 1228 * allocated blocks. 1229 */ 1230 for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) { 1231 cm = fm->aac_commands + i; 1232 bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap); 1233 } 1234 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1235 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1236 free(fm, M_AACBUF); 1237 } 1238 } 1239 1240 /* 1241 * Command-mapping helper function - populate this command's s/g table. 1242 */ 1243 static void 1244 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1245 { 1246 struct aac_softc *sc; 1247 struct aac_command *cm; 1248 struct aac_fib *fib; 1249 int i; 1250 1251 debug_called(3); 1252 1253 cm = (struct aac_command *)arg; 1254 sc = cm->cm_sc; 1255 fib = cm->cm_fib; 1256 1257 /* copy into the FIB */ 1258 if (cm->cm_sgtable != NULL) { 1259 if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1260 struct aac_sg_table *sg; 1261 sg = cm->cm_sgtable; 1262 sg->SgCount = nseg; 1263 for (i = 0; i < nseg; i++) { 1264 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1265 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1266 } 1267 /* update the FIB size for the s/g count */ 1268 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1269 } else { 1270 struct aac_sg_table64 *sg; 1271 sg = (struct aac_sg_table64 *)cm->cm_sgtable; 1272 sg->SgCount = nseg; 1273 for (i = 0; i < nseg; i++) { 1274 sg->SgEntry64[i].SgAddress = segs[i].ds_addr; 1275 sg->SgEntry64[i].SgByteCount = segs[i].ds_len; 1276 } 1277 /* update the FIB size for the s/g count */ 1278 fib->Header.Size += nseg*sizeof(struct aac_sg_entry64); 1279 } 1280 } 1281 1282 /* Fix up the address values in the FIB. Use the command array index 1283 * instead of a pointer since these fields are only 32 bits. Shift 1284 * the SenderFibAddress over to make room for the fast response bit. 1285 */ 1286 cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1); 1287 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1288 1289 /* save a pointer to the command for speedy reverse-lookup */ 1290 cm->cm_fib->Header.SenderData = cm->cm_index; 1291 1292 if (cm->cm_flags & AAC_CMD_DATAIN) 1293 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1294 BUS_DMASYNC_PREREAD); 1295 if (cm->cm_flags & AAC_CMD_DATAOUT) 1296 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1297 BUS_DMASYNC_PREWRITE); 1298 cm->cm_flags |= AAC_CMD_MAPPED; 1299 1300 /* Put the FIB on the outbound queue */ 1301 if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) { 1302 aac_unmap_command(cm); 1303 sc->flags |= AAC_QUEUE_FRZN; 1304 aac_requeue_ready(cm); 1305 } 1306 1307 return; 1308 } 1309 1310 /* 1311 * Unmap a command from controller-visible space. 1312 */ 1313 static void 1314 aac_unmap_command(struct aac_command *cm) 1315 { 1316 struct aac_softc *sc; 1317 1318 debug_called(2); 1319 1320 sc = cm->cm_sc; 1321 1322 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1323 return; 1324 1325 if (cm->cm_datalen != 0) { 1326 if (cm->cm_flags & AAC_CMD_DATAIN) 1327 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1328 BUS_DMASYNC_POSTREAD); 1329 if (cm->cm_flags & AAC_CMD_DATAOUT) 1330 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1331 BUS_DMASYNC_POSTWRITE); 1332 1333 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1334 } 1335 cm->cm_flags &= ~AAC_CMD_MAPPED; 1336 } 1337 1338 /* 1339 * Hardware Interface 1340 */ 1341 1342 /* 1343 * Initialise the adapter. 1344 */ 1345 static void 1346 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1347 { 1348 struct aac_softc *sc; 1349 1350 debug_called(1); 1351 1352 sc = (struct aac_softc *)arg; 1353 1354 sc->aac_common_busaddr = segs[0].ds_addr; 1355 } 1356 1357 static int 1358 aac_check_firmware(struct aac_softc *sc) 1359 { 1360 u_int32_t major, minor, options; 1361 1362 debug_called(1); 1363 1364 /* 1365 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1366 * firmware version 1.x are not compatible with this driver. 1367 */ 1368 if (sc->flags & AAC_FLAGS_PERC2QC) { 1369 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1370 NULL)) { 1371 device_printf(sc->aac_dev, 1372 "Error reading firmware version\n"); 1373 return (EIO); 1374 } 1375 1376 /* These numbers are stored as ASCII! */ 1377 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30; 1378 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30; 1379 if (major == 1) { 1380 device_printf(sc->aac_dev, 1381 "Firmware version %d.%d is not supported.\n", 1382 major, minor); 1383 return (EINVAL); 1384 } 1385 } 1386 1387 /* 1388 * Retrieve the capabilities/supported options word so we know what 1389 * work-arounds to enable. 1390 */ 1391 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) { 1392 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 1393 return (EIO); 1394 } 1395 options = AAC_GET_MAILBOX(sc, 1); 1396 sc->supported_options = options; 1397 1398 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 && 1399 (sc->flags & AAC_FLAGS_NO4GB) == 0) 1400 sc->flags |= AAC_FLAGS_4GB_WINDOW; 1401 if (options & AAC_SUPPORTED_NONDASD) 1402 sc->flags |= AAC_FLAGS_ENABLE_CAM; 1403 if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 1404 && (sizeof(bus_addr_t) > 4)) { 1405 device_printf(sc->aac_dev, "Enabling 64-bit address support\n"); 1406 sc->flags |= AAC_FLAGS_SG_64BIT; 1407 } 1408 1409 /* Check for broken hardware that does a lower number of commands */ 1410 if ((sc->flags & AAC_FLAGS_256FIBS) == 0) 1411 sc->aac_max_fibs = AAC_MAX_FIBS; 1412 else 1413 sc->aac_max_fibs = 256; 1414 1415 return (0); 1416 } 1417 1418 static int 1419 aac_init(struct aac_softc *sc) 1420 { 1421 struct aac_adapter_init *ip; 1422 time_t then; 1423 u_int32_t code, qoffset; 1424 int error; 1425 1426 debug_called(1); 1427 1428 /* 1429 * First wait for the adapter to come ready. 1430 */ 1431 then = time_second; 1432 do { 1433 code = AAC_GET_FWSTATUS(sc); 1434 if (code & AAC_SELF_TEST_FAILED) { 1435 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1436 return(ENXIO); 1437 } 1438 if (code & AAC_KERNEL_PANIC) { 1439 device_printf(sc->aac_dev, 1440 "FATAL: controller kernel panic\n"); 1441 return(ENXIO); 1442 } 1443 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1444 device_printf(sc->aac_dev, 1445 "FATAL: controller not coming ready, " 1446 "status %x\n", code); 1447 return(ENXIO); 1448 } 1449 } while (!(code & AAC_UP_AND_RUNNING)); 1450 1451 error = ENOMEM; 1452 /* 1453 * Create DMA tag for mapping buffers into controller-addressable space. 1454 */ 1455 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1456 1, 0, /* algnmnt, boundary */ 1457 (sc->flags & AAC_FLAGS_SG_64BIT) ? 1458 BUS_SPACE_MAXADDR : 1459 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1460 BUS_SPACE_MAXADDR, /* highaddr */ 1461 NULL, NULL, /* filter, filterarg */ 1462 MAXBSIZE, /* maxsize */ 1463 AAC_MAXSGENTRIES, /* nsegments */ 1464 MAXBSIZE, /* maxsegsize */ 1465 BUS_DMA_ALLOCNOW, /* flags */ 1466 busdma_lock_mutex, /* lockfunc */ 1467 &sc->aac_io_lock, /* lockfuncarg */ 1468 &sc->aac_buffer_dmat)) { 1469 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n"); 1470 goto out; 1471 } 1472 1473 /* 1474 * Create DMA tag for mapping FIBs into controller-addressable space.. 1475 */ 1476 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1477 1, 0, /* algnmnt, boundary */ 1478 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1479 BUS_SPACE_MAXADDR_32BIT : 1480 0x7fffffff, /* lowaddr */ 1481 BUS_SPACE_MAXADDR, /* highaddr */ 1482 NULL, NULL, /* filter, filterarg */ 1483 AAC_FIB_COUNT * 1484 sizeof(struct aac_fib), /* maxsize */ 1485 1, /* nsegments */ 1486 AAC_FIB_COUNT * 1487 sizeof(struct aac_fib), /* maxsegsize */ 1488 BUS_DMA_ALLOCNOW, /* flags */ 1489 NULL, NULL, /* No locking needed */ 1490 &sc->aac_fib_dmat)) { 1491 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");; 1492 goto out; 1493 } 1494 1495 /* 1496 * Create DMA tag for the common structure and allocate it. 1497 */ 1498 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1499 1, 0, /* algnmnt, boundary */ 1500 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1501 BUS_SPACE_MAXADDR_32BIT : 1502 0x7fffffff, /* lowaddr */ 1503 BUS_SPACE_MAXADDR, /* highaddr */ 1504 NULL, NULL, /* filter, filterarg */ 1505 8192 + sizeof(struct aac_common), /* maxsize */ 1506 1, /* nsegments */ 1507 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1508 BUS_DMA_ALLOCNOW, /* flags */ 1509 NULL, NULL, /* No locking needed */ 1510 &sc->aac_common_dmat)) { 1511 device_printf(sc->aac_dev, 1512 "can't allocate common structure DMA tag\n"); 1513 goto out; 1514 } 1515 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1516 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1517 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1518 goto out; 1519 } 1520 1521 /* 1522 * Work around a bug in the 2120 and 2200 that cannot DMA commands 1523 * below address 8192 in physical memory. 1524 * XXX If the padding is not needed, can it be put to use instead 1525 * of ignored? 1526 */ 1527 (void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1528 sc->aac_common, 8192 + sizeof(*sc->aac_common), 1529 aac_common_map, sc, 0); 1530 1531 if (sc->aac_common_busaddr < 8192) { 1532 sc->aac_common = (struct aac_common *) 1533 ((uint8_t *)sc->aac_common + 8192); 1534 sc->aac_common_busaddr += 8192; 1535 } 1536 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1537 1538 /* Allocate some FIBs and associated command structs */ 1539 TAILQ_INIT(&sc->aac_fibmap_tqh); 1540 sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command), 1541 M_AACBUF, M_WAITOK|M_ZERO); 1542 while (sc->total_fibs < AAC_PREALLOCATE_FIBS) { 1543 if (aac_alloc_commands(sc) != 0) 1544 break; 1545 } 1546 if (sc->total_fibs == 0) 1547 goto out; 1548 1549 /* 1550 * Fill in the init structure. This tells the adapter about the 1551 * physical location of various important shared data structures. 1552 */ 1553 ip = &sc->aac_common->ac_init; 1554 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1555 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1556 1557 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1558 offsetof(struct aac_common, ac_fibs); 1559 ip->AdapterFibsVirtualAddress = 0; 1560 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1561 ip->AdapterFibAlign = sizeof(struct aac_fib); 1562 1563 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1564 offsetof(struct aac_common, ac_printf); 1565 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1566 1567 /* 1568 * The adapter assumes that pages are 4K in size, except on some 1569 * broken firmware versions that do the page->byte conversion twice, 1570 * therefore 'assuming' that this value is in 16MB units (2^24). 1571 * Round up since the granularity is so high. 1572 */ 1573 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1574 if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) { 1575 ip->HostPhysMemPages = 1576 (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE; 1577 } 1578 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1579 1580 /* 1581 * Initialise FIB queues. Note that it appears that the layout of the 1582 * indexes and the segmentation of the entries may be mandated by the 1583 * adapter, which is only told about the base of the queue index fields. 1584 * 1585 * The initial values of the indices are assumed to inform the adapter 1586 * of the sizes of the respective queues, and theoretically it could 1587 * work out the entire layout of the queue structures from this. We 1588 * take the easy route and just lay this area out like everyone else 1589 * does. 1590 * 1591 * The Linux driver uses a much more complex scheme whereby several 1592 * header records are kept for each queue. We use a couple of generic 1593 * list manipulation functions which 'know' the size of each list by 1594 * virtue of a table. 1595 */ 1596 qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN; 1597 qoffset &= ~(AAC_QUEUE_ALIGN - 1); 1598 sc->aac_queues = 1599 (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset); 1600 ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset; 1601 1602 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1603 AAC_HOST_NORM_CMD_ENTRIES; 1604 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1605 AAC_HOST_NORM_CMD_ENTRIES; 1606 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1607 AAC_HOST_HIGH_CMD_ENTRIES; 1608 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1609 AAC_HOST_HIGH_CMD_ENTRIES; 1610 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1611 AAC_ADAP_NORM_CMD_ENTRIES; 1612 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1613 AAC_ADAP_NORM_CMD_ENTRIES; 1614 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1615 AAC_ADAP_HIGH_CMD_ENTRIES; 1616 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1617 AAC_ADAP_HIGH_CMD_ENTRIES; 1618 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1619 AAC_HOST_NORM_RESP_ENTRIES; 1620 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1621 AAC_HOST_NORM_RESP_ENTRIES; 1622 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1623 AAC_HOST_HIGH_RESP_ENTRIES; 1624 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1625 AAC_HOST_HIGH_RESP_ENTRIES; 1626 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1627 AAC_ADAP_NORM_RESP_ENTRIES; 1628 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1629 AAC_ADAP_NORM_RESP_ENTRIES; 1630 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1631 AAC_ADAP_HIGH_RESP_ENTRIES; 1632 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1633 AAC_ADAP_HIGH_RESP_ENTRIES; 1634 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1635 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1636 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1637 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1638 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1639 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1640 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1641 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1642 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1643 &sc->aac_queues->qt_HostNormRespQueue[0]; 1644 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1645 &sc->aac_queues->qt_HostHighRespQueue[0]; 1646 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1647 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1648 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1649 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1650 1651 /* 1652 * Do controller-type-specific initialisation 1653 */ 1654 switch (sc->aac_hwif) { 1655 case AAC_HWIF_I960RX: 1656 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1657 break; 1658 case AAC_HWIF_RKT: 1659 AAC_SETREG4(sc, AAC_RKT_ODBR, ~0); 1660 break; 1661 default: 1662 break; 1663 } 1664 1665 /* 1666 * Give the init structure to the controller. 1667 */ 1668 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1669 sc->aac_common_busaddr + 1670 offsetof(struct aac_common, ac_init), 0, 0, 0, 1671 NULL)) { 1672 device_printf(sc->aac_dev, 1673 "error establishing init structure\n"); 1674 error = EIO; 1675 goto out; 1676 } 1677 1678 error = 0; 1679 out: 1680 return(error); 1681 } 1682 1683 /* 1684 * Send a synchronous command to the controller and wait for a result. 1685 */ 1686 static int 1687 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1688 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1689 u_int32_t *sp) 1690 { 1691 time_t then; 1692 u_int32_t status; 1693 1694 debug_called(3); 1695 1696 /* populate the mailbox */ 1697 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1698 1699 /* ensure the sync command doorbell flag is cleared */ 1700 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1701 1702 /* then set it to signal the adapter */ 1703 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1704 1705 /* spin waiting for the command to complete */ 1706 then = time_second; 1707 do { 1708 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1709 debug(1, "timed out"); 1710 return(EIO); 1711 } 1712 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1713 1714 /* clear the completion flag */ 1715 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1716 1717 /* get the command status */ 1718 status = AAC_GET_MAILBOX(sc, 0); 1719 if (sp != NULL) 1720 *sp = status; 1721 return(0); 1722 } 1723 1724 int 1725 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1726 struct aac_fib *fib, u_int16_t datasize) 1727 { 1728 debug_called(3); 1729 1730 if (datasize > AAC_FIB_DATASIZE) 1731 return(EINVAL); 1732 1733 /* 1734 * Set up the sync FIB 1735 */ 1736 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1737 AAC_FIBSTATE_INITIALISED | 1738 AAC_FIBSTATE_EMPTY; 1739 fib->Header.XferState |= xferstate; 1740 fib->Header.Command = command; 1741 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1742 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1743 fib->Header.SenderSize = sizeof(struct aac_fib); 1744 fib->Header.SenderFibAddress = 0; /* Not needed */ 1745 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1746 offsetof(struct aac_common, 1747 ac_sync_fib); 1748 1749 /* 1750 * Give the FIB to the controller, wait for a response. 1751 */ 1752 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1753 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1754 debug(2, "IO error"); 1755 return(EIO); 1756 } 1757 1758 return (0); 1759 } 1760 1761 /* 1762 * Adapter-space FIB queue manipulation 1763 * 1764 * Note that the queue implementation here is a little funky; neither the PI or 1765 * CI will ever be zero. This behaviour is a controller feature. 1766 */ 1767 static struct { 1768 int size; 1769 int notify; 1770 } aac_qinfo[] = { 1771 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1772 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1773 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1774 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1775 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1776 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1777 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1778 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1779 }; 1780 1781 /* 1782 * Atomically insert an entry into the nominated queue, returns 0 on success or 1783 * EBUSY if the queue is full. 1784 * 1785 * Note: it would be more efficient to defer notifying the controller in 1786 * the case where we may be inserting several entries in rapid succession, 1787 * but implementing this usefully may be difficult (it would involve a 1788 * separate queue/notify interface). 1789 */ 1790 static int 1791 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1792 { 1793 u_int32_t pi, ci; 1794 int error; 1795 u_int32_t fib_size; 1796 u_int32_t fib_addr; 1797 1798 debug_called(3); 1799 1800 fib_size = cm->cm_fib->Header.Size; 1801 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1802 1803 /* get the producer/consumer indices */ 1804 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1805 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1806 1807 /* wrap the queue? */ 1808 if (pi >= aac_qinfo[queue].size) 1809 pi = 0; 1810 1811 /* check for queue full */ 1812 if ((pi + 1) == ci) { 1813 error = EBUSY; 1814 goto out; 1815 } 1816 1817 /* 1818 * To avoid a race with its completion interrupt, place this command on 1819 * the busy queue prior to advertising it to the controller. 1820 */ 1821 aac_enqueue_busy(cm); 1822 1823 /* populate queue entry */ 1824 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1825 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1826 1827 /* update producer index */ 1828 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1829 1830 /* notify the adapter if we know how */ 1831 if (aac_qinfo[queue].notify != 0) 1832 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1833 1834 error = 0; 1835 1836 out: 1837 return(error); 1838 } 1839 1840 /* 1841 * Atomically remove one entry from the nominated queue, returns 0 on 1842 * success or ENOENT if the queue is empty. 1843 */ 1844 static int 1845 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1846 struct aac_fib **fib_addr) 1847 { 1848 u_int32_t pi, ci; 1849 u_int32_t fib_index; 1850 int error; 1851 int notify; 1852 1853 debug_called(3); 1854 1855 /* get the producer/consumer indices */ 1856 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1857 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1858 1859 /* check for queue empty */ 1860 if (ci == pi) { 1861 error = ENOENT; 1862 goto out; 1863 } 1864 1865 /* wrap the pi so the following test works */ 1866 if (pi >= aac_qinfo[queue].size) 1867 pi = 0; 1868 1869 notify = 0; 1870 if (ci == pi + 1) 1871 notify++; 1872 1873 /* wrap the queue? */ 1874 if (ci >= aac_qinfo[queue].size) 1875 ci = 0; 1876 1877 /* fetch the entry */ 1878 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1879 1880 switch (queue) { 1881 case AAC_HOST_NORM_CMD_QUEUE: 1882 case AAC_HOST_HIGH_CMD_QUEUE: 1883 /* 1884 * The aq_fib_addr is only 32 bits wide so it can't be counted 1885 * on to hold an address. For AIF's, the adapter assumes 1886 * that it's giving us an address into the array of AIF fibs. 1887 * Therefore, we have to convert it to an index. 1888 */ 1889 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr / 1890 sizeof(struct aac_fib); 1891 *fib_addr = &sc->aac_common->ac_fibs[fib_index]; 1892 break; 1893 1894 case AAC_HOST_NORM_RESP_QUEUE: 1895 case AAC_HOST_HIGH_RESP_QUEUE: 1896 { 1897 struct aac_command *cm; 1898 1899 /* 1900 * As above, an index is used instead of an actual address. 1901 * Gotta shift the index to account for the fast response 1902 * bit. No other correction is needed since this value was 1903 * originally provided by the driver via the SenderFibAddress 1904 * field. 1905 */ 1906 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr; 1907 cm = sc->aac_commands + (fib_index >> 1); 1908 *fib_addr = cm->cm_fib; 1909 1910 /* 1911 * Is this a fast response? If it is, update the fib fields in 1912 * local memory since the whole fib isn't DMA'd back up. 1913 */ 1914 if (fib_index & 0x01) { 1915 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 1916 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 1917 } 1918 break; 1919 } 1920 default: 1921 panic("Invalid queue in aac_dequeue_fib()"); 1922 break; 1923 } 1924 1925 /* update consumer index */ 1926 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1927 1928 /* if we have made the queue un-full, notify the adapter */ 1929 if (notify && (aac_qinfo[queue].notify != 0)) 1930 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1931 error = 0; 1932 1933 out: 1934 return(error); 1935 } 1936 1937 /* 1938 * Put our response to an Adapter Initialed Fib on the response queue 1939 */ 1940 static int 1941 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1942 { 1943 u_int32_t pi, ci; 1944 int error; 1945 u_int32_t fib_size; 1946 u_int32_t fib_addr; 1947 1948 debug_called(1); 1949 1950 /* Tell the adapter where the FIB is */ 1951 fib_size = fib->Header.Size; 1952 fib_addr = fib->Header.SenderFibAddress; 1953 fib->Header.ReceiverFibAddress = fib_addr; 1954 1955 /* get the producer/consumer indices */ 1956 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1957 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1958 1959 /* wrap the queue? */ 1960 if (pi >= aac_qinfo[queue].size) 1961 pi = 0; 1962 1963 /* check for queue full */ 1964 if ((pi + 1) == ci) { 1965 error = EBUSY; 1966 goto out; 1967 } 1968 1969 /* populate queue entry */ 1970 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1971 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1972 1973 /* update producer index */ 1974 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1975 1976 /* notify the adapter if we know how */ 1977 if (aac_qinfo[queue].notify != 0) 1978 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1979 1980 error = 0; 1981 1982 out: 1983 return(error); 1984 } 1985 1986 /* 1987 * Check for commands that have been outstanding for a suspiciously long time, 1988 * and complain about them. 1989 */ 1990 static void 1991 aac_timeout(struct aac_softc *sc) 1992 { 1993 struct aac_command *cm; 1994 time_t deadline; 1995 1996 /* 1997 * Traverse the busy command list, bitch about late commands once 1998 * only. 1999 */ 2000 deadline = time_second - AAC_CMD_TIMEOUT; 2001 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 2002 if ((cm->cm_timestamp < deadline) 2003 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 2004 cm->cm_flags |= AAC_CMD_TIMEDOUT; 2005 device_printf(sc->aac_dev, 2006 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 2007 cm, (int)(time_second-cm->cm_timestamp)); 2008 AAC_PRINT_FIB(sc, cm->cm_fib); 2009 } 2010 } 2011 2012 return; 2013 } 2014 2015 /* 2016 * Interface Function Vectors 2017 */ 2018 2019 /* 2020 * Read the current firmware status word. 2021 */ 2022 static int 2023 aac_sa_get_fwstatus(struct aac_softc *sc) 2024 { 2025 debug_called(3); 2026 2027 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 2028 } 2029 2030 static int 2031 aac_rx_get_fwstatus(struct aac_softc *sc) 2032 { 2033 debug_called(3); 2034 2035 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 2036 } 2037 2038 static int 2039 aac_fa_get_fwstatus(struct aac_softc *sc) 2040 { 2041 int val; 2042 2043 debug_called(3); 2044 2045 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 2046 return (val); 2047 } 2048 2049 static int 2050 aac_rkt_get_fwstatus(struct aac_softc *sc) 2051 { 2052 debug_called(3); 2053 2054 return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS)); 2055 } 2056 2057 /* 2058 * Notify the controller of a change in a given queue 2059 */ 2060 2061 static void 2062 aac_sa_qnotify(struct aac_softc *sc, int qbit) 2063 { 2064 debug_called(3); 2065 2066 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 2067 } 2068 2069 static void 2070 aac_rx_qnotify(struct aac_softc *sc, int qbit) 2071 { 2072 debug_called(3); 2073 2074 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 2075 } 2076 2077 static void 2078 aac_fa_qnotify(struct aac_softc *sc, int qbit) 2079 { 2080 debug_called(3); 2081 2082 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 2083 AAC_FA_HACK(sc); 2084 } 2085 2086 static void 2087 aac_rkt_qnotify(struct aac_softc *sc, int qbit) 2088 { 2089 debug_called(3); 2090 2091 AAC_SETREG4(sc, AAC_RKT_IDBR, qbit); 2092 } 2093 2094 /* 2095 * Get the interrupt reason bits 2096 */ 2097 static int 2098 aac_sa_get_istatus(struct aac_softc *sc) 2099 { 2100 debug_called(3); 2101 2102 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 2103 } 2104 2105 static int 2106 aac_rx_get_istatus(struct aac_softc *sc) 2107 { 2108 debug_called(3); 2109 2110 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 2111 } 2112 2113 static int 2114 aac_fa_get_istatus(struct aac_softc *sc) 2115 { 2116 int val; 2117 2118 debug_called(3); 2119 2120 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 2121 return (val); 2122 } 2123 2124 static int 2125 aac_rkt_get_istatus(struct aac_softc *sc) 2126 { 2127 debug_called(3); 2128 2129 return(AAC_GETREG4(sc, AAC_RKT_ODBR)); 2130 } 2131 2132 /* 2133 * Clear some interrupt reason bits 2134 */ 2135 static void 2136 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 2137 { 2138 debug_called(3); 2139 2140 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 2141 } 2142 2143 static void 2144 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 2145 { 2146 debug_called(3); 2147 2148 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 2149 } 2150 2151 static void 2152 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 2153 { 2154 debug_called(3); 2155 2156 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 2157 AAC_FA_HACK(sc); 2158 } 2159 2160 static void 2161 aac_rkt_clear_istatus(struct aac_softc *sc, int mask) 2162 { 2163 debug_called(3); 2164 2165 AAC_SETREG4(sc, AAC_RKT_ODBR, mask); 2166 } 2167 2168 /* 2169 * Populate the mailbox and set the command word 2170 */ 2171 static void 2172 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2173 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2174 { 2175 debug_called(4); 2176 2177 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 2178 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2179 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2180 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2181 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2182 } 2183 2184 static void 2185 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2186 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2187 { 2188 debug_called(4); 2189 2190 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 2191 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2192 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2193 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2194 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2195 } 2196 2197 static void 2198 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2199 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2200 { 2201 debug_called(4); 2202 2203 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 2204 AAC_FA_HACK(sc); 2205 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 2206 AAC_FA_HACK(sc); 2207 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 2208 AAC_FA_HACK(sc); 2209 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 2210 AAC_FA_HACK(sc); 2211 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 2212 AAC_FA_HACK(sc); 2213 } 2214 2215 static void 2216 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0, 2217 u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2218 { 2219 debug_called(4); 2220 2221 AAC_SETREG4(sc, AAC_RKT_MAILBOX, command); 2222 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0); 2223 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1); 2224 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2); 2225 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3); 2226 } 2227 2228 /* 2229 * Fetch the immediate command status word 2230 */ 2231 static int 2232 aac_sa_get_mailbox(struct aac_softc *sc, int mb) 2233 { 2234 debug_called(4); 2235 2236 return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4))); 2237 } 2238 2239 static int 2240 aac_rx_get_mailbox(struct aac_softc *sc, int mb) 2241 { 2242 debug_called(4); 2243 2244 return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4))); 2245 } 2246 2247 static int 2248 aac_fa_get_mailbox(struct aac_softc *sc, int mb) 2249 { 2250 int val; 2251 2252 debug_called(4); 2253 2254 val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4)); 2255 return (val); 2256 } 2257 2258 static int 2259 aac_rkt_get_mailbox(struct aac_softc *sc, int mb) 2260 { 2261 debug_called(4); 2262 2263 return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4))); 2264 } 2265 2266 /* 2267 * Set/clear interrupt masks 2268 */ 2269 static void 2270 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2271 { 2272 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2273 2274 if (enable) { 2275 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2276 } else { 2277 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2278 } 2279 } 2280 2281 static void 2282 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2283 { 2284 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2285 2286 if (enable) { 2287 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2288 } else { 2289 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2290 } 2291 } 2292 2293 static void 2294 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2295 { 2296 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2297 2298 if (enable) { 2299 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2300 AAC_FA_HACK(sc); 2301 } else { 2302 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2303 AAC_FA_HACK(sc); 2304 } 2305 } 2306 2307 static void 2308 aac_rkt_set_interrupts(struct aac_softc *sc, int enable) 2309 { 2310 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2311 2312 if (enable) { 2313 AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS); 2314 } else { 2315 AAC_SETREG4(sc, AAC_RKT_OIMR, ~0); 2316 } 2317 } 2318 2319 /* 2320 * Debugging and Diagnostics 2321 */ 2322 2323 /* 2324 * Print some information about the controller. 2325 */ 2326 static void 2327 aac_describe_controller(struct aac_softc *sc) 2328 { 2329 struct aac_fib *fib; 2330 struct aac_adapter_info *info; 2331 2332 debug_called(2); 2333 2334 aac_alloc_sync_fib(sc, &fib); 2335 2336 fib->data[0] = 0; 2337 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2338 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2339 aac_release_sync_fib(sc); 2340 return; 2341 } 2342 info = (struct aac_adapter_info *)&fib->data[0]; 2343 2344 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2345 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2346 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2347 aac_describe_code(aac_battery_platform, 2348 info->batteryPlatform)); 2349 2350 /* save the kernel revision structure for later use */ 2351 sc->aac_revision = info->KernelRevision; 2352 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2353 info->KernelRevision.external.comp.major, 2354 info->KernelRevision.external.comp.minor, 2355 info->KernelRevision.external.comp.dash, 2356 info->KernelRevision.buildNumber, 2357 (u_int32_t)(info->SerialNumber & 0xffffff)); 2358 2359 aac_release_sync_fib(sc); 2360 2361 if (1 || bootverbose) { 2362 device_printf(sc->aac_dev, "Supported Options=%b\n", 2363 sc->supported_options, 2364 "\20" 2365 "\1SNAPSHOT" 2366 "\2CLUSTERS" 2367 "\3WCACHE" 2368 "\4DATA64" 2369 "\5HOSTTIME" 2370 "\6RAID50" 2371 "\7WINDOW4GB" 2372 "\10SCSIUPGD" 2373 "\11SOFTERR" 2374 "\12NORECOND" 2375 "\13SGMAP64" 2376 "\14ALARM" 2377 "\15NONDASD"); 2378 } 2379 } 2380 2381 /* 2382 * Look up a text description of a numeric error code and return a pointer to 2383 * same. 2384 */ 2385 static char * 2386 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2387 { 2388 int i; 2389 2390 for (i = 0; table[i].string != NULL; i++) 2391 if (table[i].code == code) 2392 return(table[i].string); 2393 return(table[i + 1].string); 2394 } 2395 2396 /* 2397 * Management Interface 2398 */ 2399 2400 static int 2401 aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td) 2402 { 2403 struct aac_softc *sc; 2404 2405 debug_called(2); 2406 2407 sc = dev->si_drv1; 2408 2409 /* Check to make sure the device isn't already open */ 2410 if (sc->aac_state & AAC_STATE_OPEN) { 2411 return EBUSY; 2412 } 2413 sc->aac_state |= AAC_STATE_OPEN; 2414 2415 return 0; 2416 } 2417 2418 static int 2419 aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td) 2420 { 2421 struct aac_softc *sc; 2422 2423 debug_called(2); 2424 2425 sc = dev->si_drv1; 2426 2427 /* Mark this unit as no longer open */ 2428 sc->aac_state &= ~AAC_STATE_OPEN; 2429 2430 return 0; 2431 } 2432 2433 static int 2434 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2435 { 2436 union aac_statrequest *as; 2437 struct aac_softc *sc; 2438 int error = 0; 2439 uint32_t cookie; 2440 2441 debug_called(2); 2442 2443 as = (union aac_statrequest *)arg; 2444 sc = dev->si_drv1; 2445 2446 switch (cmd) { 2447 case AACIO_STATS: 2448 switch (as->as_item) { 2449 case AACQ_FREE: 2450 case AACQ_BIO: 2451 case AACQ_READY: 2452 case AACQ_BUSY: 2453 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2454 sizeof(struct aac_qstat)); 2455 break; 2456 default: 2457 error = ENOENT; 2458 break; 2459 } 2460 break; 2461 2462 case FSACTL_SENDFIB: 2463 arg = *(caddr_t*)arg; 2464 case FSACTL_LNX_SENDFIB: 2465 debug(1, "FSACTL_SENDFIB"); 2466 error = aac_ioctl_sendfib(sc, arg); 2467 break; 2468 case FSACTL_AIF_THREAD: 2469 case FSACTL_LNX_AIF_THREAD: 2470 debug(1, "FSACTL_AIF_THREAD"); 2471 error = EINVAL; 2472 break; 2473 case FSACTL_OPEN_GET_ADAPTER_FIB: 2474 arg = *(caddr_t*)arg; 2475 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2476 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2477 /* 2478 * Pass the caller out an AdapterFibContext. 2479 * 2480 * Note that because we only support one opener, we 2481 * basically ignore this. Set the caller's context to a magic 2482 * number just in case. 2483 * 2484 * The Linux code hands the driver a pointer into kernel space, 2485 * and then trusts it when the caller hands it back. Aiee! 2486 * Here, we give it the proc pointer of the per-adapter aif 2487 * thread. It's only used as a sanity check in other calls. 2488 */ 2489 cookie = (uint32_t)(uintptr_t)sc->aifthread; 2490 error = copyout(&cookie, arg, sizeof(cookie)); 2491 break; 2492 case FSACTL_GET_NEXT_ADAPTER_FIB: 2493 arg = *(caddr_t*)arg; 2494 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2495 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2496 error = aac_getnext_aif(sc, arg); 2497 break; 2498 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2499 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2500 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2501 /* don't do anything here */ 2502 break; 2503 case FSACTL_MINIPORT_REV_CHECK: 2504 arg = *(caddr_t*)arg; 2505 case FSACTL_LNX_MINIPORT_REV_CHECK: 2506 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2507 error = aac_rev_check(sc, arg); 2508 break; 2509 case FSACTL_QUERY_DISK: 2510 arg = *(caddr_t*)arg; 2511 case FSACTL_LNX_QUERY_DISK: 2512 debug(1, "FSACTL_QUERY_DISK"); 2513 error = aac_query_disk(sc, arg); 2514 break; 2515 case FSACTL_DELETE_DISK: 2516 case FSACTL_LNX_DELETE_DISK: 2517 /* 2518 * We don't trust the underland to tell us when to delete a 2519 * container, rather we rely on an AIF coming from the 2520 * controller 2521 */ 2522 error = 0; 2523 break; 2524 default: 2525 debug(1, "unsupported cmd 0x%lx\n", cmd); 2526 error = EINVAL; 2527 break; 2528 } 2529 return(error); 2530 } 2531 2532 static int 2533 aac_poll(struct cdev *dev, int poll_events, d_thread_t *td) 2534 { 2535 struct aac_softc *sc; 2536 int revents; 2537 2538 sc = dev->si_drv1; 2539 revents = 0; 2540 2541 mtx_lock(&sc->aac_aifq_lock); 2542 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2543 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2544 revents |= poll_events & (POLLIN | POLLRDNORM); 2545 } 2546 mtx_unlock(&sc->aac_aifq_lock); 2547 2548 if (revents == 0) { 2549 if (poll_events & (POLLIN | POLLRDNORM)) 2550 selrecord(td, &sc->rcv_select); 2551 } 2552 2553 return (revents); 2554 } 2555 2556 /* 2557 * Send a FIB supplied from userspace 2558 */ 2559 static int 2560 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2561 { 2562 struct aac_command *cm; 2563 int size, error; 2564 2565 debug_called(2); 2566 2567 cm = NULL; 2568 2569 /* 2570 * Get a command 2571 */ 2572 mtx_lock(&sc->aac_io_lock); 2573 if (aac_alloc_command(sc, &cm)) { 2574 error = EBUSY; 2575 goto out; 2576 } 2577 2578 /* 2579 * Fetch the FIB header, then re-copy to get data as well. 2580 */ 2581 if ((error = copyin(ufib, cm->cm_fib, 2582 sizeof(struct aac_fib_header))) != 0) 2583 goto out; 2584 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2585 if (size > sizeof(struct aac_fib)) { 2586 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n", 2587 size, sizeof(struct aac_fib)); 2588 size = sizeof(struct aac_fib); 2589 } 2590 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2591 goto out; 2592 cm->cm_fib->Header.Size = size; 2593 cm->cm_timestamp = time_second; 2594 2595 /* 2596 * Pass the FIB to the controller, wait for it to complete. 2597 */ 2598 if ((error = aac_wait_command(cm)) != 0) { 2599 device_printf(sc->aac_dev, 2600 "aac_wait_command return %d\n", error); 2601 goto out; 2602 } 2603 2604 /* 2605 * Copy the FIB and data back out to the caller. 2606 */ 2607 size = cm->cm_fib->Header.Size; 2608 if (size > sizeof(struct aac_fib)) { 2609 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n", 2610 size, sizeof(struct aac_fib)); 2611 size = sizeof(struct aac_fib); 2612 } 2613 error = copyout(cm->cm_fib, ufib, size); 2614 2615 out: 2616 if (cm != NULL) { 2617 aac_release_command(cm); 2618 } 2619 2620 mtx_unlock(&sc->aac_io_lock); 2621 return(error); 2622 } 2623 2624 /* 2625 * Handle an AIF sent to us by the controller; queue it for later reference. 2626 * If the queue fills up, then drop the older entries. 2627 */ 2628 static void 2629 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2630 { 2631 struct aac_aif_command *aif; 2632 struct aac_container *co, *co_next; 2633 struct aac_mntinfo *mi; 2634 struct aac_mntinforesp *mir = NULL; 2635 u_int16_t rsize; 2636 int next, found; 2637 int count = 0, added = 0, i = 0; 2638 2639 debug_called(2); 2640 2641 aif = (struct aac_aif_command*)&fib->data[0]; 2642 aac_print_aif(sc, aif); 2643 2644 /* Is it an event that we should care about? */ 2645 switch (aif->command) { 2646 case AifCmdEventNotify: 2647 switch (aif->data.EN.type) { 2648 case AifEnAddContainer: 2649 case AifEnDeleteContainer: 2650 /* 2651 * A container was added or deleted, but the message 2652 * doesn't tell us anything else! Re-enumerate the 2653 * containers and sort things out. 2654 */ 2655 aac_alloc_sync_fib(sc, &fib); 2656 mi = (struct aac_mntinfo *)&fib->data[0]; 2657 do { 2658 /* 2659 * Ask the controller for its containers one at 2660 * a time. 2661 * XXX What if the controller's list changes 2662 * midway through this enumaration? 2663 * XXX This should be done async. 2664 */ 2665 bzero(mi, sizeof(struct aac_mntinfo)); 2666 mi->Command = VM_NameServe; 2667 mi->MntType = FT_FILESYS; 2668 mi->MntCount = i; 2669 rsize = sizeof(mir); 2670 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2671 sizeof(struct aac_mntinfo))) { 2672 printf("Error probing container %d\n", 2673 i); 2674 continue; 2675 } 2676 mir = (struct aac_mntinforesp *)&fib->data[0]; 2677 /* XXX Need to check if count changed */ 2678 count = mir->MntRespCount; 2679 /* 2680 * Check the container against our list. 2681 * co->co_found was already set to 0 in a 2682 * previous run. 2683 */ 2684 if ((mir->Status == ST_OK) && 2685 (mir->MntTable[0].VolType != CT_NONE)) { 2686 found = 0; 2687 TAILQ_FOREACH(co, 2688 &sc->aac_container_tqh, 2689 co_link) { 2690 if (co->co_mntobj.ObjectId == 2691 mir->MntTable[0].ObjectId) { 2692 co->co_found = 1; 2693 found = 1; 2694 break; 2695 } 2696 } 2697 /* 2698 * If the container matched, continue 2699 * in the list. 2700 */ 2701 if (found) { 2702 i++; 2703 continue; 2704 } 2705 2706 /* 2707 * This is a new container. Do all the 2708 * appropriate things to set it up. 2709 */ 2710 aac_add_container(sc, mir, 1); 2711 added = 1; 2712 } 2713 i++; 2714 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 2715 aac_release_sync_fib(sc); 2716 2717 /* 2718 * Go through our list of containers and see which ones 2719 * were not marked 'found'. Since the controller didn't 2720 * list them they must have been deleted. Do the 2721 * appropriate steps to destroy the device. Also reset 2722 * the co->co_found field. 2723 */ 2724 co = TAILQ_FIRST(&sc->aac_container_tqh); 2725 while (co != NULL) { 2726 if (co->co_found == 0) { 2727 device_delete_child(sc->aac_dev, 2728 co->co_disk); 2729 co_next = TAILQ_NEXT(co, co_link); 2730 mtx_lock(&sc->aac_container_lock); 2731 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2732 co_link); 2733 mtx_unlock(&sc->aac_container_lock); 2734 free(co, M_AACBUF); 2735 co = co_next; 2736 } else { 2737 co->co_found = 0; 2738 co = TAILQ_NEXT(co, co_link); 2739 } 2740 } 2741 2742 /* Attach the newly created containers */ 2743 if (added) 2744 bus_generic_attach(sc->aac_dev); 2745 2746 break; 2747 2748 default: 2749 break; 2750 } 2751 2752 default: 2753 break; 2754 } 2755 2756 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2757 mtx_lock(&sc->aac_aifq_lock); 2758 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2759 if (next != sc->aac_aifq_tail) { 2760 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2761 sc->aac_aifq_head = next; 2762 2763 /* On the off chance that someone is sleeping for an aif... */ 2764 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2765 wakeup(sc->aac_aifq); 2766 /* Wakeup any poll()ers */ 2767 selwakeuppri(&sc->rcv_select, PRIBIO); 2768 } 2769 mtx_unlock(&sc->aac_aifq_lock); 2770 2771 return; 2772 } 2773 2774 /* 2775 * Return the Revision of the driver to userspace and check to see if the 2776 * userspace app is possibly compatible. This is extremely bogus since 2777 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2778 * returning what the card reported. 2779 */ 2780 static int 2781 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2782 { 2783 struct aac_rev_check rev_check; 2784 struct aac_rev_check_resp rev_check_resp; 2785 int error = 0; 2786 2787 debug_called(2); 2788 2789 /* 2790 * Copyin the revision struct from userspace 2791 */ 2792 if ((error = copyin(udata, (caddr_t)&rev_check, 2793 sizeof(struct aac_rev_check))) != 0) { 2794 return error; 2795 } 2796 2797 debug(2, "Userland revision= %d\n", 2798 rev_check.callingRevision.buildNumber); 2799 2800 /* 2801 * Doctor up the response struct. 2802 */ 2803 rev_check_resp.possiblyCompatible = 1; 2804 rev_check_resp.adapterSWRevision.external.ul = 2805 sc->aac_revision.external.ul; 2806 rev_check_resp.adapterSWRevision.buildNumber = 2807 sc->aac_revision.buildNumber; 2808 2809 return(copyout((caddr_t)&rev_check_resp, udata, 2810 sizeof(struct aac_rev_check_resp))); 2811 } 2812 2813 /* 2814 * Pass the caller the next AIF in their queue 2815 */ 2816 static int 2817 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2818 { 2819 struct get_adapter_fib_ioctl agf; 2820 int error; 2821 2822 debug_called(2); 2823 2824 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2825 2826 /* 2827 * Check the magic number that we gave the caller. 2828 */ 2829 if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) { 2830 error = EFAULT; 2831 } else { 2832 error = aac_return_aif(sc, agf.AifFib); 2833 if ((error == EAGAIN) && (agf.Wait)) { 2834 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2835 while (error == EAGAIN) { 2836 error = tsleep(sc->aac_aifq, PRIBIO | 2837 PCATCH, "aacaif", 0); 2838 if (error == 0) 2839 error = aac_return_aif(sc, 2840 agf.AifFib); 2841 } 2842 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2843 } 2844 } 2845 } 2846 return(error); 2847 } 2848 2849 /* 2850 * Hand the next AIF off the top of the queue out to userspace. 2851 */ 2852 static int 2853 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2854 { 2855 int next, error; 2856 2857 debug_called(2); 2858 2859 mtx_lock(&sc->aac_aifq_lock); 2860 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2861 mtx_unlock(&sc->aac_aifq_lock); 2862 return (EAGAIN); 2863 } 2864 2865 next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH; 2866 error = copyout(&sc->aac_aifq[next], uptr, 2867 sizeof(struct aac_aif_command)); 2868 if (error) 2869 device_printf(sc->aac_dev, 2870 "aac_return_aif: copyout returned %d\n", error); 2871 else 2872 sc->aac_aifq_tail = next; 2873 2874 mtx_unlock(&sc->aac_aifq_lock); 2875 return(error); 2876 } 2877 2878 /* 2879 * Give the userland some information about the container. The AAC arch 2880 * expects the driver to be a SCSI passthrough type driver, so it expects 2881 * the containers to have b:t:l numbers. Fake it. 2882 */ 2883 static int 2884 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2885 { 2886 struct aac_query_disk query_disk; 2887 struct aac_container *co; 2888 struct aac_disk *disk; 2889 int error, id; 2890 2891 debug_called(2); 2892 2893 disk = NULL; 2894 2895 error = copyin(uptr, (caddr_t)&query_disk, 2896 sizeof(struct aac_query_disk)); 2897 if (error) 2898 return (error); 2899 2900 id = query_disk.ContainerNumber; 2901 if (id == -1) 2902 return (EINVAL); 2903 2904 mtx_lock(&sc->aac_container_lock); 2905 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2906 if (co->co_mntobj.ObjectId == id) 2907 break; 2908 } 2909 2910 if (co == NULL) { 2911 query_disk.Valid = 0; 2912 query_disk.Locked = 0; 2913 query_disk.Deleted = 1; /* XXX is this right? */ 2914 } else { 2915 disk = device_get_softc(co->co_disk); 2916 query_disk.Valid = 1; 2917 query_disk.Locked = 2918 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2919 query_disk.Deleted = 0; 2920 query_disk.Bus = device_get_unit(sc->aac_dev); 2921 query_disk.Target = disk->unit; 2922 query_disk.Lun = 0; 2923 query_disk.UnMapped = 0; 2924 sprintf(&query_disk.diskDeviceName[0], "%s%d", 2925 disk->ad_disk->d_name, disk->ad_disk->d_unit); 2926 } 2927 mtx_unlock(&sc->aac_container_lock); 2928 2929 error = copyout((caddr_t)&query_disk, uptr, 2930 sizeof(struct aac_query_disk)); 2931 2932 return (error); 2933 } 2934 2935 static void 2936 aac_get_bus_info(struct aac_softc *sc) 2937 { 2938 struct aac_fib *fib; 2939 struct aac_ctcfg *c_cmd; 2940 struct aac_ctcfg_resp *c_resp; 2941 struct aac_vmioctl *vmi; 2942 struct aac_vmi_businf_resp *vmi_resp; 2943 struct aac_getbusinf businfo; 2944 struct aac_sim *caminf; 2945 device_t child; 2946 int i, found, error; 2947 2948 aac_alloc_sync_fib(sc, &fib); 2949 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2950 bzero(c_cmd, sizeof(struct aac_ctcfg)); 2951 2952 c_cmd->Command = VM_ContainerConfig; 2953 c_cmd->cmd = CT_GET_SCSI_METHOD; 2954 c_cmd->param = 0; 2955 2956 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2957 sizeof(struct aac_ctcfg)); 2958 if (error) { 2959 device_printf(sc->aac_dev, "Error %d sending " 2960 "VM_ContainerConfig command\n", error); 2961 aac_release_sync_fib(sc); 2962 return; 2963 } 2964 2965 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2966 if (c_resp->Status != ST_OK) { 2967 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2968 c_resp->Status); 2969 aac_release_sync_fib(sc); 2970 return; 2971 } 2972 2973 sc->scsi_method_id = c_resp->param; 2974 2975 vmi = (struct aac_vmioctl *)&fib->data[0]; 2976 bzero(vmi, sizeof(struct aac_vmioctl)); 2977 2978 vmi->Command = VM_Ioctl; 2979 vmi->ObjType = FT_DRIVE; 2980 vmi->MethId = sc->scsi_method_id; 2981 vmi->ObjId = 0; 2982 vmi->IoctlCmd = GetBusInfo; 2983 2984 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2985 sizeof(struct aac_vmioctl)); 2986 if (error) { 2987 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2988 error); 2989 aac_release_sync_fib(sc); 2990 return; 2991 } 2992 2993 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2994 if (vmi_resp->Status != ST_OK) { 2995 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 2996 vmi_resp->Status); 2997 aac_release_sync_fib(sc); 2998 return; 2999 } 3000 3001 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 3002 aac_release_sync_fib(sc); 3003 3004 found = 0; 3005 for (i = 0; i < businfo.BusCount; i++) { 3006 if (businfo.BusValid[i] != AAC_BUS_VALID) 3007 continue; 3008 3009 caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim), 3010 M_AACBUF, M_NOWAIT | M_ZERO); 3011 if (caminf == NULL) 3012 continue; 3013 3014 child = device_add_child(sc->aac_dev, "aacp", -1); 3015 if (child == NULL) { 3016 device_printf(sc->aac_dev, "device_add_child failed\n"); 3017 continue; 3018 } 3019 3020 caminf->TargetsPerBus = businfo.TargetsPerBus; 3021 caminf->BusNumber = i; 3022 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 3023 caminf->aac_sc = sc; 3024 caminf->sim_dev = child; 3025 3026 device_set_ivars(child, caminf); 3027 device_set_desc(child, "SCSI Passthrough Bus"); 3028 TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link); 3029 3030 found = 1; 3031 } 3032 3033 if (found) 3034 bus_generic_attach(sc->aac_dev); 3035 3036 return; 3037 } 3038