xref: /freebsd/sys/dev/aac/aac.c (revision 9207b4cff7b8d483f4dd3c62266c2b58819eb7f9)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  *	$FreeBSD$
30  */
31 
32 /*
33  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
34  */
35 
36 #include "opt_aac.h"
37 
38 /* #include <stddef.h> */
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/sysctl.h>
45 #include <sys/poll.h>
46 #if __FreeBSD_version >= 500005
47 #include <sys/selinfo.h>
48 #else
49 #include <sys/select.h>
50 #endif
51 
52 #include <dev/aac/aac_compat.h>
53 
54 #include <sys/bus.h>
55 #include <sys/conf.h>
56 #include <sys/devicestat.h>
57 #include <sys/disk.h>
58 #include <sys/file.h>
59 #include <sys/signalvar.h>
60 #include <sys/time.h>
61 #include <sys/eventhandler.h>
62 
63 #include <machine/bus_memio.h>
64 #include <machine/bus.h>
65 #include <machine/resource.h>
66 
67 #include <dev/aac/aacreg.h>
68 #include <dev/aac/aac_ioctl.h>
69 #include <dev/aac/aacvar.h>
70 #include <dev/aac/aac_tables.h>
71 
72 devclass_t	aac_devclass;
73 
74 static void	aac_startup(void *arg);
75 static void	aac_add_container(struct aac_softc *sc,
76 				  struct aac_mntinforesponse *mir, int f);
77 
78 /* Command Processing */
79 static void	aac_startio(struct aac_softc *sc);
80 static void	aac_timeout(struct aac_softc *sc);
81 static int	aac_start(struct aac_command *cm);
82 static void	aac_complete(void *context, int pending);
83 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
84 static void	aac_bio_complete(struct aac_command *cm);
85 static int	aac_wait_command(struct aac_command *cm, int timeout);
86 static void	aac_host_command(struct aac_softc *sc);
87 static void	aac_host_response(struct aac_softc *sc);
88 
89 /* Command Buffer Management */
90 static int	aac_alloc_command(struct aac_softc *sc,
91 				  struct aac_command **cmp);
92 static void	aac_release_command(struct aac_command *cm);
93 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
94 				       int nseg, int error);
95 static int	aac_alloc_commands(struct aac_softc *sc);
96 static void	aac_free_commands(struct aac_softc *sc);
97 static void	aac_map_command(struct aac_command *cm);
98 static void	aac_unmap_command(struct aac_command *cm);
99 
100 /* Hardware Interface */
101 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
102 			       int error);
103 static int	aac_init(struct aac_softc *sc);
104 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
105 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
106 				 u_int32_t arg3, u_int32_t *sp);
107 static int	aac_sync_fib(struct aac_softc *sc, u_int32_t command,
108 			     u_int32_t xferstate, void *data,
109 			     u_int16_t datasize, void *result,
110 			     u_int16_t *resultsize);
111 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
112 				struct aac_command *cm);
113 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
114 				u_int32_t *fib_size, struct aac_fib **fib_addr);
115 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
116 				     struct aac_fib *fib);
117 
118 /* Falcon/PPC interface */
119 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
120 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
121 static int	aac_fa_get_istatus(struct aac_softc *sc);
122 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
123 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
124 				   u_int32_t arg0, u_int32_t arg1,
125 				   u_int32_t arg2, u_int32_t arg3);
126 static int	aac_fa_get_mailboxstatus(struct aac_softc *sc);
127 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
128 
129 struct aac_interface aac_fa_interface = {
130 	aac_fa_get_fwstatus,
131 	aac_fa_qnotify,
132 	aac_fa_get_istatus,
133 	aac_fa_clear_istatus,
134 	aac_fa_set_mailbox,
135 	aac_fa_get_mailboxstatus,
136 	aac_fa_set_interrupts
137 };
138 
139 /* StrongARM interface */
140 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
141 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
142 static int	aac_sa_get_istatus(struct aac_softc *sc);
143 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
144 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
145 				   u_int32_t arg0, u_int32_t arg1,
146 				   u_int32_t arg2, u_int32_t arg3);
147 static int	aac_sa_get_mailboxstatus(struct aac_softc *sc);
148 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
149 
150 struct aac_interface aac_sa_interface = {
151 	aac_sa_get_fwstatus,
152 	aac_sa_qnotify,
153 	aac_sa_get_istatus,
154 	aac_sa_clear_istatus,
155 	aac_sa_set_mailbox,
156 	aac_sa_get_mailboxstatus,
157 	aac_sa_set_interrupts
158 };
159 
160 /* i960Rx interface */
161 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
162 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
163 static int	aac_rx_get_istatus(struct aac_softc *sc);
164 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
165 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
166 				   u_int32_t arg0, u_int32_t arg1,
167 				   u_int32_t arg2, u_int32_t arg3);
168 static int	aac_rx_get_mailboxstatus(struct aac_softc *sc);
169 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
170 
171 struct aac_interface aac_rx_interface = {
172 	aac_rx_get_fwstatus,
173 	aac_rx_qnotify,
174 	aac_rx_get_istatus,
175 	aac_rx_clear_istatus,
176 	aac_rx_set_mailbox,
177 	aac_rx_get_mailboxstatus,
178 	aac_rx_set_interrupts
179 };
180 
181 /* Debugging and Diagnostics */
182 static void	aac_describe_controller(struct aac_softc *sc);
183 static char	*aac_describe_code(struct aac_code_lookup *table,
184 				   u_int32_t code);
185 
186 /* Management Interface */
187 static d_open_t		aac_open;
188 static d_close_t	aac_close;
189 static d_ioctl_t	aac_ioctl;
190 static d_poll_t		aac_poll;
191 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
192 static void		aac_handle_aif(struct aac_softc *sc,
193 					   struct aac_fib *fib);
194 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
195 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
196 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
197 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
198 
199 #define AAC_CDEV_MAJOR	150
200 
201 static struct cdevsw aac_cdevsw = {
202 	aac_open,		/* open */
203 	aac_close,		/* close */
204 	noread,			/* read */
205 	nowrite,		/* write */
206 	aac_ioctl,		/* ioctl */
207 	aac_poll,		/* poll */
208 	nommap,			/* mmap */
209 	nostrategy,		/* strategy */
210 	"aac",			/* name */
211 	AAC_CDEV_MAJOR,		/* major */
212 	nodump,			/* dump */
213 	nopsize,		/* psize */
214 	0,			/* flags */
215 #if __FreeBSD_version < 500005
216 	-1,			/* bmaj */
217 #endif
218 };
219 
220 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
221 
222 /* sysctl node */
223 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
224 
225 /*
226  * Device Interface
227  */
228 
229 /*
230  * Initialise the controller and softc
231  */
232 int
233 aac_attach(struct aac_softc *sc)
234 {
235 	int error, unit;
236 
237 	debug_called(1);
238 
239 	/*
240 	 * Initialise per-controller queues.
241 	 */
242 	aac_initq_free(sc);
243 	aac_initq_ready(sc);
244 	aac_initq_busy(sc);
245 	aac_initq_complete(sc);
246 	aac_initq_bio(sc);
247 
248 #if __FreeBSD_version >= 500005
249 	/*
250 	 * Initialise command-completion task.
251 	 */
252 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
253 #endif
254 
255 	/* disable interrupts before we enable anything */
256 	AAC_MASK_INTERRUPTS(sc);
257 
258 	/* mark controller as suspended until we get ourselves organised */
259 	sc->aac_state |= AAC_STATE_SUSPEND;
260 
261 	/*
262 	 * Allocate command structures.
263 	 */
264 	if ((error = aac_alloc_commands(sc)) != 0)
265 		return(error);
266 
267 	/*
268 	 * Initialise the adapter.
269 	 */
270 	if ((error = aac_init(sc)) != 0)
271 		return(error);
272 
273 	/*
274 	 * Print a little information about the controller.
275 	 */
276 	aac_describe_controller(sc);
277 
278 	/*
279 	 * Register to probe our containers later.
280 	 */
281 	TAILQ_INIT(&sc->aac_container_tqh);
282 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
283 
284 	/*
285 	 * Lock for the AIF queue
286 	 */
287 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
288 
289 	sc->aac_ich.ich_func = aac_startup;
290 	sc->aac_ich.ich_arg = sc;
291 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
292 		device_printf(sc->aac_dev,
293 			      "can't establish configuration hook\n");
294 		return(ENXIO);
295 	}
296 
297 	/*
298 	 * Make the control device.
299 	 */
300 	unit = device_get_unit(sc->aac_dev);
301 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644,
302 				 "aac%d", unit);
303 #if __FreeBSD_version > 500005
304 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
305 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
306 #endif
307 	sc->aac_dev_t->si_drv1 = sc;
308 
309 	/* Create the AIF thread */
310 #if __FreeBSD_version > 500005
311 	if (kthread_create((void(*)(void *))aac_host_command, sc,
312 			   &sc->aifthread, 0, "aac%daif", unit))
313 #else
314 	if (kthread_create((void(*)(void *))aac_host_command, sc,
315 			   &sc->aifthread, "aac%daif", unit))
316 #endif
317 		panic("Could not create AIF thread\n");
318 
319 	/* Register the shutdown method to only be called post-dump */
320 	if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev,
321 				   SHUTDOWN_PRI_DEFAULT)) == NULL)
322 	device_printf(sc->aac_dev, "shutdown event registration failed\n");
323 
324 	return(0);
325 }
326 
327 /*
328  * Probe for containers, create disks.
329  */
330 static void
331 aac_startup(void *arg)
332 {
333 	struct aac_softc *sc;
334 	struct aac_mntinfo mi;
335 	struct aac_mntinforesponse mir;
336 	u_int16_t rsize;
337 	int i = 0;
338 
339 	debug_called(1);
340 
341 	sc = (struct aac_softc *)arg;
342 
343 	/* disconnect ourselves from the intrhook chain */
344 	config_intrhook_disestablish(&sc->aac_ich);
345 
346 	/* loop over possible containers */
347 	mi.Command = VM_NameServe;
348 	mi.MntType = FT_FILESYS;
349 	do {
350 		/* request information on this container */
351 		mi.MntCount = i;
352 		rsize = sizeof(mir);
353 		if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
354 				 sizeof(struct aac_mntinfo), &mir, &rsize)) {
355 			debug(2, "error probing container %d", i);
356 			continue;
357 		}
358 		/* check response size */
359 		if (rsize != sizeof(mir)) {
360 			debug(2, "container info response wrong size "
361 			      "(%d should be %d)", rsize, sizeof(mir));
362 			continue;
363 		}
364 
365 		aac_add_container(sc, &mir, 0);
366 		i++;
367 	} while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS));
368 
369 	/* poke the bus to actually attach the child devices */
370 	if (bus_generic_attach(sc->aac_dev))
371 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
372 
373 	/* mark the controller up */
374 	sc->aac_state &= ~AAC_STATE_SUSPEND;
375 
376 	/* enable interrupts now */
377 	AAC_UNMASK_INTERRUPTS(sc);
378 
379 	/* enable the timeout watchdog */
380 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
381 }
382 
383 /*
384  * Create a device to respresent a new container
385  */
386 static void
387 aac_add_container(struct aac_softc *sc, struct aac_mntinforesponse *mir, int f)
388 {
389 	struct aac_container *co;
390 	device_t child;
391 
392 	/*
393 	 * Check container volume type for validity.  Note that many of
394 	 * the possible types may never show up.
395 	 */
396 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
397 		MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF,
398 		       M_NOWAIT);
399 		if (co == NULL)
400 			panic("Out of memory?!\n");
401 		debug(1, "id %x  name '%.16s'  size %u  type %d",
402 		      mir->MntTable[0].ObjectId,
403 		      mir->MntTable[0].FileSystemName,
404 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
405 
406 		if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL)
407 			device_printf(sc->aac_dev, "device_add_child failed\n");
408 		else
409 			device_set_ivars(child, co);
410 		device_set_desc(child, aac_describe_code(aac_container_types,
411 				mir->MntTable[0].VolType));
412 		co->co_disk = child;
413 		co->co_found = f;
414 		bcopy(&mir->MntTable[0], &co->co_mntobj,
415 		      sizeof(struct aac_mntobj));
416 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
417 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
418 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
419 	}
420 }
421 
422 /*
423  * Free all of the resources associated with (sc)
424  *
425  * Should not be called if the controller is active.
426  */
427 void
428 aac_free(struct aac_softc *sc)
429 {
430 	debug_called(1);
431 
432 	/* remove the control device */
433 	if (sc->aac_dev_t != NULL)
434 		destroy_dev(sc->aac_dev_t);
435 
436 	/* throw away any FIB buffers, discard the FIB DMA tag */
437 	if (sc->aac_fibs != NULL)
438 		aac_free_commands(sc);
439 	if (sc->aac_fib_dmat)
440 		bus_dma_tag_destroy(sc->aac_fib_dmat);
441 
442 	/* destroy the common area */
443 	if (sc->aac_common) {
444 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
445 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
446 				sc->aac_common_dmamap);
447 	}
448 	if (sc->aac_common_dmat)
449 		bus_dma_tag_destroy(sc->aac_common_dmat);
450 
451 	/* disconnect the interrupt handler */
452 	if (sc->aac_intr)
453 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
454 	if (sc->aac_irq != NULL)
455 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
456 				     sc->aac_irq);
457 
458 	/* destroy data-transfer DMA tag */
459 	if (sc->aac_buffer_dmat)
460 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
461 
462 	/* destroy the parent DMA tag */
463 	if (sc->aac_parent_dmat)
464 		bus_dma_tag_destroy(sc->aac_parent_dmat);
465 
466 	/* release the register window mapping */
467 	if (sc->aac_regs_resource != NULL)
468 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
469 				     sc->aac_regs_rid, sc->aac_regs_resource);
470 }
471 
472 /*
473  * Disconnect from the controller completely, in preparation for unload.
474  */
475 int
476 aac_detach(device_t dev)
477 {
478 	struct aac_softc *sc;
479 #if AAC_BROKEN
480 	int error;
481 #endif
482 
483 	debug_called(1);
484 
485 	sc = device_get_softc(dev);
486 
487 	if (sc->aac_state & AAC_STATE_OPEN)
488 	return(EBUSY);
489 
490 #if AAC_BROKEN
491 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
492 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
493 		wakeup(sc->aifthread);
494 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
495 	}
496 
497 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
498 		panic("Cannot shutdown AIF thread\n");
499 
500 	if ((error = aac_shutdown(dev)))
501 		return(error);
502 
503 	aac_free(sc);
504 
505 	return(0);
506 #else
507 	return (EBUSY);
508 #endif
509 }
510 
511 /*
512  * Bring the controller down to a dormant state and detach all child devices.
513  *
514  * This function is called before detach or system shutdown.
515  *
516  * Note that we can assume that the bioq on the controller is empty, as we won't
517  * allow shutdown if any device is open.
518  */
519 int
520 aac_shutdown(device_t dev)
521 {
522 	struct aac_softc *sc;
523 	struct aac_close_command cc;
524 	int s, i;
525 
526 	debug_called(1);
527 
528 	sc = device_get_softc(dev);
529 
530 	s = splbio();
531 
532 	sc->aac_state |= AAC_STATE_SUSPEND;
533 
534 	/*
535 	 * Send a Container shutdown followed by a HostShutdown FIB to the
536 	 * controller to convince it that we don't want to talk to it anymore.
537 	 * We've been closed and all I/O completed already
538 	 */
539 	device_printf(sc->aac_dev, "shutting down controller...");
540 
541 	cc.Command = VM_CloseAll;
542 	cc.ContainerId = 0xffffffff;
543 	if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL))
544 		printf("FAILED.\n");
545 	else {
546 		i = 0;
547 		/*
548 		 * XXX Issuing this command to the controller makes it shut down
549 		 * but also keeps it from coming back up without a reset of the
550 		 * PCI bus.  This is not desirable if you are just unloading the
551 		 * driver module with the intent to reload it later.
552 		 */
553 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i,
554 				 sizeof(i), NULL, NULL)) {
555 			printf("FAILED.\n");
556 		} else {
557 			printf("done.\n");
558 		}
559 	}
560 
561 	AAC_MASK_INTERRUPTS(sc);
562 
563 	splx(s);
564 	return(0);
565 }
566 
567 /*
568  * Bring the controller to a quiescent state, ready for system suspend.
569  */
570 int
571 aac_suspend(device_t dev)
572 {
573 	struct aac_softc *sc;
574 	int s;
575 
576 	debug_called(1);
577 
578 	sc = device_get_softc(dev);
579 
580 	s = splbio();
581 
582 	sc->aac_state |= AAC_STATE_SUSPEND;
583 
584 	AAC_MASK_INTERRUPTS(sc);
585 	splx(s);
586 	return(0);
587 }
588 
589 /*
590  * Bring the controller back to a state ready for operation.
591  */
592 int
593 aac_resume(device_t dev)
594 {
595 	struct aac_softc *sc;
596 
597 	debug_called(1);
598 
599 	sc = device_get_softc(dev);
600 
601 	sc->aac_state &= ~AAC_STATE_SUSPEND;
602 	AAC_UNMASK_INTERRUPTS(sc);
603 	return(0);
604 }
605 
606 /*
607  * Take an interrupt.
608  */
609 void
610 aac_intr(void *arg)
611 {
612 	struct aac_softc *sc;
613 	u_int16_t reason;
614 
615 	debug_called(2);
616 
617 	sc = (struct aac_softc *)arg;
618 
619 	reason = AAC_GET_ISTATUS(sc);
620 
621 	/* controller wants to talk to the log */
622 	if (reason & AAC_DB_PRINTF) {
623 		AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
624 		aac_print_printf(sc);
625 	}
626 
627 	/* controller has a message for us? */
628 	if (reason & AAC_DB_COMMAND_READY) {
629 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY);
630 		/* XXX What happens if the thread is already awake? */
631 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
632 			sc->aifflags |= AAC_AIFFLAGS_PENDING;
633 			wakeup(sc->aifthread);
634 		}
635 	}
636 
637 	/* controller has a response for us? */
638 	if (reason & AAC_DB_RESPONSE_READY) {
639 		AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
640 		aac_host_response(sc);
641 	}
642 
643 	/*
644 	 * spurious interrupts that we don't use - reset the mask and clear the
645 	 * interrupts
646 	 */
647 	if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) {
648 		AAC_UNMASK_INTERRUPTS(sc);
649 		AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL |
650 				  AAC_DB_RESPONSE_NOT_FULL);
651 	}
652 };
653 
654 /*
655  * Command Processing
656  */
657 
658 /*
659  * Start as much queued I/O as possible on the controller
660  */
661 static void
662 aac_startio(struct aac_softc *sc)
663 {
664 	struct aac_command *cm;
665 
666 	debug_called(2);
667 
668 	for (;;) {
669 		/*
670 		 * Try to get a command that's been put off for lack of
671 		 * resources
672 		 */
673 		cm = aac_dequeue_ready(sc);
674 
675 		/*
676 		 * Try to build a command off the bio queue (ignore error
677 		 * return)
678 		 */
679 		if (cm == NULL)
680 			aac_bio_command(sc, &cm);
681 
682 		/* nothing to do? */
683 		if (cm == NULL)
684 			break;
685 
686 		/* try to give the command to the controller */
687 		if (aac_start(cm) == EBUSY) {
688 			/* put it on the ready queue for later */
689 			aac_requeue_ready(cm);
690 			break;
691 		}
692 	}
693 }
694 
695 /*
696  * Deliver a command to the controller; allocate controller resources at the
697  * last moment when possible.
698  */
699 static int
700 aac_start(struct aac_command *cm)
701 {
702 	struct aac_softc *sc;
703 	int error;
704 
705 	debug_called(2);
706 
707 	sc = cm->cm_sc;
708 
709 	/* get the command mapped */
710 	aac_map_command(cm);
711 
712 	/* fix up the address values in the FIB */
713 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
714 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
715 
716 	/* save a pointer to the command for speedy reverse-lookup */
717 	cm->cm_fib->Header.SenderData = (u_int32_t)cm;	/* XXX 64-bit physical
718 							 * address issue */
719 
720 	/* put the FIB on the outbound queue */
721 	error = aac_enqueue_fib(sc, cm->cm_queue, cm);
722 	return(error);
723 }
724 
725 /*
726  * Handle notification of one or more FIBs coming from the controller.
727  */
728 static void
729 aac_host_command(struct aac_softc *sc)
730 {
731 	struct aac_fib *fib;
732 	u_int32_t fib_size;
733 	int size;
734 
735 	debug_called(2);
736 
737 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
738 
739 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
740 		if (!(sc->aifflags & AAC_AIFFLAGS_PENDING))
741 			tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz);
742 
743 		sc->aifflags &= ~AAC_AIFFLAGS_PENDING;
744 		for (;;) {
745 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
746 					    &fib_size, &fib))
747 				break;	/* nothing to do */
748 
749 			AAC_PRINT_FIB(sc, fib);
750 
751 			switch (fib->Header.Command) {
752 			case AifRequest:
753 				aac_handle_aif(sc, fib);
754 				break;
755 			default:
756 				device_printf(sc->aac_dev, "unknown command "
757 					      "from controller\n");
758 				break;
759 			}
760 
761 			/* Return the AIF to the controller. */
762 			if ((fib->Header.XferState == 0) ||
763 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
764 				break;
765 
766 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
767 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
768 				*(AAC_FSAStatus*)fib->data = ST_OK;
769 
770 				/* XXX Compute the Size field? */
771 				size = fib->Header.Size;
772 				if (size > sizeof(struct aac_fib)) {
773 	 				size = sizeof(struct aac_fib);
774 					fib->Header.Size = size;
775 				}
776 				/*
777 				 * Since we did not generate this command, it
778 				 * cannot go through the normal
779 				 * enqueue->startio chain.
780 				 */
781 				aac_enqueue_response(sc,
782 						     AAC_ADAP_NORM_RESP_QUEUE,
783 						     fib);
784 			}
785 		}
786 	}
787 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
788 	wakeup(sc->aac_dev);
789 
790 #if __FreeBSD_version > 500005
791 	mtx_lock(&Giant);
792 #endif
793 	kthread_exit(0);
794 }
795 
796 /*
797  * Handle notification of one or more FIBs completed by the controller
798  */
799 static void
800 aac_host_response(struct aac_softc *sc)
801 {
802 	struct aac_command *cm;
803 	struct aac_fib *fib;
804 	u_int32_t fib_size;
805 
806 	debug_called(2);
807 
808 	for (;;) {
809 		/* look for completed FIBs on our queue */
810 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
811 				    &fib))
812 			break;	/* nothing to do */
813 
814 		/* get the command, unmap and queue for later processing */
815 		cm = (struct aac_command *)fib->Header.SenderData;
816 		if (cm == NULL) {
817 			AAC_PRINT_FIB(sc, fib);
818 		} else {
819 			aac_remove_busy(cm);
820 			aac_unmap_command(cm);		/* XXX defer? */
821 			aac_enqueue_complete(cm);
822 		}
823 	}
824 
825 	/* handle completion processing */
826 #if __FreeBSD_version >= 500005
827 	taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
828 #else
829 	aac_complete(sc, 0);
830 #endif
831 }
832 
833 /*
834  * Process completed commands.
835  */
836 static void
837 aac_complete(void *context, int pending)
838 {
839 	struct aac_softc *sc;
840 	struct aac_command *cm;
841 
842 	debug_called(2);
843 
844 	sc = (struct aac_softc *)context;
845 
846 	/* pull completed commands off the queue */
847 	for (;;) {
848 		cm = aac_dequeue_complete(sc);
849 		if (cm == NULL)
850 			break;
851 		cm->cm_flags |= AAC_CMD_COMPLETED;
852 
853 		/* is there a completion handler? */
854 		if (cm->cm_complete != NULL) {
855 			cm->cm_complete(cm);
856 		} else {
857 			/* assume that someone is sleeping on this command */
858 			wakeup(cm);
859 		}
860 	}
861 
862 	/* see if we can start some more I/O */
863 	aac_startio(sc);
864 }
865 
866 /*
867  * Handle a bio submitted from a disk device.
868  */
869 void
870 aac_submit_bio(struct bio *bp)
871 {
872 	struct aac_disk *ad;
873 	struct aac_softc *sc;
874 
875 	debug_called(2);
876 
877 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
878 	sc = ad->ad_controller;
879 
880 	/* queue the BIO and try to get some work done */
881 	aac_enqueue_bio(sc, bp);
882 	aac_startio(sc);
883 }
884 
885 /*
886  * Get a bio and build a command to go with it.
887  */
888 static int
889 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
890 {
891 	struct aac_command *cm;
892 	struct aac_fib *fib;
893 	struct aac_blockread *br;
894 	struct aac_blockwrite *bw;
895 	struct aac_disk *ad;
896 	struct bio *bp;
897 
898 	debug_called(2);
899 
900 	/* get the resources we will need */
901 	cm = NULL;
902 	if ((bp = aac_dequeue_bio(sc)) == NULL)
903 		goto fail;
904 	if (aac_alloc_command(sc, &cm))	/* get a command */
905 		goto fail;
906 
907 	/* fill out the command */
908 	cm->cm_data = (void *)bp->bio_data;
909 	cm->cm_datalen = bp->bio_bcount;
910 	cm->cm_complete = aac_bio_complete;
911 	cm->cm_private = bp;
912 	cm->cm_timestamp = time_second;
913 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
914 
915 	/* build the FIB */
916 	fib = cm->cm_fib;
917 	fib->Header.XferState =
918 	AAC_FIBSTATE_HOSTOWNED   |
919 	AAC_FIBSTATE_INITIALISED |
920 	AAC_FIBSTATE_FROMHOST	 |
921 	AAC_FIBSTATE_REXPECTED   |
922 	AAC_FIBSTATE_NORM;
923 	fib->Header.Command = ContainerCommand;
924 	fib->Header.Size = sizeof(struct aac_fib_header);
925 
926 	/* build the read/write request */
927 	ad = (struct aac_disk *)bp->bio_dev->si_drv1;
928 	if (BIO_IS_READ(bp)) {
929 		br = (struct aac_blockread *)&fib->data[0];
930 		br->Command = VM_CtBlockRead;
931 		br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
932 		br->BlockNumber = bp->bio_pblkno;
933 		br->ByteCount = bp->bio_bcount;
934 		fib->Header.Size += sizeof(struct aac_blockread);
935 		cm->cm_sgtable = &br->SgMap;
936 		cm->cm_flags |= AAC_CMD_DATAIN;
937 	} else {
938 		bw = (struct aac_blockwrite *)&fib->data[0];
939 		bw->Command = VM_CtBlockWrite;
940 		bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
941 		bw->BlockNumber = bp->bio_pblkno;
942 		bw->ByteCount = bp->bio_bcount;
943 		bw->Stable = CUNSTABLE;	/* XXX what's appropriate here? */
944 		fib->Header.Size += sizeof(struct aac_blockwrite);
945 		cm->cm_flags |= AAC_CMD_DATAOUT;
946 		cm->cm_sgtable = &bw->SgMap;
947 	}
948 
949 	*cmp = cm;
950 	return(0);
951 
952 fail:
953 	if (bp != NULL)
954 		aac_enqueue_bio(sc, bp);
955 	if (cm != NULL)
956 		aac_release_command(cm);
957 	return(ENOMEM);
958 }
959 
960 /*
961  * Handle a bio-instigated command that has been completed.
962  */
963 static void
964 aac_bio_complete(struct aac_command *cm)
965 {
966 	struct aac_blockread_response *brr;
967 	struct aac_blockwrite_response *bwr;
968 	struct bio *bp;
969 	AAC_FSAStatus status;
970 
971 	/* fetch relevant status and then release the command */
972 	bp = (struct bio *)cm->cm_private;
973 	if (BIO_IS_READ(bp)) {
974 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
975 		status = brr->Status;
976 	} else {
977 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
978 		status = bwr->Status;
979 	}
980 	aac_release_command(cm);
981 
982 	/* fix up the bio based on status */
983 	if (status == ST_OK) {
984 		bp->bio_resid = 0;
985 	} else {
986 		bp->bio_error = EIO;
987 		bp->bio_flags |= BIO_ERROR;
988 		/* pass an error string out to the disk layer */
989 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
990 						    status);
991 	}
992 	aac_biodone(bp);
993 }
994 
995 /*
996  * Dump a block of data to the controller.  If the queue is full, tell the
997  * caller to hold off and wait for the queue to drain.
998  */
999 int
1000 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages)
1001 {
1002 	struct aac_softc *sc;
1003 	struct aac_command *cm;
1004 	struct aac_fib *fib;
1005 	struct aac_blockwrite *bw;
1006 
1007 	sc = ad->ad_controller;
1008 	cm = NULL;
1009 
1010 	if (aac_alloc_command(sc, &cm))
1011 		return (EBUSY);
1012 
1013 	/* fill out the command */
1014 	cm->cm_data = data;
1015 	cm->cm_datalen = dumppages * PAGE_SIZE;
1016 	cm->cm_complete = NULL;
1017 	cm->cm_private = NULL;
1018 	cm->cm_timestamp = time_second;
1019 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1020 
1021 	/* build the FIB */
1022 	fib = cm->cm_fib;
1023 	fib->Header.XferState =
1024 	AAC_FIBSTATE_HOSTOWNED   |
1025 	AAC_FIBSTATE_INITIALISED |
1026 	AAC_FIBSTATE_FROMHOST	 |
1027 	AAC_FIBSTATE_REXPECTED   |
1028 	AAC_FIBSTATE_NORM;
1029 	fib->Header.Command = ContainerCommand;
1030 	fib->Header.Size = sizeof(struct aac_fib_header);
1031 
1032 	bw = (struct aac_blockwrite *)&fib->data[0];
1033 	bw->Command = VM_CtBlockWrite;
1034 	bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1035 	bw->BlockNumber = lba;
1036 	bw->ByteCount = dumppages * PAGE_SIZE;
1037 	bw->Stable = CUNSTABLE;		/* XXX what's appropriate here? */
1038 	fib->Header.Size += sizeof(struct aac_blockwrite);
1039 	cm->cm_flags |= AAC_CMD_DATAOUT;
1040 	cm->cm_sgtable = &bw->SgMap;
1041 
1042 	return (aac_start(cm));
1043 }
1044 
1045 /*
1046  * Wait for the card's queue to drain when dumping.  Also check for monitor
1047  * printf's
1048  */
1049 void
1050 aac_dump_complete(struct aac_softc *sc)
1051 {
1052 	struct aac_fib *fib;
1053 	struct aac_command *cm;
1054 	u_int16_t reason;
1055 	u_int32_t pi, ci, fib_size;
1056 
1057 	do {
1058 		reason = AAC_GET_ISTATUS(sc);
1059 		if (reason & AAC_DB_RESPONSE_READY) {
1060 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
1061 			for (;;) {
1062 				if (aac_dequeue_fib(sc,
1063 						    AAC_HOST_NORM_RESP_QUEUE,
1064 						    &fib_size, &fib))
1065 					break;
1066 				cm = (struct aac_command *)
1067 					fib->Header.SenderData;
1068 				if (cm == NULL)
1069 					AAC_PRINT_FIB(sc, fib);
1070 				else {
1071 					aac_remove_busy(cm);
1072 					aac_unmap_command(cm);
1073 					aac_enqueue_complete(cm);
1074 					aac_release_command(cm);
1075 				}
1076 			}
1077 		}
1078 		if (reason & AAC_DB_PRINTF) {
1079 			AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF);
1080 			aac_print_printf(sc);
1081 		}
1082 		pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1083 			AAC_PRODUCER_INDEX];
1084 		ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][
1085 			AAC_CONSUMER_INDEX];
1086 	} while (ci != pi);
1087 
1088 	return;
1089 }
1090 
1091 /*
1092  * Submit a command to the controller, return when it completes.
1093  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1094  *     be stuck here forever.  At the same time, signals are not caught
1095  *     because there is a risk that a signal could wakeup the tsleep before
1096  *     the card has a chance to complete the command.  The passed in timeout
1097  *     is ignored for the same reason.  Since there is no way to cancel a
1098  *     command in progress, we should probably create a 'dead' queue where
1099  *     commands go that have been interrupted/timed-out/etc, that keeps them
1100  *     out of the free pool.  That way, if the card is just slow, it won't
1101  *     spam the memory of a command that has been recycled.
1102  */
1103 static int
1104 aac_wait_command(struct aac_command *cm, int timeout)
1105 {
1106 	int s, error = 0;
1107 
1108 	debug_called(2);
1109 
1110 	/* Put the command on the ready queue and get things going */
1111 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1112 	aac_enqueue_ready(cm);
1113 	aac_startio(cm->cm_sc);
1114 	s = splbio();
1115 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1116 		error = tsleep(cm, PRIBIO, "aacwait", 0);
1117 	}
1118 	splx(s);
1119 	return(error);
1120 }
1121 
1122 /*
1123  *Command Buffer Management
1124  */
1125 
1126 /*
1127  * Allocate a command.
1128  */
1129 static int
1130 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1131 {
1132 	struct aac_command *cm;
1133 
1134 	debug_called(3);
1135 
1136 	if ((cm = aac_dequeue_free(sc)) == NULL)
1137 		return(ENOMEM);
1138 
1139 	*cmp = cm;
1140 	return(0);
1141 }
1142 
1143 /*
1144  * Release a command back to the freelist.
1145  */
1146 static void
1147 aac_release_command(struct aac_command *cm)
1148 {
1149 	debug_called(3);
1150 
1151 	/* (re)initialise the command/FIB */
1152 	cm->cm_sgtable = NULL;
1153 	cm->cm_flags = 0;
1154 	cm->cm_complete = NULL;
1155 	cm->cm_private = NULL;
1156 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1157 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1158 	cm->cm_fib->Header.Flags = 0;
1159 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1160 
1161 	/*
1162 	 * These are duplicated in aac_start to cover the case where an
1163 	 * intermediate stage may have destroyed them.  They're left
1164 	 * initialised here for debugging purposes only.
1165 	 */
1166 	cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib;
1167 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1168 
1169 	aac_enqueue_free(cm);
1170 }
1171 
1172 /*
1173  * Map helper for command/FIB allocation.
1174  */
1175 static void
1176 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1177 {
1178 	struct aac_softc *sc;
1179 
1180 	sc = (struct aac_softc *)arg;
1181 
1182 	debug_called(3);
1183 
1184 	sc->aac_fibphys = segs[0].ds_addr;
1185 }
1186 
1187 /*
1188  * Allocate and initialise commands/FIBs for this adapter.
1189  */
1190 static int
1191 aac_alloc_commands(struct aac_softc *sc)
1192 {
1193 	struct aac_command *cm;
1194 	int i;
1195 
1196 	debug_called(1);
1197 
1198 	/* allocate the FIBs in DMAable memory and load them */
1199 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs,
1200 			 BUS_DMA_NOWAIT, &sc->aac_fibmap)) {
1201 		return(ENOMEM);
1202 	}
1203 	bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs,
1204 			AAC_FIB_COUNT * sizeof(struct aac_fib),
1205 			aac_map_command_helper, sc, 0);
1206 
1207 	/* initialise constant fields in the command structure */
1208 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1209 		cm = &sc->aac_command[i];
1210 		cm->cm_sc = sc;
1211 		cm->cm_fib = sc->aac_fibs + i;
1212 		cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib));
1213 
1214 		if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap))
1215 			aac_release_command(cm);
1216 	}
1217 	return(0);
1218 }
1219 
1220 /*
1221  * Free FIBs owned by this adapter.
1222  */
1223 static void
1224 aac_free_commands(struct aac_softc *sc)
1225 {
1226 	int i;
1227 
1228 	debug_called(1);
1229 
1230 	for (i = 0; i < AAC_FIB_COUNT; i++)
1231 		bus_dmamap_destroy(sc->aac_buffer_dmat,
1232 				   sc->aac_command[i].cm_datamap);
1233 
1234 	bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap);
1235 	bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap);
1236 }
1237 
1238 /*
1239  * Command-mapping helper function - populate this command's s/g table.
1240  */
1241 static void
1242 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1243 {
1244 	struct aac_command *cm;
1245 	struct aac_fib *fib;
1246 	struct aac_sg_table *sg;
1247 	int i;
1248 
1249 	debug_called(3);
1250 
1251 	cm = (struct aac_command *)arg;
1252 	fib = cm->cm_fib;
1253 
1254 	/* find the s/g table */
1255 	sg = cm->cm_sgtable;
1256 
1257 	/* copy into the FIB */
1258 	if (sg != NULL) {
1259 		sg->SgCount = nseg;
1260 		for (i = 0; i < nseg; i++) {
1261 			sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1262 			sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1263 		}
1264 		/* update the FIB size for the s/g count */
1265 		fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1266 	}
1267 
1268 }
1269 
1270 /*
1271  * Map a command into controller-visible space.
1272  */
1273 static void
1274 aac_map_command(struct aac_command *cm)
1275 {
1276 	struct aac_softc *sc;
1277 
1278 	debug_called(2);
1279 
1280 	sc = cm->cm_sc;
1281 
1282 	/* don't map more than once */
1283 	if (cm->cm_flags & AAC_CMD_MAPPED)
1284 		return;
1285 
1286 	if (cm->cm_datalen != 0) {
1287 		bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
1288 				cm->cm_data, cm->cm_datalen,
1289 				aac_map_command_sg, cm, 0);
1290 
1291 	if (cm->cm_flags & AAC_CMD_DATAIN)
1292 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1293 				BUS_DMASYNC_PREREAD);
1294 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1295 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1296 				BUS_DMASYNC_PREWRITE);
1297 	}
1298 	cm->cm_flags |= AAC_CMD_MAPPED;
1299 }
1300 
1301 /*
1302  * Unmap a command from controller-visible space.
1303  */
1304 static void
1305 aac_unmap_command(struct aac_command *cm)
1306 {
1307 	struct aac_softc *sc;
1308 
1309 	debug_called(2);
1310 
1311 	sc = cm->cm_sc;
1312 
1313 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1314 		return;
1315 
1316 	if (cm->cm_datalen != 0) {
1317 		if (cm->cm_flags & AAC_CMD_DATAIN)
1318 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1319 					BUS_DMASYNC_POSTREAD);
1320 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1321 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1322 					BUS_DMASYNC_POSTWRITE);
1323 
1324 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1325 	}
1326 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1327 }
1328 
1329 /*
1330  * Hardware Interface
1331  */
1332 
1333 /*
1334  * Initialise the adapter.
1335  */
1336 static void
1337 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1338 {
1339 	struct aac_softc *sc;
1340 
1341 	debug_called(1);
1342 
1343 	sc = (struct aac_softc *)arg;
1344 
1345 	sc->aac_common_busaddr = segs[0].ds_addr;
1346 }
1347 
1348 static int
1349 aac_init(struct aac_softc *sc)
1350 {
1351 	struct aac_adapter_init	*ip;
1352 	time_t then;
1353 	u_int32_t code;
1354 	u_int8_t *qaddr;
1355 
1356 	debug_called(1);
1357 
1358 	/*
1359 	 * First wait for the adapter to come ready.
1360 	 */
1361 	then = time_second;
1362 	do {
1363 		code = AAC_GET_FWSTATUS(sc);
1364 		if (code & AAC_SELF_TEST_FAILED) {
1365 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1366 			return(ENXIO);
1367 		}
1368 		if (code & AAC_KERNEL_PANIC) {
1369 			device_printf(sc->aac_dev,
1370 				      "FATAL: controller kernel panic\n");
1371 			return(ENXIO);
1372 		}
1373 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1374 			device_printf(sc->aac_dev,
1375 				      "FATAL: controller not coming ready, "
1376 					   "status %x\n", code);
1377 			return(ENXIO);
1378 		}
1379 	} while (!(code & AAC_UP_AND_RUNNING));
1380 
1381 	/*
1382 	 * Create DMA tag for the common structure and allocate it.
1383 	 */
1384 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1385 			       1, 0, 			/* algnmnt, boundary */
1386 			       BUS_SPACE_MAXADDR,	/* lowaddr */
1387 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1388 			       NULL, NULL, 		/* filter, filterarg */
1389 			       sizeof(struct aac_common), /* maxsize */
1390 			       1,			/* nsegments */
1391 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1392 			       0,			/* flags */
1393 			       &sc->aac_common_dmat)) {
1394 		device_printf(sc->aac_dev,
1395 			      "can't allocate common structure DMA tag\n");
1396 		return(ENOMEM);
1397 	}
1398 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1399 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1400 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1401 		return(ENOMEM);
1402 	}
1403 	bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1404 			sc->aac_common, sizeof(*sc->aac_common), aac_common_map,
1405 		        sc, 0);
1406 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1407 
1408 	/*
1409 	 * Fill in the init structure.  This tells the adapter about the
1410 	 * physical location of various important shared data structures.
1411 	 */
1412 	ip = &sc->aac_common->ac_init;
1413 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1414 
1415 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1416 					 offsetof(struct aac_common, ac_fibs);
1417 	ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0];
1418 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1419 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1420 
1421 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1422 				  offsetof(struct aac_common, ac_printf);
1423 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1424 
1425 	ip->HostPhysMemPages = 0;		/* not used? */
1426 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1427 
1428 	/*
1429 	 * Initialise FIB queues.  Note that it appears that the layout of the
1430 	 * indexes and the segmentation of the entries may be mandated by the
1431 	 * adapter, which is only told about the base of the queue index fields.
1432 	 *
1433 	 * The initial values of the indices are assumed to inform the adapter
1434 	 * of the sizes of the respective queues, and theoretically it could
1435 	 * work out the entire layout of the queue structures from this.  We
1436 	 * take the easy route and just lay this area out like everyone else
1437 	 * does.
1438 	 *
1439 	 * The Linux driver uses a much more complex scheme whereby several
1440 	 * header records are kept for each queue.  We use a couple of generic
1441 	 * list manipulation functions which 'know' the size of each list by
1442 	 * virtue of a table.
1443 	 */
1444 	qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN;
1445 	qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN;
1446 	sc->aac_queues = (struct aac_queue_table *)qaddr;
1447 	ip->CommHeaderAddress = sc->aac_common_busaddr +
1448 				((u_int32_t)sc->aac_queues -
1449 				(u_int32_t)sc->aac_common);
1450 	bzero(sc->aac_queues, sizeof(struct aac_queue_table));
1451 
1452 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1453 		AAC_HOST_NORM_CMD_ENTRIES;
1454 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1455 		AAC_HOST_NORM_CMD_ENTRIES;
1456 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1457 		AAC_HOST_HIGH_CMD_ENTRIES;
1458 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1459 		AAC_HOST_HIGH_CMD_ENTRIES;
1460 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1461 		AAC_ADAP_NORM_CMD_ENTRIES;
1462 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1463 		AAC_ADAP_NORM_CMD_ENTRIES;
1464 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1465 		AAC_ADAP_HIGH_CMD_ENTRIES;
1466 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1467 		AAC_ADAP_HIGH_CMD_ENTRIES;
1468 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1469 		AAC_HOST_NORM_RESP_ENTRIES;
1470 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1471 		AAC_HOST_NORM_RESP_ENTRIES;
1472 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1473 		AAC_HOST_HIGH_RESP_ENTRIES;
1474 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1475 		AAC_HOST_HIGH_RESP_ENTRIES;
1476 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1477 		AAC_ADAP_NORM_RESP_ENTRIES;
1478 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1479 		AAC_ADAP_NORM_RESP_ENTRIES;
1480 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1481 		AAC_ADAP_HIGH_RESP_ENTRIES;
1482 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1483 		AAC_ADAP_HIGH_RESP_ENTRIES;
1484 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1485 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1486 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1487 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1488 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1489 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1490 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1491 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1492 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1493 		&sc->aac_queues->qt_HostNormRespQueue[0];
1494 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1495 		&sc->aac_queues->qt_HostHighRespQueue[0];
1496 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1497 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1498 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1499 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1500 
1501 	/*
1502 	 * Do controller-type-specific initialisation
1503 	 */
1504 	switch (sc->aac_hwif) {
1505 	case AAC_HWIF_I960RX:
1506 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1507 		break;
1508 	}
1509 
1510 	/*
1511 	 * Give the init structure to the controller.
1512 	 */
1513 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1514 			     sc->aac_common_busaddr +
1515 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1516 			     NULL)) {
1517 		device_printf(sc->aac_dev,
1518 			      "error establishing init structure\n");
1519 		return(EIO);
1520 	}
1521 
1522 	return(0);
1523 }
1524 
1525 /*
1526  * Send a synchronous command to the controller and wait for a result.
1527  */
1528 static int
1529 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1530 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1531 		 u_int32_t *sp)
1532 {
1533 	time_t then;
1534 	u_int32_t status;
1535 
1536 	debug_called(3);
1537 
1538 	/* populate the mailbox */
1539 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1540 
1541 	/* ensure the sync command doorbell flag is cleared */
1542 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1543 
1544 	/* then set it to signal the adapter */
1545 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1546 
1547 	/* spin waiting for the command to complete */
1548 	then = time_second;
1549 	do {
1550 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1551 			debug(2, "timed out");
1552 			return(EIO);
1553 		}
1554 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1555 
1556 	/* clear the completion flag */
1557 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1558 
1559 	/* get the command status */
1560 	status = AAC_GET_MAILBOXSTATUS(sc);
1561 	if (sp != NULL)
1562 		*sp = status;
1563 	return(0);
1564 }
1565 
1566 /*
1567  * Send a synchronous FIB to the controller and wait for a result.
1568  */
1569 static int
1570 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1571 		 void *data, u_int16_t datasize,
1572 		 void *result, u_int16_t *resultsize)
1573 {
1574 	struct aac_fib *fib;
1575 
1576 	debug_called(3);
1577 
1578 	fib = &sc->aac_common->ac_sync_fib;
1579 
1580 	if (datasize > AAC_FIB_DATASIZE)
1581 		return(EINVAL);
1582 
1583 	/*
1584 	 * Set up the sync FIB
1585 	 */
1586 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1587 				AAC_FIBSTATE_INITIALISED |
1588 				AAC_FIBSTATE_EMPTY;
1589 	fib->Header.XferState |= xferstate;
1590 	fib->Header.Command = command;
1591 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1592 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1593 	fib->Header.SenderSize = sizeof(struct aac_fib);
1594 	fib->Header.SenderFibAddress = (u_int32_t)fib;
1595 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1596 					 offsetof(struct aac_common,
1597 						  ac_sync_fib);
1598 
1599 	/*
1600 	 * Copy in data.
1601 	 */
1602 	if (data != NULL) {
1603 		KASSERT(datasize <= sizeof(fib->data),
1604 			("aac_sync_fib: datasize to large"));
1605 		bcopy(data, fib->data, datasize);
1606 		fib->Header.XferState |= AAC_FIBSTATE_FROMHOST |
1607 					 AAC_FIBSTATE_NORM;
1608 	}
1609 
1610 	/*
1611 	 * Give the FIB to the controller, wait for a response.
1612 	 */
1613 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1614 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1615 		debug(2, "IO error");
1616 		return(EIO);
1617 	}
1618 
1619 	/*
1620 	 * Copy out the result
1621 	 */
1622 	if (result != NULL) {
1623 		u_int copysize;
1624 
1625 		copysize = fib->Header.Size - sizeof(struct aac_fib_header);
1626 		if (copysize > *resultsize)
1627 			copysize = *resultsize;
1628 		*resultsize = fib->Header.Size - sizeof(struct aac_fib_header);
1629 		bcopy(fib->data, result, copysize);
1630 	}
1631 	return(0);
1632 }
1633 
1634 /*
1635  * Adapter-space FIB queue manipulation
1636  *
1637  * Note that the queue implementation here is a little funky; neither the PI or
1638  * CI will ever be zero.  This behaviour is a controller feature.
1639  */
1640 static struct {
1641 	int		size;
1642 	int		notify;
1643 } aac_qinfo[] = {
1644 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1645 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1646 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1647 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1648 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1649 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1650 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1651 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1652 };
1653 
1654 /*
1655  * Atomically insert an entry into the nominated queue, returns 0 on success or
1656  * EBUSY if the queue is full.
1657  *
1658  * Note: it would be more efficient to defer notifying the controller in
1659  *	 the case where we may be inserting several entries in rapid succession,
1660  *	 but implementing this usefully may be difficult (it would involve a
1661  *	 separate queue/notify interface).
1662  */
1663 static int
1664 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1665 {
1666 	u_int32_t pi, ci;
1667 	int s, error;
1668 	u_int32_t fib_size;
1669 	u_int32_t fib_addr;
1670 
1671 	debug_called(3);
1672 
1673 	fib_size = cm->cm_fib->Header.Size;
1674 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1675 
1676 	s = splbio();
1677 
1678 	/* get the producer/consumer indices */
1679 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1680 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1681 
1682 	/* wrap the queue? */
1683 	if (pi >= aac_qinfo[queue].size)
1684 		pi = 0;
1685 
1686 	/* check for queue full */
1687 	if ((pi + 1) == ci) {
1688 		error = EBUSY;
1689 		goto out;
1690 	}
1691 
1692 	/* populate queue entry */
1693 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1694 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1695 
1696 	/* update producer index */
1697 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1698 
1699 	/*
1700 	 * To avoid a race with its completion interrupt, place this command on
1701 	 * the busy queue prior to advertising it to the controller.
1702 	 */
1703 	aac_enqueue_busy(cm);
1704 
1705 	/* notify the adapter if we know how */
1706 	if (aac_qinfo[queue].notify != 0)
1707 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1708 
1709 	error = 0;
1710 
1711 out:
1712 	splx(s);
1713 	return(error);
1714 }
1715 
1716 /*
1717  * Atomically remove one entry from the nominated queue, returns 0 on
1718  * success or ENOENT if the queue is empty.
1719  */
1720 static int
1721 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1722 		struct aac_fib **fib_addr)
1723 {
1724 	u_int32_t pi, ci;
1725 	int s, error;
1726 	int notify;
1727 
1728 	debug_called(3);
1729 
1730 	s = splbio();
1731 
1732 	/* get the producer/consumer indices */
1733 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1734 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1735 
1736 	/* check for queue empty */
1737 	if (ci == pi) {
1738 		error = ENOENT;
1739 		goto out;
1740 	}
1741 
1742 	notify = 0;
1743 	if (ci == pi + 1)
1744 		notify++;
1745 
1746 	/* wrap the queue? */
1747 	if (ci >= aac_qinfo[queue].size)
1748 		ci = 0;
1749 
1750 	/* fetch the entry */
1751 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1752 	*fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] +
1753 				       ci)->aq_fib_addr;
1754 
1755 	/* update consumer index */
1756 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1757 
1758 	/* if we have made the queue un-full, notify the adapter */
1759 	if (notify && (aac_qinfo[queue].notify != 0))
1760 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1761 	error = 0;
1762 
1763 out:
1764 	splx(s);
1765 	return(error);
1766 }
1767 
1768 /*
1769  * Put our response to an Adapter Initialed Fib on the response queue
1770  */
1771 static int
1772 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1773 {
1774 	u_int32_t pi, ci;
1775 	int s, error;
1776 	u_int32_t fib_size;
1777 	u_int32_t fib_addr;
1778 
1779 	debug_called(1);
1780 
1781 	/* Tell the adapter where the FIB is */
1782 	fib_size = fib->Header.Size;
1783 	fib_addr = fib->Header.SenderFibAddress;
1784 	fib->Header.ReceiverFibAddress = fib_addr;
1785 
1786 	s = splbio();
1787 
1788 	/* get the producer/consumer indices */
1789 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1790 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1791 
1792 	/* wrap the queue? */
1793 	if (pi >= aac_qinfo[queue].size)
1794 		pi = 0;
1795 
1796 	/* check for queue full */
1797 	if ((pi + 1) == ci) {
1798 		error = EBUSY;
1799 		goto out;
1800 	}
1801 
1802 	/* populate queue entry */
1803 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1804 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1805 
1806 	/* update producer index */
1807 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1808 
1809 	/* notify the adapter if we know how */
1810 	if (aac_qinfo[queue].notify != 0)
1811 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1812 
1813 	error = 0;
1814 
1815 out:
1816 	splx(s);
1817 	return(error);
1818 }
1819 
1820 /*
1821  * Check for commands that have been outstanding for a suspiciously long time,
1822  * and complain about them.
1823  */
1824 static void
1825 aac_timeout(struct aac_softc *sc)
1826 {
1827 	int s;
1828 	struct aac_command *cm;
1829 	time_t deadline;
1830 
1831 #if 0
1832 	/* simulate an interrupt to handle possibly-missed interrupts */
1833 	/*
1834 	 * XXX This was done to work around another bug which has since been
1835 	 * fixed.  It is dangerous anyways because you don't want multiple
1836 	 * threads in the interrupt handler at the same time!  If calling
1837 	 * is deamed neccesary in the future, proper mutexes must be used.
1838 	 */
1839 	s = splbio();
1840 	aac_intr(sc);
1841 	splx(s);
1842 
1843 	/* kick the I/O queue to restart it in the case of deadlock */
1844 	aac_startio(sc);
1845 #endif
1846 
1847 	/*
1848 	 * traverse the busy command list, bitch about late commands once
1849 	 * only.
1850 	 */
1851 	deadline = time_second - AAC_CMD_TIMEOUT;
1852 	s = splbio();
1853 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
1854 		if ((cm->cm_timestamp  < deadline)
1855 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
1856 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
1857 			device_printf(sc->aac_dev,
1858 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
1859 				      cm, (int)(time_second-cm->cm_timestamp));
1860 			AAC_PRINT_FIB(sc, cm->cm_fib);
1861 		}
1862 	}
1863 	splx(s);
1864 
1865 	/* reset the timer for next time */
1866 	timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz);
1867 	return;
1868 }
1869 
1870 /*
1871  * Interface Function Vectors
1872  */
1873 
1874 /*
1875  * Read the current firmware status word.
1876  */
1877 static int
1878 aac_sa_get_fwstatus(struct aac_softc *sc)
1879 {
1880 	debug_called(3);
1881 
1882 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
1883 }
1884 
1885 static int
1886 aac_rx_get_fwstatus(struct aac_softc *sc)
1887 {
1888 	debug_called(3);
1889 
1890 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
1891 }
1892 
1893 static int
1894 aac_fa_get_fwstatus(struct aac_softc *sc)
1895 {
1896 	int val;
1897 
1898 	debug_called(3);
1899 
1900 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
1901 	return (val);
1902 }
1903 
1904 /*
1905  * Notify the controller of a change in a given queue
1906  */
1907 
1908 static void
1909 aac_sa_qnotify(struct aac_softc *sc, int qbit)
1910 {
1911 	debug_called(3);
1912 
1913 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
1914 }
1915 
1916 static void
1917 aac_rx_qnotify(struct aac_softc *sc, int qbit)
1918 {
1919 	debug_called(3);
1920 
1921 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
1922 }
1923 
1924 static void
1925 aac_fa_qnotify(struct aac_softc *sc, int qbit)
1926 {
1927 	debug_called(3);
1928 
1929 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
1930 	AAC_FA_HACK(sc);
1931 }
1932 
1933 /*
1934  * Get the interrupt reason bits
1935  */
1936 static int
1937 aac_sa_get_istatus(struct aac_softc *sc)
1938 {
1939 	debug_called(3);
1940 
1941 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
1942 }
1943 
1944 static int
1945 aac_rx_get_istatus(struct aac_softc *sc)
1946 {
1947 	debug_called(3);
1948 
1949 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
1950 }
1951 
1952 static int
1953 aac_fa_get_istatus(struct aac_softc *sc)
1954 {
1955 	int val;
1956 
1957 	debug_called(3);
1958 
1959 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
1960 	return (val);
1961 }
1962 
1963 /*
1964  * Clear some interrupt reason bits
1965  */
1966 static void
1967 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
1968 {
1969 	debug_called(3);
1970 
1971 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
1972 }
1973 
1974 static void
1975 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
1976 {
1977 	debug_called(3);
1978 
1979 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
1980 }
1981 
1982 static void
1983 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
1984 {
1985 	debug_called(3);
1986 
1987 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
1988 	AAC_FA_HACK(sc);
1989 }
1990 
1991 /*
1992  * Populate the mailbox and set the command word
1993  */
1994 static void
1995 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
1996 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
1997 {
1998 	debug_called(4);
1999 
2000 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2001 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2002 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2003 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2004 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2005 }
2006 
2007 static void
2008 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2009 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2010 {
2011 	debug_called(4);
2012 
2013 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2014 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2015 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2016 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2017 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2018 }
2019 
2020 static void
2021 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2022 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2023 {
2024 	debug_called(4);
2025 
2026 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2027 	AAC_FA_HACK(sc);
2028 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2029 	AAC_FA_HACK(sc);
2030 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2031 	AAC_FA_HACK(sc);
2032 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2033 	AAC_FA_HACK(sc);
2034 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2035 	AAC_FA_HACK(sc);
2036 }
2037 
2038 /*
2039  * Fetch the immediate command status word
2040  */
2041 static int
2042 aac_sa_get_mailboxstatus(struct aac_softc *sc)
2043 {
2044 	debug_called(4);
2045 
2046 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX));
2047 }
2048 
2049 static int
2050 aac_rx_get_mailboxstatus(struct aac_softc *sc)
2051 {
2052 	debug_called(4);
2053 
2054 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX));
2055 }
2056 
2057 static int
2058 aac_fa_get_mailboxstatus(struct aac_softc *sc)
2059 {
2060 	int val;
2061 
2062 	debug_called(4);
2063 
2064 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX);
2065 	return (val);
2066 }
2067 
2068 /*
2069  * Set/clear interrupt masks
2070  */
2071 static void
2072 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2073 {
2074 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2075 
2076 	if (enable) {
2077 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2078 	} else {
2079 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2080 	}
2081 }
2082 
2083 static void
2084 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2085 {
2086 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2087 
2088 	if (enable) {
2089 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2090 	} else {
2091 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2092 	}
2093 }
2094 
2095 static void
2096 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2097 {
2098 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2099 
2100 	if (enable) {
2101 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2102 		AAC_FA_HACK(sc);
2103 	} else {
2104 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2105 		AAC_FA_HACK(sc);
2106 	}
2107 }
2108 
2109 /*
2110  * Debugging and Diagnostics
2111  */
2112 
2113 /*
2114  * Print some information about the controller.
2115  */
2116 static void
2117 aac_describe_controller(struct aac_softc *sc)
2118 {
2119 	u_int8_t buf[AAC_FIB_DATASIZE];	/* XXX really a bit big
2120 					 * for the stack */
2121 	u_int16_t bufsize;
2122 	struct aac_adapter_info	*info;
2123 	u_int8_t arg;
2124 
2125 	debug_called(2);
2126 
2127 	arg = 0;
2128 	bufsize = sizeof(buf);
2129 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf,
2130 			 &bufsize)) {
2131 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2132 		return;
2133 	}
2134 	if (bufsize != sizeof(*info)) {
2135 		device_printf(sc->aac_dev,
2136 			      "RequestAdapterInfo returned wrong data size "
2137 			      "(%d != %d)\n", bufsize, sizeof(*info));
2138 		/*return;*/
2139 	}
2140 	info = (struct aac_adapter_info *)&buf[0];
2141 
2142 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2143 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2144 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2145 		      aac_describe_code(aac_battery_platform,
2146 					info->batteryPlatform));
2147 
2148 	/* save the kernel revision structure for later use */
2149 	sc->aac_revision = info->KernelRevision;
2150 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2151 		      info->KernelRevision.external.comp.major,
2152 		      info->KernelRevision.external.comp.minor,
2153 		      info->KernelRevision.external.comp.dash,
2154 		      info->KernelRevision.buildNumber,
2155 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2156 }
2157 
2158 /*
2159  * Look up a text description of a numeric error code and return a pointer to
2160  * same.
2161  */
2162 static char *
2163 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2164 {
2165 	int i;
2166 
2167 	for (i = 0; table[i].string != NULL; i++)
2168 		if (table[i].code == code)
2169 			return(table[i].string);
2170 	return(table[i + 1].string);
2171 }
2172 
2173 /*
2174  * Management Interface
2175  */
2176 
2177 static int
2178 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2179 {
2180 	struct aac_softc *sc;
2181 
2182 	debug_called(2);
2183 
2184 	sc = dev->si_drv1;
2185 
2186 	/* Check to make sure the device isn't already open */
2187 	if (sc->aac_state & AAC_STATE_OPEN) {
2188 		return EBUSY;
2189 	}
2190 	sc->aac_state |= AAC_STATE_OPEN;
2191 
2192 	return 0;
2193 }
2194 
2195 static int
2196 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2197 {
2198 	struct aac_softc *sc;
2199 
2200 	debug_called(2);
2201 
2202 	sc = dev->si_drv1;
2203 
2204 	/* Mark this unit as no longer open  */
2205 	sc->aac_state &= ~AAC_STATE_OPEN;
2206 
2207 	return 0;
2208 }
2209 
2210 static int
2211 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2212 {
2213 	union aac_statrequest *as;
2214 	struct aac_softc *sc;
2215 	int error = 0;
2216 	int i;
2217 
2218 	debug_called(2);
2219 
2220 	as = (union aac_statrequest *)arg;
2221 	sc = dev->si_drv1;
2222 
2223 	switch (cmd) {
2224 	case AACIO_STATS:
2225 		switch (as->as_item) {
2226 		case AACQ_FREE:
2227 		case AACQ_BIO:
2228 		case AACQ_READY:
2229 		case AACQ_BUSY:
2230 		case AACQ_COMPLETE:
2231 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2232 			      sizeof(struct aac_qstat));
2233 			break;
2234 		default:
2235 			error = ENOENT;
2236 			break;
2237 		}
2238 	break;
2239 
2240 	case FSACTL_SENDFIB:
2241 		arg = *(caddr_t*)arg;
2242 	case FSACTL_LNX_SENDFIB:
2243 		debug(1, "FSACTL_SENDFIB");
2244 		error = aac_ioctl_sendfib(sc, arg);
2245 		break;
2246 	case FSACTL_AIF_THREAD:
2247 	case FSACTL_LNX_AIF_THREAD:
2248 		debug(1, "FSACTL_AIF_THREAD");
2249 		error = EINVAL;
2250 		break;
2251 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2252 		arg = *(caddr_t*)arg;
2253 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2254 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2255 		/*
2256 		 * Pass the caller out an AdapterFibContext.
2257 		 *
2258 		 * Note that because we only support one opener, we
2259 		 * basically ignore this.  Set the caller's context to a magic
2260 		 * number just in case.
2261 		 *
2262 		 * The Linux code hands the driver a pointer into kernel space,
2263 		 * and then trusts it when the caller hands it back.  Aiee!
2264 		 * Here, we give it the proc pointer of the per-adapter aif
2265 		 * thread. It's only used as a sanity check in other calls.
2266 		 */
2267 		i = (int)sc->aifthread;
2268 		error = copyout(&i, arg, sizeof(i));
2269 		break;
2270 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2271 		arg = *(caddr_t*)arg;
2272 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2273 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2274 		error = aac_getnext_aif(sc, arg);
2275 		break;
2276 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2277 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2278 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2279 		/* don't do anything here */
2280 		break;
2281 	case FSACTL_MINIPORT_REV_CHECK:
2282 		arg = *(caddr_t*)arg;
2283 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2284 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2285 		error = aac_rev_check(sc, arg);
2286 		break;
2287 	case FSACTL_QUERY_DISK:
2288 		arg = *(caddr_t*)arg;
2289 	case FSACTL_LNX_QUERY_DISK:
2290 		debug(1, "FSACTL_QUERY_DISK");
2291 		error = aac_query_disk(sc, arg);
2292 			break;
2293 	case FSACTL_DELETE_DISK:
2294 	case FSACTL_LNX_DELETE_DISK:
2295 		/*
2296 		 * We don't trust the underland to tell us when to delete a
2297 		 * container, rather we rely on an AIF coming from the
2298 		 * controller
2299 		 */
2300 		error = 0;
2301 		break;
2302 	default:
2303 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2304 		error = EINVAL;
2305 		break;
2306 	}
2307 	return(error);
2308 }
2309 
2310 static int
2311 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2312 {
2313 	struct aac_softc *sc;
2314 	int revents;
2315 
2316 	sc = dev->si_drv1;
2317 	revents = 0;
2318 
2319 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2320 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2321 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2322 			revents |= poll_events & (POLLIN | POLLRDNORM);
2323 	}
2324 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2325 
2326 	if (revents == 0) {
2327 		if (poll_events & (POLLIN | POLLRDNORM))
2328 			selrecord(td, &sc->rcv_select);
2329 	}
2330 
2331 	return (revents);
2332 }
2333 
2334 /*
2335  * Send a FIB supplied from userspace
2336  */
2337 static int
2338 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2339 {
2340 	struct aac_command *cm;
2341 	int size, error;
2342 
2343 	debug_called(2);
2344 
2345 	cm = NULL;
2346 
2347 	/*
2348 	 * Get a command
2349 	 */
2350 	if (aac_alloc_command(sc, &cm)) {
2351 		error = EBUSY;
2352 		goto out;
2353 	}
2354 
2355 	/*
2356 	 * Fetch the FIB header, then re-copy to get data as well.
2357 	 */
2358 	if ((error = copyin(ufib, cm->cm_fib,
2359 			    sizeof(struct aac_fib_header))) != 0)
2360 		goto out;
2361 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2362 	if (size > sizeof(struct aac_fib)) {
2363 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
2364 			      size, sizeof(struct aac_fib));
2365 		size = sizeof(struct aac_fib);
2366 	}
2367 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2368 		goto out;
2369 	cm->cm_fib->Header.Size = size;
2370 	cm->cm_timestamp = time_second;
2371 
2372 	/*
2373 	 * Pass the FIB to the controller, wait for it to complete.
2374 	 */
2375 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2376 		printf("aac_wait_command return %d\n", error);
2377 		goto out;
2378 	}
2379 
2380 	/*
2381 	 * Copy the FIB and data back out to the caller.
2382 	 */
2383 	size = cm->cm_fib->Header.Size;
2384 	if (size > sizeof(struct aac_fib)) {
2385 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
2386 			      size, sizeof(struct aac_fib));
2387 		size = sizeof(struct aac_fib);
2388 	}
2389 	error = copyout(cm->cm_fib, ufib, size);
2390 
2391 out:
2392 	if (cm != NULL) {
2393 		aac_release_command(cm);
2394 	}
2395 	return(error);
2396 }
2397 
2398 /*
2399  * Handle an AIF sent to us by the controller; queue it for later reference.
2400  * If the queue fills up, then drop the older entries.
2401  */
2402 static void
2403 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2404 {
2405 	struct aac_aif_command *aif;
2406 	struct aac_container *co, *co_next;
2407 	struct aac_mntinfo mi;
2408 	struct aac_mntinforesponse mir;
2409 	u_int16_t rsize;
2410 	int next, found;
2411 	int added = 0, i = 0;
2412 
2413 	debug_called(2);
2414 
2415 	aif = (struct aac_aif_command*)&fib->data[0];
2416 	aac_print_aif(sc, aif);
2417 
2418 	/* Is it an event that we should care about? */
2419 	switch (aif->command) {
2420 	case AifCmdEventNotify:
2421 		switch (aif->data.EN.type) {
2422 		case AifEnAddContainer:
2423 		case AifEnDeleteContainer:
2424 			/*
2425 			 * A container was added or deleted, but the message
2426 			 * doesn't tell us anything else!  Re-enumerate the
2427 			 * containers and sort things out.
2428 			 */
2429 			mi.Command = VM_NameServe;
2430 			mi.MntType = FT_FILESYS;
2431 			do {
2432 				/*
2433 				 * Ask the controller for its containers one at
2434 				 * a time.
2435 				 * XXX What if the controller's list changes
2436 				 * midway through this enumaration?
2437 				 * XXX This should be done async.
2438 				 */
2439 				mi.MntCount = i;
2440 				rsize = sizeof(mir);
2441 				if (aac_sync_fib(sc, ContainerCommand, 0, &mi,
2442 						 sizeof(mi), &mir, &rsize)) {
2443 					debug(2, "Error probing container %d\n",
2444 					      i);
2445 					continue;
2446 				}
2447 				if (rsize != sizeof(mir)) {
2448 					debug(2, "Container response size too "
2449 						 "large\n");
2450 					continue;
2451 				}
2452 				/*
2453 				 * Check the container against our list.
2454 				 * co->co_found was already set to 0 in a
2455 				 * previous run.
2456 				 */
2457 				if ((mir.Status == ST_OK) &&
2458 				    (mir.MntTable[0].VolType != CT_NONE)) {
2459 					found = 0;
2460 					TAILQ_FOREACH(co,
2461 						      &sc->aac_container_tqh,
2462 						      co_link) {
2463 						if (co->co_mntobj.ObjectId ==
2464 						    mir.MntTable[0].ObjectId) {
2465 							co->co_found = 1;
2466 							found = 1;
2467 							break;
2468 						}
2469 					}
2470 					/*
2471 					 * If the container matched, continue
2472 					 * in the list.
2473 					 */
2474 					if (found) {
2475 						i++;
2476 						continue;
2477 					}
2478 
2479 					/*
2480 					 * This is a new container.  Do all the
2481 					 * appropriate things to set it up.						 */
2482 					aac_add_container(sc, &mir, 1);
2483 					added = 1;
2484 				}
2485 				i++;
2486 			} while ((i < mir.MntRespCount) &&
2487 				 (i < AAC_MAX_CONTAINERS));
2488 
2489 			/*
2490 			 * Go through our list of containers and see which ones
2491 			 * were not marked 'found'.  Since the controller didn't
2492 			 * list them they must have been deleted.  Do the
2493 			 * appropriate steps to destroy the device.  Also reset
2494 			 * the co->co_found field.
2495 			 */
2496 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2497 			while (co != NULL) {
2498 				if (co->co_found == 0) {
2499 					device_delete_child(sc->aac_dev,
2500 							    co->co_disk);
2501 					co_next = TAILQ_NEXT(co, co_link);
2502 					AAC_LOCK_ACQUIRE(&sc->
2503 							aac_container_lock);
2504 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2505 						     co_link);
2506 					AAC_LOCK_RELEASE(&sc->
2507 							 aac_container_lock);
2508 					FREE(co, M_AACBUF);
2509 					co = co_next;
2510 				} else {
2511 					co->co_found = 0;
2512 					co = TAILQ_NEXT(co, co_link);
2513 				}
2514 			}
2515 
2516 			/* Attach the newly created containers */
2517 			if (added)
2518 				bus_generic_attach(sc->aac_dev);
2519 
2520 				break;
2521 
2522 		default:
2523 			break;
2524 		}
2525 
2526 	default:
2527 		break;
2528 	}
2529 
2530 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2531 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2532 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2533 	if (next != sc->aac_aifq_tail) {
2534 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2535 		sc->aac_aifq_head = next;
2536 
2537 		/* On the off chance that someone is sleeping for an aif... */
2538 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2539 			wakeup(sc->aac_aifq);
2540 		/* Wakeup any poll()ers */
2541 		selwakeup(&sc->rcv_select);
2542 	}
2543 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2544 
2545 	return;
2546 }
2547 
2548 /*
2549  * Linux Management Interface
2550  * This is soon to be removed!
2551  */
2552 
2553 #ifdef AAC_COMPAT_LINUX
2554 
2555 #include <sys/proc.h>
2556 #include <machine/../linux/linux.h>
2557 #include <machine/../linux/linux_proto.h>
2558 #include <compat/linux/linux_ioctl.h>
2559 
2560 /* There are multiple ioctl number ranges that need to be handled */
2561 #define AAC_LINUX_IOCTL_MIN  0x0000
2562 #define AAC_LINUX_IOCTL_MAX  0x21ff
2563 
2564 static linux_ioctl_function_t aac_linux_ioctl;
2565 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl,
2566 						 AAC_LINUX_IOCTL_MIN,
2567 						 AAC_LINUX_IOCTL_MAX};
2568 
2569 SYSINIT  (aac_register,   SI_SUB_KLD, SI_ORDER_MIDDLE,
2570 	  linux_ioctl_register_handler, &aac_handler);
2571 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE,
2572 	  linux_ioctl_unregister_handler, &aac_handler);
2573 
2574 MODULE_DEPEND(aac, linux, 1, 1, 1);
2575 
2576 static int
2577 aac_linux_ioctl(struct thread *td, struct linux_ioctl_args *args)
2578 {
2579 	struct file *fp;
2580 	u_long cmd;
2581 
2582 	debug_called(2);
2583 
2584 	fp = td->td_proc->p_fd->fd_ofiles[args->fd];
2585 	cmd = args->cmd;
2586 
2587 	/*
2588 	 * Pass the ioctl off to our standard handler.
2589 	 */
2590 	return(fo_ioctl(fp, cmd, (caddr_t)args->arg, td));
2591 }
2592 
2593 #endif
2594 
2595 /*
2596  * Return the Revision of the driver to userspace and check to see if the
2597  * userspace app is possibly compatible.  This is extremely bogus since
2598  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2599  * returning what the card reported.
2600  */
2601 static int
2602 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2603 {
2604 	struct aac_rev_check rev_check;
2605 	struct aac_rev_check_resp rev_check_resp;
2606 	int error = 0;
2607 
2608 	debug_called(2);
2609 
2610 	/*
2611 	 * Copyin the revision struct from userspace
2612 	 */
2613 	if ((error = copyin(udata, (caddr_t)&rev_check,
2614 			sizeof(struct aac_rev_check))) != 0) {
2615 		return error;
2616 	}
2617 
2618 	debug(2, "Userland revision= %d\n",
2619 	      rev_check.callingRevision.buildNumber);
2620 
2621 	/*
2622 	 * Doctor up the response struct.
2623 	 */
2624 	rev_check_resp.possiblyCompatible = 1;
2625 	rev_check_resp.adapterSWRevision.external.ul =
2626 	    sc->aac_revision.external.ul;
2627 	rev_check_resp.adapterSWRevision.buildNumber =
2628 	    sc->aac_revision.buildNumber;
2629 
2630 	return(copyout((caddr_t)&rev_check_resp, udata,
2631 			sizeof(struct aac_rev_check_resp)));
2632 }
2633 
2634 /*
2635  * Pass the caller the next AIF in their queue
2636  */
2637 static int
2638 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2639 {
2640 	struct get_adapter_fib_ioctl agf;
2641 	int error, s;
2642 
2643 	debug_called(2);
2644 
2645 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2646 
2647 		/*
2648 		 * Check the magic number that we gave the caller.
2649 		 */
2650 		if (agf.AdapterFibContext != (int)sc->aifthread) {
2651 			error = EFAULT;
2652 		} else {
2653 
2654 			s = splbio();
2655 			error = aac_return_aif(sc, agf.AifFib);
2656 
2657 			if ((error == EAGAIN) && (agf.Wait)) {
2658 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2659 				while (error == EAGAIN) {
2660 					error = tsleep(sc->aac_aifq, PRIBIO |
2661 						       PCATCH, "aacaif", 0);
2662 					if (error == 0)
2663 						error = aac_return_aif(sc,
2664 						    agf.AifFib);
2665 				}
2666 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2667 			}
2668 		splx(s);
2669 		}
2670 	}
2671 	return(error);
2672 }
2673 
2674 /*
2675  * Hand the next AIF off the top of the queue out to userspace.
2676  */
2677 static int
2678 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2679 {
2680 	int error;
2681 
2682 	debug_called(2);
2683 
2684 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2685 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2686 		error = EAGAIN;
2687 	} else {
2688 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2689 				sizeof(struct aac_aif_command));
2690 		if (error)
2691 			printf("aac_return_aif: copyout returned %d\n", error);
2692 		if (!error)
2693 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2694 					    AAC_AIFQ_LENGTH;
2695 	}
2696 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2697 	return(error);
2698 }
2699 
2700 /*
2701  * Give the userland some information about the container.  The AAC arch
2702  * expects the driver to be a SCSI passthrough type driver, so it expects
2703  * the containers to have b:t:l numbers.  Fake it.
2704  */
2705 static int
2706 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2707 {
2708 	struct aac_query_disk query_disk;
2709 	struct aac_container *co;
2710 	struct aac_disk	*disk;
2711 	int error, id;
2712 
2713 	debug_called(2);
2714 
2715 	disk = NULL;
2716 
2717 	error = copyin(uptr, (caddr_t)&query_disk,
2718 		       sizeof(struct aac_query_disk));
2719 	if (error)
2720 		return (error);
2721 
2722 	id = query_disk.ContainerNumber;
2723 	if (id == -1)
2724 		return (EINVAL);
2725 
2726 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2727 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2728 		if (co->co_mntobj.ObjectId == id)
2729 			break;
2730 		}
2731 
2732 		if (co == NULL) {
2733 			query_disk.Valid = 0;
2734 			query_disk.Locked = 0;
2735 			query_disk.Deleted = 1;		/* XXX is this right? */
2736 		} else {
2737 			disk = device_get_softc(co->co_disk);
2738 			query_disk.Valid = 1;
2739 			query_disk.Locked =
2740 			    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2741 			query_disk.Deleted = 0;
2742 			query_disk.Bus = device_get_unit(sc->aac_dev);
2743 			query_disk.Target = disk->unit;
2744 			query_disk.Lun = 0;
2745 			query_disk.UnMapped = 0;
2746 			bcopy(disk->ad_dev_t->si_name,
2747 			      &query_disk.diskDeviceName[0], 10);
2748 		}
2749 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2750 
2751 	error = copyout((caddr_t)&query_disk, uptr,
2752 			sizeof(struct aac_query_disk));
2753 
2754 	return (error);
2755 }
2756 
2757