xref: /freebsd/sys/dev/aac/aac.c (revision b52f49a9a0f22207ad5130ad8faba08de3ed23d8)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #include <sys/ioccom.h>
47 
48 #include <sys/bus.h>
49 #include <sys/conf.h>
50 #include <sys/signalvar.h>
51 #include <sys/time.h>
52 #include <sys/eventhandler.h>
53 
54 #include <machine/bus_memio.h>
55 #include <machine/bus.h>
56 #include <machine/resource.h>
57 
58 #include <dev/aac/aacreg.h>
59 #include <dev/aac/aac_ioctl.h>
60 #include <dev/aac/aacvar.h>
61 #include <dev/aac/aac_tables.h>
62 
63 static void	aac_startup(void *arg);
64 static void	aac_add_container(struct aac_softc *sc,
65 				  struct aac_mntinforesp *mir, int f);
66 static void	aac_get_bus_info(struct aac_softc *sc);
67 
68 /* Command Processing */
69 static void	aac_timeout(struct aac_softc *sc);
70 static int	aac_start(struct aac_command *cm);
71 static void	aac_complete(void *context, int pending);
72 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
73 static void	aac_bio_complete(struct aac_command *cm);
74 static int	aac_wait_command(struct aac_command *cm, int timeout);
75 static void	aac_command_thread(struct aac_softc *sc);
76 
77 /* Command Buffer Management */
78 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
79 				       int nseg, int error);
80 static int	aac_alloc_commands(struct aac_softc *sc);
81 static void	aac_free_commands(struct aac_softc *sc);
82 static void	aac_map_command(struct aac_command *cm);
83 static void	aac_unmap_command(struct aac_command *cm);
84 
85 /* Hardware Interface */
86 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
87 			       int error);
88 static int	aac_check_firmware(struct aac_softc *sc);
89 static int	aac_init(struct aac_softc *sc);
90 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
91 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
92 				 u_int32_t arg3, u_int32_t *sp);
93 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
94 				struct aac_command *cm);
95 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
96 				u_int32_t *fib_size, struct aac_fib **fib_addr);
97 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
98 				     struct aac_fib *fib);
99 
100 /* Falcon/PPC interface */
101 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
102 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
103 static int	aac_fa_get_istatus(struct aac_softc *sc);
104 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
105 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
106 				   u_int32_t arg0, u_int32_t arg1,
107 				   u_int32_t arg2, u_int32_t arg3);
108 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
109 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
110 
111 struct aac_interface aac_fa_interface = {
112 	aac_fa_get_fwstatus,
113 	aac_fa_qnotify,
114 	aac_fa_get_istatus,
115 	aac_fa_clear_istatus,
116 	aac_fa_set_mailbox,
117 	aac_fa_get_mailbox,
118 	aac_fa_set_interrupts
119 };
120 
121 /* StrongARM interface */
122 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
123 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
124 static int	aac_sa_get_istatus(struct aac_softc *sc);
125 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
126 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
127 				   u_int32_t arg0, u_int32_t arg1,
128 				   u_int32_t arg2, u_int32_t arg3);
129 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
130 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
131 
132 struct aac_interface aac_sa_interface = {
133 	aac_sa_get_fwstatus,
134 	aac_sa_qnotify,
135 	aac_sa_get_istatus,
136 	aac_sa_clear_istatus,
137 	aac_sa_set_mailbox,
138 	aac_sa_get_mailbox,
139 	aac_sa_set_interrupts
140 };
141 
142 /* i960Rx interface */
143 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
144 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
145 static int	aac_rx_get_istatus(struct aac_softc *sc);
146 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
147 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
148 				   u_int32_t arg0, u_int32_t arg1,
149 				   u_int32_t arg2, u_int32_t arg3);
150 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
151 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
152 
153 struct aac_interface aac_rx_interface = {
154 	aac_rx_get_fwstatus,
155 	aac_rx_qnotify,
156 	aac_rx_get_istatus,
157 	aac_rx_clear_istatus,
158 	aac_rx_set_mailbox,
159 	aac_rx_get_mailbox,
160 	aac_rx_set_interrupts
161 };
162 
163 /* Debugging and Diagnostics */
164 static void	aac_describe_controller(struct aac_softc *sc);
165 static char	*aac_describe_code(struct aac_code_lookup *table,
166 				   u_int32_t code);
167 
168 /* Management Interface */
169 static d_open_t		aac_open;
170 static d_close_t	aac_close;
171 static d_ioctl_t	aac_ioctl;
172 static d_poll_t		aac_poll;
173 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
174 static void		aac_handle_aif(struct aac_softc *sc,
175 					   struct aac_fib *fib);
176 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
177 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
178 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
179 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
180 
181 #define AAC_CDEV_MAJOR	150
182 
183 static struct cdevsw aac_cdevsw = {
184 	.d_open =	aac_open,
185 	.d_close =	aac_close,
186 	.d_ioctl =	aac_ioctl,
187 	.d_poll =	aac_poll,
188 	.d_name =	"aac",
189 	.d_maj =	AAC_CDEV_MAJOR,
190 };
191 
192 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
193 
194 /* sysctl node */
195 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
196 
197 /*
198  * Device Interface
199  */
200 
201 /*
202  * Initialise the controller and softc
203  */
204 int
205 aac_attach(struct aac_softc *sc)
206 {
207 	int error, unit;
208 
209 	debug_called(1);
210 
211 	/*
212 	 * Initialise per-controller queues.
213 	 */
214 	aac_initq_free(sc);
215 	aac_initq_ready(sc);
216 	aac_initq_busy(sc);
217 	aac_initq_bio(sc);
218 
219 	/*
220 	 * Initialise command-completion task.
221 	 */
222 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
223 
224 	/* disable interrupts before we enable anything */
225 	AAC_MASK_INTERRUPTS(sc);
226 
227 	/* mark controller as suspended until we get ourselves organised */
228 	sc->aac_state |= AAC_STATE_SUSPEND;
229 
230 	/*
231 	 * Check that the firmware on the card is supported.
232 	 */
233 	if ((error = aac_check_firmware(sc)) != 0)
234 		return(error);
235 
236 	/* Init the sync fib lock */
237 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
238 
239 	/*
240 	 * Initialise the adapter.
241 	 */
242 	if ((error = aac_init(sc)) != 0)
243 		return(error);
244 
245 	/*
246 	 * Print a little information about the controller.
247 	 */
248 	aac_describe_controller(sc);
249 
250 	/*
251 	 * Initialize locks
252 	 */
253 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
254 	TAILQ_INIT(&sc->aac_container_tqh);
255 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
256 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
257 
258 	/*
259 	 * Register to probe our containers later.
260 	 */
261 	sc->aac_ich.ich_func = aac_startup;
262 	sc->aac_ich.ich_arg = sc;
263 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264 		device_printf(sc->aac_dev,
265 			      "can't establish configuration hook\n");
266 		return(ENXIO);
267 	}
268 
269 	/*
270 	 * Make the control device.
271 	 */
272 	unit = device_get_unit(sc->aac_dev);
273 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274 				 0640, "aac%d", unit);
275 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277 	sc->aac_dev_t->si_drv1 = sc;
278 
279 	/* Create the AIF thread */
280 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281 			   &sc->aifthread, 0, 0, "aac%daif", unit))
282 		panic("Could not create AIF thread\n");
283 
284 	/* Register the shutdown method to only be called post-dump */
285 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287 		device_printf(sc->aac_dev,
288 			      "shutdown event registration failed\n");
289 
290 	/* Register with CAM for the non-DASD devices */
291 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292 		TAILQ_INIT(&sc->aac_sim_tqh);
293 		aac_get_bus_info(sc);
294 	}
295 
296 	return(0);
297 }
298 
299 /*
300  * Probe for containers, create disks.
301  */
302 static void
303 aac_startup(void *arg)
304 {
305 	struct aac_softc *sc;
306 	struct aac_fib *fib;
307 	struct aac_mntinfo *mi;
308 	struct aac_mntinforesp *mir = NULL;
309 	int count = 0, i = 0;
310 
311 	debug_called(1);
312 
313 	sc = (struct aac_softc *)arg;
314 
315 	/* disconnect ourselves from the intrhook chain */
316 	config_intrhook_disestablish(&sc->aac_ich);
317 
318 	aac_alloc_sync_fib(sc, &fib, 0);
319 	mi = (struct aac_mntinfo *)&fib->data[0];
320 
321 	/* loop over possible containers */
322 	do {
323 		/* request information on this container */
324 		bzero(mi, sizeof(struct aac_mntinfo));
325 		mi->Command = VM_NameServe;
326 		mi->MntType = FT_FILESYS;
327 		mi->MntCount = i;
328 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329 				 sizeof(struct aac_mntinfo))) {
330 			printf("error probing container %d", i);
331 			continue;
332 		}
333 
334 		mir = (struct aac_mntinforesp *)&fib->data[0];
335 		/* XXX Need to check if count changed */
336 		count = mir->MntRespCount;
337 		aac_add_container(sc, mir, 0);
338 		i++;
339 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340 
341 	aac_release_sync_fib(sc);
342 
343 	/* poke the bus to actually attach the child devices */
344 	if (bus_generic_attach(sc->aac_dev))
345 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346 
347 	/* mark the controller up */
348 	sc->aac_state &= ~AAC_STATE_SUSPEND;
349 
350 	/* enable interrupts now */
351 	AAC_UNMASK_INTERRUPTS(sc);
352 }
353 
354 /*
355  * Create a device to respresent a new container
356  */
357 static void
358 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359 {
360 	struct aac_container *co;
361 	device_t child;
362 
363 	/*
364 	 * Check container volume type for validity.  Note that many of
365 	 * the possible types may never show up.
366 	 */
367 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369 		       M_NOWAIT | M_ZERO);
370 		if (co == NULL)
371 			panic("Out of memory?!\n");
372 		debug(1, "id %x  name '%.16s'  size %u  type %d",
373 		      mir->MntTable[0].ObjectId,
374 		      mir->MntTable[0].FileSystemName,
375 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376 
377 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378 			device_printf(sc->aac_dev, "device_add_child failed\n");
379 		else
380 			device_set_ivars(child, co);
381 		device_set_desc(child, aac_describe_code(aac_container_types,
382 				mir->MntTable[0].VolType));
383 		co->co_disk = child;
384 		co->co_found = f;
385 		bcopy(&mir->MntTable[0], &co->co_mntobj,
386 		      sizeof(struct aac_mntobj));
387 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390 	}
391 }
392 
393 /*
394  * Free all of the resources associated with (sc)
395  *
396  * Should not be called if the controller is active.
397  */
398 void
399 aac_free(struct aac_softc *sc)
400 {
401 
402 	debug_called(1);
403 
404 	/* remove the control device */
405 	if (sc->aac_dev_t != NULL)
406 		destroy_dev(sc->aac_dev_t);
407 
408 	/* throw away any FIB buffers, discard the FIB DMA tag */
409 	aac_free_commands(sc);
410 	if (sc->aac_fib_dmat)
411 		bus_dma_tag_destroy(sc->aac_fib_dmat);
412 
413 	free(sc->aac_commands, M_AACBUF);
414 
415 	/* destroy the common area */
416 	if (sc->aac_common) {
417 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419 				sc->aac_common_dmamap);
420 	}
421 	if (sc->aac_common_dmat)
422 		bus_dma_tag_destroy(sc->aac_common_dmat);
423 
424 	/* disconnect the interrupt handler */
425 	if (sc->aac_intr)
426 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427 	if (sc->aac_irq != NULL)
428 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429 				     sc->aac_irq);
430 
431 	/* destroy data-transfer DMA tag */
432 	if (sc->aac_buffer_dmat)
433 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434 
435 	/* destroy the parent DMA tag */
436 	if (sc->aac_parent_dmat)
437 		bus_dma_tag_destroy(sc->aac_parent_dmat);
438 
439 	/* release the register window mapping */
440 	if (sc->aac_regs_resource != NULL)
441 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442 				     sc->aac_regs_rid, sc->aac_regs_resource);
443 }
444 
445 /*
446  * Disconnect from the controller completely, in preparation for unload.
447  */
448 int
449 aac_detach(device_t dev)
450 {
451 	struct aac_softc *sc;
452 	struct aac_container *co;
453 	struct aac_sim	*sim;
454 	int error;
455 
456 	debug_called(1);
457 
458 	sc = device_get_softc(dev);
459 
460 	if (sc->aac_state & AAC_STATE_OPEN)
461 		return(EBUSY);
462 
463 	/* Remove the child containers */
464 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465 		error = device_delete_child(dev, co->co_disk);
466 		if (error)
467 			return (error);
468 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469 		free(co, M_AACBUF);
470 	}
471 
472 	/* Remove the CAM SIMs */
473 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475 		error = device_delete_child(dev, sim->sim_dev);
476 		if (error)
477 			return (error);
478 		free(sim, M_AACBUF);
479 	}
480 
481 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483 		wakeup(sc->aifthread);
484 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485 	}
486 
487 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488 		panic("Cannot shutdown AIF thread\n");
489 
490 	if ((error = aac_shutdown(dev)))
491 		return(error);
492 
493 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494 
495 	aac_free(sc);
496 
497 	return(0);
498 }
499 
500 /*
501  * Bring the controller down to a dormant state and detach all child devices.
502  *
503  * This function is called before detach or system shutdown.
504  *
505  * Note that we can assume that the bioq on the controller is empty, as we won't
506  * allow shutdown if any device is open.
507  */
508 int
509 aac_shutdown(device_t dev)
510 {
511 	struct aac_softc *sc;
512 	struct aac_fib *fib;
513 	struct aac_close_command *cc;
514 
515 	debug_called(1);
516 
517 	sc = device_get_softc(dev);
518 
519 	sc->aac_state |= AAC_STATE_SUSPEND;
520 
521 	/*
522 	 * Send a Container shutdown followed by a HostShutdown FIB to the
523 	 * controller to convince it that we don't want to talk to it anymore.
524 	 * We've been closed and all I/O completed already
525 	 */
526 	device_printf(sc->aac_dev, "shutting down controller...");
527 
528 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
529 	cc = (struct aac_close_command *)&fib->data[0];
530 
531 	bzero(cc, sizeof(struct aac_close_command));
532 	cc->Command = VM_CloseAll;
533 	cc->ContainerId = 0xffffffff;
534 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535 	    sizeof(struct aac_close_command)))
536 		printf("FAILED.\n");
537 	else
538 		printf("done\n");
539 #if 0
540 	else {
541 		fib->data[0] = 0;
542 		/*
543 		 * XXX Issuing this command to the controller makes it shut down
544 		 * but also keeps it from coming back up without a reset of the
545 		 * PCI bus.  This is not desirable if you are just unloading the
546 		 * driver module with the intent to reload it later.
547 		 */
548 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549 		    fib, 1)) {
550 			printf("FAILED.\n");
551 		} else {
552 			printf("done.\n");
553 		}
554 	}
555 #endif
556 
557 	AAC_MASK_INTERRUPTS(sc);
558 
559 	return(0);
560 }
561 
562 /*
563  * Bring the controller to a quiescent state, ready for system suspend.
564  */
565 int
566 aac_suspend(device_t dev)
567 {
568 	struct aac_softc *sc;
569 
570 	debug_called(1);
571 
572 	sc = device_get_softc(dev);
573 
574 	sc->aac_state |= AAC_STATE_SUSPEND;
575 
576 	AAC_MASK_INTERRUPTS(sc);
577 	return(0);
578 }
579 
580 /*
581  * Bring the controller back to a state ready for operation.
582  */
583 int
584 aac_resume(device_t dev)
585 {
586 	struct aac_softc *sc;
587 
588 	debug_called(1);
589 
590 	sc = device_get_softc(dev);
591 
592 	sc->aac_state &= ~AAC_STATE_SUSPEND;
593 	AAC_UNMASK_INTERRUPTS(sc);
594 	return(0);
595 }
596 
597 /*
598  * Take an interrupt.
599  */
600 void
601 aac_intr(void *arg)
602 {
603 	struct aac_softc *sc;
604 	u_int32_t *resp_queue;
605 	u_int16_t reason;
606 
607 	debug_called(2);
608 
609 	sc = (struct aac_softc *)arg;
610 
611 	/*
612 	 * Optimize the common case of adapter response interrupts.
613 	 * We must read from the card prior to processing the responses
614 	 * to ensure the clear is flushed prior to accessing the queues.
615 	 * Reading the queues from local memory might save us a PCI read.
616 	 */
617 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
618 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
619 		reason = AAC_DB_RESPONSE_READY;
620 	else
621 		reason = AAC_GET_ISTATUS(sc);
622 	AAC_CLEAR_ISTATUS(sc, reason);
623 	(void)AAC_GET_ISTATUS(sc);
624 
625 	/* It's not ok to return here because of races with the previous step */
626 	if (reason & AAC_DB_RESPONSE_READY)
627 		/* handle completion processing */
628 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
629 
630 	/* controller wants to talk to the log */
631 	if (reason & AAC_DB_PRINTF) {
632 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
633 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
634 		} else
635 			aac_print_printf(sc);
636 	}
637 
638 	/* controller has a message for us? */
639 	if (reason & AAC_DB_COMMAND_READY) {
640 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
641 			sc->aifflags |= AAC_AIFFLAGS_AIF;
642 		} else {
643 			/*
644 			 * XXX If the kthread is dead and we're at this point,
645 			 * there are bigger problems than just figuring out
646 			 * what to do with an AIF.
647 			 */
648 		}
649 
650 	}
651 
652 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
653 		/* XXX Should this be done with cv_signal? */
654 		wakeup(sc->aifthread);
655 }
656 
657 /*
658  * Command Processing
659  */
660 
661 /*
662  * Start as much queued I/O as possible on the controller
663  */
664 void
665 aac_startio(struct aac_softc *sc)
666 {
667 	struct aac_command *cm;
668 
669 	debug_called(2);
670 
671 	for (;;) {
672 		/*
673 		 * Try to get a command that's been put off for lack of
674 		 * resources
675 		 */
676 		cm = aac_dequeue_ready(sc);
677 
678 		/*
679 		 * Try to build a command off the bio queue (ignore error
680 		 * return)
681 		 */
682 		if (cm == NULL)
683 			aac_bio_command(sc, &cm);
684 
685 		/* nothing to do? */
686 		if (cm == NULL)
687 			break;
688 
689 		/* try to give the command to the controller */
690 		if (aac_start(cm) == EBUSY) {
691 			/* put it on the ready queue for later */
692 			aac_requeue_ready(cm);
693 			break;
694 		}
695 	}
696 }
697 
698 /*
699  * Deliver a command to the controller; allocate controller resources at the
700  * last moment when possible.
701  */
702 static int
703 aac_start(struct aac_command *cm)
704 {
705 	struct aac_softc *sc;
706 	int error;
707 
708 	debug_called(2);
709 
710 	sc = cm->cm_sc;
711 
712 	/* get the command mapped */
713 	aac_map_command(cm);
714 
715 	/* Fix up the address values in the FIB.  Use the command array index
716 	 * instead of a pointer since these fields are only 32 bits.  Shift
717 	 * the SenderFibAddress over to make room for the fast response bit.
718 	 */
719 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
720 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
721 
722 	/* save a pointer to the command for speedy reverse-lookup */
723 	cm->cm_fib->Header.SenderData = cm->cm_index;
724 	/* put the FIB on the outbound queue */
725 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
726 	return(error);
727 }
728 
729 /*
730  * Handle notification of one or more FIBs coming from the controller.
731  */
732 static void
733 aac_command_thread(struct aac_softc *sc)
734 {
735 	struct aac_fib *fib;
736 	u_int32_t fib_size;
737 	int size;
738 
739 	debug_called(2);
740 
741 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
742 
743 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
744 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
745 			tsleep(sc->aifthread, PRIBIO, "aifthd",
746 			       AAC_PERIODIC_INTERVAL * hz);
747 
748 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
749 			aac_timeout(sc);
750 
751 		/* Check the hardware printf message buffer */
752 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
753 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
754 			aac_print_printf(sc);
755 		}
756 
757 		/* See if any FIBs need to be allocated */
758 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
759 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
760 			aac_alloc_commands(sc);
761 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
762 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
763 		}
764 
765 		/* While we're here, check to see if any commands are stuck */
766 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
767 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
768 					    &fib_size, &fib)) {
769 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
770 				break;	/* nothing to do */
771 			}
772 
773 			AAC_PRINT_FIB(sc, fib);
774 
775 			switch (fib->Header.Command) {
776 			case AifRequest:
777 				aac_handle_aif(sc, fib);
778 				break;
779 			default:
780 				device_printf(sc->aac_dev, "unknown command "
781 					      "from controller\n");
782 				break;
783 			}
784 
785 			if ((fib->Header.XferState == 0) ||
786 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
787 				break;
788 
789 			/* Return the AIF to the controller. */
790 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
791 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
792 				*(AAC_FSAStatus*)fib->data = ST_OK;
793 
794 				/* XXX Compute the Size field? */
795 				size = fib->Header.Size;
796 				if (size > sizeof(struct aac_fib)) {
797 					size = sizeof(struct aac_fib);
798 					fib->Header.Size = size;
799 				}
800 				/*
801 				 * Since we did not generate this command, it
802 				 * cannot go through the normal
803 				 * enqueue->startio chain.
804 				 */
805 				aac_enqueue_response(sc,
806 						     AAC_ADAP_NORM_RESP_QUEUE,
807 						     fib);
808 			}
809 		}
810 	}
811 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
812 	wakeup(sc->aac_dev);
813 
814 	mtx_lock(&Giant);
815 	kthread_exit(0);
816 }
817 
818 /*
819  * Process completed commands.
820  */
821 static void
822 aac_complete(void *context, int pending)
823 {
824 	struct aac_softc *sc;
825 	struct aac_command *cm;
826 	struct aac_fib *fib;
827 	u_int32_t fib_size;
828 
829 	debug_called(2);
830 
831 	sc = (struct aac_softc *)context;
832 
833 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
834 
835 	/* pull completed commands off the queue */
836 	for (;;) {
837 		/* look for completed FIBs on our queue */
838 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
839 				    &fib))
840 			break;	/* nothing to do */
841 
842 		/* get the command, unmap and queue for later processing */
843 		cm = sc->aac_commands + fib->Header.SenderData;
844 		if (cm == NULL) {
845 			AAC_PRINT_FIB(sc, fib);
846 			break;
847 		}
848 
849 		aac_remove_busy(cm);
850 		aac_unmap_command(cm);		/* XXX defer? */
851 		cm->cm_flags |= AAC_CMD_COMPLETED;
852 
853 		/* is there a completion handler? */
854 		if (cm->cm_complete != NULL) {
855 			cm->cm_complete(cm);
856 		} else {
857 			/* assume that someone is sleeping on this command */
858 			wakeup(cm);
859 		}
860 	}
861 
862 	/* see if we can start some more I/O */
863 	aac_startio(sc);
864 
865 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
866 }
867 
868 /*
869  * Handle a bio submitted from a disk device.
870  */
871 void
872 aac_submit_bio(struct bio *bp)
873 {
874 	struct aac_disk *ad;
875 	struct aac_softc *sc;
876 
877 	debug_called(2);
878 
879 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
880 	sc = ad->ad_controller;
881 
882 	/* queue the BIO and try to get some work done */
883 	aac_enqueue_bio(sc, bp);
884 	aac_startio(sc);
885 }
886 
887 /*
888  * Get a bio and build a command to go with it.
889  */
890 static int
891 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
892 {
893 	struct aac_command *cm;
894 	struct aac_fib *fib;
895 	struct aac_disk *ad;
896 	struct bio *bp;
897 
898 	debug_called(2);
899 
900 	/* get the resources we will need */
901 	cm = NULL;
902 	if ((bp = aac_dequeue_bio(sc)) == NULL)
903 		goto fail;
904 	if (aac_alloc_command(sc, &cm))	/* get a command */
905 		goto fail;
906 
907 	/* fill out the command */
908 	cm->cm_data = (void *)bp->bio_data;
909 	cm->cm_datalen = bp->bio_bcount;
910 	cm->cm_complete = aac_bio_complete;
911 	cm->cm_private = bp;
912 	cm->cm_timestamp = time_second;
913 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914 
915 	/* build the FIB */
916 	fib = cm->cm_fib;
917 	fib->Header.Size = sizeof(struct aac_fib_header);
918 	fib->Header.XferState =
919 		AAC_FIBSTATE_HOSTOWNED   |
920 		AAC_FIBSTATE_INITIALISED |
921 		AAC_FIBSTATE_EMPTY	 |
922 		AAC_FIBSTATE_FROMHOST	 |
923 		AAC_FIBSTATE_REXPECTED   |
924 		AAC_FIBSTATE_NORM	 |
925 		AAC_FIBSTATE_ASYNC	 |
926 		AAC_FIBSTATE_FAST_RESPONSE;
927 
928 	/* build the read/write request */
929 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
930 
931 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
932 		fib->Header.Command = ContainerCommand;
933 		if (bp->bio_cmd == BIO_READ) {
934 			struct aac_blockread *br;
935 			br = (struct aac_blockread *)&fib->data[0];
936 			br->Command = VM_CtBlockRead;
937 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
938 			br->BlockNumber = bp->bio_pblkno;
939 			br->ByteCount = bp->bio_bcount;
940 			fib->Header.Size += sizeof(struct aac_blockread);
941 			cm->cm_sgtable = &br->SgMap;
942 			cm->cm_flags |= AAC_CMD_DATAIN;
943 		} else {
944 			struct aac_blockwrite *bw;
945 			bw = (struct aac_blockwrite *)&fib->data[0];
946 			bw->Command = VM_CtBlockWrite;
947 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
948 			bw->BlockNumber = bp->bio_pblkno;
949 			bw->ByteCount = bp->bio_bcount;
950 			bw->Stable = CUNSTABLE;
951 			fib->Header.Size += sizeof(struct aac_blockwrite);
952 			cm->cm_flags |= AAC_CMD_DATAOUT;
953 			cm->cm_sgtable = &bw->SgMap;
954 		}
955 	} else {
956 		fib->Header.Command = ContainerCommand64;
957 		if (bp->bio_cmd == BIO_READ) {
958 			struct aac_blockread64 *br;
959 			br = (struct aac_blockread64 *)&fib->data[0];
960 			br->Command = VM_CtHostRead64;
961 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
962 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
963 			br->BlockNumber = bp->bio_pblkno;
964 			br->Pad = 0;
965 			br->Flags = 0;
966 			fib->Header.Size += sizeof(struct aac_blockread64);
967 			cm->cm_flags |= AAC_CMD_DATAOUT;
968 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
969 		} else {
970 			struct aac_blockwrite64 *bw;
971 			bw = (struct aac_blockwrite64 *)&fib->data[0];
972 			bw->Command = VM_CtHostWrite64;
973 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
974 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
975 			bw->BlockNumber = bp->bio_pblkno;
976 			bw->Pad = 0;
977 			bw->Flags = 0;
978 			fib->Header.Size += sizeof(struct aac_blockwrite64);
979 			cm->cm_flags |= AAC_CMD_DATAIN;
980 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
981 		}
982 	}
983 
984 	*cmp = cm;
985 	return(0);
986 
987 fail:
988 	if (bp != NULL)
989 		aac_enqueue_bio(sc, bp);
990 	if (cm != NULL)
991 		aac_release_command(cm);
992 	return(ENOMEM);
993 }
994 
995 /*
996  * Handle a bio-instigated command that has been completed.
997  */
998 static void
999 aac_bio_complete(struct aac_command *cm)
1000 {
1001 	struct aac_blockread_response *brr;
1002 	struct aac_blockwrite_response *bwr;
1003 	struct bio *bp;
1004 	AAC_FSAStatus status;
1005 
1006 	/* fetch relevant status and then release the command */
1007 	bp = (struct bio *)cm->cm_private;
1008 	if (bp->bio_cmd == BIO_READ) {
1009 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1010 		status = brr->Status;
1011 	} else {
1012 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1013 		status = bwr->Status;
1014 	}
1015 	aac_release_command(cm);
1016 
1017 	/* fix up the bio based on status */
1018 	if (status == ST_OK) {
1019 		bp->bio_resid = 0;
1020 	} else {
1021 		bp->bio_error = EIO;
1022 		bp->bio_flags |= BIO_ERROR;
1023 		/* pass an error string out to the disk layer */
1024 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1025 						    status);
1026 	}
1027 	aac_biodone(bp);
1028 }
1029 
1030 /*
1031  * Submit a command to the controller, return when it completes.
1032  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1033  *     be stuck here forever.  At the same time, signals are not caught
1034  *     because there is a risk that a signal could wakeup the tsleep before
1035  *     the card has a chance to complete the command.  The passed in timeout
1036  *     is ignored for the same reason.  Since there is no way to cancel a
1037  *     command in progress, we should probably create a 'dead' queue where
1038  *     commands go that have been interrupted/timed-out/etc, that keeps them
1039  *     out of the free pool.  That way, if the card is just slow, it won't
1040  *     spam the memory of a command that has been recycled.
1041  */
1042 static int
1043 aac_wait_command(struct aac_command *cm, int timeout)
1044 {
1045 	struct aac_softc *sc;
1046 	int error = 0;
1047 
1048 	debug_called(2);
1049 
1050 	sc = cm->cm_sc;
1051 
1052 	/* Put the command on the ready queue and get things going */
1053 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1054 	aac_enqueue_ready(cm);
1055 	aac_startio(sc);
1056 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1057 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1058 	}
1059 	return(error);
1060 }
1061 
1062 /*
1063  *Command Buffer Management
1064  */
1065 
1066 /*
1067  * Allocate a command.
1068  */
1069 int
1070 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1071 {
1072 	struct aac_command *cm;
1073 
1074 	debug_called(3);
1075 
1076 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1077 		if (sc->total_fibs < sc->aac_max_fibs) {
1078 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1079 			wakeup(sc->aifthread);
1080 		}
1081 		return (EBUSY);
1082 	}
1083 
1084 	*cmp = cm;
1085 	return(0);
1086 }
1087 
1088 /*
1089  * Release a command back to the freelist.
1090  */
1091 void
1092 aac_release_command(struct aac_command *cm)
1093 {
1094 	debug_called(3);
1095 
1096 	/* (re)initialise the command/FIB */
1097 	cm->cm_sgtable = NULL;
1098 	cm->cm_flags = 0;
1099 	cm->cm_complete = NULL;
1100 	cm->cm_private = NULL;
1101 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1102 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1103 	cm->cm_fib->Header.Flags = 0;
1104 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1105 
1106 	/*
1107 	 * These are duplicated in aac_start to cover the case where an
1108 	 * intermediate stage may have destroyed them.  They're left
1109 	 * initialised here for debugging purposes only.
1110 	 */
1111 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1112 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1113 	cm->cm_fib->Header.SenderData = 0;
1114 
1115 	aac_enqueue_free(cm);
1116 }
1117 
1118 /*
1119  * Map helper for command/FIB allocation.
1120  */
1121 static void
1122 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1123 {
1124 	uint32_t	*fibphys;
1125 
1126 	fibphys = (uint32_t *)arg;
1127 
1128 	debug_called(3);
1129 
1130 	*fibphys = segs[0].ds_addr;
1131 }
1132 
1133 /*
1134  * Allocate and initialise commands/FIBs for this adapter.
1135  */
1136 static int
1137 aac_alloc_commands(struct aac_softc *sc)
1138 {
1139 	struct aac_command *cm;
1140 	struct aac_fibmap *fm;
1141 	uint32_t fibphys;
1142 	int i, error;
1143 
1144 	debug_called(2);
1145 
1146 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1147 		return (ENOMEM);
1148 
1149 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1150 	if (fm == NULL)
1151 		return (ENOMEM);
1152 
1153 	/* allocate the FIBs in DMAable memory and load them */
1154 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1155 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1156 		device_printf(sc->aac_dev,
1157 			      "Not enough contiguous memory available.\n");
1158 		free(fm, M_AACBUF);
1159 		return (ENOMEM);
1160 	}
1161 
1162 	bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1163 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1164 			aac_map_command_helper, &fibphys, 0);
1165 
1166 	/* initialise constant fields in the command structure */
1167 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1168 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1169 		cm = sc->aac_commands + sc->total_fibs;
1170 		fm->aac_commands = cm;
1171 		cm->cm_sc = sc;
1172 		cm->cm_fib = fm->aac_fibs + i;
1173 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1174 		cm->cm_index = sc->total_fibs;
1175 
1176 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1177 					       &cm->cm_datamap)) == 0)
1178 			aac_release_command(cm);
1179 		else
1180 			break;
1181 		sc->total_fibs++;
1182 	}
1183 
1184 	if (i > 0) {
1185 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1186 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1187 		return (0);
1188 	}
1189 
1190 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1191 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1192 	free(fm, M_AACBUF);
1193 	return (ENOMEM);
1194 }
1195 
1196 /*
1197  * Free FIBs owned by this adapter.
1198  */
1199 static void
1200 aac_free_commands(struct aac_softc *sc)
1201 {
1202 	struct aac_fibmap *fm;
1203 	struct aac_command *cm;
1204 	int i;
1205 
1206 	debug_called(1);
1207 
1208 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1209 
1210 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1211 		/*
1212 		 * We check against total_fibs to handle partially
1213 		 * allocated blocks.
1214 		 */
1215 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1216 			cm = fm->aac_commands + i;
1217 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1218 		}
1219 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1220 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1221 		free(fm, M_AACBUF);
1222 	}
1223 }
1224 
1225 /*
1226  * Command-mapping helper function - populate this command's s/g table.
1227  */
1228 static void
1229 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1230 {
1231 	struct aac_command *cm;
1232 	struct aac_fib *fib;
1233 	int i;
1234 
1235 	debug_called(3);
1236 
1237 	cm = (struct aac_command *)arg;
1238 	fib = cm->cm_fib;
1239 
1240 	/* copy into the FIB */
1241 	if (cm->cm_sgtable != NULL) {
1242 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1243 			struct aac_sg_table *sg;
1244 			sg = cm->cm_sgtable;
1245 			sg->SgCount = nseg;
1246 			for (i = 0; i < nseg; i++) {
1247 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1248 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1249 			}
1250 			/* update the FIB size for the s/g count */
1251 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1252 		} else {
1253 			struct aac_sg_table64 *sg;
1254 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1255 			sg->SgCount = nseg;
1256 			for (i = 0; i < nseg; i++) {
1257 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1258 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1259 			}
1260 			/* update the FIB size for the s/g count */
1261 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1262 		}
1263 	}
1264 }
1265 
1266 /*
1267  * Map a command into controller-visible space.
1268  */
1269 static void
1270 aac_map_command(struct aac_command *cm)
1271 {
1272 	struct aac_softc *sc;
1273 
1274 	debug_called(2);
1275 
1276 	sc = cm->cm_sc;
1277 
1278 	/* don't map more than once */
1279 	if (cm->cm_flags & AAC_CMD_MAPPED)
1280 		return;
1281 
1282 	if (cm->cm_datalen != 0) {
1283 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1284 				cm->cm_data, cm->cm_datalen,
1285 				aac_map_command_sg, cm, 0);
1286 
1287 		if (cm->cm_flags & AAC_CMD_DATAIN)
1288 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1289 					BUS_DMASYNC_PREREAD);
1290 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1291 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1292 					BUS_DMASYNC_PREWRITE);
1293 	}
1294 	cm->cm_flags |= AAC_CMD_MAPPED;
1295 }
1296 
1297 /*
1298  * Unmap a command from controller-visible space.
1299  */
1300 static void
1301 aac_unmap_command(struct aac_command *cm)
1302 {
1303 	struct aac_softc *sc;
1304 
1305 	debug_called(2);
1306 
1307 	sc = cm->cm_sc;
1308 
1309 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1310 		return;
1311 
1312 	if (cm->cm_datalen != 0) {
1313 		if (cm->cm_flags & AAC_CMD_DATAIN)
1314 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1315 					BUS_DMASYNC_POSTREAD);
1316 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1317 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318 					BUS_DMASYNC_POSTWRITE);
1319 
1320 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1321 	}
1322 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1323 }
1324 
1325 /*
1326  * Hardware Interface
1327  */
1328 
1329 /*
1330  * Initialise the adapter.
1331  */
1332 static void
1333 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1334 {
1335 	struct aac_softc *sc;
1336 
1337 	debug_called(1);
1338 
1339 	sc = (struct aac_softc *)arg;
1340 
1341 	sc->aac_common_busaddr = segs[0].ds_addr;
1342 }
1343 
1344 static int
1345 aac_check_firmware(struct aac_softc *sc)
1346 {
1347 	u_int32_t major, minor, options;
1348 
1349 	debug_called(1);
1350 
1351 	/*
1352 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1353 	 * firmware version 1.x are not compatible with this driver.
1354 	 */
1355 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1356 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1357 				     NULL)) {
1358 			device_printf(sc->aac_dev,
1359 				      "Error reading firmware version\n");
1360 			return (EIO);
1361 		}
1362 
1363 		/* These numbers are stored as ASCII! */
1364 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1365 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1366 		if (major == 1) {
1367 			device_printf(sc->aac_dev,
1368 			    "Firmware version %d.%d is not supported.\n",
1369 			    major, minor);
1370 			return (EINVAL);
1371 		}
1372 	}
1373 
1374 	/*
1375 	 * Retrieve the capabilities/supported options word so we know what
1376 	 * work-arounds to enable.
1377 	 */
1378 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1379 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1380 		return (EIO);
1381 	}
1382 	options = AAC_GET_MAILBOX(sc, 1);
1383 	sc->supported_options = options;
1384 
1385 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1386 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1387 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1388 	if (options & AAC_SUPPORTED_NONDASD)
1389 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1390 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 && (sizeof(bus_addr_t) > 4)) {
1391 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1392 		sc->flags |= AAC_FLAGS_SG_64BIT;
1393 	}
1394 
1395 	/* Check for broken hardware that does a lower number of commands */
1396 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1397 		sc->aac_max_fibs = AAC_MAX_FIBS;
1398 	else
1399 		sc->aac_max_fibs = 256;
1400 
1401 	return (0);
1402 }
1403 
1404 static int
1405 aac_init(struct aac_softc *sc)
1406 {
1407 	struct aac_adapter_init	*ip;
1408 	time_t then;
1409 	u_int32_t code;
1410 	u_int8_t *qaddr;
1411 	int error;
1412 
1413 	debug_called(1);
1414 
1415 	/*
1416 	 * First wait for the adapter to come ready.
1417 	 */
1418 	then = time_second;
1419 	do {
1420 		code = AAC_GET_FWSTATUS(sc);
1421 		if (code & AAC_SELF_TEST_FAILED) {
1422 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1423 			return(ENXIO);
1424 		}
1425 		if (code & AAC_KERNEL_PANIC) {
1426 			device_printf(sc->aac_dev,
1427 				      "FATAL: controller kernel panic\n");
1428 			return(ENXIO);
1429 		}
1430 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1431 			device_printf(sc->aac_dev,
1432 				      "FATAL: controller not coming ready, "
1433 					   "status %x\n", code);
1434 			return(ENXIO);
1435 		}
1436 	} while (!(code & AAC_UP_AND_RUNNING));
1437 
1438 	error = ENOMEM;
1439 	/*
1440 	 * Create DMA tag for mapping buffers into controller-addressable space.
1441 	 */
1442 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1443 			       1, 0, 			/* algnmnt, boundary */
1444 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1445 			       BUS_SPACE_MAXADDR :
1446 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1447 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1448 			       NULL, NULL, 		/* filter, filterarg */
1449 			       MAXBSIZE,		/* maxsize */
1450 			       AAC_MAXSGENTRIES,	/* nsegments */
1451 			       MAXBSIZE,		/* maxsegsize */
1452 			       BUS_DMA_ALLOCNOW,	/* flags */
1453 			       &sc->aac_buffer_dmat)) {
1454 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1455 		goto out;
1456 	}
1457 
1458 	/*
1459 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1460 	 */
1461 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1462 			       1, 0, 			/* algnmnt, boundary */
1463 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1464 			       BUS_SPACE_MAXADDR_32BIT :
1465 			       0x7fffffff,		/* lowaddr */
1466 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1467 			       NULL, NULL, 		/* filter, filterarg */
1468 			       AAC_FIB_COUNT *
1469 			       sizeof(struct aac_fib),  /* maxsize */
1470 			       1,			/* nsegments */
1471 			       AAC_FIB_COUNT *
1472 			       sizeof(struct aac_fib),	/* maxsegsize */
1473 			       BUS_DMA_ALLOCNOW,	/* flags */
1474 			       &sc->aac_fib_dmat)) {
1475 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1476 		goto out;
1477 	}
1478 
1479 	/*
1480 	 * Create DMA tag for the common structure and allocate it.
1481 	 */
1482 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1483 			       1, 0,			/* algnmnt, boundary */
1484 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1485 			       BUS_SPACE_MAXADDR_32BIT :
1486 			       0x7fffffff,		/* lowaddr */
1487 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1488 			       NULL, NULL, 		/* filter, filterarg */
1489 			       8192 + sizeof(struct aac_common), /* maxsize */
1490 			       1,			/* nsegments */
1491 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1492 			       BUS_DMA_ALLOCNOW,	/* flags */
1493 			       &sc->aac_common_dmat)) {
1494 		device_printf(sc->aac_dev,
1495 			      "can't allocate common structure DMA tag\n");
1496 		goto out;
1497 	}
1498 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1499 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1500 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1501 		goto out;
1502 	}
1503 
1504 	/*
1505 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1506 	 * below address 8192 in physical memory.
1507 	 * XXX If the padding is not needed, can it be put to use instead
1508 	 * of ignored?
1509 	 */
1510 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1511 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1512 			aac_common_map, sc, 0);
1513 
1514 	if (sc->aac_common_busaddr < 8192) {
1515 		(uint8_t *)sc->aac_common += 8192;
1516 		sc->aac_common_busaddr += 8192;
1517 	}
1518 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1519 
1520 	/* Allocate some FIBs and associated command structs */
1521 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1522 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1523 				  M_AACBUF, M_WAITOK|M_ZERO);
1524 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1525 		if (aac_alloc_commands(sc) != 0)
1526 			break;
1527 	}
1528 	if (sc->total_fibs == 0)
1529 		goto out;
1530 
1531 	/*
1532 	 * Fill in the init structure.  This tells the adapter about the
1533 	 * physical location of various important shared data structures.
1534 	 */
1535 	ip = &sc->aac_common->ac_init;
1536 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1537 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1538 
1539 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1540 					 offsetof(struct aac_common, ac_fibs);
1541 	ip->AdapterFibsVirtualAddress = 0;
1542 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1543 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1544 
1545 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1546 				  offsetof(struct aac_common, ac_printf);
1547 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1548 
1549 	/* The adapter assumes that pages are 4K in size */
1550 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1551 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1552 
1553 	/*
1554 	 * Initialise FIB queues.  Note that it appears that the layout of the
1555 	 * indexes and the segmentation of the entries may be mandated by the
1556 	 * adapter, which is only told about the base of the queue index fields.
1557 	 *
1558 	 * The initial values of the indices are assumed to inform the adapter
1559 	 * of the sizes of the respective queues, and theoretically it could
1560 	 * work out the entire layout of the queue structures from this.  We
1561 	 * take the easy route and just lay this area out like everyone else
1562 	 * does.
1563 	 *
1564 	 * The Linux driver uses a much more complex scheme whereby several
1565 	 * header records are kept for each queue.  We use a couple of generic
1566 	 * list manipulation functions which 'know' the size of each list by
1567 	 * virtue of a table.
1568 	 */
1569 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1570 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1571 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1572 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1573 				((u_int32_t)sc->aac_queues -
1574 				(u_int32_t)sc->aac_common);
1575 
1576 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1577 		AAC_HOST_NORM_CMD_ENTRIES;
1578 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1579 		AAC_HOST_NORM_CMD_ENTRIES;
1580 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1581 		AAC_HOST_HIGH_CMD_ENTRIES;
1582 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1583 		AAC_HOST_HIGH_CMD_ENTRIES;
1584 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1585 		AAC_ADAP_NORM_CMD_ENTRIES;
1586 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1587 		AAC_ADAP_NORM_CMD_ENTRIES;
1588 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1589 		AAC_ADAP_HIGH_CMD_ENTRIES;
1590 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1591 		AAC_ADAP_HIGH_CMD_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1593 		AAC_HOST_NORM_RESP_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1595 		AAC_HOST_NORM_RESP_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1597 		AAC_HOST_HIGH_RESP_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1599 		AAC_HOST_HIGH_RESP_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1601 		AAC_ADAP_NORM_RESP_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1603 		AAC_ADAP_NORM_RESP_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1605 		AAC_ADAP_HIGH_RESP_ENTRIES;
1606 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1607 		AAC_ADAP_HIGH_RESP_ENTRIES;
1608 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1609 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1610 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1611 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1612 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1613 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1614 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1615 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1616 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1617 		&sc->aac_queues->qt_HostNormRespQueue[0];
1618 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1619 		&sc->aac_queues->qt_HostHighRespQueue[0];
1620 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1621 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1622 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1623 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1624 
1625 	/*
1626 	 * Do controller-type-specific initialisation
1627 	 */
1628 	switch (sc->aac_hwif) {
1629 	case AAC_HWIF_I960RX:
1630 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1631 		break;
1632 	}
1633 
1634 	/*
1635 	 * Give the init structure to the controller.
1636 	 */
1637 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1638 			     sc->aac_common_busaddr +
1639 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1640 			     NULL)) {
1641 		device_printf(sc->aac_dev,
1642 			      "error establishing init structure\n");
1643 		error = EIO;
1644 		goto out;
1645 	}
1646 
1647 	error = 0;
1648 out:
1649 	return(error);
1650 }
1651 
1652 /*
1653  * Send a synchronous command to the controller and wait for a result.
1654  */
1655 static int
1656 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1657 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1658 		 u_int32_t *sp)
1659 {
1660 	time_t then;
1661 	u_int32_t status;
1662 
1663 	debug_called(3);
1664 
1665 	/* populate the mailbox */
1666 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1667 
1668 	/* ensure the sync command doorbell flag is cleared */
1669 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1670 
1671 	/* then set it to signal the adapter */
1672 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1673 
1674 	/* spin waiting for the command to complete */
1675 	then = time_second;
1676 	do {
1677 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1678 			debug(1, "timed out");
1679 			return(EIO);
1680 		}
1681 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1682 
1683 	/* clear the completion flag */
1684 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685 
1686 	/* get the command status */
1687 	status = AAC_GET_MAILBOX(sc, 0);
1688 	if (sp != NULL)
1689 		*sp = status;
1690 	return(0);
1691 }
1692 
1693 /*
1694  * Grab the sync fib area.
1695  */
1696 int
1697 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1698 {
1699 
1700 	/*
1701 	 * If the force flag is set, the system is shutting down, or in
1702 	 * trouble.  Ignore the mutex.
1703 	 */
1704 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1705 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1706 
1707 	*fib = &sc->aac_common->ac_sync_fib;
1708 
1709 	return (1);
1710 }
1711 
1712 /*
1713  * Release the sync fib area.
1714  */
1715 void
1716 aac_release_sync_fib(struct aac_softc *sc)
1717 {
1718 
1719 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1720 }
1721 
1722 /*
1723  * Send a synchronous FIB to the controller and wait for a result.
1724  */
1725 int
1726 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1727 		 struct aac_fib *fib, u_int16_t datasize)
1728 {
1729 	debug_called(3);
1730 
1731 	if (datasize > AAC_FIB_DATASIZE)
1732 		return(EINVAL);
1733 
1734 	/*
1735 	 * Set up the sync FIB
1736 	 */
1737 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1738 				AAC_FIBSTATE_INITIALISED |
1739 				AAC_FIBSTATE_EMPTY;
1740 	fib->Header.XferState |= xferstate;
1741 	fib->Header.Command = command;
1742 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1743 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1744 	fib->Header.SenderSize = sizeof(struct aac_fib);
1745 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1746 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1747 					 offsetof(struct aac_common,
1748 						  ac_sync_fib);
1749 
1750 	/*
1751 	 * Give the FIB to the controller, wait for a response.
1752 	 */
1753 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1754 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1755 		debug(2, "IO error");
1756 		return(EIO);
1757 	}
1758 
1759 	return (0);
1760 }
1761 
1762 /*
1763  * Adapter-space FIB queue manipulation
1764  *
1765  * Note that the queue implementation here is a little funky; neither the PI or
1766  * CI will ever be zero.  This behaviour is a controller feature.
1767  */
1768 static struct {
1769 	int		size;
1770 	int		notify;
1771 } aac_qinfo[] = {
1772 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1773 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1774 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1775 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1776 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1777 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1778 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1779 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1780 };
1781 
1782 /*
1783  * Atomically insert an entry into the nominated queue, returns 0 on success or
1784  * EBUSY if the queue is full.
1785  *
1786  * Note: it would be more efficient to defer notifying the controller in
1787  *	 the case where we may be inserting several entries in rapid succession,
1788  *	 but implementing this usefully may be difficult (it would involve a
1789  *	 separate queue/notify interface).
1790  */
1791 static int
1792 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1793 {
1794 	u_int32_t pi, ci;
1795 	int error;
1796 	u_int32_t fib_size;
1797 	u_int32_t fib_addr;
1798 
1799 	debug_called(3);
1800 
1801 	fib_size = cm->cm_fib->Header.Size;
1802 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1803 
1804 	/* get the producer/consumer indices */
1805 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1806 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1807 
1808 	/* wrap the queue? */
1809 	if (pi >= aac_qinfo[queue].size)
1810 		pi = 0;
1811 
1812 	/* check for queue full */
1813 	if ((pi + 1) == ci) {
1814 		error = EBUSY;
1815 		goto out;
1816 	}
1817 
1818 	/* populate queue entry */
1819 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1820 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1821 
1822 	/* update producer index */
1823 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1824 
1825 	/*
1826 	 * To avoid a race with its completion interrupt, place this command on
1827 	 * the busy queue prior to advertising it to the controller.
1828 	 */
1829 	aac_enqueue_busy(cm);
1830 
1831 	/* notify the adapter if we know how */
1832 	if (aac_qinfo[queue].notify != 0)
1833 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1834 
1835 	error = 0;
1836 
1837 out:
1838 	return(error);
1839 }
1840 
1841 /*
1842  * Atomically remove one entry from the nominated queue, returns 0 on
1843  * success or ENOENT if the queue is empty.
1844  */
1845 static int
1846 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1847 		struct aac_fib **fib_addr)
1848 {
1849 	u_int32_t pi, ci;
1850 	u_int32_t fib_index;
1851 	int error;
1852 	int notify;
1853 
1854 	debug_called(3);
1855 
1856 	/* get the producer/consumer indices */
1857 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1858 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1859 
1860 	/* check for queue empty */
1861 	if (ci == pi) {
1862 		error = ENOENT;
1863 		goto out;
1864 	}
1865 
1866 	notify = 0;
1867 	if (ci == pi + 1)
1868 		notify++;
1869 
1870 	/* wrap the queue? */
1871 	if (ci >= aac_qinfo[queue].size)
1872 		ci = 0;
1873 
1874 	/* fetch the entry */
1875 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1876 
1877 	switch (queue) {
1878 	case AAC_HOST_NORM_CMD_QUEUE:
1879 	case AAC_HOST_HIGH_CMD_QUEUE:
1880 		/*
1881 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1882 		 * on to hold an address.  For AIF's, the adapter assumes
1883 		 * that it's giving us an address into the array of AIF fibs.
1884 		 * Therefore, we have to convert it to an index.
1885 		 */
1886 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1887 			sizeof(struct aac_fib);
1888 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1889 		break;
1890 
1891 	case AAC_HOST_NORM_RESP_QUEUE:
1892 	case AAC_HOST_HIGH_RESP_QUEUE:
1893 	{
1894 		struct aac_command *cm;
1895 
1896 		/*
1897 		 * As above, an index is used instead of an actual address.
1898 		 * Gotta shift the index to account for the fast response
1899 		 * bit.  No other correction is needed since this value was
1900 		 * originally provided by the driver via the SenderFibAddress
1901 		 * field.
1902 		 */
1903 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1904 		cm = sc->aac_commands + (fib_index >> 1);
1905 		*fib_addr = cm->cm_fib;
1906 
1907 		/*
1908 		 * Is this a fast response? If it is, update the fib fields in
1909 		 * local memory since the whole fib isn't DMA'd back up.
1910 		 */
1911 		if (fib_index & 0x01) {
1912 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1913 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1914 		}
1915 		break;
1916 	}
1917 	default:
1918 		panic("Invalid queue in aac_dequeue_fib()");
1919 		break;
1920 	}
1921 
1922 	/* update consumer index */
1923 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1924 
1925 	/* if we have made the queue un-full, notify the adapter */
1926 	if (notify && (aac_qinfo[queue].notify != 0))
1927 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1928 	error = 0;
1929 
1930 out:
1931 	return(error);
1932 }
1933 
1934 /*
1935  * Put our response to an Adapter Initialed Fib on the response queue
1936  */
1937 static int
1938 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1939 {
1940 	u_int32_t pi, ci;
1941 	int error;
1942 	u_int32_t fib_size;
1943 	u_int32_t fib_addr;
1944 
1945 	debug_called(1);
1946 
1947 	/* Tell the adapter where the FIB is */
1948 	fib_size = fib->Header.Size;
1949 	fib_addr = fib->Header.SenderFibAddress;
1950 	fib->Header.ReceiverFibAddress = fib_addr;
1951 
1952 	/* get the producer/consumer indices */
1953 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1954 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1955 
1956 	/* wrap the queue? */
1957 	if (pi >= aac_qinfo[queue].size)
1958 		pi = 0;
1959 
1960 	/* check for queue full */
1961 	if ((pi + 1) == ci) {
1962 		error = EBUSY;
1963 		goto out;
1964 	}
1965 
1966 	/* populate queue entry */
1967 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1968 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1969 
1970 	/* update producer index */
1971 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1972 
1973 	/* notify the adapter if we know how */
1974 	if (aac_qinfo[queue].notify != 0)
1975 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1976 
1977 	error = 0;
1978 
1979 out:
1980 	return(error);
1981 }
1982 
1983 /*
1984  * Check for commands that have been outstanding for a suspiciously long time,
1985  * and complain about them.
1986  */
1987 static void
1988 aac_timeout(struct aac_softc *sc)
1989 {
1990 	struct aac_command *cm;
1991 	time_t deadline;
1992 
1993 	/*
1994 	 * Traverse the busy command list, bitch about late commands once
1995 	 * only.
1996 	 */
1997 	deadline = time_second - AAC_CMD_TIMEOUT;
1998 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1999 		if ((cm->cm_timestamp  < deadline)
2000 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2001 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2002 			device_printf(sc->aac_dev,
2003 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2004 				      cm, (int)(time_second-cm->cm_timestamp));
2005 			AAC_PRINT_FIB(sc, cm->cm_fib);
2006 		}
2007 	}
2008 
2009 	return;
2010 }
2011 
2012 /*
2013  * Interface Function Vectors
2014  */
2015 
2016 /*
2017  * Read the current firmware status word.
2018  */
2019 static int
2020 aac_sa_get_fwstatus(struct aac_softc *sc)
2021 {
2022 	debug_called(3);
2023 
2024 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2025 }
2026 
2027 static int
2028 aac_rx_get_fwstatus(struct aac_softc *sc)
2029 {
2030 	debug_called(3);
2031 
2032 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2033 }
2034 
2035 static int
2036 aac_fa_get_fwstatus(struct aac_softc *sc)
2037 {
2038 	int val;
2039 
2040 	debug_called(3);
2041 
2042 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2043 	return (val);
2044 }
2045 
2046 /*
2047  * Notify the controller of a change in a given queue
2048  */
2049 
2050 static void
2051 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2052 {
2053 	debug_called(3);
2054 
2055 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2056 }
2057 
2058 static void
2059 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2060 {
2061 	debug_called(3);
2062 
2063 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2064 }
2065 
2066 static void
2067 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2068 {
2069 	debug_called(3);
2070 
2071 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2072 	AAC_FA_HACK(sc);
2073 }
2074 
2075 /*
2076  * Get the interrupt reason bits
2077  */
2078 static int
2079 aac_sa_get_istatus(struct aac_softc *sc)
2080 {
2081 	debug_called(3);
2082 
2083 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2084 }
2085 
2086 static int
2087 aac_rx_get_istatus(struct aac_softc *sc)
2088 {
2089 	debug_called(3);
2090 
2091 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2092 }
2093 
2094 static int
2095 aac_fa_get_istatus(struct aac_softc *sc)
2096 {
2097 	int val;
2098 
2099 	debug_called(3);
2100 
2101 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2102 	return (val);
2103 }
2104 
2105 /*
2106  * Clear some interrupt reason bits
2107  */
2108 static void
2109 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2110 {
2111 	debug_called(3);
2112 
2113 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2114 }
2115 
2116 static void
2117 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2118 {
2119 	debug_called(3);
2120 
2121 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2122 }
2123 
2124 static void
2125 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2126 {
2127 	debug_called(3);
2128 
2129 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2130 	AAC_FA_HACK(sc);
2131 }
2132 
2133 /*
2134  * Populate the mailbox and set the command word
2135  */
2136 static void
2137 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2138 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2139 {
2140 	debug_called(4);
2141 
2142 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2143 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2144 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2145 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2146 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2147 }
2148 
2149 static void
2150 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2151 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2152 {
2153 	debug_called(4);
2154 
2155 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2156 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2157 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2158 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2159 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2160 }
2161 
2162 static void
2163 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2164 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2165 {
2166 	debug_called(4);
2167 
2168 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2169 	AAC_FA_HACK(sc);
2170 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2171 	AAC_FA_HACK(sc);
2172 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2173 	AAC_FA_HACK(sc);
2174 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2175 	AAC_FA_HACK(sc);
2176 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2177 	AAC_FA_HACK(sc);
2178 }
2179 
2180 /*
2181  * Fetch the immediate command status word
2182  */
2183 static int
2184 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2185 {
2186 	debug_called(4);
2187 
2188 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2189 }
2190 
2191 static int
2192 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2193 {
2194 	debug_called(4);
2195 
2196 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2197 }
2198 
2199 static int
2200 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2201 {
2202 	int val;
2203 
2204 	debug_called(4);
2205 
2206 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2207 	return (val);
2208 }
2209 
2210 /*
2211  * Set/clear interrupt masks
2212  */
2213 static void
2214 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2215 {
2216 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2217 
2218 	if (enable) {
2219 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2220 	} else {
2221 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2222 	}
2223 }
2224 
2225 static void
2226 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2227 {
2228 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2229 
2230 	if (enable) {
2231 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2232 	} else {
2233 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2234 	}
2235 }
2236 
2237 static void
2238 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2239 {
2240 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2241 
2242 	if (enable) {
2243 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2244 		AAC_FA_HACK(sc);
2245 	} else {
2246 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2247 		AAC_FA_HACK(sc);
2248 	}
2249 }
2250 
2251 /*
2252  * Debugging and Diagnostics
2253  */
2254 
2255 /*
2256  * Print some information about the controller.
2257  */
2258 static void
2259 aac_describe_controller(struct aac_softc *sc)
2260 {
2261 	struct aac_fib *fib;
2262 	struct aac_adapter_info	*info;
2263 
2264 	debug_called(2);
2265 
2266 	aac_alloc_sync_fib(sc, &fib, 0);
2267 
2268 	fib->data[0] = 0;
2269 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2270 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2271 		aac_release_sync_fib(sc);
2272 		return;
2273 	}
2274 	info = (struct aac_adapter_info *)&fib->data[0];
2275 
2276 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2277 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2278 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2279 		      aac_describe_code(aac_battery_platform,
2280 					info->batteryPlatform));
2281 
2282 	/* save the kernel revision structure for later use */
2283 	sc->aac_revision = info->KernelRevision;
2284 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2285 		      info->KernelRevision.external.comp.major,
2286 		      info->KernelRevision.external.comp.minor,
2287 		      info->KernelRevision.external.comp.dash,
2288 		      info->KernelRevision.buildNumber,
2289 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2290 
2291 	aac_release_sync_fib(sc);
2292 
2293 	if (1 || bootverbose) {
2294 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2295 			      sc->supported_options,
2296 			      "\20"
2297 			      "\1SNAPSHOT"
2298 			      "\2CLUSTERS"
2299 			      "\3WCACHE"
2300 			      "\4DATA64"
2301 			      "\5HOSTTIME"
2302 			      "\6RAID50"
2303 			      "\7WINDOW4GB"
2304 			      "\10SCSIUPGD"
2305 			      "\11SOFTERR"
2306 			      "\12NORECOND"
2307 			      "\13SGMAP64"
2308 			      "\14ALARM"
2309 			      "\15NONDASD");
2310 	}
2311 }
2312 
2313 /*
2314  * Look up a text description of a numeric error code and return a pointer to
2315  * same.
2316  */
2317 static char *
2318 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2319 {
2320 	int i;
2321 
2322 	for (i = 0; table[i].string != NULL; i++)
2323 		if (table[i].code == code)
2324 			return(table[i].string);
2325 	return(table[i + 1].string);
2326 }
2327 
2328 /*
2329  * Management Interface
2330  */
2331 
2332 static int
2333 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2334 {
2335 	struct aac_softc *sc;
2336 
2337 	debug_called(2);
2338 
2339 	sc = dev->si_drv1;
2340 
2341 	/* Check to make sure the device isn't already open */
2342 	if (sc->aac_state & AAC_STATE_OPEN) {
2343 		return EBUSY;
2344 	}
2345 	sc->aac_state |= AAC_STATE_OPEN;
2346 
2347 	return 0;
2348 }
2349 
2350 static int
2351 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2352 {
2353 	struct aac_softc *sc;
2354 
2355 	debug_called(2);
2356 
2357 	sc = dev->si_drv1;
2358 
2359 	/* Mark this unit as no longer open  */
2360 	sc->aac_state &= ~AAC_STATE_OPEN;
2361 
2362 	return 0;
2363 }
2364 
2365 static int
2366 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2367 {
2368 	union aac_statrequest *as;
2369 	struct aac_softc *sc;
2370 	int error = 0;
2371 	int i;
2372 
2373 	debug_called(2);
2374 
2375 	as = (union aac_statrequest *)arg;
2376 	sc = dev->si_drv1;
2377 
2378 	switch (cmd) {
2379 	case AACIO_STATS:
2380 		switch (as->as_item) {
2381 		case AACQ_FREE:
2382 		case AACQ_BIO:
2383 		case AACQ_READY:
2384 		case AACQ_BUSY:
2385 		case AACQ_COMPLETE:
2386 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2387 			      sizeof(struct aac_qstat));
2388 			break;
2389 		default:
2390 			error = ENOENT;
2391 			break;
2392 		}
2393 	break;
2394 
2395 	case FSACTL_SENDFIB:
2396 		arg = *(caddr_t*)arg;
2397 	case FSACTL_LNX_SENDFIB:
2398 		debug(1, "FSACTL_SENDFIB");
2399 		error = aac_ioctl_sendfib(sc, arg);
2400 		break;
2401 	case FSACTL_AIF_THREAD:
2402 	case FSACTL_LNX_AIF_THREAD:
2403 		debug(1, "FSACTL_AIF_THREAD");
2404 		error = EINVAL;
2405 		break;
2406 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2407 		arg = *(caddr_t*)arg;
2408 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2409 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2410 		/*
2411 		 * Pass the caller out an AdapterFibContext.
2412 		 *
2413 		 * Note that because we only support one opener, we
2414 		 * basically ignore this.  Set the caller's context to a magic
2415 		 * number just in case.
2416 		 *
2417 		 * The Linux code hands the driver a pointer into kernel space,
2418 		 * and then trusts it when the caller hands it back.  Aiee!
2419 		 * Here, we give it the proc pointer of the per-adapter aif
2420 		 * thread. It's only used as a sanity check in other calls.
2421 		 */
2422 		i = (int)sc->aifthread;
2423 		error = copyout(&i, arg, sizeof(i));
2424 		break;
2425 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2426 		arg = *(caddr_t*)arg;
2427 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2428 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2429 		error = aac_getnext_aif(sc, arg);
2430 		break;
2431 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2432 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2433 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2434 		/* don't do anything here */
2435 		break;
2436 	case FSACTL_MINIPORT_REV_CHECK:
2437 		arg = *(caddr_t*)arg;
2438 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2439 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2440 		error = aac_rev_check(sc, arg);
2441 		break;
2442 	case FSACTL_QUERY_DISK:
2443 		arg = *(caddr_t*)arg;
2444 	case FSACTL_LNX_QUERY_DISK:
2445 		debug(1, "FSACTL_QUERY_DISK");
2446 		error = aac_query_disk(sc, arg);
2447 			break;
2448 	case FSACTL_DELETE_DISK:
2449 	case FSACTL_LNX_DELETE_DISK:
2450 		/*
2451 		 * We don't trust the underland to tell us when to delete a
2452 		 * container, rather we rely on an AIF coming from the
2453 		 * controller
2454 		 */
2455 		error = 0;
2456 		break;
2457 	default:
2458 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2459 		error = EINVAL;
2460 		break;
2461 	}
2462 	return(error);
2463 }
2464 
2465 static int
2466 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2467 {
2468 	struct aac_softc *sc;
2469 	int revents;
2470 
2471 	sc = dev->si_drv1;
2472 	revents = 0;
2473 
2474 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2475 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2476 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2477 			revents |= poll_events & (POLLIN | POLLRDNORM);
2478 	}
2479 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2480 
2481 	if (revents == 0) {
2482 		if (poll_events & (POLLIN | POLLRDNORM))
2483 			selrecord(td, &sc->rcv_select);
2484 	}
2485 
2486 	return (revents);
2487 }
2488 
2489 /*
2490  * Send a FIB supplied from userspace
2491  */
2492 static int
2493 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2494 {
2495 	struct aac_command *cm;
2496 	int size, error;
2497 
2498 	debug_called(2);
2499 
2500 	cm = NULL;
2501 
2502 	/*
2503 	 * Get a command
2504 	 */
2505 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2506 	if (aac_alloc_command(sc, &cm)) {
2507 		error = EBUSY;
2508 		goto out;
2509 	}
2510 
2511 	/*
2512 	 * Fetch the FIB header, then re-copy to get data as well.
2513 	 */
2514 	if ((error = copyin(ufib, cm->cm_fib,
2515 			    sizeof(struct aac_fib_header))) != 0)
2516 		goto out;
2517 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2518 	if (size > sizeof(struct aac_fib)) {
2519 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2520 			      size, sizeof(struct aac_fib));
2521 		size = sizeof(struct aac_fib);
2522 	}
2523 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2524 		goto out;
2525 	cm->cm_fib->Header.Size = size;
2526 	cm->cm_timestamp = time_second;
2527 
2528 	/*
2529 	 * Pass the FIB to the controller, wait for it to complete.
2530 	 */
2531 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2532 		device_printf(sc->aac_dev,
2533 			      "aac_wait_command return %d\n", error);
2534 		goto out;
2535 	}
2536 
2537 	/*
2538 	 * Copy the FIB and data back out to the caller.
2539 	 */
2540 	size = cm->cm_fib->Header.Size;
2541 	if (size > sizeof(struct aac_fib)) {
2542 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2543 			      size, sizeof(struct aac_fib));
2544 		size = sizeof(struct aac_fib);
2545 	}
2546 	error = copyout(cm->cm_fib, ufib, size);
2547 
2548 out:
2549 	if (cm != NULL) {
2550 		aac_release_command(cm);
2551 	}
2552 
2553 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2554 	return(error);
2555 }
2556 
2557 /*
2558  * Handle an AIF sent to us by the controller; queue it for later reference.
2559  * If the queue fills up, then drop the older entries.
2560  */
2561 static void
2562 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2563 {
2564 	struct aac_aif_command *aif;
2565 	struct aac_container *co, *co_next;
2566 	struct aac_mntinfo *mi;
2567 	struct aac_mntinforesp *mir = NULL;
2568 	u_int16_t rsize;
2569 	int next, found;
2570 	int count = 0, added = 0, i = 0;
2571 
2572 	debug_called(2);
2573 
2574 	aif = (struct aac_aif_command*)&fib->data[0];
2575 	aac_print_aif(sc, aif);
2576 
2577 	/* Is it an event that we should care about? */
2578 	switch (aif->command) {
2579 	case AifCmdEventNotify:
2580 		switch (aif->data.EN.type) {
2581 		case AifEnAddContainer:
2582 		case AifEnDeleteContainer:
2583 			/*
2584 			 * A container was added or deleted, but the message
2585 			 * doesn't tell us anything else!  Re-enumerate the
2586 			 * containers and sort things out.
2587 			 */
2588 			aac_alloc_sync_fib(sc, &fib, 0);
2589 			mi = (struct aac_mntinfo *)&fib->data[0];
2590 			do {
2591 				/*
2592 				 * Ask the controller for its containers one at
2593 				 * a time.
2594 				 * XXX What if the controller's list changes
2595 				 * midway through this enumaration?
2596 				 * XXX This should be done async.
2597 				 */
2598 				bzero(mi, sizeof(struct aac_mntinfo));
2599 				mi->Command = VM_NameServe;
2600 				mi->MntType = FT_FILESYS;
2601 				mi->MntCount = i;
2602 				rsize = sizeof(mir);
2603 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2604 						 sizeof(struct aac_mntinfo))) {
2605 					printf("Error probing container %d\n",
2606 					      i);
2607 					continue;
2608 				}
2609 				mir = (struct aac_mntinforesp *)&fib->data[0];
2610 				/* XXX Need to check if count changed */
2611 				count = mir->MntRespCount;
2612 				/*
2613 				 * Check the container against our list.
2614 				 * co->co_found was already set to 0 in a
2615 				 * previous run.
2616 				 */
2617 				if ((mir->Status == ST_OK) &&
2618 				    (mir->MntTable[0].VolType != CT_NONE)) {
2619 					found = 0;
2620 					TAILQ_FOREACH(co,
2621 						      &sc->aac_container_tqh,
2622 						      co_link) {
2623 						if (co->co_mntobj.ObjectId ==
2624 						    mir->MntTable[0].ObjectId) {
2625 							co->co_found = 1;
2626 							found = 1;
2627 							break;
2628 						}
2629 					}
2630 					/*
2631 					 * If the container matched, continue
2632 					 * in the list.
2633 					 */
2634 					if (found) {
2635 						i++;
2636 						continue;
2637 					}
2638 
2639 					/*
2640 					 * This is a new container.  Do all the
2641 					 * appropriate things to set it up.
2642 					 */
2643 					aac_add_container(sc, mir, 1);
2644 					added = 1;
2645 				}
2646 				i++;
2647 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2648 			aac_release_sync_fib(sc);
2649 
2650 			/*
2651 			 * Go through our list of containers and see which ones
2652 			 * were not marked 'found'.  Since the controller didn't
2653 			 * list them they must have been deleted.  Do the
2654 			 * appropriate steps to destroy the device.  Also reset
2655 			 * the co->co_found field.
2656 			 */
2657 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2658 			while (co != NULL) {
2659 				if (co->co_found == 0) {
2660 					device_delete_child(sc->aac_dev,
2661 							    co->co_disk);
2662 					co_next = TAILQ_NEXT(co, co_link);
2663 					AAC_LOCK_ACQUIRE(&sc->
2664 							aac_container_lock);
2665 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2666 						     co_link);
2667 					AAC_LOCK_RELEASE(&sc->
2668 							 aac_container_lock);
2669 					FREE(co, M_AACBUF);
2670 					co = co_next;
2671 				} else {
2672 					co->co_found = 0;
2673 					co = TAILQ_NEXT(co, co_link);
2674 				}
2675 			}
2676 
2677 			/* Attach the newly created containers */
2678 			if (added)
2679 				bus_generic_attach(sc->aac_dev);
2680 
2681 			break;
2682 
2683 		default:
2684 			break;
2685 		}
2686 
2687 	default:
2688 		break;
2689 	}
2690 
2691 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2692 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2693 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2694 	if (next != sc->aac_aifq_tail) {
2695 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2696 		sc->aac_aifq_head = next;
2697 
2698 		/* On the off chance that someone is sleeping for an aif... */
2699 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2700 			wakeup(sc->aac_aifq);
2701 		/* Wakeup any poll()ers */
2702 		selwakeup(&sc->rcv_select);
2703 	}
2704 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2705 
2706 	return;
2707 }
2708 
2709 /*
2710  * Return the Revision of the driver to userspace and check to see if the
2711  * userspace app is possibly compatible.  This is extremely bogus since
2712  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2713  * returning what the card reported.
2714  */
2715 static int
2716 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2717 {
2718 	struct aac_rev_check rev_check;
2719 	struct aac_rev_check_resp rev_check_resp;
2720 	int error = 0;
2721 
2722 	debug_called(2);
2723 
2724 	/*
2725 	 * Copyin the revision struct from userspace
2726 	 */
2727 	if ((error = copyin(udata, (caddr_t)&rev_check,
2728 			sizeof(struct aac_rev_check))) != 0) {
2729 		return error;
2730 	}
2731 
2732 	debug(2, "Userland revision= %d\n",
2733 	      rev_check.callingRevision.buildNumber);
2734 
2735 	/*
2736 	 * Doctor up the response struct.
2737 	 */
2738 	rev_check_resp.possiblyCompatible = 1;
2739 	rev_check_resp.adapterSWRevision.external.ul =
2740 	    sc->aac_revision.external.ul;
2741 	rev_check_resp.adapterSWRevision.buildNumber =
2742 	    sc->aac_revision.buildNumber;
2743 
2744 	return(copyout((caddr_t)&rev_check_resp, udata,
2745 			sizeof(struct aac_rev_check_resp)));
2746 }
2747 
2748 /*
2749  * Pass the caller the next AIF in their queue
2750  */
2751 static int
2752 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2753 {
2754 	struct get_adapter_fib_ioctl agf;
2755 	int error;
2756 
2757 	debug_called(2);
2758 
2759 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2760 
2761 		/*
2762 		 * Check the magic number that we gave the caller.
2763 		 */
2764 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2765 			error = EFAULT;
2766 		} else {
2767 			error = aac_return_aif(sc, agf.AifFib);
2768 			if ((error == EAGAIN) && (agf.Wait)) {
2769 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2770 				while (error == EAGAIN) {
2771 					error = tsleep(sc->aac_aifq, PRIBIO |
2772 						       PCATCH, "aacaif", 0);
2773 					if (error == 0)
2774 						error = aac_return_aif(sc,
2775 						    agf.AifFib);
2776 				}
2777 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2778 			}
2779 		}
2780 	}
2781 	return(error);
2782 }
2783 
2784 /*
2785  * Hand the next AIF off the top of the queue out to userspace.
2786  */
2787 static int
2788 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2789 {
2790 	int error;
2791 
2792 	debug_called(2);
2793 
2794 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2795 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2796 		error = EAGAIN;
2797 	} else {
2798 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2799 				sizeof(struct aac_aif_command));
2800 		if (error)
2801 			device_printf(sc->aac_dev,
2802 			    "aac_return_aif: copyout returned %d\n", error);
2803 		if (!error)
2804 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2805 					    AAC_AIFQ_LENGTH;
2806 	}
2807 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2808 	return(error);
2809 }
2810 
2811 /*
2812  * Give the userland some information about the container.  The AAC arch
2813  * expects the driver to be a SCSI passthrough type driver, so it expects
2814  * the containers to have b:t:l numbers.  Fake it.
2815  */
2816 static int
2817 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2818 {
2819 	struct aac_query_disk query_disk;
2820 	struct aac_container *co;
2821 	struct aac_disk	*disk;
2822 	int error, id;
2823 
2824 	debug_called(2);
2825 
2826 	disk = NULL;
2827 
2828 	error = copyin(uptr, (caddr_t)&query_disk,
2829 		       sizeof(struct aac_query_disk));
2830 	if (error)
2831 		return (error);
2832 
2833 	id = query_disk.ContainerNumber;
2834 	if (id == -1)
2835 		return (EINVAL);
2836 
2837 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2838 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2839 		if (co->co_mntobj.ObjectId == id)
2840 			break;
2841 		}
2842 
2843 	if (co == NULL) {
2844 			query_disk.Valid = 0;
2845 			query_disk.Locked = 0;
2846 			query_disk.Deleted = 1;		/* XXX is this right? */
2847 	} else {
2848 		disk = device_get_softc(co->co_disk);
2849 		query_disk.Valid = 1;
2850 		query_disk.Locked =
2851 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2852 		query_disk.Deleted = 0;
2853 		query_disk.Bus = device_get_unit(sc->aac_dev);
2854 		query_disk.Target = disk->unit;
2855 		query_disk.Lun = 0;
2856 		query_disk.UnMapped = 0;
2857 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2858 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2859 	}
2860 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2861 
2862 	error = copyout((caddr_t)&query_disk, uptr,
2863 			sizeof(struct aac_query_disk));
2864 
2865 	return (error);
2866 }
2867 
2868 static void
2869 aac_get_bus_info(struct aac_softc *sc)
2870 {
2871 	struct aac_fib *fib;
2872 	struct aac_ctcfg *c_cmd;
2873 	struct aac_ctcfg_resp *c_resp;
2874 	struct aac_vmioctl *vmi;
2875 	struct aac_vmi_businf_resp *vmi_resp;
2876 	struct aac_getbusinf businfo;
2877 	struct aac_sim *caminf;
2878 	device_t child;
2879 	int i, found, error;
2880 
2881 	aac_alloc_sync_fib(sc, &fib, 0);
2882 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2883 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2884 
2885 	c_cmd->Command = VM_ContainerConfig;
2886 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2887 	c_cmd->param = 0;
2888 
2889 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2890 	    sizeof(struct aac_ctcfg));
2891 	if (error) {
2892 		device_printf(sc->aac_dev, "Error %d sending "
2893 		    "VM_ContainerConfig command\n", error);
2894 		aac_release_sync_fib(sc);
2895 		return;
2896 	}
2897 
2898 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2899 	if (c_resp->Status != ST_OK) {
2900 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2901 		    c_resp->Status);
2902 		aac_release_sync_fib(sc);
2903 		return;
2904 	}
2905 
2906 	sc->scsi_method_id = c_resp->param;
2907 
2908 	vmi = (struct aac_vmioctl *)&fib->data[0];
2909 	bzero(vmi, sizeof(struct aac_vmioctl));
2910 
2911 	vmi->Command = VM_Ioctl;
2912 	vmi->ObjType = FT_DRIVE;
2913 	vmi->MethId = sc->scsi_method_id;
2914 	vmi->ObjId = 0;
2915 	vmi->IoctlCmd = GetBusInfo;
2916 
2917 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2918 	    sizeof(struct aac_vmioctl));
2919 	if (error) {
2920 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2921 		    error);
2922 		aac_release_sync_fib(sc);
2923 		return;
2924 	}
2925 
2926 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2927 	if (vmi_resp->Status != ST_OK) {
2928 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2929 		    vmi_resp->Status);
2930 		aac_release_sync_fib(sc);
2931 		return;
2932 	}
2933 
2934 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2935 	aac_release_sync_fib(sc);
2936 
2937 	found = 0;
2938 	for (i = 0; i < businfo.BusCount; i++) {
2939 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2940 			continue;
2941 
2942 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2943 		    M_AACBUF, M_NOWAIT | M_ZERO);
2944 		if (caminf == NULL)
2945 			continue;
2946 
2947 		child = device_add_child(sc->aac_dev, "aacp", -1);
2948 		if (child == NULL) {
2949 			device_printf(sc->aac_dev, "device_add_child failed\n");
2950 			continue;
2951 		}
2952 
2953 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2954 		caminf->BusNumber = i;
2955 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2956 		caminf->aac_sc = sc;
2957 		caminf->sim_dev = child;
2958 
2959 		device_set_ivars(child, caminf);
2960 		device_set_desc(child, "SCSI Passthrough Bus");
2961 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2962 
2963 		found = 1;
2964 	}
2965 
2966 	if (found)
2967 		bus_generic_attach(sc->aac_dev);
2968 
2969 	return;
2970 }
2971