1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 34 */ 35 36 #include "opt_aac.h" 37 38 /* #include <stddef.h> */ 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/poll.h> 48 #if __FreeBSD_version >= 500005 49 #include <sys/selinfo.h> 50 #else 51 #include <sys/select.h> 52 #endif 53 54 #include <dev/aac/aac_compat.h> 55 56 #include <sys/bus.h> 57 #include <sys/conf.h> 58 #include <sys/devicestat.h> 59 #include <sys/disk.h> 60 #include <sys/file.h> 61 #include <sys/signalvar.h> 62 #include <sys/time.h> 63 #include <sys/eventhandler.h> 64 65 #include <machine/bus_memio.h> 66 #include <machine/bus.h> 67 #include <machine/resource.h> 68 69 #include <dev/aac/aacreg.h> 70 #include <dev/aac/aac_ioctl.h> 71 #include <dev/aac/aacvar.h> 72 #include <dev/aac/aac_tables.h> 73 #include <dev/aac/aac_cam.h> 74 75 static void aac_startup(void *arg); 76 static void aac_add_container(struct aac_softc *sc, 77 struct aac_mntinforesp *mir, int f); 78 static void aac_get_bus_info(struct aac_softc *sc); 79 80 /* Command Processing */ 81 static void aac_timeout(struct aac_softc *sc); 82 static int aac_start(struct aac_command *cm); 83 static void aac_complete(void *context, int pending); 84 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 85 static void aac_bio_complete(struct aac_command *cm); 86 static int aac_wait_command(struct aac_command *cm, int timeout); 87 static void aac_host_command(struct aac_softc *sc); 88 static void aac_host_response(struct aac_softc *sc); 89 90 /* Command Buffer Management */ 91 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 92 int nseg, int error); 93 static int aac_alloc_commands(struct aac_softc *sc); 94 static void aac_free_commands(struct aac_softc *sc); 95 static void aac_map_command(struct aac_command *cm); 96 static void aac_unmap_command(struct aac_command *cm); 97 98 /* Hardware Interface */ 99 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 100 int error); 101 static int aac_check_firmware(struct aac_softc *sc); 102 static int aac_init(struct aac_softc *sc); 103 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 104 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 105 u_int32_t arg3, u_int32_t *sp); 106 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 107 struct aac_command *cm); 108 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 109 u_int32_t *fib_size, struct aac_fib **fib_addr); 110 static int aac_enqueue_response(struct aac_softc *sc, int queue, 111 struct aac_fib *fib); 112 113 /* Falcon/PPC interface */ 114 static int aac_fa_get_fwstatus(struct aac_softc *sc); 115 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 116 static int aac_fa_get_istatus(struct aac_softc *sc); 117 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 118 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 119 u_int32_t arg0, u_int32_t arg1, 120 u_int32_t arg2, u_int32_t arg3); 121 static int aac_fa_get_mailboxstatus(struct aac_softc *sc); 122 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 123 124 struct aac_interface aac_fa_interface = { 125 aac_fa_get_fwstatus, 126 aac_fa_qnotify, 127 aac_fa_get_istatus, 128 aac_fa_clear_istatus, 129 aac_fa_set_mailbox, 130 aac_fa_get_mailboxstatus, 131 aac_fa_set_interrupts 132 }; 133 134 /* StrongARM interface */ 135 static int aac_sa_get_fwstatus(struct aac_softc *sc); 136 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 137 static int aac_sa_get_istatus(struct aac_softc *sc); 138 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 139 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 140 u_int32_t arg0, u_int32_t arg1, 141 u_int32_t arg2, u_int32_t arg3); 142 static int aac_sa_get_mailboxstatus(struct aac_softc *sc); 143 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 144 145 struct aac_interface aac_sa_interface = { 146 aac_sa_get_fwstatus, 147 aac_sa_qnotify, 148 aac_sa_get_istatus, 149 aac_sa_clear_istatus, 150 aac_sa_set_mailbox, 151 aac_sa_get_mailboxstatus, 152 aac_sa_set_interrupts 153 }; 154 155 /* i960Rx interface */ 156 static int aac_rx_get_fwstatus(struct aac_softc *sc); 157 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 158 static int aac_rx_get_istatus(struct aac_softc *sc); 159 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 160 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 161 u_int32_t arg0, u_int32_t arg1, 162 u_int32_t arg2, u_int32_t arg3); 163 static int aac_rx_get_mailboxstatus(struct aac_softc *sc); 164 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 165 166 struct aac_interface aac_rx_interface = { 167 aac_rx_get_fwstatus, 168 aac_rx_qnotify, 169 aac_rx_get_istatus, 170 aac_rx_clear_istatus, 171 aac_rx_set_mailbox, 172 aac_rx_get_mailboxstatus, 173 aac_rx_set_interrupts 174 }; 175 176 /* Debugging and Diagnostics */ 177 static void aac_describe_controller(struct aac_softc *sc); 178 static char *aac_describe_code(struct aac_code_lookup *table, 179 u_int32_t code); 180 181 /* Management Interface */ 182 static d_open_t aac_open; 183 static d_close_t aac_close; 184 static d_ioctl_t aac_ioctl; 185 static d_poll_t aac_poll; 186 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 187 static void aac_handle_aif(struct aac_softc *sc, 188 struct aac_fib *fib); 189 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 190 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 191 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 192 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 193 194 #define AAC_CDEV_MAJOR 150 195 196 static struct cdevsw aac_cdevsw = { 197 aac_open, /* open */ 198 aac_close, /* close */ 199 noread, /* read */ 200 nowrite, /* write */ 201 aac_ioctl, /* ioctl */ 202 aac_poll, /* poll */ 203 nommap, /* mmap */ 204 nostrategy, /* strategy */ 205 "aac", /* name */ 206 AAC_CDEV_MAJOR, /* major */ 207 nodump, /* dump */ 208 nopsize, /* psize */ 209 0, /* flags */ 210 #if __FreeBSD_version < 500005 211 -1, /* bmaj */ 212 #endif 213 }; 214 215 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 216 217 /* sysctl node */ 218 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 219 220 /* 221 * Device Interface 222 */ 223 224 /* 225 * Initialise the controller and softc 226 */ 227 int 228 aac_attach(struct aac_softc *sc) 229 { 230 int error, unit; 231 232 debug_called(1); 233 234 /* 235 * Initialise per-controller queues. 236 */ 237 aac_initq_free(sc); 238 aac_initq_ready(sc); 239 aac_initq_busy(sc); 240 aac_initq_complete(sc); 241 aac_initq_bio(sc); 242 243 #if __FreeBSD_version >= 500005 244 /* 245 * Initialise command-completion task. 246 */ 247 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 248 #endif 249 250 /* disable interrupts before we enable anything */ 251 AAC_MASK_INTERRUPTS(sc); 252 253 /* mark controller as suspended until we get ourselves organised */ 254 sc->aac_state |= AAC_STATE_SUSPEND; 255 256 /* 257 * Check that the firmware on the card is supported. 258 */ 259 if ((error = aac_check_firmware(sc)) != 0) 260 return(error); 261 262 /* 263 * Allocate command structures. 264 */ 265 if ((error = aac_alloc_commands(sc)) != 0) 266 return(error); 267 268 /* Init the sync fib lock */ 269 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 270 271 /* 272 * Initialise the adapter. 273 */ 274 if ((error = aac_init(sc)) != 0) 275 return(error); 276 277 /* 278 * Print a little information about the controller. 279 */ 280 aac_describe_controller(sc); 281 282 /* 283 * Register to probe our containers later. 284 */ 285 TAILQ_INIT(&sc->aac_container_tqh); 286 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 287 288 /* 289 * Lock for the AIF queue 290 */ 291 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 292 293 sc->aac_ich.ich_func = aac_startup; 294 sc->aac_ich.ich_arg = sc; 295 if (config_intrhook_establish(&sc->aac_ich) != 0) { 296 device_printf(sc->aac_dev, 297 "can't establish configuration hook\n"); 298 return(ENXIO); 299 } 300 301 /* 302 * Make the control device. 303 */ 304 unit = device_get_unit(sc->aac_dev); 305 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644, 306 "aac%d", unit); 307 #if __FreeBSD_version > 500005 308 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 309 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 310 #endif 311 sc->aac_dev_t->si_drv1 = sc; 312 313 /* Create the AIF thread */ 314 #if __FreeBSD_version > 500005 315 if (kthread_create((void(*)(void *))aac_host_command, sc, 316 &sc->aifthread, 0, "aac%daif", unit)) 317 #else 318 if (kthread_create((void(*)(void *))aac_host_command, sc, 319 &sc->aifthread, "aac%daif", unit)) 320 #endif 321 panic("Could not create AIF thread\n"); 322 323 /* Register the shutdown method to only be called post-dump */ 324 if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev, 325 SHUTDOWN_PRI_DEFAULT)) == NULL) 326 device_printf(sc->aac_dev, "shutdown event registration failed\n"); 327 328 /* Register with CAM for the non-DASD devices */ 329 if (!(sc->quirks & AAC_QUIRK_NOCAM)) 330 aac_get_bus_info(sc); 331 332 return(0); 333 } 334 335 /* 336 * Probe for containers, create disks. 337 */ 338 static void 339 aac_startup(void *arg) 340 { 341 struct aac_softc *sc; 342 struct aac_fib *fib; 343 struct aac_mntinfo *mi; 344 struct aac_mntinforesp *mir = NULL; 345 int i = 0; 346 347 debug_called(1); 348 349 sc = (struct aac_softc *)arg; 350 351 /* disconnect ourselves from the intrhook chain */ 352 config_intrhook_disestablish(&sc->aac_ich); 353 354 aac_alloc_sync_fib(sc, &fib, 0); 355 mi = (struct aac_mntinfo *)&fib->data[0]; 356 357 /* loop over possible containers */ 358 do { 359 /* request information on this container */ 360 bzero(mi, sizeof(struct aac_mntinfo)); 361 mi->Command = VM_NameServe; 362 mi->MntType = FT_FILESYS; 363 mi->MntCount = i; 364 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 365 sizeof(struct aac_mntinfo))) { 366 debug(2, "error probing container %d", i); 367 continue; 368 } 369 370 mir = (struct aac_mntinforesp *)&fib->data[0]; 371 aac_add_container(sc, mir, 0); 372 i++; 373 } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS)); 374 375 aac_release_sync_fib(sc); 376 377 /* poke the bus to actually attach the child devices */ 378 if (bus_generic_attach(sc->aac_dev)) 379 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 380 381 /* mark the controller up */ 382 sc->aac_state &= ~AAC_STATE_SUSPEND; 383 384 /* enable interrupts now */ 385 AAC_UNMASK_INTERRUPTS(sc); 386 387 /* enable the timeout watchdog */ 388 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 389 } 390 391 /* 392 * Create a device to respresent a new container 393 */ 394 static void 395 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 396 { 397 struct aac_container *co; 398 device_t child; 399 400 /* 401 * Check container volume type for validity. Note that many of 402 * the possible types may never show up. 403 */ 404 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 405 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, 406 M_NOWAIT); 407 if (co == NULL) 408 panic("Out of memory?!\n"); 409 debug(1, "id %x name '%.16s' size %u type %d", 410 mir->MntTable[0].ObjectId, 411 mir->MntTable[0].FileSystemName, 412 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 413 414 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 415 device_printf(sc->aac_dev, "device_add_child failed\n"); 416 else 417 device_set_ivars(child, co); 418 device_set_desc(child, aac_describe_code(aac_container_types, 419 mir->MntTable[0].VolType)); 420 co->co_disk = child; 421 co->co_found = f; 422 bcopy(&mir->MntTable[0], &co->co_mntobj, 423 sizeof(struct aac_mntobj)); 424 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 425 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 426 AAC_LOCK_RELEASE(&sc->aac_container_lock); 427 } 428 } 429 430 /* 431 * Free all of the resources associated with (sc) 432 * 433 * Should not be called if the controller is active. 434 */ 435 void 436 aac_free(struct aac_softc *sc) 437 { 438 debug_called(1); 439 440 /* remove the control device */ 441 if (sc->aac_dev_t != NULL) 442 destroy_dev(sc->aac_dev_t); 443 444 /* throw away any FIB buffers, discard the FIB DMA tag */ 445 if (sc->aac_fibs != NULL) 446 aac_free_commands(sc); 447 if (sc->aac_fib_dmat) 448 bus_dma_tag_destroy(sc->aac_fib_dmat); 449 450 /* destroy the common area */ 451 if (sc->aac_common) { 452 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 453 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 454 sc->aac_common_dmamap); 455 } 456 if (sc->aac_common_dmat) 457 bus_dma_tag_destroy(sc->aac_common_dmat); 458 459 /* disconnect the interrupt handler */ 460 if (sc->aac_intr) 461 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 462 if (sc->aac_irq != NULL) 463 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 464 sc->aac_irq); 465 466 /* destroy data-transfer DMA tag */ 467 if (sc->aac_buffer_dmat) 468 bus_dma_tag_destroy(sc->aac_buffer_dmat); 469 470 /* destroy the parent DMA tag */ 471 if (sc->aac_parent_dmat) 472 bus_dma_tag_destroy(sc->aac_parent_dmat); 473 474 /* release the register window mapping */ 475 if (sc->aac_regs_resource != NULL) 476 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 477 sc->aac_regs_rid, sc->aac_regs_resource); 478 } 479 480 /* 481 * Disconnect from the controller completely, in preparation for unload. 482 */ 483 int 484 aac_detach(device_t dev) 485 { 486 struct aac_softc *sc; 487 #if AAC_BROKEN 488 int error; 489 #endif 490 491 debug_called(1); 492 493 sc = device_get_softc(dev); 494 495 if (sc->aac_state & AAC_STATE_OPEN) 496 return(EBUSY); 497 498 #if AAC_BROKEN 499 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 500 sc->aifflags |= AAC_AIFFLAGS_EXIT; 501 wakeup(sc->aifthread); 502 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 503 } 504 505 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 506 panic("Cannot shutdown AIF thread\n"); 507 508 if ((error = aac_shutdown(dev))) 509 return(error); 510 511 aac_free(sc); 512 513 return(0); 514 #else 515 return (EBUSY); 516 #endif 517 } 518 519 /* 520 * Bring the controller down to a dormant state and detach all child devices. 521 * 522 * This function is called before detach or system shutdown. 523 * 524 * Note that we can assume that the bioq on the controller is empty, as we won't 525 * allow shutdown if any device is open. 526 */ 527 int 528 aac_shutdown(device_t dev) 529 { 530 struct aac_softc *sc; 531 struct aac_fib *fib; 532 struct aac_close_command *cc; 533 int s; 534 535 debug_called(1); 536 537 sc = device_get_softc(dev); 538 539 s = splbio(); 540 541 sc->aac_state |= AAC_STATE_SUSPEND; 542 543 /* 544 * Send a Container shutdown followed by a HostShutdown FIB to the 545 * controller to convince it that we don't want to talk to it anymore. 546 * We've been closed and all I/O completed already 547 */ 548 device_printf(sc->aac_dev, "shutting down controller..."); 549 550 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 551 cc = (struct aac_close_command *)&fib->data[0]; 552 553 bzero(cc, sizeof(struct aac_close_command)); 554 cc->Command = VM_CloseAll; 555 cc->ContainerId = 0xffffffff; 556 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 557 sizeof(struct aac_close_command))) 558 printf("FAILED.\n"); 559 else { 560 fib->data[0] = 0; 561 /* 562 * XXX Issuing this command to the controller makes it shut down 563 * but also keeps it from coming back up without a reset of the 564 * PCI bus. This is not desirable if you are just unloading the 565 * driver module with the intent to reload it later. 566 */ 567 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 568 fib, 1)) { 569 printf("FAILED.\n"); 570 } else { 571 printf("done.\n"); 572 } 573 } 574 575 AAC_MASK_INTERRUPTS(sc); 576 577 splx(s); 578 return(0); 579 } 580 581 /* 582 * Bring the controller to a quiescent state, ready for system suspend. 583 */ 584 int 585 aac_suspend(device_t dev) 586 { 587 struct aac_softc *sc; 588 int s; 589 590 debug_called(1); 591 592 sc = device_get_softc(dev); 593 594 s = splbio(); 595 596 sc->aac_state |= AAC_STATE_SUSPEND; 597 598 AAC_MASK_INTERRUPTS(sc); 599 splx(s); 600 return(0); 601 } 602 603 /* 604 * Bring the controller back to a state ready for operation. 605 */ 606 int 607 aac_resume(device_t dev) 608 { 609 struct aac_softc *sc; 610 611 debug_called(1); 612 613 sc = device_get_softc(dev); 614 615 sc->aac_state &= ~AAC_STATE_SUSPEND; 616 AAC_UNMASK_INTERRUPTS(sc); 617 return(0); 618 } 619 620 /* 621 * Take an interrupt. 622 */ 623 void 624 aac_intr(void *arg) 625 { 626 struct aac_softc *sc; 627 u_int16_t reason; 628 629 debug_called(2); 630 631 sc = (struct aac_softc *)arg; 632 633 reason = AAC_GET_ISTATUS(sc); 634 635 /* controller wants to talk to the log */ 636 if (reason & AAC_DB_PRINTF) { 637 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 638 aac_print_printf(sc); 639 } 640 641 /* controller has a message for us? */ 642 if (reason & AAC_DB_COMMAND_READY) { 643 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY); 644 /* XXX What happens if the thread is already awake? */ 645 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 646 sc->aifflags |= AAC_AIFFLAGS_PENDING; 647 wakeup(sc->aifthread); 648 } 649 } 650 651 /* controller has a response for us? */ 652 if (reason & AAC_DB_RESPONSE_READY) { 653 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 654 aac_host_response(sc); 655 } 656 657 /* 658 * spurious interrupts that we don't use - reset the mask and clear the 659 * interrupts 660 */ 661 if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) { 662 AAC_UNMASK_INTERRUPTS(sc); 663 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL | 664 AAC_DB_RESPONSE_NOT_FULL); 665 } 666 }; 667 668 /* 669 * Command Processing 670 */ 671 672 /* 673 * Start as much queued I/O as possible on the controller 674 */ 675 void 676 aac_startio(struct aac_softc *sc) 677 { 678 struct aac_command *cm; 679 680 debug_called(2); 681 682 for (;;) { 683 /* 684 * Try to get a command that's been put off for lack of 685 * resources 686 */ 687 cm = aac_dequeue_ready(sc); 688 689 /* 690 * Try to build a command off the bio queue (ignore error 691 * return) 692 */ 693 if (cm == NULL) 694 aac_bio_command(sc, &cm); 695 696 /* nothing to do? */ 697 if (cm == NULL) 698 break; 699 700 /* try to give the command to the controller */ 701 if (aac_start(cm) == EBUSY) { 702 /* put it on the ready queue for later */ 703 aac_requeue_ready(cm); 704 break; 705 } 706 } 707 } 708 709 /* 710 * Deliver a command to the controller; allocate controller resources at the 711 * last moment when possible. 712 */ 713 static int 714 aac_start(struct aac_command *cm) 715 { 716 struct aac_softc *sc; 717 int error; 718 719 debug_called(2); 720 721 sc = cm->cm_sc; 722 723 /* get the command mapped */ 724 aac_map_command(cm); 725 726 /* fix up the address values in the FIB */ 727 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 728 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 729 730 /* save a pointer to the command for speedy reverse-lookup */ 731 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 732 * address issue */ 733 734 /* put the FIB on the outbound queue */ 735 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 736 return(error); 737 } 738 739 /* 740 * Handle notification of one or more FIBs coming from the controller. 741 */ 742 static void 743 aac_host_command(struct aac_softc *sc) 744 { 745 struct aac_fib *fib; 746 u_int32_t fib_size; 747 int size; 748 749 debug_called(2); 750 751 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 752 753 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 754 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING)) 755 tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz); 756 757 sc->aifflags &= ~AAC_AIFFLAGS_PENDING; 758 for (;;) { 759 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 760 &fib_size, &fib)) 761 break; /* nothing to do */ 762 763 AAC_PRINT_FIB(sc, fib); 764 765 switch (fib->Header.Command) { 766 case AifRequest: 767 aac_handle_aif(sc, fib); 768 break; 769 default: 770 device_printf(sc->aac_dev, "unknown command " 771 "from controller\n"); 772 break; 773 } 774 775 /* Return the AIF to the controller. */ 776 if ((fib->Header.XferState == 0) || 777 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 778 break; 779 780 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 781 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 782 *(AAC_FSAStatus*)fib->data = ST_OK; 783 784 /* XXX Compute the Size field? */ 785 size = fib->Header.Size; 786 if (size > sizeof(struct aac_fib)) { 787 size = sizeof(struct aac_fib); 788 fib->Header.Size = size; 789 } 790 /* 791 * Since we did not generate this command, it 792 * cannot go through the normal 793 * enqueue->startio chain. 794 */ 795 aac_enqueue_response(sc, 796 AAC_ADAP_NORM_RESP_QUEUE, 797 fib); 798 } 799 } 800 } 801 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 802 wakeup(sc->aac_dev); 803 804 #if __FreeBSD_version > 500005 805 mtx_lock(&Giant); 806 #endif 807 kthread_exit(0); 808 } 809 810 /* 811 * Handle notification of one or more FIBs completed by the controller 812 */ 813 static void 814 aac_host_response(struct aac_softc *sc) 815 { 816 struct aac_command *cm; 817 struct aac_fib *fib; 818 u_int32_t fib_size; 819 820 debug_called(2); 821 822 for (;;) { 823 /* look for completed FIBs on our queue */ 824 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 825 &fib)) 826 break; /* nothing to do */ 827 828 /* get the command, unmap and queue for later processing */ 829 cm = (struct aac_command *)fib->Header.SenderData; 830 if (cm == NULL) { 831 AAC_PRINT_FIB(sc, fib); 832 } else { 833 aac_remove_busy(cm); 834 aac_unmap_command(cm); /* XXX defer? */ 835 aac_enqueue_complete(cm); 836 } 837 } 838 839 /* handle completion processing */ 840 #if __FreeBSD_version >= 500005 841 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 842 #else 843 aac_complete(sc, 0); 844 #endif 845 } 846 847 /* 848 * Process completed commands. 849 */ 850 static void 851 aac_complete(void *context, int pending) 852 { 853 struct aac_softc *sc; 854 struct aac_command *cm; 855 856 debug_called(2); 857 858 sc = (struct aac_softc *)context; 859 860 /* pull completed commands off the queue */ 861 for (;;) { 862 cm = aac_dequeue_complete(sc); 863 if (cm == NULL) 864 break; 865 cm->cm_flags |= AAC_CMD_COMPLETED; 866 867 /* is there a completion handler? */ 868 if (cm->cm_complete != NULL) { 869 cm->cm_complete(cm); 870 } else { 871 /* assume that someone is sleeping on this command */ 872 wakeup(cm); 873 } 874 } 875 876 /* see if we can start some more I/O */ 877 aac_startio(sc); 878 } 879 880 /* 881 * Handle a bio submitted from a disk device. 882 */ 883 void 884 aac_submit_bio(struct bio *bp) 885 { 886 struct aac_disk *ad; 887 struct aac_softc *sc; 888 889 debug_called(2); 890 891 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 892 sc = ad->ad_controller; 893 894 /* queue the BIO and try to get some work done */ 895 aac_enqueue_bio(sc, bp); 896 aac_startio(sc); 897 } 898 899 /* 900 * Get a bio and build a command to go with it. 901 */ 902 static int 903 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 904 { 905 struct aac_command *cm; 906 struct aac_fib *fib; 907 struct aac_blockread *br; 908 struct aac_blockwrite *bw; 909 struct aac_disk *ad; 910 struct bio *bp; 911 912 debug_called(2); 913 914 /* get the resources we will need */ 915 cm = NULL; 916 if ((bp = aac_dequeue_bio(sc)) == NULL) 917 goto fail; 918 if (aac_alloc_command(sc, &cm)) /* get a command */ 919 goto fail; 920 921 /* fill out the command */ 922 cm->cm_data = (void *)bp->bio_data; 923 cm->cm_datalen = bp->bio_bcount; 924 cm->cm_complete = aac_bio_complete; 925 cm->cm_private = bp; 926 cm->cm_timestamp = time_second; 927 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 928 929 /* build the FIB */ 930 fib = cm->cm_fib; 931 fib->Header.XferState = 932 AAC_FIBSTATE_HOSTOWNED | 933 AAC_FIBSTATE_INITIALISED | 934 AAC_FIBSTATE_FROMHOST | 935 AAC_FIBSTATE_REXPECTED | 936 AAC_FIBSTATE_NORM; 937 fib->Header.Command = ContainerCommand; 938 fib->Header.Size = sizeof(struct aac_fib_header); 939 940 /* build the read/write request */ 941 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 942 if (BIO_IS_READ(bp)) { 943 br = (struct aac_blockread *)&fib->data[0]; 944 br->Command = VM_CtBlockRead; 945 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 946 br->BlockNumber = bp->bio_pblkno; 947 br->ByteCount = bp->bio_bcount; 948 fib->Header.Size += sizeof(struct aac_blockread); 949 cm->cm_sgtable = &br->SgMap; 950 cm->cm_flags |= AAC_CMD_DATAIN; 951 } else { 952 bw = (struct aac_blockwrite *)&fib->data[0]; 953 bw->Command = VM_CtBlockWrite; 954 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 955 bw->BlockNumber = bp->bio_pblkno; 956 bw->ByteCount = bp->bio_bcount; 957 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 958 fib->Header.Size += sizeof(struct aac_blockwrite); 959 cm->cm_flags |= AAC_CMD_DATAOUT; 960 cm->cm_sgtable = &bw->SgMap; 961 } 962 963 *cmp = cm; 964 return(0); 965 966 fail: 967 if (bp != NULL) 968 aac_enqueue_bio(sc, bp); 969 if (cm != NULL) 970 aac_release_command(cm); 971 return(ENOMEM); 972 } 973 974 /* 975 * Handle a bio-instigated command that has been completed. 976 */ 977 static void 978 aac_bio_complete(struct aac_command *cm) 979 { 980 struct aac_blockread_response *brr; 981 struct aac_blockwrite_response *bwr; 982 struct bio *bp; 983 AAC_FSAStatus status; 984 985 /* fetch relevant status and then release the command */ 986 bp = (struct bio *)cm->cm_private; 987 if (BIO_IS_READ(bp)) { 988 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 989 status = brr->Status; 990 } else { 991 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 992 status = bwr->Status; 993 } 994 aac_release_command(cm); 995 996 /* fix up the bio based on status */ 997 if (status == ST_OK) { 998 bp->bio_resid = 0; 999 } else { 1000 bp->bio_error = EIO; 1001 bp->bio_flags |= BIO_ERROR; 1002 /* pass an error string out to the disk layer */ 1003 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1004 status); 1005 } 1006 aac_biodone(bp); 1007 } 1008 1009 /* 1010 * Submit a command to the controller, return when it completes. 1011 * XXX This is very dangerous! If the card has gone out to lunch, we could 1012 * be stuck here forever. At the same time, signals are not caught 1013 * because there is a risk that a signal could wakeup the tsleep before 1014 * the card has a chance to complete the command. The passed in timeout 1015 * is ignored for the same reason. Since there is no way to cancel a 1016 * command in progress, we should probably create a 'dead' queue where 1017 * commands go that have been interrupted/timed-out/etc, that keeps them 1018 * out of the free pool. That way, if the card is just slow, it won't 1019 * spam the memory of a command that has been recycled. 1020 */ 1021 static int 1022 aac_wait_command(struct aac_command *cm, int timeout) 1023 { 1024 int s, error = 0; 1025 1026 debug_called(2); 1027 1028 /* Put the command on the ready queue and get things going */ 1029 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1030 aac_enqueue_ready(cm); 1031 aac_startio(cm->cm_sc); 1032 s = splbio(); 1033 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1034 error = tsleep(cm, PRIBIO, "aacwait", 0); 1035 } 1036 splx(s); 1037 return(error); 1038 } 1039 1040 /* 1041 *Command Buffer Management 1042 */ 1043 1044 /* 1045 * Allocate a command. 1046 */ 1047 int 1048 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1049 { 1050 struct aac_command *cm; 1051 1052 debug_called(3); 1053 1054 if ((cm = aac_dequeue_free(sc)) == NULL) 1055 return(ENOMEM); 1056 1057 *cmp = cm; 1058 return(0); 1059 } 1060 1061 /* 1062 * Release a command back to the freelist. 1063 */ 1064 void 1065 aac_release_command(struct aac_command *cm) 1066 { 1067 debug_called(3); 1068 1069 /* (re)initialise the command/FIB */ 1070 cm->cm_sgtable = NULL; 1071 cm->cm_flags = 0; 1072 cm->cm_complete = NULL; 1073 cm->cm_private = NULL; 1074 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1075 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1076 cm->cm_fib->Header.Flags = 0; 1077 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1078 1079 /* 1080 * These are duplicated in aac_start to cover the case where an 1081 * intermediate stage may have destroyed them. They're left 1082 * initialised here for debugging purposes only. 1083 */ 1084 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1085 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1086 1087 aac_enqueue_free(cm); 1088 } 1089 1090 /* 1091 * Map helper for command/FIB allocation. 1092 */ 1093 static void 1094 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1095 { 1096 struct aac_softc *sc; 1097 1098 sc = (struct aac_softc *)arg; 1099 1100 debug_called(3); 1101 1102 sc->aac_fibphys = segs[0].ds_addr; 1103 } 1104 1105 /* 1106 * Allocate and initialise commands/FIBs for this adapter. 1107 */ 1108 static int 1109 aac_alloc_commands(struct aac_softc *sc) 1110 { 1111 struct aac_command *cm; 1112 int i; 1113 1114 debug_called(1); 1115 1116 /* allocate the FIBs in DMAable memory and load them */ 1117 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1118 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1119 return(ENOMEM); 1120 } 1121 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1122 AAC_FIB_COUNT * sizeof(struct aac_fib), 1123 aac_map_command_helper, sc, 0); 1124 1125 /* initialise constant fields in the command structure */ 1126 for (i = 0; i < AAC_FIB_COUNT; i++) { 1127 cm = &sc->aac_command[i]; 1128 cm->cm_sc = sc; 1129 cm->cm_fib = sc->aac_fibs + i; 1130 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1131 1132 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1133 aac_release_command(cm); 1134 } 1135 return(0); 1136 } 1137 1138 /* 1139 * Free FIBs owned by this adapter. 1140 */ 1141 static void 1142 aac_free_commands(struct aac_softc *sc) 1143 { 1144 int i; 1145 1146 debug_called(1); 1147 1148 for (i = 0; i < AAC_FIB_COUNT; i++) 1149 bus_dmamap_destroy(sc->aac_buffer_dmat, 1150 sc->aac_command[i].cm_datamap); 1151 1152 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1153 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1154 } 1155 1156 /* 1157 * Command-mapping helper function - populate this command's s/g table. 1158 */ 1159 static void 1160 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1161 { 1162 struct aac_command *cm; 1163 struct aac_fib *fib; 1164 struct aac_sg_table *sg; 1165 int i; 1166 1167 debug_called(3); 1168 1169 cm = (struct aac_command *)arg; 1170 fib = cm->cm_fib; 1171 1172 /* find the s/g table */ 1173 sg = cm->cm_sgtable; 1174 1175 /* copy into the FIB */ 1176 if (sg != NULL) { 1177 sg->SgCount = nseg; 1178 for (i = 0; i < nseg; i++) { 1179 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1180 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1181 } 1182 /* update the FIB size for the s/g count */ 1183 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1184 } 1185 1186 } 1187 1188 /* 1189 * Map a command into controller-visible space. 1190 */ 1191 static void 1192 aac_map_command(struct aac_command *cm) 1193 { 1194 struct aac_softc *sc; 1195 1196 debug_called(2); 1197 1198 sc = cm->cm_sc; 1199 1200 /* don't map more than once */ 1201 if (cm->cm_flags & AAC_CMD_MAPPED) 1202 return; 1203 1204 if (cm->cm_datalen != 0) { 1205 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 1206 cm->cm_data, cm->cm_datalen, 1207 aac_map_command_sg, cm, 0); 1208 1209 if (cm->cm_flags & AAC_CMD_DATAIN) 1210 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1211 BUS_DMASYNC_PREREAD); 1212 if (cm->cm_flags & AAC_CMD_DATAOUT) 1213 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1214 BUS_DMASYNC_PREWRITE); 1215 } 1216 cm->cm_flags |= AAC_CMD_MAPPED; 1217 } 1218 1219 /* 1220 * Unmap a command from controller-visible space. 1221 */ 1222 static void 1223 aac_unmap_command(struct aac_command *cm) 1224 { 1225 struct aac_softc *sc; 1226 1227 debug_called(2); 1228 1229 sc = cm->cm_sc; 1230 1231 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1232 return; 1233 1234 if (cm->cm_datalen != 0) { 1235 if (cm->cm_flags & AAC_CMD_DATAIN) 1236 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1237 BUS_DMASYNC_POSTREAD); 1238 if (cm->cm_flags & AAC_CMD_DATAOUT) 1239 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1240 BUS_DMASYNC_POSTWRITE); 1241 1242 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1243 } 1244 cm->cm_flags &= ~AAC_CMD_MAPPED; 1245 } 1246 1247 /* 1248 * Hardware Interface 1249 */ 1250 1251 /* 1252 * Initialise the adapter. 1253 */ 1254 static void 1255 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1256 { 1257 struct aac_softc *sc; 1258 1259 debug_called(1); 1260 1261 sc = (struct aac_softc *)arg; 1262 1263 sc->aac_common_busaddr = segs[0].ds_addr; 1264 } 1265 1266 /* 1267 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1268 * firmware version 1.x are not compatible with this driver. 1269 */ 1270 static int 1271 aac_check_firmware(struct aac_softc *sc) 1272 { 1273 u_int32_t major, minor; 1274 1275 debug_called(1); 1276 1277 if (sc->quirks & AAC_QUIRK_PERC2QC) { 1278 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1279 NULL)) { 1280 device_printf(sc->aac_dev, 1281 "Error reading firmware version\n"); 1282 return (EIO); 1283 } 1284 1285 /* These numbers are stored as ASCII! */ 1286 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30; 1287 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30; 1288 if (major == 1) { 1289 device_printf(sc->aac_dev, 1290 "Firmware version %d.%d is not supported.\n", 1291 major, minor); 1292 return (EINVAL); 1293 } 1294 } 1295 1296 return (0); 1297 } 1298 1299 static int 1300 aac_init(struct aac_softc *sc) 1301 { 1302 struct aac_adapter_init *ip; 1303 time_t then; 1304 u_int32_t code; 1305 u_int8_t *qaddr; 1306 1307 debug_called(1); 1308 1309 /* 1310 * First wait for the adapter to come ready. 1311 */ 1312 then = time_second; 1313 do { 1314 code = AAC_GET_FWSTATUS(sc); 1315 if (code & AAC_SELF_TEST_FAILED) { 1316 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1317 return(ENXIO); 1318 } 1319 if (code & AAC_KERNEL_PANIC) { 1320 device_printf(sc->aac_dev, 1321 "FATAL: controller kernel panic\n"); 1322 return(ENXIO); 1323 } 1324 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1325 device_printf(sc->aac_dev, 1326 "FATAL: controller not coming ready, " 1327 "status %x\n", code); 1328 return(ENXIO); 1329 } 1330 } while (!(code & AAC_UP_AND_RUNNING)); 1331 1332 /* 1333 * Create DMA tag for the common structure and allocate it. 1334 */ 1335 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1336 1, 0, /* algnmnt, boundary */ 1337 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1338 BUS_SPACE_MAXADDR, /* highaddr */ 1339 NULL, NULL, /* filter, filterarg */ 1340 sizeof(struct aac_common), /* maxsize */ 1341 1, /* nsegments */ 1342 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1343 0, /* flags */ 1344 &sc->aac_common_dmat)) { 1345 device_printf(sc->aac_dev, 1346 "can't allocate common structure DMA tag\n"); 1347 return(ENOMEM); 1348 } 1349 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1350 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1351 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1352 return(ENOMEM); 1353 } 1354 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1355 sc->aac_common, sizeof(*sc->aac_common), aac_common_map, 1356 sc, 0); 1357 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1358 1359 /* 1360 * Fill in the init structure. This tells the adapter about the 1361 * physical location of various important shared data structures. 1362 */ 1363 ip = &sc->aac_common->ac_init; 1364 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1365 1366 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1367 offsetof(struct aac_common, ac_fibs); 1368 ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0]; 1369 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1370 ip->AdapterFibAlign = sizeof(struct aac_fib); 1371 1372 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1373 offsetof(struct aac_common, ac_printf); 1374 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1375 1376 ip->HostPhysMemPages = 0; /* not used? */ 1377 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1378 1379 /* 1380 * Initialise FIB queues. Note that it appears that the layout of the 1381 * indexes and the segmentation of the entries may be mandated by the 1382 * adapter, which is only told about the base of the queue index fields. 1383 * 1384 * The initial values of the indices are assumed to inform the adapter 1385 * of the sizes of the respective queues, and theoretically it could 1386 * work out the entire layout of the queue structures from this. We 1387 * take the easy route and just lay this area out like everyone else 1388 * does. 1389 * 1390 * The Linux driver uses a much more complex scheme whereby several 1391 * header records are kept for each queue. We use a couple of generic 1392 * list manipulation functions which 'know' the size of each list by 1393 * virtue of a table. 1394 */ 1395 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1396 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1397 sc->aac_queues = (struct aac_queue_table *)qaddr; 1398 ip->CommHeaderAddress = sc->aac_common_busaddr + 1399 ((u_int32_t)sc->aac_queues - 1400 (u_int32_t)sc->aac_common); 1401 bzero(sc->aac_queues, sizeof(struct aac_queue_table)); 1402 1403 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1404 AAC_HOST_NORM_CMD_ENTRIES; 1405 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1406 AAC_HOST_NORM_CMD_ENTRIES; 1407 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1408 AAC_HOST_HIGH_CMD_ENTRIES; 1409 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1410 AAC_HOST_HIGH_CMD_ENTRIES; 1411 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1412 AAC_ADAP_NORM_CMD_ENTRIES; 1413 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1414 AAC_ADAP_NORM_CMD_ENTRIES; 1415 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1416 AAC_ADAP_HIGH_CMD_ENTRIES; 1417 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1418 AAC_ADAP_HIGH_CMD_ENTRIES; 1419 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1420 AAC_HOST_NORM_RESP_ENTRIES; 1421 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1422 AAC_HOST_NORM_RESP_ENTRIES; 1423 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1424 AAC_HOST_HIGH_RESP_ENTRIES; 1425 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1426 AAC_HOST_HIGH_RESP_ENTRIES; 1427 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1428 AAC_ADAP_NORM_RESP_ENTRIES; 1429 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1430 AAC_ADAP_NORM_RESP_ENTRIES; 1431 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1432 AAC_ADAP_HIGH_RESP_ENTRIES; 1433 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1434 AAC_ADAP_HIGH_RESP_ENTRIES; 1435 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1436 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1437 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1438 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1439 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1440 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1441 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1442 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1443 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1444 &sc->aac_queues->qt_HostNormRespQueue[0]; 1445 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1446 &sc->aac_queues->qt_HostHighRespQueue[0]; 1447 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1448 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1449 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1450 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1451 1452 /* 1453 * Do controller-type-specific initialisation 1454 */ 1455 switch (sc->aac_hwif) { 1456 case AAC_HWIF_I960RX: 1457 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1458 break; 1459 } 1460 1461 /* 1462 * Give the init structure to the controller. 1463 */ 1464 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1465 sc->aac_common_busaddr + 1466 offsetof(struct aac_common, ac_init), 0, 0, 0, 1467 NULL)) { 1468 device_printf(sc->aac_dev, 1469 "error establishing init structure\n"); 1470 return(EIO); 1471 } 1472 1473 return(0); 1474 } 1475 1476 /* 1477 * Send a synchronous command to the controller and wait for a result. 1478 */ 1479 static int 1480 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1481 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1482 u_int32_t *sp) 1483 { 1484 time_t then; 1485 u_int32_t status; 1486 1487 debug_called(3); 1488 1489 /* populate the mailbox */ 1490 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1491 1492 /* ensure the sync command doorbell flag is cleared */ 1493 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1494 1495 /* then set it to signal the adapter */ 1496 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1497 1498 /* spin waiting for the command to complete */ 1499 then = time_second; 1500 do { 1501 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1502 debug(2, "timed out"); 1503 return(EIO); 1504 } 1505 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1506 1507 /* clear the completion flag */ 1508 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1509 1510 /* get the command status */ 1511 status = AAC_GET_MAILBOXSTATUS(sc); 1512 if (sp != NULL) 1513 *sp = status; 1514 return(0); 1515 } 1516 1517 /* 1518 * Grab the sync fib area. 1519 */ 1520 int 1521 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1522 { 1523 1524 /* 1525 * If the force flag is set, the system is shutting down, or in 1526 * trouble. Ignore the mutex. 1527 */ 1528 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1529 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1530 1531 *fib = &sc->aac_common->ac_sync_fib; 1532 1533 return (1); 1534 } 1535 1536 /* 1537 * Release the sync fib area. 1538 */ 1539 void 1540 aac_release_sync_fib(struct aac_softc *sc) 1541 { 1542 1543 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1544 } 1545 1546 /* 1547 * Send a synchronous FIB to the controller and wait for a result. 1548 */ 1549 int 1550 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1551 struct aac_fib *fib, u_int16_t datasize) 1552 { 1553 debug_called(3); 1554 1555 if (datasize > AAC_FIB_DATASIZE) 1556 return(EINVAL); 1557 1558 /* 1559 * Set up the sync FIB 1560 */ 1561 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1562 AAC_FIBSTATE_INITIALISED | 1563 AAC_FIBSTATE_EMPTY; 1564 fib->Header.XferState |= xferstate; 1565 fib->Header.Command = command; 1566 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1567 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1568 fib->Header.SenderSize = sizeof(struct aac_fib); 1569 fib->Header.SenderFibAddress = (u_int32_t)fib; 1570 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1571 offsetof(struct aac_common, 1572 ac_sync_fib); 1573 1574 /* 1575 * Give the FIB to the controller, wait for a response. 1576 */ 1577 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1578 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1579 debug(2, "IO error"); 1580 return(EIO); 1581 } 1582 1583 return (0); 1584 } 1585 1586 /* 1587 * Adapter-space FIB queue manipulation 1588 * 1589 * Note that the queue implementation here is a little funky; neither the PI or 1590 * CI will ever be zero. This behaviour is a controller feature. 1591 */ 1592 static struct { 1593 int size; 1594 int notify; 1595 } aac_qinfo[] = { 1596 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1597 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1598 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1599 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1600 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1601 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1602 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1603 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1604 }; 1605 1606 /* 1607 * Atomically insert an entry into the nominated queue, returns 0 on success or 1608 * EBUSY if the queue is full. 1609 * 1610 * Note: it would be more efficient to defer notifying the controller in 1611 * the case where we may be inserting several entries in rapid succession, 1612 * but implementing this usefully may be difficult (it would involve a 1613 * separate queue/notify interface). 1614 */ 1615 static int 1616 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1617 { 1618 u_int32_t pi, ci; 1619 int s, error; 1620 u_int32_t fib_size; 1621 u_int32_t fib_addr; 1622 1623 debug_called(3); 1624 1625 fib_size = cm->cm_fib->Header.Size; 1626 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1627 1628 s = splbio(); 1629 1630 /* get the producer/consumer indices */ 1631 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1632 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1633 1634 /* wrap the queue? */ 1635 if (pi >= aac_qinfo[queue].size) 1636 pi = 0; 1637 1638 /* check for queue full */ 1639 if ((pi + 1) == ci) { 1640 error = EBUSY; 1641 goto out; 1642 } 1643 1644 /* populate queue entry */ 1645 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1646 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1647 1648 /* update producer index */ 1649 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1650 1651 /* 1652 * To avoid a race with its completion interrupt, place this command on 1653 * the busy queue prior to advertising it to the controller. 1654 */ 1655 aac_enqueue_busy(cm); 1656 1657 /* notify the adapter if we know how */ 1658 if (aac_qinfo[queue].notify != 0) 1659 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1660 1661 error = 0; 1662 1663 out: 1664 splx(s); 1665 return(error); 1666 } 1667 1668 /* 1669 * Atomically remove one entry from the nominated queue, returns 0 on 1670 * success or ENOENT if the queue is empty. 1671 */ 1672 static int 1673 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1674 struct aac_fib **fib_addr) 1675 { 1676 u_int32_t pi, ci; 1677 int s, error; 1678 int notify; 1679 1680 debug_called(3); 1681 1682 s = splbio(); 1683 1684 /* get the producer/consumer indices */ 1685 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1686 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1687 1688 /* check for queue empty */ 1689 if (ci == pi) { 1690 error = ENOENT; 1691 goto out; 1692 } 1693 1694 notify = 0; 1695 if (ci == pi + 1) 1696 notify++; 1697 1698 /* wrap the queue? */ 1699 if (ci >= aac_qinfo[queue].size) 1700 ci = 0; 1701 1702 /* fetch the entry */ 1703 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1704 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + 1705 ci)->aq_fib_addr; 1706 1707 /* update consumer index */ 1708 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1709 1710 /* if we have made the queue un-full, notify the adapter */ 1711 if (notify && (aac_qinfo[queue].notify != 0)) 1712 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1713 error = 0; 1714 1715 out: 1716 splx(s); 1717 return(error); 1718 } 1719 1720 /* 1721 * Put our response to an Adapter Initialed Fib on the response queue 1722 */ 1723 static int 1724 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1725 { 1726 u_int32_t pi, ci; 1727 int s, error; 1728 u_int32_t fib_size; 1729 u_int32_t fib_addr; 1730 1731 debug_called(1); 1732 1733 /* Tell the adapter where the FIB is */ 1734 fib_size = fib->Header.Size; 1735 fib_addr = fib->Header.SenderFibAddress; 1736 fib->Header.ReceiverFibAddress = fib_addr; 1737 1738 s = splbio(); 1739 1740 /* get the producer/consumer indices */ 1741 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1742 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1743 1744 /* wrap the queue? */ 1745 if (pi >= aac_qinfo[queue].size) 1746 pi = 0; 1747 1748 /* check for queue full */ 1749 if ((pi + 1) == ci) { 1750 error = EBUSY; 1751 goto out; 1752 } 1753 1754 /* populate queue entry */ 1755 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1756 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1757 1758 /* update producer index */ 1759 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1760 1761 /* notify the adapter if we know how */ 1762 if (aac_qinfo[queue].notify != 0) 1763 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1764 1765 error = 0; 1766 1767 out: 1768 splx(s); 1769 return(error); 1770 } 1771 1772 /* 1773 * Check for commands that have been outstanding for a suspiciously long time, 1774 * and complain about them. 1775 */ 1776 static void 1777 aac_timeout(struct aac_softc *sc) 1778 { 1779 int s; 1780 struct aac_command *cm; 1781 time_t deadline; 1782 1783 #if 0 1784 /* simulate an interrupt to handle possibly-missed interrupts */ 1785 /* 1786 * XXX This was done to work around another bug which has since been 1787 * fixed. It is dangerous anyways because you don't want multiple 1788 * threads in the interrupt handler at the same time! If calling 1789 * is deamed neccesary in the future, proper mutexes must be used. 1790 */ 1791 s = splbio(); 1792 aac_intr(sc); 1793 splx(s); 1794 1795 /* kick the I/O queue to restart it in the case of deadlock */ 1796 aac_startio(sc); 1797 #endif 1798 1799 /* 1800 * traverse the busy command list, bitch about late commands once 1801 * only. 1802 */ 1803 deadline = time_second - AAC_CMD_TIMEOUT; 1804 s = splbio(); 1805 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1806 if ((cm->cm_timestamp < deadline) 1807 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1808 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1809 device_printf(sc->aac_dev, 1810 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1811 cm, (int)(time_second-cm->cm_timestamp)); 1812 AAC_PRINT_FIB(sc, cm->cm_fib); 1813 } 1814 } 1815 splx(s); 1816 1817 /* reset the timer for next time */ 1818 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 1819 return; 1820 } 1821 1822 /* 1823 * Interface Function Vectors 1824 */ 1825 1826 /* 1827 * Read the current firmware status word. 1828 */ 1829 static int 1830 aac_sa_get_fwstatus(struct aac_softc *sc) 1831 { 1832 debug_called(3); 1833 1834 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 1835 } 1836 1837 static int 1838 aac_rx_get_fwstatus(struct aac_softc *sc) 1839 { 1840 debug_called(3); 1841 1842 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 1843 } 1844 1845 static int 1846 aac_fa_get_fwstatus(struct aac_softc *sc) 1847 { 1848 int val; 1849 1850 debug_called(3); 1851 1852 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 1853 return (val); 1854 } 1855 1856 /* 1857 * Notify the controller of a change in a given queue 1858 */ 1859 1860 static void 1861 aac_sa_qnotify(struct aac_softc *sc, int qbit) 1862 { 1863 debug_called(3); 1864 1865 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 1866 } 1867 1868 static void 1869 aac_rx_qnotify(struct aac_softc *sc, int qbit) 1870 { 1871 debug_called(3); 1872 1873 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 1874 } 1875 1876 static void 1877 aac_fa_qnotify(struct aac_softc *sc, int qbit) 1878 { 1879 debug_called(3); 1880 1881 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 1882 AAC_FA_HACK(sc); 1883 } 1884 1885 /* 1886 * Get the interrupt reason bits 1887 */ 1888 static int 1889 aac_sa_get_istatus(struct aac_softc *sc) 1890 { 1891 debug_called(3); 1892 1893 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 1894 } 1895 1896 static int 1897 aac_rx_get_istatus(struct aac_softc *sc) 1898 { 1899 debug_called(3); 1900 1901 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 1902 } 1903 1904 static int 1905 aac_fa_get_istatus(struct aac_softc *sc) 1906 { 1907 int val; 1908 1909 debug_called(3); 1910 1911 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 1912 return (val); 1913 } 1914 1915 /* 1916 * Clear some interrupt reason bits 1917 */ 1918 static void 1919 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 1920 { 1921 debug_called(3); 1922 1923 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 1924 } 1925 1926 static void 1927 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 1928 { 1929 debug_called(3); 1930 1931 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 1932 } 1933 1934 static void 1935 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 1936 { 1937 debug_called(3); 1938 1939 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 1940 AAC_FA_HACK(sc); 1941 } 1942 1943 /* 1944 * Populate the mailbox and set the command word 1945 */ 1946 static void 1947 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1948 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1949 { 1950 debug_called(4); 1951 1952 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 1953 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 1954 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 1955 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 1956 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 1957 } 1958 1959 static void 1960 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 1961 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1962 { 1963 debug_called(4); 1964 1965 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 1966 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 1967 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 1968 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 1969 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 1970 } 1971 1972 static void 1973 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1974 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1975 { 1976 debug_called(4); 1977 1978 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 1979 AAC_FA_HACK(sc); 1980 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 1981 AAC_FA_HACK(sc); 1982 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 1983 AAC_FA_HACK(sc); 1984 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 1985 AAC_FA_HACK(sc); 1986 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 1987 AAC_FA_HACK(sc); 1988 } 1989 1990 /* 1991 * Fetch the immediate command status word 1992 */ 1993 static int 1994 aac_sa_get_mailboxstatus(struct aac_softc *sc) 1995 { 1996 debug_called(4); 1997 1998 return(AAC_GETREG4(sc, AAC_SA_MAILBOX)); 1999 } 2000 2001 static int 2002 aac_rx_get_mailboxstatus(struct aac_softc *sc) 2003 { 2004 debug_called(4); 2005 2006 return(AAC_GETREG4(sc, AAC_RX_MAILBOX)); 2007 } 2008 2009 static int 2010 aac_fa_get_mailboxstatus(struct aac_softc *sc) 2011 { 2012 int val; 2013 2014 debug_called(4); 2015 2016 val = AAC_GETREG4(sc, AAC_FA_MAILBOX); 2017 return (val); 2018 } 2019 2020 /* 2021 * Set/clear interrupt masks 2022 */ 2023 static void 2024 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2025 { 2026 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2027 2028 if (enable) { 2029 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2030 } else { 2031 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2032 } 2033 } 2034 2035 static void 2036 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2037 { 2038 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2039 2040 if (enable) { 2041 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2042 } else { 2043 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2044 } 2045 } 2046 2047 static void 2048 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2049 { 2050 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2051 2052 if (enable) { 2053 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2054 AAC_FA_HACK(sc); 2055 } else { 2056 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2057 AAC_FA_HACK(sc); 2058 } 2059 } 2060 2061 /* 2062 * Debugging and Diagnostics 2063 */ 2064 2065 /* 2066 * Print some information about the controller. 2067 */ 2068 static void 2069 aac_describe_controller(struct aac_softc *sc) 2070 { 2071 struct aac_fib *fib; 2072 struct aac_adapter_info *info; 2073 2074 debug_called(2); 2075 2076 aac_alloc_sync_fib(sc, &fib, 0); 2077 2078 fib->data[0] = 0; 2079 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2080 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2081 aac_release_sync_fib(sc); 2082 return; 2083 } 2084 info = (struct aac_adapter_info *)&fib->data[0]; 2085 2086 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2087 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2088 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2089 aac_describe_code(aac_battery_platform, 2090 info->batteryPlatform)); 2091 2092 /* save the kernel revision structure for later use */ 2093 sc->aac_revision = info->KernelRevision; 2094 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2095 info->KernelRevision.external.comp.major, 2096 info->KernelRevision.external.comp.minor, 2097 info->KernelRevision.external.comp.dash, 2098 info->KernelRevision.buildNumber, 2099 (u_int32_t)(info->SerialNumber & 0xffffff)); 2100 2101 aac_release_sync_fib(sc); 2102 } 2103 2104 /* 2105 * Look up a text description of a numeric error code and return a pointer to 2106 * same. 2107 */ 2108 static char * 2109 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2110 { 2111 int i; 2112 2113 for (i = 0; table[i].string != NULL; i++) 2114 if (table[i].code == code) 2115 return(table[i].string); 2116 return(table[i + 1].string); 2117 } 2118 2119 /* 2120 * Management Interface 2121 */ 2122 2123 static int 2124 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td) 2125 { 2126 struct aac_softc *sc; 2127 2128 debug_called(2); 2129 2130 sc = dev->si_drv1; 2131 2132 /* Check to make sure the device isn't already open */ 2133 if (sc->aac_state & AAC_STATE_OPEN) { 2134 return EBUSY; 2135 } 2136 sc->aac_state |= AAC_STATE_OPEN; 2137 2138 return 0; 2139 } 2140 2141 static int 2142 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td) 2143 { 2144 struct aac_softc *sc; 2145 2146 debug_called(2); 2147 2148 sc = dev->si_drv1; 2149 2150 /* Mark this unit as no longer open */ 2151 sc->aac_state &= ~AAC_STATE_OPEN; 2152 2153 return 0; 2154 } 2155 2156 static int 2157 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2158 { 2159 union aac_statrequest *as; 2160 struct aac_softc *sc; 2161 int error = 0; 2162 int i; 2163 2164 debug_called(2); 2165 2166 as = (union aac_statrequest *)arg; 2167 sc = dev->si_drv1; 2168 2169 switch (cmd) { 2170 case AACIO_STATS: 2171 switch (as->as_item) { 2172 case AACQ_FREE: 2173 case AACQ_BIO: 2174 case AACQ_READY: 2175 case AACQ_BUSY: 2176 case AACQ_COMPLETE: 2177 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2178 sizeof(struct aac_qstat)); 2179 break; 2180 default: 2181 error = ENOENT; 2182 break; 2183 } 2184 break; 2185 2186 case FSACTL_SENDFIB: 2187 arg = *(caddr_t*)arg; 2188 case FSACTL_LNX_SENDFIB: 2189 debug(1, "FSACTL_SENDFIB"); 2190 error = aac_ioctl_sendfib(sc, arg); 2191 break; 2192 case FSACTL_AIF_THREAD: 2193 case FSACTL_LNX_AIF_THREAD: 2194 debug(1, "FSACTL_AIF_THREAD"); 2195 error = EINVAL; 2196 break; 2197 case FSACTL_OPEN_GET_ADAPTER_FIB: 2198 arg = *(caddr_t*)arg; 2199 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2200 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2201 /* 2202 * Pass the caller out an AdapterFibContext. 2203 * 2204 * Note that because we only support one opener, we 2205 * basically ignore this. Set the caller's context to a magic 2206 * number just in case. 2207 * 2208 * The Linux code hands the driver a pointer into kernel space, 2209 * and then trusts it when the caller hands it back. Aiee! 2210 * Here, we give it the proc pointer of the per-adapter aif 2211 * thread. It's only used as a sanity check in other calls. 2212 */ 2213 i = (int)sc->aifthread; 2214 error = copyout(&i, arg, sizeof(i)); 2215 break; 2216 case FSACTL_GET_NEXT_ADAPTER_FIB: 2217 arg = *(caddr_t*)arg; 2218 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2219 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2220 error = aac_getnext_aif(sc, arg); 2221 break; 2222 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2223 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2224 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2225 /* don't do anything here */ 2226 break; 2227 case FSACTL_MINIPORT_REV_CHECK: 2228 arg = *(caddr_t*)arg; 2229 case FSACTL_LNX_MINIPORT_REV_CHECK: 2230 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2231 error = aac_rev_check(sc, arg); 2232 break; 2233 case FSACTL_QUERY_DISK: 2234 arg = *(caddr_t*)arg; 2235 case FSACTL_LNX_QUERY_DISK: 2236 debug(1, "FSACTL_QUERY_DISK"); 2237 error = aac_query_disk(sc, arg); 2238 break; 2239 case FSACTL_DELETE_DISK: 2240 case FSACTL_LNX_DELETE_DISK: 2241 /* 2242 * We don't trust the underland to tell us when to delete a 2243 * container, rather we rely on an AIF coming from the 2244 * controller 2245 */ 2246 error = 0; 2247 break; 2248 default: 2249 debug(1, "unsupported cmd 0x%lx\n", cmd); 2250 error = EINVAL; 2251 break; 2252 } 2253 return(error); 2254 } 2255 2256 static int 2257 aac_poll(dev_t dev, int poll_events, d_thread_t *td) 2258 { 2259 struct aac_softc *sc; 2260 int revents; 2261 2262 sc = dev->si_drv1; 2263 revents = 0; 2264 2265 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2266 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2267 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2268 revents |= poll_events & (POLLIN | POLLRDNORM); 2269 } 2270 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2271 2272 if (revents == 0) { 2273 if (poll_events & (POLLIN | POLLRDNORM)) 2274 selrecord(td, &sc->rcv_select); 2275 } 2276 2277 return (revents); 2278 } 2279 2280 /* 2281 * Send a FIB supplied from userspace 2282 */ 2283 static int 2284 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2285 { 2286 struct aac_command *cm; 2287 int size, error; 2288 2289 debug_called(2); 2290 2291 cm = NULL; 2292 2293 /* 2294 * Get a command 2295 */ 2296 if (aac_alloc_command(sc, &cm)) { 2297 error = EBUSY; 2298 goto out; 2299 } 2300 2301 /* 2302 * Fetch the FIB header, then re-copy to get data as well. 2303 */ 2304 if ((error = copyin(ufib, cm->cm_fib, 2305 sizeof(struct aac_fib_header))) != 0) 2306 goto out; 2307 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2308 if (size > sizeof(struct aac_fib)) { 2309 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 2310 size, sizeof(struct aac_fib)); 2311 size = sizeof(struct aac_fib); 2312 } 2313 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2314 goto out; 2315 cm->cm_fib->Header.Size = size; 2316 cm->cm_timestamp = time_second; 2317 2318 /* 2319 * Pass the FIB to the controller, wait for it to complete. 2320 */ 2321 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */ 2322 printf("aac_wait_command return %d\n", error); 2323 goto out; 2324 } 2325 2326 /* 2327 * Copy the FIB and data back out to the caller. 2328 */ 2329 size = cm->cm_fib->Header.Size; 2330 if (size > sizeof(struct aac_fib)) { 2331 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 2332 size, sizeof(struct aac_fib)); 2333 size = sizeof(struct aac_fib); 2334 } 2335 error = copyout(cm->cm_fib, ufib, size); 2336 2337 out: 2338 if (cm != NULL) { 2339 aac_release_command(cm); 2340 } 2341 return(error); 2342 } 2343 2344 /* 2345 * Handle an AIF sent to us by the controller; queue it for later reference. 2346 * If the queue fills up, then drop the older entries. 2347 */ 2348 static void 2349 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2350 { 2351 struct aac_aif_command *aif; 2352 struct aac_container *co, *co_next; 2353 struct aac_mntinfo *mi; 2354 struct aac_mntinforesp *mir = NULL; 2355 u_int16_t rsize; 2356 int next, found; 2357 int added = 0, i = 0; 2358 2359 debug_called(2); 2360 2361 aif = (struct aac_aif_command*)&fib->data[0]; 2362 aac_print_aif(sc, aif); 2363 2364 /* Is it an event that we should care about? */ 2365 switch (aif->command) { 2366 case AifCmdEventNotify: 2367 switch (aif->data.EN.type) { 2368 case AifEnAddContainer: 2369 case AifEnDeleteContainer: 2370 /* 2371 * A container was added or deleted, but the message 2372 * doesn't tell us anything else! Re-enumerate the 2373 * containers and sort things out. 2374 */ 2375 aac_alloc_sync_fib(sc, &fib, 0); 2376 mi = (struct aac_mntinfo *)&fib->data[0]; 2377 do { 2378 /* 2379 * Ask the controller for its containers one at 2380 * a time. 2381 * XXX What if the controller's list changes 2382 * midway through this enumaration? 2383 * XXX This should be done async. 2384 */ 2385 bzero(mi, sizeof(struct aac_mntinfo)); 2386 mi->Command = VM_NameServe; 2387 mi->MntType = FT_FILESYS; 2388 mi->MntCount = i; 2389 rsize = sizeof(mir); 2390 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2391 sizeof(struct aac_mntinfo))) { 2392 debug(2, "Error probing container %d\n", 2393 i); 2394 continue; 2395 } 2396 mir = (struct aac_mntinforesp *)&fib->data[0]; 2397 /* 2398 * Check the container against our list. 2399 * co->co_found was already set to 0 in a 2400 * previous run. 2401 */ 2402 if ((mir->Status == ST_OK) && 2403 (mir->MntTable[0].VolType != CT_NONE)) { 2404 found = 0; 2405 TAILQ_FOREACH(co, 2406 &sc->aac_container_tqh, 2407 co_link) { 2408 if (co->co_mntobj.ObjectId == 2409 mir->MntTable[0].ObjectId) { 2410 co->co_found = 1; 2411 found = 1; 2412 break; 2413 } 2414 } 2415 /* 2416 * If the container matched, continue 2417 * in the list. 2418 */ 2419 if (found) { 2420 i++; 2421 continue; 2422 } 2423 2424 /* 2425 * This is a new container. Do all the 2426 * appropriate things to set it up. */ 2427 aac_add_container(sc, mir, 1); 2428 added = 1; 2429 } 2430 i++; 2431 } while ((i < mir->MntRespCount) && 2432 (i < AAC_MAX_CONTAINERS)); 2433 aac_release_sync_fib(sc); 2434 2435 /* 2436 * Go through our list of containers and see which ones 2437 * were not marked 'found'. Since the controller didn't 2438 * list them they must have been deleted. Do the 2439 * appropriate steps to destroy the device. Also reset 2440 * the co->co_found field. 2441 */ 2442 co = TAILQ_FIRST(&sc->aac_container_tqh); 2443 while (co != NULL) { 2444 if (co->co_found == 0) { 2445 device_delete_child(sc->aac_dev, 2446 co->co_disk); 2447 co_next = TAILQ_NEXT(co, co_link); 2448 AAC_LOCK_ACQUIRE(&sc-> 2449 aac_container_lock); 2450 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2451 co_link); 2452 AAC_LOCK_RELEASE(&sc-> 2453 aac_container_lock); 2454 FREE(co, M_AACBUF); 2455 co = co_next; 2456 } else { 2457 co->co_found = 0; 2458 co = TAILQ_NEXT(co, co_link); 2459 } 2460 } 2461 2462 /* Attach the newly created containers */ 2463 if (added) 2464 bus_generic_attach(sc->aac_dev); 2465 2466 break; 2467 2468 default: 2469 break; 2470 } 2471 2472 default: 2473 break; 2474 } 2475 2476 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2477 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2478 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2479 if (next != sc->aac_aifq_tail) { 2480 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2481 sc->aac_aifq_head = next; 2482 2483 /* On the off chance that someone is sleeping for an aif... */ 2484 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2485 wakeup(sc->aac_aifq); 2486 /* Wakeup any poll()ers */ 2487 selwakeup(&sc->rcv_select); 2488 } 2489 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2490 2491 return; 2492 } 2493 2494 /* 2495 * Linux Management Interface 2496 * This is soon to be removed! 2497 */ 2498 2499 #ifdef AAC_COMPAT_LINUX 2500 2501 #include <sys/proc.h> 2502 #include <machine/../linux/linux.h> 2503 #include <machine/../linux/linux_proto.h> 2504 #include <compat/linux/linux_ioctl.h> 2505 2506 /* There are multiple ioctl number ranges that need to be handled */ 2507 #define AAC_LINUX_IOCTL_MIN 0x0000 2508 #define AAC_LINUX_IOCTL_MAX 0x21ff 2509 2510 static linux_ioctl_function_t aac_linux_ioctl; 2511 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl, 2512 AAC_LINUX_IOCTL_MIN, 2513 AAC_LINUX_IOCTL_MAX}; 2514 2515 SYSINIT (aac_register, SI_SUB_KLD, SI_ORDER_MIDDLE, 2516 linux_ioctl_register_handler, &aac_handler); 2517 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE, 2518 linux_ioctl_unregister_handler, &aac_handler); 2519 2520 MODULE_DEPEND(aac, linux, 1, 1, 1); 2521 2522 static int 2523 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args) 2524 { 2525 struct file *fp; 2526 u_long cmd; 2527 int error; 2528 2529 debug_called(2); 2530 2531 if ((error = fget(td, args->fd, &fp)) != 0) 2532 return (error); 2533 cmd = args->cmd; 2534 2535 /* 2536 * Pass the ioctl off to our standard handler. 2537 */ 2538 error = (fo_ioctl(fp, cmd, (caddr_t)args->arg, td)); 2539 fdrop(fp, td); 2540 return (error); 2541 } 2542 2543 #endif 2544 2545 /* 2546 * Return the Revision of the driver to userspace and check to see if the 2547 * userspace app is possibly compatible. This is extremely bogus since 2548 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2549 * returning what the card reported. 2550 */ 2551 static int 2552 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2553 { 2554 struct aac_rev_check rev_check; 2555 struct aac_rev_check_resp rev_check_resp; 2556 int error = 0; 2557 2558 debug_called(2); 2559 2560 /* 2561 * Copyin the revision struct from userspace 2562 */ 2563 if ((error = copyin(udata, (caddr_t)&rev_check, 2564 sizeof(struct aac_rev_check))) != 0) { 2565 return error; 2566 } 2567 2568 debug(2, "Userland revision= %d\n", 2569 rev_check.callingRevision.buildNumber); 2570 2571 /* 2572 * Doctor up the response struct. 2573 */ 2574 rev_check_resp.possiblyCompatible = 1; 2575 rev_check_resp.adapterSWRevision.external.ul = 2576 sc->aac_revision.external.ul; 2577 rev_check_resp.adapterSWRevision.buildNumber = 2578 sc->aac_revision.buildNumber; 2579 2580 return(copyout((caddr_t)&rev_check_resp, udata, 2581 sizeof(struct aac_rev_check_resp))); 2582 } 2583 2584 /* 2585 * Pass the caller the next AIF in their queue 2586 */ 2587 static int 2588 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2589 { 2590 struct get_adapter_fib_ioctl agf; 2591 int error, s; 2592 2593 debug_called(2); 2594 2595 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2596 2597 /* 2598 * Check the magic number that we gave the caller. 2599 */ 2600 if (agf.AdapterFibContext != (int)sc->aifthread) { 2601 error = EFAULT; 2602 } else { 2603 2604 s = splbio(); 2605 error = aac_return_aif(sc, agf.AifFib); 2606 2607 if ((error == EAGAIN) && (agf.Wait)) { 2608 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2609 while (error == EAGAIN) { 2610 error = tsleep(sc->aac_aifq, PRIBIO | 2611 PCATCH, "aacaif", 0); 2612 if (error == 0) 2613 error = aac_return_aif(sc, 2614 agf.AifFib); 2615 } 2616 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2617 } 2618 splx(s); 2619 } 2620 } 2621 return(error); 2622 } 2623 2624 /* 2625 * Hand the next AIF off the top of the queue out to userspace. 2626 */ 2627 static int 2628 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2629 { 2630 int error; 2631 2632 debug_called(2); 2633 2634 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2635 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2636 error = EAGAIN; 2637 } else { 2638 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2639 sizeof(struct aac_aif_command)); 2640 if (error) 2641 printf("aac_return_aif: copyout returned %d\n", error); 2642 if (!error) 2643 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % 2644 AAC_AIFQ_LENGTH; 2645 } 2646 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2647 return(error); 2648 } 2649 2650 /* 2651 * Give the userland some information about the container. The AAC arch 2652 * expects the driver to be a SCSI passthrough type driver, so it expects 2653 * the containers to have b:t:l numbers. Fake it. 2654 */ 2655 static int 2656 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2657 { 2658 struct aac_query_disk query_disk; 2659 struct aac_container *co; 2660 struct aac_disk *disk; 2661 int error, id; 2662 2663 debug_called(2); 2664 2665 disk = NULL; 2666 2667 error = copyin(uptr, (caddr_t)&query_disk, 2668 sizeof(struct aac_query_disk)); 2669 if (error) 2670 return (error); 2671 2672 id = query_disk.ContainerNumber; 2673 if (id == -1) 2674 return (EINVAL); 2675 2676 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2677 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2678 if (co->co_mntobj.ObjectId == id) 2679 break; 2680 } 2681 2682 if (co == NULL) { 2683 query_disk.Valid = 0; 2684 query_disk.Locked = 0; 2685 query_disk.Deleted = 1; /* XXX is this right? */ 2686 } else { 2687 disk = device_get_softc(co->co_disk); 2688 query_disk.Valid = 1; 2689 query_disk.Locked = 2690 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2691 query_disk.Deleted = 0; 2692 query_disk.Bus = device_get_unit(sc->aac_dev); 2693 query_disk.Target = disk->unit; 2694 query_disk.Lun = 0; 2695 query_disk.UnMapped = 0; 2696 bcopy(disk->ad_dev_t->si_name, 2697 &query_disk.diskDeviceName[0], 10); 2698 } 2699 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2700 2701 error = copyout((caddr_t)&query_disk, uptr, 2702 sizeof(struct aac_query_disk)); 2703 2704 return (error); 2705 } 2706 2707 static void 2708 aac_get_bus_info(struct aac_softc *sc) 2709 { 2710 struct aac_fib *fib; 2711 struct aac_ctcfg *c_cmd; 2712 struct aac_ctcfg_resp *c_resp; 2713 struct aac_vmioctl *vmi; 2714 struct aac_vmi_businf_resp *vmi_resp; 2715 struct aac_getbusinf businfo; 2716 struct aac_cam_inf *caminf; 2717 device_t child; 2718 int i, found, error; 2719 2720 aac_alloc_sync_fib(sc, &fib, 0); 2721 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2722 bzero(c_cmd, sizeof(struct aac_ctcfg)); 2723 2724 c_cmd->Command = VM_ContainerConfig; 2725 c_cmd->cmd = CT_GET_SCSI_METHOD; 2726 c_cmd->param = 0; 2727 2728 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2729 sizeof(struct aac_ctcfg)); 2730 if (error) { 2731 device_printf(sc->aac_dev, "Error %d sending " 2732 "VM_ContainerConfig command\n", error); 2733 aac_release_sync_fib(sc); 2734 return; 2735 } 2736 2737 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2738 if (c_resp->Status != ST_OK) { 2739 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2740 c_resp->Status); 2741 aac_release_sync_fib(sc); 2742 return; 2743 } 2744 2745 sc->scsi_method_id = c_resp->param; 2746 2747 vmi = (struct aac_vmioctl *)&fib->data[0]; 2748 bzero(vmi, sizeof(struct aac_vmioctl)); 2749 2750 vmi->Command = VM_Ioctl; 2751 vmi->ObjType = FT_DRIVE; 2752 vmi->MethId = sc->scsi_method_id; 2753 vmi->ObjId = 0; 2754 vmi->IoctlCmd = GetBusInfo; 2755 2756 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2757 sizeof(struct aac_vmioctl)); 2758 if (error) { 2759 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2760 error); 2761 aac_release_sync_fib(sc); 2762 return; 2763 } 2764 2765 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2766 if (vmi_resp->Status != ST_OK) { 2767 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 2768 vmi_resp->Status); 2769 aac_release_sync_fib(sc); 2770 return; 2771 } 2772 2773 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 2774 aac_release_sync_fib(sc); 2775 2776 found = 0; 2777 for (i = 0; i < businfo.BusCount; i++) { 2778 if (businfo.BusValid[i] != AAC_BUS_VALID) 2779 continue; 2780 2781 MALLOC(caminf, struct aac_cam_inf *, 2782 sizeof(struct aac_cam_inf), M_AACBUF, M_NOWAIT | M_ZERO); 2783 if (caminf == NULL) 2784 continue; 2785 2786 child = device_add_child(sc->aac_dev, "aacp", -1); 2787 if (child == NULL) { 2788 device_printf(sc->aac_dev, "device_add_child failed\n"); 2789 continue; 2790 } 2791 2792 caminf->TargetsPerBus = businfo.TargetsPerBus; 2793 caminf->BusNumber = i; 2794 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 2795 caminf->aac_sc = sc; 2796 2797 device_set_ivars(child, caminf); 2798 device_set_desc(child, "SCSI Passthrough Bus"); 2799 2800 found = 1; 2801 } 2802 2803 if (found) 2804 bus_generic_attach(sc->aac_dev); 2805 2806 return; 2807 } 2808