xref: /freebsd/sys/dev/aac/aac.c (revision 7c1b51d6dc2e165ae7333373513b080f17cf79bd)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 #define AAC_DRIVERNAME			"aac"
37 
38 #include "opt_aac.h"
39 
40 /* #include <stddef.h> */
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/kthread.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #include <sys/ioccom.h>
49 
50 #include <sys/bus.h>
51 #include <sys/conf.h>
52 #include <sys/signalvar.h>
53 #include <sys/time.h>
54 #include <sys/eventhandler.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <machine/resource.h>
59 
60 #include <dev/pci/pcireg.h>
61 #include <dev/pci/pcivar.h>
62 
63 #include <dev/aac/aacreg.h>
64 #include <sys/aac_ioctl.h>
65 #include <dev/aac/aacvar.h>
66 #include <dev/aac/aac_tables.h>
67 
68 static void	aac_startup(void *arg);
69 static void	aac_add_container(struct aac_softc *sc,
70 				  struct aac_mntinforesp *mir, int f);
71 static void	aac_get_bus_info(struct aac_softc *sc);
72 static void	aac_daemon(void *arg);
73 
74 /* Command Processing */
75 static void	aac_timeout(struct aac_softc *sc);
76 static void	aac_complete(void *context, int pending);
77 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
78 static void	aac_bio_complete(struct aac_command *cm);
79 static int	aac_wait_command(struct aac_command *cm);
80 static void	aac_command_thread(struct aac_softc *sc);
81 
82 /* Command Buffer Management */
83 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
84 				   int nseg, int error);
85 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
86 				       int nseg, int error);
87 static int	aac_alloc_commands(struct aac_softc *sc);
88 static void	aac_free_commands(struct aac_softc *sc);
89 static void	aac_unmap_command(struct aac_command *cm);
90 
91 /* Hardware Interface */
92 static int	aac_alloc(struct aac_softc *sc);
93 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
94 			       int error);
95 static int	aac_check_firmware(struct aac_softc *sc);
96 static int	aac_init(struct aac_softc *sc);
97 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
98 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
99 				 u_int32_t arg3, u_int32_t *sp);
100 static int	aac_setup_intr(struct aac_softc *sc);
101 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
102 				struct aac_command *cm);
103 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
104 				u_int32_t *fib_size, struct aac_fib **fib_addr);
105 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
106 				     struct aac_fib *fib);
107 
108 /* StrongARM interface */
109 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
110 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
111 static int	aac_sa_get_istatus(struct aac_softc *sc);
112 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
113 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
114 				   u_int32_t arg0, u_int32_t arg1,
115 				   u_int32_t arg2, u_int32_t arg3);
116 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
117 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
118 
119 const struct aac_interface aac_sa_interface = {
120 	aac_sa_get_fwstatus,
121 	aac_sa_qnotify,
122 	aac_sa_get_istatus,
123 	aac_sa_clear_istatus,
124 	aac_sa_set_mailbox,
125 	aac_sa_get_mailbox,
126 	aac_sa_set_interrupts,
127 	NULL, NULL, NULL
128 };
129 
130 /* i960Rx interface */
131 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
132 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
133 static int	aac_rx_get_istatus(struct aac_softc *sc);
134 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
135 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
136 				   u_int32_t arg0, u_int32_t arg1,
137 				   u_int32_t arg2, u_int32_t arg3);
138 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
139 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
140 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm);
141 static int aac_rx_get_outb_queue(struct aac_softc *sc);
142 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index);
143 
144 const struct aac_interface aac_rx_interface = {
145 	aac_rx_get_fwstatus,
146 	aac_rx_qnotify,
147 	aac_rx_get_istatus,
148 	aac_rx_clear_istatus,
149 	aac_rx_set_mailbox,
150 	aac_rx_get_mailbox,
151 	aac_rx_set_interrupts,
152 	aac_rx_send_command,
153 	aac_rx_get_outb_queue,
154 	aac_rx_set_outb_queue
155 };
156 
157 /* Rocket/MIPS interface */
158 static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
159 static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
160 static int	aac_rkt_get_istatus(struct aac_softc *sc);
161 static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
162 static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
163 				    u_int32_t arg0, u_int32_t arg1,
164 				    u_int32_t arg2, u_int32_t arg3);
165 static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
166 static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
167 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm);
168 static int aac_rkt_get_outb_queue(struct aac_softc *sc);
169 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index);
170 
171 const struct aac_interface aac_rkt_interface = {
172 	aac_rkt_get_fwstatus,
173 	aac_rkt_qnotify,
174 	aac_rkt_get_istatus,
175 	aac_rkt_clear_istatus,
176 	aac_rkt_set_mailbox,
177 	aac_rkt_get_mailbox,
178 	aac_rkt_set_interrupts,
179 	aac_rkt_send_command,
180 	aac_rkt_get_outb_queue,
181 	aac_rkt_set_outb_queue
182 };
183 
184 /* Debugging and Diagnostics */
185 static void		aac_describe_controller(struct aac_softc *sc);
186 static const char	*aac_describe_code(const struct aac_code_lookup *table,
187 				   u_int32_t code);
188 
189 /* Management Interface */
190 static d_open_t		aac_open;
191 static d_ioctl_t	aac_ioctl;
192 static d_poll_t		aac_poll;
193 static void		aac_cdevpriv_dtor(void *arg);
194 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
195 static int		aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg);
196 static void		aac_handle_aif(struct aac_softc *sc,
197 					   struct aac_fib *fib);
198 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
199 static int		aac_open_aif(struct aac_softc *sc, caddr_t arg);
200 static int		aac_close_aif(struct aac_softc *sc, caddr_t arg);
201 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
202 static int		aac_return_aif(struct aac_softc *sc,
203 					struct aac_fib_context *ctx, caddr_t uptr);
204 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
205 static int		aac_get_pci_info(struct aac_softc *sc, caddr_t uptr);
206 static int		aac_supported_features(struct aac_softc *sc, caddr_t uptr);
207 static void		aac_ioctl_event(struct aac_softc *sc,
208 					struct aac_event *event, void *arg);
209 static struct aac_mntinforesp *
210 	aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid);
211 
212 static struct cdevsw aac_cdevsw = {
213 	.d_version =	D_VERSION,
214 	.d_flags =	D_NEEDGIANT,
215 	.d_open =	aac_open,
216 	.d_ioctl =	aac_ioctl,
217 	.d_poll =	aac_poll,
218 	.d_name =	"aac",
219 };
220 
221 static MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
222 
223 /* sysctl node */
224 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
225 
226 /*
227  * Device Interface
228  */
229 
230 /*
231  * Initialize the controller and softc
232  */
233 int
234 aac_attach(struct aac_softc *sc)
235 {
236 	int error, unit;
237 
238 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
239 
240 	/*
241 	 * Initialize per-controller queues.
242 	 */
243 	aac_initq_free(sc);
244 	aac_initq_ready(sc);
245 	aac_initq_busy(sc);
246 	aac_initq_bio(sc);
247 
248 	/*
249 	 * Initialize command-completion task.
250 	 */
251 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
252 
253 	/* mark controller as suspended until we get ourselves organised */
254 	sc->aac_state |= AAC_STATE_SUSPEND;
255 
256 	/*
257 	 * Check that the firmware on the card is supported.
258 	 */
259 	if ((error = aac_check_firmware(sc)) != 0)
260 		return(error);
261 
262 	/*
263 	 * Initialize locks
264 	 */
265 	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
266 	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
267 	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
268 	TAILQ_INIT(&sc->aac_container_tqh);
269 	TAILQ_INIT(&sc->aac_ev_cmfree);
270 
271 	/* Initialize the clock daemon callout. */
272 	callout_init_mtx(&sc->aac_daemontime, &sc->aac_io_lock, 0);
273 
274 	/*
275 	 * Initialize the adapter.
276 	 */
277 	if ((error = aac_alloc(sc)) != 0)
278 		return(error);
279 	if ((error = aac_init(sc)) != 0)
280 		return(error);
281 
282 	/*
283 	 * Allocate and connect our interrupt.
284 	 */
285 	if ((error = aac_setup_intr(sc)) != 0)
286 		return(error);
287 
288 	/*
289 	 * Print a little information about the controller.
290 	 */
291 	aac_describe_controller(sc);
292 
293 	/*
294 	 * Add sysctls.
295 	 */
296 	SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->aac_dev),
297 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->aac_dev)),
298 	    OID_AUTO, "firmware_build", CTLFLAG_RD,
299 	    &sc->aac_revision.buildNumber, 0,
300 	    "firmware build number");
301 
302 	/*
303 	 * Register to probe our containers later.
304 	 */
305 	sc->aac_ich.ich_func = aac_startup;
306 	sc->aac_ich.ich_arg = sc;
307 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
308 		device_printf(sc->aac_dev,
309 			      "can't establish configuration hook\n");
310 		return(ENXIO);
311 	}
312 
313 	/*
314 	 * Make the control device.
315 	 */
316 	unit = device_get_unit(sc->aac_dev);
317 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
318 				 0640, "aac%d", unit);
319 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
320 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
321 	sc->aac_dev_t->si_drv1 = sc;
322 
323 	/* Create the AIF thread */
324 	if (kproc_create((void(*)(void *))aac_command_thread, sc,
325 		   &sc->aifthread, 0, 0, "aac%daif", unit))
326 		panic("Could not create AIF thread");
327 
328 	/* Register the shutdown method to only be called post-dump */
329 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
330 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
331 		device_printf(sc->aac_dev,
332 			      "shutdown event registration failed\n");
333 
334 	/* Register with CAM for the non-DASD devices */
335 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
336 		TAILQ_INIT(&sc->aac_sim_tqh);
337 		aac_get_bus_info(sc);
338 	}
339 
340 	mtx_lock(&sc->aac_io_lock);
341 	callout_reset(&sc->aac_daemontime, 60 * hz, aac_daemon, sc);
342 	mtx_unlock(&sc->aac_io_lock);
343 
344 	return(0);
345 }
346 
347 static void
348 aac_daemon(void *arg)
349 {
350 	struct timeval tv;
351 	struct aac_softc *sc;
352 	struct aac_fib *fib;
353 
354 	sc = arg;
355 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
356 
357 	if (callout_pending(&sc->aac_daemontime) ||
358 	    callout_active(&sc->aac_daemontime) == 0)
359 		return;
360 	getmicrotime(&tv);
361 	aac_alloc_sync_fib(sc, &fib);
362 	*(uint32_t *)fib->data = tv.tv_sec;
363 	aac_sync_fib(sc, SendHostTime, 0, fib, sizeof(uint32_t));
364 	aac_release_sync_fib(sc);
365 	callout_schedule(&sc->aac_daemontime, 30 * 60 * hz);
366 }
367 
368 void
369 aac_add_event(struct aac_softc *sc, struct aac_event *event)
370 {
371 
372 	switch (event->ev_type & AAC_EVENT_MASK) {
373 	case AAC_EVENT_CMFREE:
374 		TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links);
375 		break;
376 	default:
377 		device_printf(sc->aac_dev, "aac_add event: unknown event %d\n",
378 		    event->ev_type);
379 		break;
380 	}
381 }
382 
383 /*
384  * Request information of container #cid
385  */
386 static struct aac_mntinforesp *
387 aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid)
388 {
389 	struct aac_mntinfo *mi;
390 
391 	mi = (struct aac_mntinfo *)&fib->data[0];
392 	/* use 64-bit LBA if enabled */
393 	mi->Command = (sc->flags & AAC_FLAGS_LBA_64BIT) ?
394 	    VM_NameServe64 : VM_NameServe;
395 	mi->MntType = FT_FILESYS;
396 	mi->MntCount = cid;
397 
398 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
399 			 sizeof(struct aac_mntinfo))) {
400 		device_printf(sc->aac_dev, "Error probing container %d\n", cid);
401 		return (NULL);
402 	}
403 
404 	return ((struct aac_mntinforesp *)&fib->data[0]);
405 }
406 
407 /*
408  * Probe for containers, create disks.
409  */
410 static void
411 aac_startup(void *arg)
412 {
413 	struct aac_softc *sc;
414 	struct aac_fib *fib;
415 	struct aac_mntinforesp *mir;
416 	int count = 0, i = 0;
417 
418 	sc = (struct aac_softc *)arg;
419 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
420 
421 	mtx_lock(&sc->aac_io_lock);
422 	aac_alloc_sync_fib(sc, &fib);
423 
424 	/* loop over possible containers */
425 	do {
426 		if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
427 			continue;
428 		if (i == 0)
429 			count = mir->MntRespCount;
430 		aac_add_container(sc, mir, 0);
431 		i++;
432 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
433 
434 	aac_release_sync_fib(sc);
435 	mtx_unlock(&sc->aac_io_lock);
436 
437 	/* mark the controller up */
438 	sc->aac_state &= ~AAC_STATE_SUSPEND;
439 
440 	/* poke the bus to actually attach the child devices */
441 	if (bus_generic_attach(sc->aac_dev))
442 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
443 
444 	/* disconnect ourselves from the intrhook chain */
445 	config_intrhook_disestablish(&sc->aac_ich);
446 
447 	/* enable interrupts now */
448 	AAC_UNMASK_INTERRUPTS(sc);
449 }
450 
451 /*
452  * Create a device to represent a new container
453  */
454 static void
455 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
456 {
457 	struct aac_container *co;
458 	device_t child;
459 
460 	/*
461 	 * Check container volume type for validity.  Note that many of
462 	 * the possible types may never show up.
463 	 */
464 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
465 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
466 		       M_NOWAIT | M_ZERO);
467 		if (co == NULL)
468 			panic("Out of memory?!");
469 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "id %x  name '%.16s'  size %u  type %d",
470 		      mir->MntTable[0].ObjectId,
471 		      mir->MntTable[0].FileSystemName,
472 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
473 
474 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
475 			device_printf(sc->aac_dev, "device_add_child failed\n");
476 		else
477 			device_set_ivars(child, co);
478 		device_set_desc(child, aac_describe_code(aac_container_types,
479 				mir->MntTable[0].VolType));
480 		co->co_disk = child;
481 		co->co_found = f;
482 		bcopy(&mir->MntTable[0], &co->co_mntobj,
483 		      sizeof(struct aac_mntobj));
484 		mtx_lock(&sc->aac_container_lock);
485 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
486 		mtx_unlock(&sc->aac_container_lock);
487 	}
488 }
489 
490 /*
491  * Allocate resources associated with (sc)
492  */
493 static int
494 aac_alloc(struct aac_softc *sc)
495 {
496 
497 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
498 
499 	/*
500 	 * Create DMA tag for mapping buffers into controller-addressable space.
501 	 */
502 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
503 			       1, 0, 			/* algnmnt, boundary */
504 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
505 			       BUS_SPACE_MAXADDR :
506 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
507 			       BUS_SPACE_MAXADDR, 	/* highaddr */
508 			       NULL, NULL, 		/* filter, filterarg */
509 			       sc->aac_max_sectors << 9, /* maxsize */
510 			       sc->aac_sg_tablesize,	/* nsegments */
511 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
512 			       BUS_DMA_ALLOCNOW,	/* flags */
513 			       busdma_lock_mutex,	/* lockfunc */
514 			       &sc->aac_io_lock,	/* lockfuncarg */
515 			       &sc->aac_buffer_dmat)) {
516 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
517 		return (ENOMEM);
518 	}
519 
520 	/*
521 	 * Create DMA tag for mapping FIBs into controller-addressable space..
522 	 */
523 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
524 			       1, 0, 			/* algnmnt, boundary */
525 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
526 			       BUS_SPACE_MAXADDR_32BIT :
527 			       0x7fffffff,		/* lowaddr */
528 			       BUS_SPACE_MAXADDR, 	/* highaddr */
529 			       NULL, NULL, 		/* filter, filterarg */
530 			       sc->aac_max_fibs_alloc *
531 			       sc->aac_max_fib_size,  /* maxsize */
532 			       1,			/* nsegments */
533 			       sc->aac_max_fibs_alloc *
534 			       sc->aac_max_fib_size,	/* maxsize */
535 			       0,			/* flags */
536 			       NULL, NULL,		/* No locking needed */
537 			       &sc->aac_fib_dmat)) {
538 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
539 		return (ENOMEM);
540 	}
541 
542 	/*
543 	 * Create DMA tag for the common structure and allocate it.
544 	 */
545 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
546 			       1, 0,			/* algnmnt, boundary */
547 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
548 			       BUS_SPACE_MAXADDR_32BIT :
549 			       0x7fffffff,		/* lowaddr */
550 			       BUS_SPACE_MAXADDR, 	/* highaddr */
551 			       NULL, NULL, 		/* filter, filterarg */
552 			       8192 + sizeof(struct aac_common), /* maxsize */
553 			       1,			/* nsegments */
554 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
555 			       0,			/* flags */
556 			       NULL, NULL,		/* No locking needed */
557 			       &sc->aac_common_dmat)) {
558 		device_printf(sc->aac_dev,
559 			      "can't allocate common structure DMA tag\n");
560 		return (ENOMEM);
561 	}
562 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
563 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
564 		device_printf(sc->aac_dev, "can't allocate common structure\n");
565 		return (ENOMEM);
566 	}
567 
568 	/*
569 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
570 	 * below address 8192 in physical memory.
571 	 * XXX If the padding is not needed, can it be put to use instead
572 	 * of ignored?
573 	 */
574 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
575 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
576 			aac_common_map, sc, 0);
577 
578 	if (sc->aac_common_busaddr < 8192) {
579 		sc->aac_common = (struct aac_common *)
580 		    ((uint8_t *)sc->aac_common + 8192);
581 		sc->aac_common_busaddr += 8192;
582 	}
583 	bzero(sc->aac_common, sizeof(*sc->aac_common));
584 
585 	/* Allocate some FIBs and associated command structs */
586 	TAILQ_INIT(&sc->aac_fibmap_tqh);
587 	sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command),
588 				  M_AACBUF, M_WAITOK|M_ZERO);
589 	while (sc->total_fibs < sc->aac_max_fibs) {
590 		if (aac_alloc_commands(sc) != 0)
591 			break;
592 	}
593 	if (sc->total_fibs == 0)
594 		return (ENOMEM);
595 
596 	return (0);
597 }
598 
599 /*
600  * Free all of the resources associated with (sc)
601  *
602  * Should not be called if the controller is active.
603  */
604 void
605 aac_free(struct aac_softc *sc)
606 {
607 
608 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
609 
610 	/* remove the control device */
611 	if (sc->aac_dev_t != NULL)
612 		destroy_dev(sc->aac_dev_t);
613 
614 	/* throw away any FIB buffers, discard the FIB DMA tag */
615 	aac_free_commands(sc);
616 	if (sc->aac_fib_dmat)
617 		bus_dma_tag_destroy(sc->aac_fib_dmat);
618 
619 	free(sc->aac_commands, M_AACBUF);
620 
621 	/* destroy the common area */
622 	if (sc->aac_common) {
623 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
624 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
625 				sc->aac_common_dmamap);
626 	}
627 	if (sc->aac_common_dmat)
628 		bus_dma_tag_destroy(sc->aac_common_dmat);
629 
630 	/* disconnect the interrupt handler */
631 	if (sc->aac_intr)
632 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
633 	if (sc->aac_irq != NULL) {
634 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ,
635 		    rman_get_rid(sc->aac_irq), sc->aac_irq);
636 		pci_release_msi(sc->aac_dev);
637 	}
638 
639 	/* destroy data-transfer DMA tag */
640 	if (sc->aac_buffer_dmat)
641 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
642 
643 	/* destroy the parent DMA tag */
644 	if (sc->aac_parent_dmat)
645 		bus_dma_tag_destroy(sc->aac_parent_dmat);
646 
647 	/* release the register window mapping */
648 	if (sc->aac_regs_res0 != NULL)
649 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
650 		    rman_get_rid(sc->aac_regs_res0), sc->aac_regs_res0);
651 	if (sc->aac_hwif == AAC_HWIF_NARK && sc->aac_regs_res1 != NULL)
652 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
653 		    rman_get_rid(sc->aac_regs_res1), sc->aac_regs_res1);
654 }
655 
656 /*
657  * Disconnect from the controller completely, in preparation for unload.
658  */
659 int
660 aac_detach(device_t dev)
661 {
662 	struct aac_softc *sc;
663 	struct aac_container *co;
664 	struct aac_sim	*sim;
665 	int error;
666 
667 	sc = device_get_softc(dev);
668 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
669 
670 	callout_drain(&sc->aac_daemontime);
671 
672 	mtx_lock(&sc->aac_io_lock);
673 	while (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
674 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
675 		wakeup(sc->aifthread);
676 		msleep(sc->aac_dev, &sc->aac_io_lock, PUSER, "aacdch", 0);
677 	}
678 	mtx_unlock(&sc->aac_io_lock);
679 	KASSERT((sc->aifflags & AAC_AIFFLAGS_RUNNING) == 0,
680 	    ("%s: invalid detach state", __func__));
681 
682 	/* Remove the child containers */
683 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
684 		error = device_delete_child(dev, co->co_disk);
685 		if (error)
686 			return (error);
687 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
688 		free(co, M_AACBUF);
689 	}
690 
691 	/* Remove the CAM SIMs */
692 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
693 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
694 		error = device_delete_child(dev, sim->sim_dev);
695 		if (error)
696 			return (error);
697 		free(sim, M_AACBUF);
698 	}
699 
700 	if ((error = aac_shutdown(dev)))
701 		return(error);
702 
703 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
704 
705 	aac_free(sc);
706 
707 	mtx_destroy(&sc->aac_aifq_lock);
708 	mtx_destroy(&sc->aac_io_lock);
709 	mtx_destroy(&sc->aac_container_lock);
710 
711 	return(0);
712 }
713 
714 /*
715  * Bring the controller down to a dormant state and detach all child devices.
716  *
717  * This function is called before detach or system shutdown.
718  *
719  * Note that we can assume that the bioq on the controller is empty, as we won't
720  * allow shutdown if any device is open.
721  */
722 int
723 aac_shutdown(device_t dev)
724 {
725 	struct aac_softc *sc;
726 	struct aac_fib *fib;
727 	struct aac_close_command *cc;
728 
729 	sc = device_get_softc(dev);
730 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
731 
732 	sc->aac_state |= AAC_STATE_SUSPEND;
733 
734 	/*
735 	 * Send a Container shutdown followed by a HostShutdown FIB to the
736 	 * controller to convince it that we don't want to talk to it anymore.
737 	 * We've been closed and all I/O completed already
738 	 */
739 	device_printf(sc->aac_dev, "shutting down controller...");
740 
741 	mtx_lock(&sc->aac_io_lock);
742 	aac_alloc_sync_fib(sc, &fib);
743 	cc = (struct aac_close_command *)&fib->data[0];
744 
745 	bzero(cc, sizeof(struct aac_close_command));
746 	cc->Command = VM_CloseAll;
747 	cc->ContainerId = 0xffffffff;
748 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
749 	    sizeof(struct aac_close_command)))
750 		printf("FAILED.\n");
751 	else
752 		printf("done\n");
753 #if 0
754 	else {
755 		fib->data[0] = 0;
756 		/*
757 		 * XXX Issuing this command to the controller makes it shut down
758 		 * but also keeps it from coming back up without a reset of the
759 		 * PCI bus.  This is not desirable if you are just unloading the
760 		 * driver module with the intent to reload it later.
761 		 */
762 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
763 		    fib, 1)) {
764 			printf("FAILED.\n");
765 		} else {
766 			printf("done.\n");
767 		}
768 	}
769 #endif
770 
771 	AAC_MASK_INTERRUPTS(sc);
772 	aac_release_sync_fib(sc);
773 	mtx_unlock(&sc->aac_io_lock);
774 
775 	return(0);
776 }
777 
778 /*
779  * Bring the controller to a quiescent state, ready for system suspend.
780  */
781 int
782 aac_suspend(device_t dev)
783 {
784 	struct aac_softc *sc;
785 
786 	sc = device_get_softc(dev);
787 
788 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
789 	sc->aac_state |= AAC_STATE_SUSPEND;
790 
791 	AAC_MASK_INTERRUPTS(sc);
792 	return(0);
793 }
794 
795 /*
796  * Bring the controller back to a state ready for operation.
797  */
798 int
799 aac_resume(device_t dev)
800 {
801 	struct aac_softc *sc;
802 
803 	sc = device_get_softc(dev);
804 
805 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
806 	sc->aac_state &= ~AAC_STATE_SUSPEND;
807 	AAC_UNMASK_INTERRUPTS(sc);
808 	return(0);
809 }
810 
811 /*
812  * Interrupt handler for NEW_COMM interface.
813  */
814 void
815 aac_new_intr(void *arg)
816 {
817 	struct aac_softc *sc;
818 	u_int32_t index, fast;
819 	struct aac_command *cm;
820 	struct aac_fib *fib;
821 	int i;
822 
823 	sc = (struct aac_softc *)arg;
824 
825 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
826 	mtx_lock(&sc->aac_io_lock);
827 	while (1) {
828 		index = AAC_GET_OUTB_QUEUE(sc);
829 		if (index == 0xffffffff)
830 			index = AAC_GET_OUTB_QUEUE(sc);
831 		if (index == 0xffffffff)
832 			break;
833 		if (index & 2) {
834 			if (index == 0xfffffffe) {
835 				/* XXX This means that the controller wants
836 				 * more work.  Ignore it for now.
837 				 */
838 				continue;
839 			}
840 			/* AIF */
841 			fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF,
842 				   M_NOWAIT | M_ZERO);
843 			if (fib == NULL) {
844 				/* If we're really this short on memory,
845 				 * hopefully breaking out of the handler will
846 				 * allow something to get freed.  This
847 				 * actually sucks a whole lot.
848 				 */
849 				break;
850 			}
851 			index &= ~2;
852 			for (i = 0; i < sizeof(struct aac_fib)/4; ++i)
853 				((u_int32_t *)fib)[i] = AAC_MEM1_GETREG4(sc, index + i*4);
854 			aac_handle_aif(sc, fib);
855 			free(fib, M_AACBUF);
856 
857 			/*
858 			 * AIF memory is owned by the adapter, so let it
859 			 * know that we are done with it.
860 			 */
861 			AAC_SET_OUTB_QUEUE(sc, index);
862 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
863 		} else {
864 			fast = index & 1;
865 			cm = sc->aac_commands + (index >> 2);
866 			fib = cm->cm_fib;
867 			if (fast) {
868 				fib->Header.XferState |= AAC_FIBSTATE_DONEADAP;
869 				*((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL;
870 			}
871 			aac_remove_busy(cm);
872  			aac_unmap_command(cm);
873 			cm->cm_flags |= AAC_CMD_COMPLETED;
874 
875 			/* is there a completion handler? */
876 			if (cm->cm_complete != NULL) {
877 				cm->cm_complete(cm);
878 			} else {
879 				/* assume that someone is sleeping on this
880 				 * command
881 				 */
882 				wakeup(cm);
883 			}
884 			sc->flags &= ~AAC_QUEUE_FRZN;
885 		}
886 	}
887 	/* see if we can start some more I/O */
888 	if ((sc->flags & AAC_QUEUE_FRZN) == 0)
889 		aac_startio(sc);
890 
891 	mtx_unlock(&sc->aac_io_lock);
892 }
893 
894 /*
895  * Interrupt filter for !NEW_COMM interface.
896  */
897 int
898 aac_filter(void *arg)
899 {
900 	struct aac_softc *sc;
901 	u_int16_t reason;
902 
903 	sc = (struct aac_softc *)arg;
904 
905 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
906 	/*
907 	 * Read the status register directly.  This is faster than taking the
908 	 * driver lock and reading the queues directly.  It also saves having
909 	 * to turn parts of the driver lock into a spin mutex, which would be
910 	 * ugly.
911 	 */
912 	reason = AAC_GET_ISTATUS(sc);
913 	AAC_CLEAR_ISTATUS(sc, reason);
914 
915 	/* handle completion processing */
916 	if (reason & AAC_DB_RESPONSE_READY)
917 		taskqueue_enqueue(taskqueue_fast, &sc->aac_task_complete);
918 
919 	/* controller wants to talk to us */
920 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
921 		/*
922 		 * XXX Make sure that we don't get fooled by strange messages
923 		 * that start with a NULL.
924 		 */
925 		if ((reason & AAC_DB_PRINTF) &&
926 			(sc->aac_common->ac_printf[0] == 0))
927 			sc->aac_common->ac_printf[0] = 32;
928 
929 		/*
930 		 * This might miss doing the actual wakeup.  However, the
931 		 * msleep that this is waking up has a timeout, so it will
932 		 * wake up eventually.  AIFs and printfs are low enough
933 		 * priority that they can handle hanging out for a few seconds
934 		 * if needed.
935 		 */
936 		wakeup(sc->aifthread);
937 	}
938 	return (FILTER_HANDLED);
939 }
940 
941 /*
942  * Command Processing
943  */
944 
945 /*
946  * Start as much queued I/O as possible on the controller
947  */
948 void
949 aac_startio(struct aac_softc *sc)
950 {
951 	struct aac_command *cm;
952 	int error;
953 
954 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
955 
956 	for (;;) {
957 		/*
958 		 * This flag might be set if the card is out of resources.
959 		 * Checking it here prevents an infinite loop of deferrals.
960 		 */
961 		if (sc->flags & AAC_QUEUE_FRZN)
962 			break;
963 
964 		/*
965 		 * Try to get a command that's been put off for lack of
966 		 * resources
967 		 */
968 		cm = aac_dequeue_ready(sc);
969 
970 		/*
971 		 * Try to build a command off the bio queue (ignore error
972 		 * return)
973 		 */
974 		if (cm == NULL)
975 			aac_bio_command(sc, &cm);
976 
977 		/* nothing to do? */
978 		if (cm == NULL)
979 			break;
980 
981 		/* don't map more than once */
982 		if (cm->cm_flags & AAC_CMD_MAPPED)
983 			panic("aac: command %p already mapped", cm);
984 
985 		/*
986 		 * Set up the command to go to the controller.  If there are no
987 		 * data buffers associated with the command then it can bypass
988 		 * busdma.
989 		 */
990 		if (cm->cm_datalen != 0) {
991 			if (cm->cm_flags & AAC_REQ_BIO)
992 				error = bus_dmamap_load_bio(
993 				    sc->aac_buffer_dmat, cm->cm_datamap,
994 				    (struct bio *)cm->cm_private,
995 				    aac_map_command_sg, cm, 0);
996 			else
997 				error = bus_dmamap_load(sc->aac_buffer_dmat,
998 				    cm->cm_datamap, cm->cm_data,
999 				    cm->cm_datalen, aac_map_command_sg, cm, 0);
1000 			if (error == EINPROGRESS) {
1001 				fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "freezing queue\n");
1002 				sc->flags |= AAC_QUEUE_FRZN;
1003 			} else if (error != 0)
1004 				panic("aac_startio: unexpected error %d from "
1005 				      "busdma", error);
1006 		} else
1007 			aac_map_command_sg(cm, NULL, 0, 0);
1008 	}
1009 }
1010 
1011 /*
1012  * Handle notification of one or more FIBs coming from the controller.
1013  */
1014 static void
1015 aac_command_thread(struct aac_softc *sc)
1016 {
1017 	struct aac_fib *fib;
1018 	u_int32_t fib_size;
1019 	int size, retval;
1020 
1021 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1022 
1023 	mtx_lock(&sc->aac_io_lock);
1024 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
1025 
1026 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
1027 
1028 		retval = 0;
1029 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
1030 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
1031 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
1032 
1033 		/*
1034 		 * First see if any FIBs need to be allocated.  This needs
1035 		 * to be called without the driver lock because contigmalloc
1036 		 * can sleep.
1037 		 */
1038 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
1039 			mtx_unlock(&sc->aac_io_lock);
1040 			aac_alloc_commands(sc);
1041 			mtx_lock(&sc->aac_io_lock);
1042 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
1043 			aac_startio(sc);
1044 		}
1045 
1046 		/*
1047 		 * While we're here, check to see if any commands are stuck.
1048 		 * This is pretty low-priority, so it's ok if it doesn't
1049 		 * always fire.
1050 		 */
1051 		if (retval == EWOULDBLOCK)
1052 			aac_timeout(sc);
1053 
1054 		/* Check the hardware printf message buffer */
1055 		if (sc->aac_common->ac_printf[0] != 0)
1056 			aac_print_printf(sc);
1057 
1058 		/* Also check to see if the adapter has a command for us. */
1059 		if (sc->flags & AAC_FLAGS_NEW_COMM)
1060 			continue;
1061 		for (;;) {
1062 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
1063 					   &fib_size, &fib))
1064 				break;
1065 
1066 			AAC_PRINT_FIB(sc, fib);
1067 
1068 			switch (fib->Header.Command) {
1069 			case AifRequest:
1070 				aac_handle_aif(sc, fib);
1071 				break;
1072 			default:
1073 				device_printf(sc->aac_dev, "unknown command "
1074 					      "from controller\n");
1075 				break;
1076 			}
1077 
1078 			if ((fib->Header.XferState == 0) ||
1079 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
1080 				break;
1081 			}
1082 
1083 			/* Return the AIF to the controller. */
1084 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
1085 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
1086 				*(AAC_FSAStatus*)fib->data = ST_OK;
1087 
1088 				/* XXX Compute the Size field? */
1089 				size = fib->Header.Size;
1090 				if (size > sizeof(struct aac_fib)) {
1091 					size = sizeof(struct aac_fib);
1092 					fib->Header.Size = size;
1093 				}
1094 				/*
1095 				 * Since we did not generate this command, it
1096 				 * cannot go through the normal
1097 				 * enqueue->startio chain.
1098 				 */
1099 				aac_enqueue_response(sc,
1100 						 AAC_ADAP_NORM_RESP_QUEUE,
1101 						 fib);
1102 			}
1103 		}
1104 	}
1105 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
1106 	mtx_unlock(&sc->aac_io_lock);
1107 	wakeup(sc->aac_dev);
1108 
1109 	kproc_exit(0);
1110 }
1111 
1112 /*
1113  * Process completed commands.
1114  */
1115 static void
1116 aac_complete(void *context, int pending)
1117 {
1118 	struct aac_softc *sc;
1119 	struct aac_command *cm;
1120 	struct aac_fib *fib;
1121 	u_int32_t fib_size;
1122 
1123 	sc = (struct aac_softc *)context;
1124 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1125 
1126 	mtx_lock(&sc->aac_io_lock);
1127 
1128 	/* pull completed commands off the queue */
1129 	for (;;) {
1130 		/* look for completed FIBs on our queue */
1131 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
1132 							&fib))
1133 			break;	/* nothing to do */
1134 
1135 		/* get the command, unmap and hand off for processing */
1136 		cm = sc->aac_commands + fib->Header.SenderData;
1137 		if (cm == NULL) {
1138 			AAC_PRINT_FIB(sc, fib);
1139 			break;
1140 		}
1141 		if ((cm->cm_flags & AAC_CMD_TIMEDOUT) != 0)
1142 			device_printf(sc->aac_dev,
1143 			    "COMMAND %p COMPLETED AFTER %d SECONDS\n",
1144 			    cm, (int)(time_uptime-cm->cm_timestamp));
1145 
1146 		aac_remove_busy(cm);
1147 
1148  		aac_unmap_command(cm);
1149 		cm->cm_flags |= AAC_CMD_COMPLETED;
1150 
1151 		/* is there a completion handler? */
1152 		if (cm->cm_complete != NULL) {
1153 			cm->cm_complete(cm);
1154 		} else {
1155 			/* assume that someone is sleeping on this command */
1156 			wakeup(cm);
1157 		}
1158 	}
1159 
1160 	/* see if we can start some more I/O */
1161 	sc->flags &= ~AAC_QUEUE_FRZN;
1162 	aac_startio(sc);
1163 
1164 	mtx_unlock(&sc->aac_io_lock);
1165 }
1166 
1167 /*
1168  * Handle a bio submitted from a disk device.
1169  */
1170 void
1171 aac_submit_bio(struct bio *bp)
1172 {
1173 	struct aac_disk *ad;
1174 	struct aac_softc *sc;
1175 
1176 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1177 	sc = ad->ad_controller;
1178 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1179 
1180 	/* queue the BIO and try to get some work done */
1181 	aac_enqueue_bio(sc, bp);
1182 	aac_startio(sc);
1183 }
1184 
1185 /*
1186  * Get a bio and build a command to go with it.
1187  */
1188 static int
1189 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
1190 {
1191 	struct aac_command *cm;
1192 	struct aac_fib *fib;
1193 	struct aac_disk *ad;
1194 	struct bio *bp;
1195 
1196 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1197 
1198 	/* get the resources we will need */
1199 	cm = NULL;
1200 	bp = NULL;
1201 	if (aac_alloc_command(sc, &cm))	/* get a command */
1202 		goto fail;
1203 	if ((bp = aac_dequeue_bio(sc)) == NULL)
1204 		goto fail;
1205 
1206 	/* fill out the command */
1207 	cm->cm_datalen = bp->bio_bcount;
1208 	cm->cm_complete = aac_bio_complete;
1209 	cm->cm_flags = AAC_REQ_BIO;
1210 	cm->cm_private = bp;
1211 	cm->cm_timestamp = time_uptime;
1212 
1213 	/* build the FIB */
1214 	fib = cm->cm_fib;
1215 	fib->Header.Size = sizeof(struct aac_fib_header);
1216 	fib->Header.XferState =
1217 		AAC_FIBSTATE_HOSTOWNED   |
1218 		AAC_FIBSTATE_INITIALISED |
1219 		AAC_FIBSTATE_EMPTY	 |
1220 		AAC_FIBSTATE_FROMHOST	 |
1221 		AAC_FIBSTATE_REXPECTED   |
1222 		AAC_FIBSTATE_NORM	 |
1223 		AAC_FIBSTATE_ASYNC	 |
1224 		AAC_FIBSTATE_FAST_RESPONSE;
1225 
1226 	/* build the read/write request */
1227 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1228 
1229 	if (sc->flags & AAC_FLAGS_RAW_IO) {
1230 		struct aac_raw_io *raw;
1231 		raw = (struct aac_raw_io *)&fib->data[0];
1232 		fib->Header.Command = RawIo;
1233 		raw->BlockNumber = (u_int64_t)bp->bio_pblkno;
1234 		raw->ByteCount = bp->bio_bcount;
1235 		raw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1236 		raw->BpTotal = 0;
1237 		raw->BpComplete = 0;
1238 		fib->Header.Size += sizeof(struct aac_raw_io);
1239 		cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw;
1240 		if (bp->bio_cmd == BIO_READ) {
1241 			raw->Flags = 1;
1242 			cm->cm_flags |= AAC_CMD_DATAIN;
1243 		} else {
1244 			raw->Flags = 0;
1245 			cm->cm_flags |= AAC_CMD_DATAOUT;
1246 		}
1247 	} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1248 		fib->Header.Command = ContainerCommand;
1249 		if (bp->bio_cmd == BIO_READ) {
1250 			struct aac_blockread *br;
1251 			br = (struct aac_blockread *)&fib->data[0];
1252 			br->Command = VM_CtBlockRead;
1253 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1254 			br->BlockNumber = bp->bio_pblkno;
1255 			br->ByteCount = bp->bio_bcount;
1256 			fib->Header.Size += sizeof(struct aac_blockread);
1257 			cm->cm_sgtable = &br->SgMap;
1258 			cm->cm_flags |= AAC_CMD_DATAIN;
1259 		} else {
1260 			struct aac_blockwrite *bw;
1261 			bw = (struct aac_blockwrite *)&fib->data[0];
1262 			bw->Command = VM_CtBlockWrite;
1263 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1264 			bw->BlockNumber = bp->bio_pblkno;
1265 			bw->ByteCount = bp->bio_bcount;
1266 			bw->Stable = CUNSTABLE;
1267 			fib->Header.Size += sizeof(struct aac_blockwrite);
1268 			cm->cm_flags |= AAC_CMD_DATAOUT;
1269 			cm->cm_sgtable = &bw->SgMap;
1270 		}
1271 	} else {
1272 		fib->Header.Command = ContainerCommand64;
1273 		if (bp->bio_cmd == BIO_READ) {
1274 			struct aac_blockread64 *br;
1275 			br = (struct aac_blockread64 *)&fib->data[0];
1276 			br->Command = VM_CtHostRead64;
1277 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1278 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1279 			br->BlockNumber = bp->bio_pblkno;
1280 			br->Pad = 0;
1281 			br->Flags = 0;
1282 			fib->Header.Size += sizeof(struct aac_blockread64);
1283 			cm->cm_flags |= AAC_CMD_DATAIN;
1284 			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
1285 		} else {
1286 			struct aac_blockwrite64 *bw;
1287 			bw = (struct aac_blockwrite64 *)&fib->data[0];
1288 			bw->Command = VM_CtHostWrite64;
1289 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1290 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1291 			bw->BlockNumber = bp->bio_pblkno;
1292 			bw->Pad = 0;
1293 			bw->Flags = 0;
1294 			fib->Header.Size += sizeof(struct aac_blockwrite64);
1295 			cm->cm_flags |= AAC_CMD_DATAOUT;
1296 			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
1297 		}
1298 	}
1299 
1300 	*cmp = cm;
1301 	return(0);
1302 
1303 fail:
1304 	if (bp != NULL)
1305 		aac_enqueue_bio(sc, bp);
1306 	if (cm != NULL)
1307 		aac_release_command(cm);
1308 	return(ENOMEM);
1309 }
1310 
1311 /*
1312  * Handle a bio-instigated command that has been completed.
1313  */
1314 static void
1315 aac_bio_complete(struct aac_command *cm)
1316 {
1317 	struct aac_blockread_response *brr;
1318 	struct aac_blockwrite_response *bwr;
1319 	struct bio *bp;
1320 	AAC_FSAStatus status;
1321 
1322 	/* fetch relevant status and then release the command */
1323 	bp = (struct bio *)cm->cm_private;
1324 	if (bp->bio_cmd == BIO_READ) {
1325 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1326 		status = brr->Status;
1327 	} else {
1328 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1329 		status = bwr->Status;
1330 	}
1331 	aac_release_command(cm);
1332 
1333 	/* fix up the bio based on status */
1334 	if (status == ST_OK) {
1335 		bp->bio_resid = 0;
1336 	} else {
1337 		bp->bio_error = EIO;
1338 		bp->bio_flags |= BIO_ERROR;
1339 	}
1340 	aac_biodone(bp);
1341 }
1342 
1343 /*
1344  * Submit a command to the controller, return when it completes.
1345  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1346  *     be stuck here forever.  At the same time, signals are not caught
1347  *     because there is a risk that a signal could wakeup the sleep before
1348  *     the card has a chance to complete the command.  Since there is no way
1349  *     to cancel a command that is in progress, we can't protect against the
1350  *     card completing a command late and spamming the command and data
1351  *     memory.  So, we are held hostage until the command completes.
1352  */
1353 static int
1354 aac_wait_command(struct aac_command *cm)
1355 {
1356 	struct aac_softc *sc;
1357 	int error;
1358 
1359 	sc = cm->cm_sc;
1360 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1361 
1362 	/* Put the command on the ready queue and get things going */
1363 	aac_enqueue_ready(cm);
1364 	aac_startio(sc);
1365 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1366 	return(error);
1367 }
1368 
1369 /*
1370  *Command Buffer Management
1371  */
1372 
1373 /*
1374  * Allocate a command.
1375  */
1376 int
1377 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1378 {
1379 	struct aac_command *cm;
1380 
1381 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1382 
1383 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1384 		if (sc->total_fibs < sc->aac_max_fibs) {
1385 			mtx_lock(&sc->aac_io_lock);
1386 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1387 			mtx_unlock(&sc->aac_io_lock);
1388 			wakeup(sc->aifthread);
1389 		}
1390 		return (EBUSY);
1391 	}
1392 
1393 	*cmp = cm;
1394 	return(0);
1395 }
1396 
1397 /*
1398  * Release a command back to the freelist.
1399  */
1400 void
1401 aac_release_command(struct aac_command *cm)
1402 {
1403 	struct aac_event *event;
1404 	struct aac_softc *sc;
1405 
1406 	sc = cm->cm_sc;
1407 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1408 
1409 	/* (re)initialize the command/FIB */
1410 	cm->cm_datalen = 0;
1411 	cm->cm_sgtable = NULL;
1412 	cm->cm_flags = 0;
1413 	cm->cm_complete = NULL;
1414 	cm->cm_private = NULL;
1415 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1416 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1417 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1418 	cm->cm_fib->Header.Flags = 0;
1419 	cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size;
1420 
1421 	/*
1422 	 * These are duplicated in aac_start to cover the case where an
1423 	 * intermediate stage may have destroyed them.  They're left
1424 	 * initialized here for debugging purposes only.
1425 	 */
1426 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1427 	cm->cm_fib->Header.SenderData = 0;
1428 
1429 	aac_enqueue_free(cm);
1430 
1431 	if ((event = TAILQ_FIRST(&sc->aac_ev_cmfree)) != NULL) {
1432 		TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links);
1433 		event->ev_callback(sc, event, event->ev_arg);
1434 	}
1435 }
1436 
1437 /*
1438  * Map helper for command/FIB allocation.
1439  */
1440 static void
1441 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1442 {
1443 	uint64_t	*fibphys;
1444 
1445 	fibphys = (uint64_t *)arg;
1446 
1447 	*fibphys = segs[0].ds_addr;
1448 }
1449 
1450 /*
1451  * Allocate and initialize commands/FIBs for this adapter.
1452  */
1453 static int
1454 aac_alloc_commands(struct aac_softc *sc)
1455 {
1456 	struct aac_command *cm;
1457 	struct aac_fibmap *fm;
1458 	uint64_t fibphys;
1459 	int i, error;
1460 
1461 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1462 
1463 	if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs)
1464 		return (ENOMEM);
1465 
1466 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1467 	if (fm == NULL)
1468 		return (ENOMEM);
1469 
1470 	/* allocate the FIBs in DMAable memory and load them */
1471 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1472 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1473 		device_printf(sc->aac_dev,
1474 			      "Not enough contiguous memory available.\n");
1475 		free(fm, M_AACBUF);
1476 		return (ENOMEM);
1477 	}
1478 
1479 	/* Ignore errors since this doesn't bounce */
1480 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1481 			      sc->aac_max_fibs_alloc * sc->aac_max_fib_size,
1482 			      aac_map_command_helper, &fibphys, 0);
1483 
1484 	/* initialize constant fields in the command structure */
1485 	bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size);
1486 	for (i = 0; i < sc->aac_max_fibs_alloc; i++) {
1487 		cm = sc->aac_commands + sc->total_fibs;
1488 		fm->aac_commands = cm;
1489 		cm->cm_sc = sc;
1490 		cm->cm_fib = (struct aac_fib *)
1491 			((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size);
1492 		cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size;
1493 		cm->cm_index = sc->total_fibs;
1494 
1495 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1496 					       &cm->cm_datamap)) != 0)
1497 			break;
1498 		mtx_lock(&sc->aac_io_lock);
1499 		aac_release_command(cm);
1500 		sc->total_fibs++;
1501 		mtx_unlock(&sc->aac_io_lock);
1502 	}
1503 
1504 	if (i > 0) {
1505 		mtx_lock(&sc->aac_io_lock);
1506 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1507 		fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "total_fibs= %d\n", sc->total_fibs);
1508 		mtx_unlock(&sc->aac_io_lock);
1509 		return (0);
1510 	}
1511 
1512 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1513 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1514 	free(fm, M_AACBUF);
1515 	return (ENOMEM);
1516 }
1517 
1518 /*
1519  * Free FIBs owned by this adapter.
1520  */
1521 static void
1522 aac_free_commands(struct aac_softc *sc)
1523 {
1524 	struct aac_fibmap *fm;
1525 	struct aac_command *cm;
1526 	int i;
1527 
1528 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1529 
1530 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1531 
1532 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1533 		/*
1534 		 * We check against total_fibs to handle partially
1535 		 * allocated blocks.
1536 		 */
1537 		for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) {
1538 			cm = fm->aac_commands + i;
1539 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1540 		}
1541 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1542 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1543 		free(fm, M_AACBUF);
1544 	}
1545 }
1546 
1547 /*
1548  * Command-mapping helper function - populate this command's s/g table.
1549  */
1550 static void
1551 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1552 {
1553 	struct aac_softc *sc;
1554 	struct aac_command *cm;
1555 	struct aac_fib *fib;
1556 	int i;
1557 
1558 	cm = (struct aac_command *)arg;
1559 	sc = cm->cm_sc;
1560 	fib = cm->cm_fib;
1561 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1562 
1563 	/* copy into the FIB */
1564 	if (cm->cm_sgtable != NULL) {
1565 		if (fib->Header.Command == RawIo) {
1566 			struct aac_sg_tableraw *sg;
1567 			sg = (struct aac_sg_tableraw *)cm->cm_sgtable;
1568 			sg->SgCount = nseg;
1569 			for (i = 0; i < nseg; i++) {
1570 				sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr;
1571 				sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len;
1572 				sg->SgEntryRaw[i].Next = 0;
1573 				sg->SgEntryRaw[i].Prev = 0;
1574 				sg->SgEntryRaw[i].Flags = 0;
1575 			}
1576 			/* update the FIB size for the s/g count */
1577 			fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw);
1578 		} else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1579 			struct aac_sg_table *sg;
1580 			sg = cm->cm_sgtable;
1581 			sg->SgCount = nseg;
1582 			for (i = 0; i < nseg; i++) {
1583 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1584 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1585 			}
1586 			/* update the FIB size for the s/g count */
1587 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry);
1588 		} else {
1589 			struct aac_sg_table64 *sg;
1590 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1591 			sg->SgCount = nseg;
1592 			for (i = 0; i < nseg; i++) {
1593 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1594 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1595 			}
1596 			/* update the FIB size for the s/g count */
1597 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1598 		}
1599 	}
1600 
1601 	/* Fix up the address values in the FIB.  Use the command array index
1602 	 * instead of a pointer since these fields are only 32 bits.  Shift
1603 	 * the SenderFibAddress over to make room for the fast response bit
1604 	 * and for the AIF bit
1605 	 */
1606 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2);
1607 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1608 
1609 	/* save a pointer to the command for speedy reverse-lookup */
1610 	cm->cm_fib->Header.SenderData = cm->cm_index;
1611 
1612 	if (cm->cm_flags & AAC_CMD_DATAIN)
1613 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1614 				BUS_DMASYNC_PREREAD);
1615 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1616 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1617 				BUS_DMASYNC_PREWRITE);
1618 	cm->cm_flags |= AAC_CMD_MAPPED;
1619 
1620 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1621 		int count = 10000000L;
1622 		while (AAC_SEND_COMMAND(sc, cm) != 0) {
1623 			if (--count == 0) {
1624 				aac_unmap_command(cm);
1625 				sc->flags |= AAC_QUEUE_FRZN;
1626 				aac_requeue_ready(cm);
1627 			}
1628 			DELAY(5);			/* wait 5 usec. */
1629 		}
1630 	} else {
1631 		/* Put the FIB on the outbound queue */
1632 		if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1633 			aac_unmap_command(cm);
1634 			sc->flags |= AAC_QUEUE_FRZN;
1635 			aac_requeue_ready(cm);
1636 		}
1637 	}
1638 }
1639 
1640 /*
1641  * Unmap a command from controller-visible space.
1642  */
1643 static void
1644 aac_unmap_command(struct aac_command *cm)
1645 {
1646 	struct aac_softc *sc;
1647 
1648 	sc = cm->cm_sc;
1649 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1650 
1651 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1652 		return;
1653 
1654 	if (cm->cm_datalen != 0) {
1655 		if (cm->cm_flags & AAC_CMD_DATAIN)
1656 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1657 					BUS_DMASYNC_POSTREAD);
1658 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1659 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1660 					BUS_DMASYNC_POSTWRITE);
1661 
1662 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1663 	}
1664 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1665 }
1666 
1667 /*
1668  * Hardware Interface
1669  */
1670 
1671 /*
1672  * Initialize the adapter.
1673  */
1674 static void
1675 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1676 {
1677 	struct aac_softc *sc;
1678 
1679 	sc = (struct aac_softc *)arg;
1680 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1681 
1682 	sc->aac_common_busaddr = segs[0].ds_addr;
1683 }
1684 
1685 static int
1686 aac_check_firmware(struct aac_softc *sc)
1687 {
1688 	u_int32_t code, major, minor, options = 0, atu_size = 0;
1689 	int rid, status;
1690 	time_t then;
1691 
1692 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1693 	/*
1694 	 * Wait for the adapter to come ready.
1695 	 */
1696 	then = time_uptime;
1697 	do {
1698 		code = AAC_GET_FWSTATUS(sc);
1699 		if (code & AAC_SELF_TEST_FAILED) {
1700 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1701 			return(ENXIO);
1702 		}
1703 		if (code & AAC_KERNEL_PANIC) {
1704 			device_printf(sc->aac_dev,
1705 				      "FATAL: controller kernel panic");
1706 			return(ENXIO);
1707 		}
1708 		if (time_uptime > (then + AAC_BOOT_TIMEOUT)) {
1709 			device_printf(sc->aac_dev,
1710 				      "FATAL: controller not coming ready, "
1711 					   "status %x\n", code);
1712 			return(ENXIO);
1713 		}
1714 	} while (!(code & AAC_UP_AND_RUNNING));
1715 
1716 	/*
1717 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1718 	 * firmware version 1.x are not compatible with this driver.
1719 	 */
1720 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1721 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1722 				     NULL)) {
1723 			device_printf(sc->aac_dev,
1724 				      "Error reading firmware version\n");
1725 			return (EIO);
1726 		}
1727 
1728 		/* These numbers are stored as ASCII! */
1729 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1730 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1731 		if (major == 1) {
1732 			device_printf(sc->aac_dev,
1733 			    "Firmware version %d.%d is not supported.\n",
1734 			    major, minor);
1735 			return (EINVAL);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Retrieve the capabilities/supported options word so we know what
1741 	 * work-arounds to enable.  Some firmware revs don't support this
1742 	 * command.
1743 	 */
1744 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
1745 		if (status != AAC_SRB_STS_INVALID_REQUEST) {
1746 			device_printf(sc->aac_dev,
1747 			     "RequestAdapterInfo failed\n");
1748 			return (EIO);
1749 		}
1750 	} else {
1751 		options = AAC_GET_MAILBOX(sc, 1);
1752 		atu_size = AAC_GET_MAILBOX(sc, 2);
1753 		sc->supported_options = options;
1754 
1755 		if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1756 		    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1757 			sc->flags |= AAC_FLAGS_4GB_WINDOW;
1758 		if (options & AAC_SUPPORTED_NONDASD)
1759 			sc->flags |= AAC_FLAGS_ENABLE_CAM;
1760 		if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1761 		     && (sizeof(bus_addr_t) > 4)) {
1762 			device_printf(sc->aac_dev,
1763 			    "Enabling 64-bit address support\n");
1764 			sc->flags |= AAC_FLAGS_SG_64BIT;
1765 		}
1766 		if ((options & AAC_SUPPORTED_NEW_COMM)
1767 		 && sc->aac_if->aif_send_command)
1768 			sc->flags |= AAC_FLAGS_NEW_COMM;
1769 		if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE)
1770 			sc->flags |= AAC_FLAGS_ARRAY_64BIT;
1771 	}
1772 
1773 	/* Check for broken hardware that does a lower number of commands */
1774 	sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512);
1775 
1776 	/* Remap mem. resource, if required */
1777 	if ((sc->flags & AAC_FLAGS_NEW_COMM) &&
1778 	    atu_size > rman_get_size(sc->aac_regs_res1)) {
1779 		rid = rman_get_rid(sc->aac_regs_res1);
1780 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, rid,
1781 		    sc->aac_regs_res1);
1782 		sc->aac_regs_res1 = bus_alloc_resource_anywhere(sc->aac_dev,
1783 		    SYS_RES_MEMORY, &rid, atu_size, RF_ACTIVE);
1784 		if (sc->aac_regs_res1 == NULL) {
1785 			sc->aac_regs_res1 = bus_alloc_resource_any(
1786 			    sc->aac_dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
1787 			if (sc->aac_regs_res1 == NULL) {
1788 				device_printf(sc->aac_dev,
1789 				    "couldn't allocate register window\n");
1790 				return (ENXIO);
1791 			}
1792 			sc->flags &= ~AAC_FLAGS_NEW_COMM;
1793 		}
1794 		sc->aac_btag1 = rman_get_bustag(sc->aac_regs_res1);
1795 		sc->aac_bhandle1 = rman_get_bushandle(sc->aac_regs_res1);
1796 
1797 		if (sc->aac_hwif == AAC_HWIF_NARK) {
1798 			sc->aac_regs_res0 = sc->aac_regs_res1;
1799 			sc->aac_btag0 = sc->aac_btag1;
1800 			sc->aac_bhandle0 = sc->aac_bhandle1;
1801 		}
1802 	}
1803 
1804 	/* Read preferred settings */
1805 	sc->aac_max_fib_size = sizeof(struct aac_fib);
1806 	sc->aac_max_sectors = 128;				/* 64KB */
1807 	if (sc->flags & AAC_FLAGS_SG_64BIT)
1808 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1809 		 - sizeof(struct aac_blockwrite64))
1810 		 / sizeof(struct aac_sg_entry64);
1811 	else
1812 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1813 		 - sizeof(struct aac_blockwrite))
1814 		 / sizeof(struct aac_sg_entry);
1815 
1816 	if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
1817 		options = AAC_GET_MAILBOX(sc, 1);
1818 		sc->aac_max_fib_size = (options & 0xFFFF);
1819 		sc->aac_max_sectors = (options >> 16) << 1;
1820 		options = AAC_GET_MAILBOX(sc, 2);
1821 		sc->aac_sg_tablesize = (options >> 16);
1822 		options = AAC_GET_MAILBOX(sc, 3);
1823 		sc->aac_max_fibs = (options & 0xFFFF);
1824 	}
1825 	if (sc->aac_max_fib_size > PAGE_SIZE)
1826 		sc->aac_max_fib_size = PAGE_SIZE;
1827 	sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size;
1828 
1829 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1830 		sc->flags |= AAC_FLAGS_RAW_IO;
1831 		device_printf(sc->aac_dev, "Enable Raw I/O\n");
1832 	}
1833 	if ((sc->flags & AAC_FLAGS_RAW_IO) &&
1834 	    (sc->flags & AAC_FLAGS_ARRAY_64BIT)) {
1835 		sc->flags |= AAC_FLAGS_LBA_64BIT;
1836 		device_printf(sc->aac_dev, "Enable 64-bit array\n");
1837 	}
1838 
1839 	return (0);
1840 }
1841 
1842 static int
1843 aac_init(struct aac_softc *sc)
1844 {
1845 	struct aac_adapter_init	*ip;
1846 	u_int32_t qoffset;
1847 	int error;
1848 
1849 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1850 
1851 	/*
1852 	 * Fill in the init structure.  This tells the adapter about the
1853 	 * physical location of various important shared data structures.
1854 	 */
1855 	ip = &sc->aac_common->ac_init;
1856 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1857 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1858 		ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4;
1859 		sc->flags |= AAC_FLAGS_RAW_IO;
1860 	}
1861 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1862 
1863 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1864 					 offsetof(struct aac_common, ac_fibs);
1865 	ip->AdapterFibsVirtualAddress = 0;
1866 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1867 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1868 
1869 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1870 				  offsetof(struct aac_common, ac_printf);
1871 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1872 
1873 	/*
1874 	 * The adapter assumes that pages are 4K in size, except on some
1875  	 * broken firmware versions that do the page->byte conversion twice,
1876 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1877 	 * Round up since the granularity is so high.
1878 	 */
1879 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1880 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1881 		ip->HostPhysMemPages =
1882 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1883 	}
1884 	ip->HostElapsedSeconds = time_uptime;	/* reset later if invalid */
1885 
1886 	ip->InitFlags = 0;
1887 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1888 		ip->InitFlags |= AAC_INITFLAGS_NEW_COMM_SUPPORTED;
1889 		device_printf(sc->aac_dev, "New comm. interface enabled\n");
1890 	}
1891 
1892 	ip->MaxIoCommands = sc->aac_max_fibs;
1893 	ip->MaxIoSize = sc->aac_max_sectors << 9;
1894 	ip->MaxFibSize = sc->aac_max_fib_size;
1895 
1896 	/*
1897 	 * Initialize FIB queues.  Note that it appears that the layout of the
1898 	 * indexes and the segmentation of the entries may be mandated by the
1899 	 * adapter, which is only told about the base of the queue index fields.
1900 	 *
1901 	 * The initial values of the indices are assumed to inform the adapter
1902 	 * of the sizes of the respective queues, and theoretically it could
1903 	 * work out the entire layout of the queue structures from this.  We
1904 	 * take the easy route and just lay this area out like everyone else
1905 	 * does.
1906 	 *
1907 	 * The Linux driver uses a much more complex scheme whereby several
1908 	 * header records are kept for each queue.  We use a couple of generic
1909 	 * list manipulation functions which 'know' the size of each list by
1910 	 * virtue of a table.
1911 	 */
1912 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1913 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1914 	sc->aac_queues =
1915 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1916 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1917 
1918 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1919 		AAC_HOST_NORM_CMD_ENTRIES;
1920 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1921 		AAC_HOST_NORM_CMD_ENTRIES;
1922 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1923 		AAC_HOST_HIGH_CMD_ENTRIES;
1924 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1925 		AAC_HOST_HIGH_CMD_ENTRIES;
1926 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1927 		AAC_ADAP_NORM_CMD_ENTRIES;
1928 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1929 		AAC_ADAP_NORM_CMD_ENTRIES;
1930 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1931 		AAC_ADAP_HIGH_CMD_ENTRIES;
1932 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1933 		AAC_ADAP_HIGH_CMD_ENTRIES;
1934 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1935 		AAC_HOST_NORM_RESP_ENTRIES;
1936 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1937 		AAC_HOST_NORM_RESP_ENTRIES;
1938 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1939 		AAC_HOST_HIGH_RESP_ENTRIES;
1940 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1941 		AAC_HOST_HIGH_RESP_ENTRIES;
1942 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1943 		AAC_ADAP_NORM_RESP_ENTRIES;
1944 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1945 		AAC_ADAP_NORM_RESP_ENTRIES;
1946 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1947 		AAC_ADAP_HIGH_RESP_ENTRIES;
1948 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1949 		AAC_ADAP_HIGH_RESP_ENTRIES;
1950 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1951 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1952 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1953 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1954 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1955 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1956 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1957 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1958 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1959 		&sc->aac_queues->qt_HostNormRespQueue[0];
1960 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1961 		&sc->aac_queues->qt_HostHighRespQueue[0];
1962 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1963 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1964 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1965 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1966 
1967 	/*
1968 	 * Do controller-type-specific initialisation
1969 	 */
1970 	switch (sc->aac_hwif) {
1971 	case AAC_HWIF_I960RX:
1972 		AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, ~0);
1973 		break;
1974 	case AAC_HWIF_RKT:
1975 		AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, ~0);
1976 		break;
1977 	default:
1978 		break;
1979 	}
1980 
1981 	/*
1982 	 * Give the init structure to the controller.
1983 	 */
1984 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1985 			     sc->aac_common_busaddr +
1986 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1987 			     NULL)) {
1988 		device_printf(sc->aac_dev,
1989 			      "error establishing init structure\n");
1990 		error = EIO;
1991 		goto out;
1992 	}
1993 
1994 	error = 0;
1995 out:
1996 	return(error);
1997 }
1998 
1999 static int
2000 aac_setup_intr(struct aac_softc *sc)
2001 {
2002 
2003 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
2004 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2005 				   INTR_MPSAFE|INTR_TYPE_BIO, NULL,
2006 				   aac_new_intr, sc, &sc->aac_intr)) {
2007 			device_printf(sc->aac_dev, "can't set up interrupt\n");
2008 			return (EINVAL);
2009 		}
2010 	} else {
2011 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2012 				   INTR_TYPE_BIO, aac_filter, NULL,
2013 				   sc, &sc->aac_intr)) {
2014 			device_printf(sc->aac_dev,
2015 				      "can't set up interrupt filter\n");
2016 			return (EINVAL);
2017 		}
2018 	}
2019 	return (0);
2020 }
2021 
2022 /*
2023  * Send a synchronous command to the controller and wait for a result.
2024  * Indicate if the controller completed the command with an error status.
2025  */
2026 static int
2027 aac_sync_command(struct aac_softc *sc, u_int32_t command,
2028 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
2029 		 u_int32_t *sp)
2030 {
2031 	time_t then;
2032 	u_int32_t status;
2033 
2034 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2035 
2036 	/* populate the mailbox */
2037 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
2038 
2039 	/* ensure the sync command doorbell flag is cleared */
2040 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2041 
2042 	/* then set it to signal the adapter */
2043 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
2044 
2045 	/* spin waiting for the command to complete */
2046 	then = time_uptime;
2047 	do {
2048 		if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) {
2049 			fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "timed out");
2050 			return(EIO);
2051 		}
2052 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
2053 
2054 	/* clear the completion flag */
2055 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2056 
2057 	/* get the command status */
2058 	status = AAC_GET_MAILBOX(sc, 0);
2059 	if (sp != NULL)
2060 		*sp = status;
2061 
2062 	if (status != AAC_SRB_STS_SUCCESS)
2063 		return (-1);
2064 	return(0);
2065 }
2066 
2067 int
2068 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
2069 		 struct aac_fib *fib, u_int16_t datasize)
2070 {
2071 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2072 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
2073 
2074 	if (datasize > AAC_FIB_DATASIZE)
2075 		return(EINVAL);
2076 
2077 	/*
2078 	 * Set up the sync FIB
2079 	 */
2080 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
2081 				AAC_FIBSTATE_INITIALISED |
2082 				AAC_FIBSTATE_EMPTY;
2083 	fib->Header.XferState |= xferstate;
2084 	fib->Header.Command = command;
2085 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
2086 	fib->Header.Size = sizeof(struct aac_fib_header) + datasize;
2087 	fib->Header.SenderSize = sizeof(struct aac_fib);
2088 	fib->Header.SenderFibAddress = 0;	/* Not needed */
2089 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
2090 					 offsetof(struct aac_common,
2091 						  ac_sync_fib);
2092 
2093 	/*
2094 	 * Give the FIB to the controller, wait for a response.
2095 	 */
2096 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
2097 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
2098 		fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "IO error");
2099 		return(EIO);
2100 	}
2101 
2102 	return (0);
2103 }
2104 
2105 /*
2106  * Adapter-space FIB queue manipulation
2107  *
2108  * Note that the queue implementation here is a little funky; neither the PI or
2109  * CI will ever be zero.  This behaviour is a controller feature.
2110  */
2111 static const struct {
2112 	int		size;
2113 	int		notify;
2114 } aac_qinfo[] = {
2115 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
2116 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
2117 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
2118 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
2119 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
2120 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
2121 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
2122 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
2123 };
2124 
2125 /*
2126  * Atomically insert an entry into the nominated queue, returns 0 on success or
2127  * EBUSY if the queue is full.
2128  *
2129  * Note: it would be more efficient to defer notifying the controller in
2130  *	 the case where we may be inserting several entries in rapid succession,
2131  *	 but implementing this usefully may be difficult (it would involve a
2132  *	 separate queue/notify interface).
2133  */
2134 static int
2135 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
2136 {
2137 	u_int32_t pi, ci;
2138 	int error;
2139 	u_int32_t fib_size;
2140 	u_int32_t fib_addr;
2141 
2142 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2143 
2144 	fib_size = cm->cm_fib->Header.Size;
2145 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
2146 
2147 	/* get the producer/consumer indices */
2148 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2149 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2150 
2151 	/* wrap the queue? */
2152 	if (pi >= aac_qinfo[queue].size)
2153 		pi = 0;
2154 
2155 	/* check for queue full */
2156 	if ((pi + 1) == ci) {
2157 		error = EBUSY;
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * To avoid a race with its completion interrupt, place this command on
2163 	 * the busy queue prior to advertising it to the controller.
2164 	 */
2165 	aac_enqueue_busy(cm);
2166 
2167 	/* populate queue entry */
2168 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2169 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2170 
2171 	/* update producer index */
2172 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2173 
2174 	/* notify the adapter if we know how */
2175 	if (aac_qinfo[queue].notify != 0)
2176 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2177 
2178 	error = 0;
2179 
2180 out:
2181 	return(error);
2182 }
2183 
2184 /*
2185  * Atomically remove one entry from the nominated queue, returns 0 on
2186  * success or ENOENT if the queue is empty.
2187  */
2188 static int
2189 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
2190 		struct aac_fib **fib_addr)
2191 {
2192 	u_int32_t pi, ci;
2193 	u_int32_t fib_index;
2194 	int error;
2195 	int notify;
2196 
2197 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2198 
2199 	/* get the producer/consumer indices */
2200 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2201 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2202 
2203 	/* check for queue empty */
2204 	if (ci == pi) {
2205 		error = ENOENT;
2206 		goto out;
2207 	}
2208 
2209 	/* wrap the pi so the following test works */
2210 	if (pi >= aac_qinfo[queue].size)
2211 		pi = 0;
2212 
2213 	notify = 0;
2214 	if (ci == pi + 1)
2215 		notify++;
2216 
2217 	/* wrap the queue? */
2218 	if (ci >= aac_qinfo[queue].size)
2219 		ci = 0;
2220 
2221 	/* fetch the entry */
2222 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
2223 
2224 	switch (queue) {
2225 	case AAC_HOST_NORM_CMD_QUEUE:
2226 	case AAC_HOST_HIGH_CMD_QUEUE:
2227 		/*
2228 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
2229 		 * on to hold an address.  For AIF's, the adapter assumes
2230 		 * that it's giving us an address into the array of AIF fibs.
2231 		 * Therefore, we have to convert it to an index.
2232 		 */
2233 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
2234 			sizeof(struct aac_fib);
2235 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
2236 		break;
2237 
2238 	case AAC_HOST_NORM_RESP_QUEUE:
2239 	case AAC_HOST_HIGH_RESP_QUEUE:
2240 	{
2241 		struct aac_command *cm;
2242 
2243 		/*
2244 		 * As above, an index is used instead of an actual address.
2245 		 * Gotta shift the index to account for the fast response
2246 		 * bit.  No other correction is needed since this value was
2247 		 * originally provided by the driver via the SenderFibAddress
2248 		 * field.
2249 		 */
2250 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
2251 		cm = sc->aac_commands + (fib_index >> 2);
2252 		*fib_addr = cm->cm_fib;
2253 
2254 		/*
2255 		 * Is this a fast response? If it is, update the fib fields in
2256 		 * local memory since the whole fib isn't DMA'd back up.
2257 		 */
2258 		if (fib_index & 0x01) {
2259 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
2260 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
2261 		}
2262 		break;
2263 	}
2264 	default:
2265 		panic("Invalid queue in aac_dequeue_fib()");
2266 		break;
2267 	}
2268 
2269 	/* update consumer index */
2270 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
2271 
2272 	/* if we have made the queue un-full, notify the adapter */
2273 	if (notify && (aac_qinfo[queue].notify != 0))
2274 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2275 	error = 0;
2276 
2277 out:
2278 	return(error);
2279 }
2280 
2281 /*
2282  * Put our response to an Adapter Initialed Fib on the response queue
2283  */
2284 static int
2285 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
2286 {
2287 	u_int32_t pi, ci;
2288 	int error;
2289 	u_int32_t fib_size;
2290 	u_int32_t fib_addr;
2291 
2292 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2293 
2294 	/* Tell the adapter where the FIB is */
2295 	fib_size = fib->Header.Size;
2296 	fib_addr = fib->Header.SenderFibAddress;
2297 	fib->Header.ReceiverFibAddress = fib_addr;
2298 
2299 	/* get the producer/consumer indices */
2300 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2301 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2302 
2303 	/* wrap the queue? */
2304 	if (pi >= aac_qinfo[queue].size)
2305 		pi = 0;
2306 
2307 	/* check for queue full */
2308 	if ((pi + 1) == ci) {
2309 		error = EBUSY;
2310 		goto out;
2311 	}
2312 
2313 	/* populate queue entry */
2314 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2315 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2316 
2317 	/* update producer index */
2318 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2319 
2320 	/* notify the adapter if we know how */
2321 	if (aac_qinfo[queue].notify != 0)
2322 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2323 
2324 	error = 0;
2325 
2326 out:
2327 	return(error);
2328 }
2329 
2330 /*
2331  * Check for commands that have been outstanding for a suspiciously long time,
2332  * and complain about them.
2333  */
2334 static void
2335 aac_timeout(struct aac_softc *sc)
2336 {
2337 	struct aac_command *cm;
2338 	time_t deadline;
2339 	int timedout, code;
2340 
2341 	/*
2342 	 * Traverse the busy command list, bitch about late commands once
2343 	 * only.
2344 	 */
2345 	timedout = 0;
2346 	deadline = time_uptime - AAC_CMD_TIMEOUT;
2347 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2348 		if ((cm->cm_timestamp  < deadline)
2349 		    && !(cm->cm_flags & AAC_CMD_TIMEDOUT)) {
2350 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2351 			device_printf(sc->aac_dev,
2352 			    "COMMAND %p (TYPE %d) TIMEOUT AFTER %d SECONDS\n",
2353 			    cm, cm->cm_fib->Header.Command,
2354 			    (int)(time_uptime-cm->cm_timestamp));
2355 			AAC_PRINT_FIB(sc, cm->cm_fib);
2356 			timedout++;
2357 		}
2358 	}
2359 
2360 	if (timedout) {
2361 		code = AAC_GET_FWSTATUS(sc);
2362 		if (code != AAC_UP_AND_RUNNING) {
2363 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2364 				      "longer running! code= 0x%x\n", code);
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Interface Function Vectors
2371  */
2372 
2373 /*
2374  * Read the current firmware status word.
2375  */
2376 static int
2377 aac_sa_get_fwstatus(struct aac_softc *sc)
2378 {
2379 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2380 
2381 	return(AAC_MEM0_GETREG4(sc, AAC_SA_FWSTATUS));
2382 }
2383 
2384 static int
2385 aac_rx_get_fwstatus(struct aac_softc *sc)
2386 {
2387 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2388 
2389 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2390 	    AAC_RX_OMR0 : AAC_RX_FWSTATUS));
2391 }
2392 
2393 static int
2394 aac_rkt_get_fwstatus(struct aac_softc *sc)
2395 {
2396 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2397 
2398 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2399 	    AAC_RKT_OMR0 : AAC_RKT_FWSTATUS));
2400 }
2401 
2402 /*
2403  * Notify the controller of a change in a given queue
2404  */
2405 
2406 static void
2407 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2408 {
2409 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2410 
2411 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2412 }
2413 
2414 static void
2415 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2416 {
2417 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2418 
2419 	AAC_MEM0_SETREG4(sc, AAC_RX_IDBR, qbit);
2420 }
2421 
2422 static void
2423 aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2424 {
2425 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2426 
2427 	AAC_MEM0_SETREG4(sc, AAC_RKT_IDBR, qbit);
2428 }
2429 
2430 /*
2431  * Get the interrupt reason bits
2432  */
2433 static int
2434 aac_sa_get_istatus(struct aac_softc *sc)
2435 {
2436 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2437 
2438 	return(AAC_MEM0_GETREG2(sc, AAC_SA_DOORBELL0));
2439 }
2440 
2441 static int
2442 aac_rx_get_istatus(struct aac_softc *sc)
2443 {
2444 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2445 
2446 	return(AAC_MEM0_GETREG4(sc, AAC_RX_ODBR));
2447 }
2448 
2449 static int
2450 aac_rkt_get_istatus(struct aac_softc *sc)
2451 {
2452 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2453 
2454 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_ODBR));
2455 }
2456 
2457 /*
2458  * Clear some interrupt reason bits
2459  */
2460 static void
2461 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2462 {
2463 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2464 
2465 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2466 }
2467 
2468 static void
2469 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2470 {
2471 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2472 
2473 	AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, mask);
2474 }
2475 
2476 static void
2477 aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2478 {
2479 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2480 
2481 	AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, mask);
2482 }
2483 
2484 /*
2485  * Populate the mailbox and set the command word
2486  */
2487 static void
2488 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2489 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2490 {
2491 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2492 
2493 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX, command);
2494 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2495 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2496 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2497 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2498 }
2499 
2500 static void
2501 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2502 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2503 {
2504 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2505 
2506 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX, command);
2507 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2508 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2509 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2510 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2511 }
2512 
2513 static void
2514 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2515 		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2516 {
2517 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2518 
2519 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX, command);
2520 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2521 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2522 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2523 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2524 }
2525 
2526 /*
2527  * Fetch the immediate command status word
2528  */
2529 static int
2530 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2531 {
2532 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2533 
2534 	return(AAC_MEM1_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2535 }
2536 
2537 static int
2538 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2539 {
2540 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2541 
2542 	return(AAC_MEM1_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2543 }
2544 
2545 static int
2546 aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2547 {
2548 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2549 
2550 	return(AAC_MEM1_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2551 }
2552 
2553 /*
2554  * Set/clear interrupt masks
2555  */
2556 static void
2557 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2558 {
2559 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2560 
2561 	if (enable) {
2562 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2563 	} else {
2564 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2565 	}
2566 }
2567 
2568 static void
2569 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2570 {
2571 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2572 
2573 	if (enable) {
2574 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2575 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM);
2576 		else
2577 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2578 	} else {
2579 		AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~0);
2580 	}
2581 }
2582 
2583 static void
2584 aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2585 {
2586 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2587 
2588 	if (enable) {
2589 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2590 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM);
2591 		else
2592 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2593 	} else {
2594 		AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~0);
2595 	}
2596 }
2597 
2598 /*
2599  * New comm. interface: Send command functions
2600  */
2601 static int
2602 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm)
2603 {
2604 	u_int32_t index, device;
2605 
2606 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2607 
2608 	index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2609 	if (index == 0xffffffffL)
2610 		index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2611 	if (index == 0xffffffffL)
2612 		return index;
2613 	aac_enqueue_busy(cm);
2614 	device = index;
2615 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2616 	device += 4;
2617 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2618 	device += 4;
2619 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2620 	AAC_MEM0_SETREG4(sc, AAC_RX_IQUE, index);
2621 	return 0;
2622 }
2623 
2624 static int
2625 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm)
2626 {
2627 	u_int32_t index, device;
2628 
2629 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2630 
2631 	index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2632 	if (index == 0xffffffffL)
2633 		index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2634 	if (index == 0xffffffffL)
2635 		return index;
2636 	aac_enqueue_busy(cm);
2637 	device = index;
2638 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2639 	device += 4;
2640 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2641 	device += 4;
2642 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2643 	AAC_MEM0_SETREG4(sc, AAC_RKT_IQUE, index);
2644 	return 0;
2645 }
2646 
2647 /*
2648  * New comm. interface: get, set outbound queue index
2649  */
2650 static int
2651 aac_rx_get_outb_queue(struct aac_softc *sc)
2652 {
2653 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2654 
2655 	return(AAC_MEM0_GETREG4(sc, AAC_RX_OQUE));
2656 }
2657 
2658 static int
2659 aac_rkt_get_outb_queue(struct aac_softc *sc)
2660 {
2661 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2662 
2663 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_OQUE));
2664 }
2665 
2666 static void
2667 aac_rx_set_outb_queue(struct aac_softc *sc, int index)
2668 {
2669 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2670 
2671 	AAC_MEM0_SETREG4(sc, AAC_RX_OQUE, index);
2672 }
2673 
2674 static void
2675 aac_rkt_set_outb_queue(struct aac_softc *sc, int index)
2676 {
2677 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2678 
2679 	AAC_MEM0_SETREG4(sc, AAC_RKT_OQUE, index);
2680 }
2681 
2682 /*
2683  * Debugging and Diagnostics
2684  */
2685 
2686 /*
2687  * Print some information about the controller.
2688  */
2689 static void
2690 aac_describe_controller(struct aac_softc *sc)
2691 {
2692 	struct aac_fib *fib;
2693 	struct aac_adapter_info	*info;
2694 	char *adapter_type = "Adaptec RAID controller";
2695 
2696 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2697 
2698 	mtx_lock(&sc->aac_io_lock);
2699 	aac_alloc_sync_fib(sc, &fib);
2700 
2701 	fib->data[0] = 0;
2702 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2703 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2704 		aac_release_sync_fib(sc);
2705 		mtx_unlock(&sc->aac_io_lock);
2706 		return;
2707 	}
2708 
2709 	/* save the kernel revision structure for later use */
2710 	info = (struct aac_adapter_info *)&fib->data[0];
2711 	sc->aac_revision = info->KernelRevision;
2712 
2713 	if (bootverbose) {
2714 		device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
2715 		    "(%dMB cache, %dMB execution), %s\n",
2716 		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2717 		    info->ClockSpeed, info->TotalMem / (1024 * 1024),
2718 		    info->BufferMem / (1024 * 1024),
2719 		    info->ExecutionMem / (1024 * 1024),
2720 		    aac_describe_code(aac_battery_platform,
2721 		    info->batteryPlatform));
2722 
2723 		device_printf(sc->aac_dev,
2724 		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2725 		    info->KernelRevision.external.comp.major,
2726 		    info->KernelRevision.external.comp.minor,
2727 		    info->KernelRevision.external.comp.dash,
2728 		    info->KernelRevision.buildNumber,
2729 		    (u_int32_t)(info->SerialNumber & 0xffffff));
2730 
2731 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2732 			      sc->supported_options,
2733 			      "\20"
2734 			      "\1SNAPSHOT"
2735 			      "\2CLUSTERS"
2736 			      "\3WCACHE"
2737 			      "\4DATA64"
2738 			      "\5HOSTTIME"
2739 			      "\6RAID50"
2740 			      "\7WINDOW4GB"
2741 			      "\10SCSIUPGD"
2742 			      "\11SOFTERR"
2743 			      "\12NORECOND"
2744 			      "\13SGMAP64"
2745 			      "\14ALARM"
2746 			      "\15NONDASD"
2747 			      "\16SCSIMGT"
2748 			      "\17RAIDSCSI"
2749 			      "\21ADPTINFO"
2750 			      "\22NEWCOMM"
2751 			      "\23ARRAY64BIT"
2752 			      "\24HEATSENSOR");
2753 	}
2754 
2755 	if (sc->supported_options & AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO) {
2756 		fib->data[0] = 0;
2757 		if (aac_sync_fib(sc, RequestSupplementAdapterInfo, 0, fib, 1))
2758 			device_printf(sc->aac_dev,
2759 			    "RequestSupplementAdapterInfo failed\n");
2760 		else
2761 			adapter_type = ((struct aac_supplement_adapter_info *)
2762 			    &fib->data[0])->AdapterTypeText;
2763 	}
2764 	device_printf(sc->aac_dev, "%s, aac driver %d.%d.%d-%d\n",
2765 		adapter_type,
2766 		AAC_DRIVER_MAJOR_VERSION, AAC_DRIVER_MINOR_VERSION,
2767 		AAC_DRIVER_BUGFIX_LEVEL, AAC_DRIVER_BUILD);
2768 
2769 	aac_release_sync_fib(sc);
2770 	mtx_unlock(&sc->aac_io_lock);
2771 }
2772 
2773 /*
2774  * Look up a text description of a numeric error code and return a pointer to
2775  * same.
2776  */
2777 static const char *
2778 aac_describe_code(const struct aac_code_lookup *table, u_int32_t code)
2779 {
2780 	int i;
2781 
2782 	for (i = 0; table[i].string != NULL; i++)
2783 		if (table[i].code == code)
2784 			return(table[i].string);
2785 	return(table[i + 1].string);
2786 }
2787 
2788 /*
2789  * Management Interface
2790  */
2791 
2792 static int
2793 aac_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2794 {
2795 	struct aac_softc *sc;
2796 
2797 	sc = dev->si_drv1;
2798 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2799 	device_busy(sc->aac_dev);
2800 	devfs_set_cdevpriv(sc, aac_cdevpriv_dtor);
2801 
2802 	return 0;
2803 }
2804 
2805 static int
2806 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
2807 {
2808 	union aac_statrequest *as;
2809 	struct aac_softc *sc;
2810 	int error = 0;
2811 
2812 	as = (union aac_statrequest *)arg;
2813 	sc = dev->si_drv1;
2814 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2815 
2816 	switch (cmd) {
2817 	case AACIO_STATS:
2818 		switch (as->as_item) {
2819 		case AACQ_FREE:
2820 		case AACQ_BIO:
2821 		case AACQ_READY:
2822 		case AACQ_BUSY:
2823 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2824 			      sizeof(struct aac_qstat));
2825 			break;
2826 		default:
2827 			error = ENOENT;
2828 			break;
2829 		}
2830 	break;
2831 
2832 	case FSACTL_SENDFIB:
2833 	case FSACTL_SEND_LARGE_FIB:
2834 		arg = *(caddr_t*)arg;
2835 	case FSACTL_LNX_SENDFIB:
2836 	case FSACTL_LNX_SEND_LARGE_FIB:
2837 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SENDFIB");
2838 		error = aac_ioctl_sendfib(sc, arg);
2839 		break;
2840 	case FSACTL_SEND_RAW_SRB:
2841 		arg = *(caddr_t*)arg;
2842 	case FSACTL_LNX_SEND_RAW_SRB:
2843 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SEND_RAW_SRB");
2844 		error = aac_ioctl_send_raw_srb(sc, arg);
2845 		break;
2846 	case FSACTL_AIF_THREAD:
2847 	case FSACTL_LNX_AIF_THREAD:
2848 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_AIF_THREAD");
2849 		error = EINVAL;
2850 		break;
2851 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2852 		arg = *(caddr_t*)arg;
2853 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2854 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_OPEN_GET_ADAPTER_FIB");
2855 		error = aac_open_aif(sc, arg);
2856 		break;
2857 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2858 		arg = *(caddr_t*)arg;
2859 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2860 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_NEXT_ADAPTER_FIB");
2861 		error = aac_getnext_aif(sc, arg);
2862 		break;
2863 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2864 		arg = *(caddr_t*)arg;
2865 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2866 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2867 		error = aac_close_aif(sc, arg);
2868 		break;
2869 	case FSACTL_MINIPORT_REV_CHECK:
2870 		arg = *(caddr_t*)arg;
2871 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2872 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_MINIPORT_REV_CHECK");
2873 		error = aac_rev_check(sc, arg);
2874 		break;
2875 	case FSACTL_QUERY_DISK:
2876 		arg = *(caddr_t*)arg;
2877 	case FSACTL_LNX_QUERY_DISK:
2878 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_QUERY_DISK");
2879 		error = aac_query_disk(sc, arg);
2880 		break;
2881 	case FSACTL_DELETE_DISK:
2882 	case FSACTL_LNX_DELETE_DISK:
2883 		/*
2884 		 * We don't trust the underland to tell us when to delete a
2885 		 * container, rather we rely on an AIF coming from the
2886 		 * controller
2887 		 */
2888 		error = 0;
2889 		break;
2890 	case FSACTL_GET_PCI_INFO:
2891 		arg = *(caddr_t*)arg;
2892 	case FSACTL_LNX_GET_PCI_INFO:
2893 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_PCI_INFO");
2894 		error = aac_get_pci_info(sc, arg);
2895 		break;
2896 	case FSACTL_GET_FEATURES:
2897 		arg = *(caddr_t*)arg;
2898 	case FSACTL_LNX_GET_FEATURES:
2899 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_FEATURES");
2900 		error = aac_supported_features(sc, arg);
2901 		break;
2902 	default:
2903 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "unsupported cmd 0x%lx\n", cmd);
2904 		error = EINVAL;
2905 		break;
2906 	}
2907 	return(error);
2908 }
2909 
2910 static int
2911 aac_poll(struct cdev *dev, int poll_events, struct thread *td)
2912 {
2913 	struct aac_softc *sc;
2914 	struct aac_fib_context *ctx;
2915 	int revents;
2916 
2917 	sc = dev->si_drv1;
2918 	revents = 0;
2919 
2920 	mtx_lock(&sc->aac_aifq_lock);
2921 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2922 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
2923 			if (ctx->ctx_idx != sc->aifq_idx || ctx->ctx_wrap) {
2924 				revents |= poll_events & (POLLIN | POLLRDNORM);
2925 				break;
2926 			}
2927 		}
2928 	}
2929 	mtx_unlock(&sc->aac_aifq_lock);
2930 
2931 	if (revents == 0) {
2932 		if (poll_events & (POLLIN | POLLRDNORM))
2933 			selrecord(td, &sc->rcv_select);
2934 	}
2935 
2936 	return (revents);
2937 }
2938 
2939 static void
2940 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg)
2941 {
2942 
2943 	switch (event->ev_type) {
2944 	case AAC_EVENT_CMFREE:
2945 		mtx_assert(&sc->aac_io_lock, MA_OWNED);
2946 		if (aac_alloc_command(sc, (struct aac_command **)arg)) {
2947 			aac_add_event(sc, event);
2948 			return;
2949 		}
2950 		free(event, M_AACBUF);
2951 		wakeup(arg);
2952 		break;
2953 	default:
2954 		break;
2955 	}
2956 }
2957 
2958 /*
2959  * Send a FIB supplied from userspace
2960  */
2961 static int
2962 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2963 {
2964 	struct aac_command *cm;
2965 	int size, error;
2966 
2967 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2968 
2969 	cm = NULL;
2970 
2971 	/*
2972 	 * Get a command
2973 	 */
2974 	mtx_lock(&sc->aac_io_lock);
2975 	if (aac_alloc_command(sc, &cm)) {
2976 		struct aac_event *event;
2977 
2978 		event = malloc(sizeof(struct aac_event), M_AACBUF,
2979 		    M_NOWAIT | M_ZERO);
2980 		if (event == NULL) {
2981 			error = EBUSY;
2982 			mtx_unlock(&sc->aac_io_lock);
2983 			goto out;
2984 		}
2985 		event->ev_type = AAC_EVENT_CMFREE;
2986 		event->ev_callback = aac_ioctl_event;
2987 		event->ev_arg = &cm;
2988 		aac_add_event(sc, event);
2989 		msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0);
2990 	}
2991 	mtx_unlock(&sc->aac_io_lock);
2992 
2993 	/*
2994 	 * Fetch the FIB header, then re-copy to get data as well.
2995 	 */
2996 	if ((error = copyin(ufib, cm->cm_fib,
2997 			    sizeof(struct aac_fib_header))) != 0)
2998 		goto out;
2999 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
3000 	if (size > sc->aac_max_fib_size) {
3001 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
3002 			      size, sc->aac_max_fib_size);
3003 		size = sc->aac_max_fib_size;
3004 	}
3005 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
3006 		goto out;
3007 	cm->cm_fib->Header.Size = size;
3008 	cm->cm_timestamp = time_uptime;
3009 
3010 	/*
3011 	 * Pass the FIB to the controller, wait for it to complete.
3012 	 */
3013 	mtx_lock(&sc->aac_io_lock);
3014 	error = aac_wait_command(cm);
3015 	mtx_unlock(&sc->aac_io_lock);
3016 	if (error != 0) {
3017 		device_printf(sc->aac_dev,
3018 			      "aac_wait_command return %d\n", error);
3019 		goto out;
3020 	}
3021 
3022 	/*
3023 	 * Copy the FIB and data back out to the caller.
3024 	 */
3025 	size = cm->cm_fib->Header.Size;
3026 	if (size > sc->aac_max_fib_size) {
3027 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
3028 			      size, sc->aac_max_fib_size);
3029 		size = sc->aac_max_fib_size;
3030 	}
3031 	error = copyout(cm->cm_fib, ufib, size);
3032 
3033 out:
3034 	if (cm != NULL) {
3035 		mtx_lock(&sc->aac_io_lock);
3036 		aac_release_command(cm);
3037 		mtx_unlock(&sc->aac_io_lock);
3038 	}
3039 	return(error);
3040 }
3041 
3042 /*
3043  * Send a passthrough FIB supplied from userspace
3044  */
3045 static int
3046 aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg)
3047 {
3048 	struct aac_command *cm;
3049 	struct aac_event *event;
3050 	struct aac_fib *fib;
3051 	struct aac_srb *srbcmd, *user_srb;
3052 	struct aac_sg_entry *sge;
3053 	struct aac_sg_entry64 *sge64;
3054 	void *srb_sg_address, *ureply;
3055 	uint32_t fibsize, srb_sg_bytecount;
3056 	int error, transfer_data;
3057 
3058 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3059 
3060 	cm = NULL;
3061 	transfer_data = 0;
3062 	fibsize = 0;
3063 	user_srb = (struct aac_srb *)arg;
3064 
3065 	mtx_lock(&sc->aac_io_lock);
3066 	if (aac_alloc_command(sc, &cm)) {
3067 		 event = malloc(sizeof(struct aac_event), M_AACBUF,
3068 		    M_NOWAIT | M_ZERO);
3069 		if (event == NULL) {
3070 			error = EBUSY;
3071 			mtx_unlock(&sc->aac_io_lock);
3072 			goto out;
3073 		}
3074 		event->ev_type = AAC_EVENT_CMFREE;
3075 		event->ev_callback = aac_ioctl_event;
3076 		event->ev_arg = &cm;
3077 		aac_add_event(sc, event);
3078 		msleep(cm, &sc->aac_io_lock, 0, "aacraw", 0);
3079 	}
3080 	mtx_unlock(&sc->aac_io_lock);
3081 
3082 	cm->cm_data = NULL;
3083 	fib = cm->cm_fib;
3084 	srbcmd = (struct aac_srb *)fib->data;
3085 	error = copyin(&user_srb->data_len, &fibsize, sizeof(uint32_t));
3086 	if (error != 0)
3087 		goto out;
3088 	if (fibsize > (sc->aac_max_fib_size - sizeof(struct aac_fib_header))) {
3089 		error = EINVAL;
3090 		goto out;
3091 	}
3092 	error = copyin(user_srb, srbcmd, fibsize);
3093 	if (error != 0)
3094 		goto out;
3095 	srbcmd->function = 0;
3096 	srbcmd->retry_limit = 0;
3097 	if (srbcmd->sg_map.SgCount > 1) {
3098 		error = EINVAL;
3099 		goto out;
3100 	}
3101 
3102 	/* Retrieve correct SG entries. */
3103 	if (fibsize == (sizeof(struct aac_srb) +
3104 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry))) {
3105 		struct aac_sg_entry sg;
3106 
3107 		sge = srbcmd->sg_map.SgEntry;
3108 		sge64 = NULL;
3109 
3110 		if ((error = copyin(sge, &sg, sizeof(sg))) != 0)
3111 			goto out;
3112 
3113 		srb_sg_bytecount = sg.SgByteCount;
3114 		srb_sg_address = (void *)(uintptr_t)sg.SgAddress;
3115 	}
3116 #ifdef __amd64__
3117 	else if (fibsize == (sizeof(struct aac_srb) +
3118 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry64))) {
3119 		struct aac_sg_entry64 sg;
3120 
3121 		sge = NULL;
3122 		sge64 = (struct aac_sg_entry64 *)srbcmd->sg_map.SgEntry;
3123 
3124 		if ((error = copyin(sge64, &sg, sizeof(sg))) != 0)
3125 			goto out;
3126 
3127 		srb_sg_bytecount = sg.SgByteCount;
3128 		srb_sg_address = (void *)sg.SgAddress;
3129 		if (sge64->SgAddress > 0xffffffffull &&
3130 		    (sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
3131 			error = EINVAL;
3132 			goto out;
3133 		}
3134 	}
3135 #endif
3136 	else {
3137 		error = EINVAL;
3138 		goto out;
3139 	}
3140 	ureply = (char *)arg + fibsize;
3141 	srbcmd->data_len = srb_sg_bytecount;
3142 	if (srbcmd->sg_map.SgCount == 1)
3143 		transfer_data = 1;
3144 
3145 	cm->cm_sgtable = (struct aac_sg_table *)&srbcmd->sg_map;
3146 	if (transfer_data) {
3147 		cm->cm_datalen = srb_sg_bytecount;
3148 		cm->cm_data = malloc(cm->cm_datalen, M_AACBUF, M_NOWAIT);
3149 		if (cm->cm_data == NULL) {
3150 			error = ENOMEM;
3151 			goto out;
3152 		}
3153 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN)
3154 			cm->cm_flags |= AAC_CMD_DATAIN;
3155 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT) {
3156 			cm->cm_flags |= AAC_CMD_DATAOUT;
3157 			error = copyin(srb_sg_address, cm->cm_data,
3158 			    cm->cm_datalen);
3159 			if (error != 0)
3160 				goto out;
3161 		}
3162 	}
3163 
3164 	fib->Header.Size = sizeof(struct aac_fib_header) +
3165 	    sizeof(struct aac_srb);
3166 	fib->Header.XferState =
3167 	    AAC_FIBSTATE_HOSTOWNED   |
3168 	    AAC_FIBSTATE_INITIALISED |
3169 	    AAC_FIBSTATE_EMPTY       |
3170 	    AAC_FIBSTATE_FROMHOST    |
3171 	    AAC_FIBSTATE_REXPECTED   |
3172 	    AAC_FIBSTATE_NORM        |
3173 	    AAC_FIBSTATE_ASYNC       |
3174 	    AAC_FIBSTATE_FAST_RESPONSE;
3175 	fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) != 0 ?
3176 	    ScsiPortCommandU64 : ScsiPortCommand;
3177 
3178 	mtx_lock(&sc->aac_io_lock);
3179 	aac_wait_command(cm);
3180 	mtx_unlock(&sc->aac_io_lock);
3181 
3182 	if (transfer_data && (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN) != 0) {
3183 		error = copyout(cm->cm_data, srb_sg_address, cm->cm_datalen);
3184 		if (error != 0)
3185 			goto out;
3186 	}
3187 	error = copyout(fib->data, ureply, sizeof(struct aac_srb_response));
3188 out:
3189 	if (cm != NULL) {
3190 		if (cm->cm_data != NULL)
3191 			free(cm->cm_data, M_AACBUF);
3192 		mtx_lock(&sc->aac_io_lock);
3193 		aac_release_command(cm);
3194 		mtx_unlock(&sc->aac_io_lock);
3195 	}
3196 	return(error);
3197 }
3198 
3199 /*
3200  * cdevpriv interface private destructor.
3201  */
3202 static void
3203 aac_cdevpriv_dtor(void *arg)
3204 {
3205 	struct aac_softc *sc;
3206 
3207 	sc = arg;
3208 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3209 	mtx_lock(&Giant);
3210 	device_unbusy(sc->aac_dev);
3211 	mtx_unlock(&Giant);
3212 }
3213 
3214 /*
3215  * Handle an AIF sent to us by the controller; queue it for later reference.
3216  * If the queue fills up, then drop the older entries.
3217  */
3218 static void
3219 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
3220 {
3221 	struct aac_aif_command *aif;
3222 	struct aac_container *co, *co_next;
3223 	struct aac_fib_context *ctx;
3224 	struct aac_mntinforesp *mir;
3225 	int next, current, found;
3226 	int count = 0, added = 0, i = 0;
3227 	uint32_t channel;
3228 
3229 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3230 
3231 	aif = (struct aac_aif_command*)&fib->data[0];
3232 	aac_print_aif(sc, aif);
3233 
3234 	/* Is it an event that we should care about? */
3235 	switch (aif->command) {
3236 	case AifCmdEventNotify:
3237 		switch (aif->data.EN.type) {
3238 		case AifEnAddContainer:
3239 		case AifEnDeleteContainer:
3240 			/*
3241 			 * A container was added or deleted, but the message
3242 			 * doesn't tell us anything else!  Re-enumerate the
3243 			 * containers and sort things out.
3244 			 */
3245 			aac_alloc_sync_fib(sc, &fib);
3246 			do {
3247 				/*
3248 				 * Ask the controller for its containers one at
3249 				 * a time.
3250 				 * XXX What if the controller's list changes
3251 				 * midway through this enumaration?
3252 				 * XXX This should be done async.
3253 				 */
3254 				if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
3255 					continue;
3256 				if (i == 0)
3257 					count = mir->MntRespCount;
3258 				/*
3259 				 * Check the container against our list.
3260 				 * co->co_found was already set to 0 in a
3261 				 * previous run.
3262 				 */
3263 				if ((mir->Status == ST_OK) &&
3264 				    (mir->MntTable[0].VolType != CT_NONE)) {
3265 					found = 0;
3266 					TAILQ_FOREACH(co,
3267 						      &sc->aac_container_tqh,
3268 						      co_link) {
3269 						if (co->co_mntobj.ObjectId ==
3270 						    mir->MntTable[0].ObjectId) {
3271 							co->co_found = 1;
3272 							found = 1;
3273 							break;
3274 						}
3275 					}
3276 					/*
3277 					 * If the container matched, continue
3278 					 * in the list.
3279 					 */
3280 					if (found) {
3281 						i++;
3282 						continue;
3283 					}
3284 
3285 					/*
3286 					 * This is a new container.  Do all the
3287 					 * appropriate things to set it up.
3288 					 */
3289 					aac_add_container(sc, mir, 1);
3290 					added = 1;
3291 				}
3292 				i++;
3293 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
3294 			aac_release_sync_fib(sc);
3295 
3296 			/*
3297 			 * Go through our list of containers and see which ones
3298 			 * were not marked 'found'.  Since the controller didn't
3299 			 * list them they must have been deleted.  Do the
3300 			 * appropriate steps to destroy the device.  Also reset
3301 			 * the co->co_found field.
3302 			 */
3303 			co = TAILQ_FIRST(&sc->aac_container_tqh);
3304 			while (co != NULL) {
3305 				if (co->co_found == 0) {
3306 					mtx_unlock(&sc->aac_io_lock);
3307 					mtx_lock(&Giant);
3308 					device_delete_child(sc->aac_dev,
3309 							    co->co_disk);
3310 					mtx_unlock(&Giant);
3311 					mtx_lock(&sc->aac_io_lock);
3312 					co_next = TAILQ_NEXT(co, co_link);
3313 					mtx_lock(&sc->aac_container_lock);
3314 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
3315 						     co_link);
3316 					mtx_unlock(&sc->aac_container_lock);
3317 					free(co, M_AACBUF);
3318 					co = co_next;
3319 				} else {
3320 					co->co_found = 0;
3321 					co = TAILQ_NEXT(co, co_link);
3322 				}
3323 			}
3324 
3325 			/* Attach the newly created containers */
3326 			if (added) {
3327 				mtx_unlock(&sc->aac_io_lock);
3328 				mtx_lock(&Giant);
3329 				bus_generic_attach(sc->aac_dev);
3330 				mtx_unlock(&Giant);
3331 				mtx_lock(&sc->aac_io_lock);
3332 			}
3333 
3334 			break;
3335 
3336 		case AifEnEnclosureManagement:
3337 			switch (aif->data.EN.data.EEE.eventType) {
3338 			case AIF_EM_DRIVE_INSERTION:
3339 			case AIF_EM_DRIVE_REMOVAL:
3340 				channel = aif->data.EN.data.EEE.unitID;
3341 				if (sc->cam_rescan_cb != NULL)
3342 					sc->cam_rescan_cb(sc,
3343 					    (channel >> 24) & 0xF,
3344 					    (channel & 0xFFFF));
3345 				break;
3346 			}
3347 			break;
3348 
3349 		case AifEnAddJBOD:
3350 		case AifEnDeleteJBOD:
3351 			channel = aif->data.EN.data.ECE.container;
3352 			if (sc->cam_rescan_cb != NULL)
3353 				sc->cam_rescan_cb(sc, (channel >> 24) & 0xF,
3354 				    AAC_CAM_TARGET_WILDCARD);
3355 			break;
3356 
3357 		default:
3358 			break;
3359 		}
3360 
3361 	default:
3362 		break;
3363 	}
3364 
3365 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
3366 	mtx_lock(&sc->aac_aifq_lock);
3367 	current = sc->aifq_idx;
3368 	next = (current + 1) % AAC_AIFQ_LENGTH;
3369 	if (next == 0)
3370 		sc->aifq_filled = 1;
3371 	bcopy(fib, &sc->aac_aifq[current], sizeof(struct aac_fib));
3372 	/* modify AIF contexts */
3373 	if (sc->aifq_filled) {
3374 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3375 			if (next == ctx->ctx_idx)
3376 				ctx->ctx_wrap = 1;
3377 			else if (current == ctx->ctx_idx && ctx->ctx_wrap)
3378 				ctx->ctx_idx = next;
3379 		}
3380 	}
3381 	sc->aifq_idx = next;
3382 	/* On the off chance that someone is sleeping for an aif... */
3383 	if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
3384 		wakeup(sc->aac_aifq);
3385 	/* Wakeup any poll()ers */
3386 	selwakeuppri(&sc->rcv_select, PRIBIO);
3387 	mtx_unlock(&sc->aac_aifq_lock);
3388 }
3389 
3390 /*
3391  * Return the Revision of the driver to userspace and check to see if the
3392  * userspace app is possibly compatible.  This is extremely bogus since
3393  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
3394  * returning what the card reported.
3395  */
3396 static int
3397 aac_rev_check(struct aac_softc *sc, caddr_t udata)
3398 {
3399 	struct aac_rev_check rev_check;
3400 	struct aac_rev_check_resp rev_check_resp;
3401 	int error = 0;
3402 
3403 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3404 
3405 	/*
3406 	 * Copyin the revision struct from userspace
3407 	 */
3408 	if ((error = copyin(udata, (caddr_t)&rev_check,
3409 			sizeof(struct aac_rev_check))) != 0) {
3410 		return error;
3411 	}
3412 
3413 	fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "Userland revision= %d\n",
3414 	      rev_check.callingRevision.buildNumber);
3415 
3416 	/*
3417 	 * Doctor up the response struct.
3418 	 */
3419 	rev_check_resp.possiblyCompatible = 1;
3420 	rev_check_resp.adapterSWRevision.external.comp.major =
3421 	    AAC_DRIVER_MAJOR_VERSION;
3422 	rev_check_resp.adapterSWRevision.external.comp.minor =
3423 	    AAC_DRIVER_MINOR_VERSION;
3424 	rev_check_resp.adapterSWRevision.external.comp.type =
3425 	    AAC_DRIVER_TYPE;
3426 	rev_check_resp.adapterSWRevision.external.comp.dash =
3427 	    AAC_DRIVER_BUGFIX_LEVEL;
3428 	rev_check_resp.adapterSWRevision.buildNumber =
3429 	    AAC_DRIVER_BUILD;
3430 
3431 	return(copyout((caddr_t)&rev_check_resp, udata,
3432 			sizeof(struct aac_rev_check_resp)));
3433 }
3434 
3435 /*
3436  * Pass the fib context to the caller
3437  */
3438 static int
3439 aac_open_aif(struct aac_softc *sc, caddr_t arg)
3440 {
3441 	struct aac_fib_context *fibctx, *ctx;
3442 	int error = 0;
3443 
3444 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3445 
3446 	fibctx = malloc(sizeof(struct aac_fib_context), M_AACBUF, M_NOWAIT|M_ZERO);
3447 	if (fibctx == NULL)
3448 		return (ENOMEM);
3449 
3450 	mtx_lock(&sc->aac_aifq_lock);
3451 	/* all elements are already 0, add to queue */
3452 	if (sc->fibctx == NULL)
3453 		sc->fibctx = fibctx;
3454 	else {
3455 		for (ctx = sc->fibctx; ctx->next; ctx = ctx->next)
3456 			;
3457 		ctx->next = fibctx;
3458 		fibctx->prev = ctx;
3459 	}
3460 
3461 	/* evaluate unique value */
3462 	fibctx->unique = (*(u_int32_t *)&fibctx & 0xffffffff);
3463 	ctx = sc->fibctx;
3464 	while (ctx != fibctx) {
3465 		if (ctx->unique == fibctx->unique) {
3466 			fibctx->unique++;
3467 			ctx = sc->fibctx;
3468 		} else {
3469 			ctx = ctx->next;
3470 		}
3471 	}
3472 	mtx_unlock(&sc->aac_aifq_lock);
3473 
3474 	error = copyout(&fibctx->unique, (void *)arg, sizeof(u_int32_t));
3475 	if (error)
3476 		aac_close_aif(sc, (caddr_t)ctx);
3477 	return error;
3478 }
3479 
3480 /*
3481  * Close the caller's fib context
3482  */
3483 static int
3484 aac_close_aif(struct aac_softc *sc, caddr_t arg)
3485 {
3486 	struct aac_fib_context *ctx;
3487 
3488 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3489 
3490 	mtx_lock(&sc->aac_aifq_lock);
3491 	for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3492 		if (ctx->unique == *(uint32_t *)&arg) {
3493 			if (ctx == sc->fibctx)
3494 				sc->fibctx = NULL;
3495 			else {
3496 				ctx->prev->next = ctx->next;
3497 				if (ctx->next)
3498 					ctx->next->prev = ctx->prev;
3499 			}
3500 			break;
3501 		}
3502 	}
3503 	mtx_unlock(&sc->aac_aifq_lock);
3504 	if (ctx)
3505 		free(ctx, M_AACBUF);
3506 
3507 	return 0;
3508 }
3509 
3510 /*
3511  * Pass the caller the next AIF in their queue
3512  */
3513 static int
3514 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
3515 {
3516 	struct get_adapter_fib_ioctl agf;
3517 	struct aac_fib_context *ctx;
3518 	int error;
3519 
3520 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3521 
3522 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
3523 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3524 			if (agf.AdapterFibContext == ctx->unique)
3525 				break;
3526 		}
3527 		if (!ctx)
3528 			return (EFAULT);
3529 
3530 		error = aac_return_aif(sc, ctx, agf.AifFib);
3531 		if (error == EAGAIN && agf.Wait) {
3532 			fwprintf(sc, HBA_FLAGS_DBG_AIF_B, "aac_getnext_aif(): waiting for AIF");
3533 			sc->aac_state |= AAC_STATE_AIF_SLEEPER;
3534 			while (error == EAGAIN) {
3535 				error = tsleep(sc->aac_aifq, PRIBIO |
3536 					       PCATCH, "aacaif", 0);
3537 				if (error == 0)
3538 					error = aac_return_aif(sc, ctx, agf.AifFib);
3539 			}
3540 			sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
3541 		}
3542 	}
3543 	return(error);
3544 }
3545 
3546 /*
3547  * Hand the next AIF off the top of the queue out to userspace.
3548  */
3549 static int
3550 aac_return_aif(struct aac_softc *sc, struct aac_fib_context *ctx, caddr_t uptr)
3551 {
3552 	int current, error;
3553 
3554 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3555 
3556 	mtx_lock(&sc->aac_aifq_lock);
3557 	current = ctx->ctx_idx;
3558 	if (current == sc->aifq_idx && !ctx->ctx_wrap) {
3559 		/* empty */
3560 		mtx_unlock(&sc->aac_aifq_lock);
3561 		return (EAGAIN);
3562 	}
3563 	error =
3564 		copyout(&sc->aac_aifq[current], (void *)uptr, sizeof(struct aac_fib));
3565 	if (error)
3566 		device_printf(sc->aac_dev,
3567 		    "aac_return_aif: copyout returned %d\n", error);
3568 	else {
3569 		ctx->ctx_wrap = 0;
3570 		ctx->ctx_idx = (current + 1) % AAC_AIFQ_LENGTH;
3571 	}
3572 	mtx_unlock(&sc->aac_aifq_lock);
3573 	return(error);
3574 }
3575 
3576 static int
3577 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr)
3578 {
3579 	struct aac_pci_info {
3580 		u_int32_t bus;
3581 		u_int32_t slot;
3582 	} pciinf;
3583 	int error;
3584 
3585 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3586 
3587 	pciinf.bus = pci_get_bus(sc->aac_dev);
3588 	pciinf.slot = pci_get_slot(sc->aac_dev);
3589 
3590 	error = copyout((caddr_t)&pciinf, uptr,
3591 			sizeof(struct aac_pci_info));
3592 
3593 	return (error);
3594 }
3595 
3596 static int
3597 aac_supported_features(struct aac_softc *sc, caddr_t uptr)
3598 {
3599 	struct aac_features f;
3600 	int error;
3601 
3602 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3603 
3604 	if ((error = copyin(uptr, &f, sizeof (f))) != 0)
3605 		return (error);
3606 
3607 	/*
3608 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3609 	 * ALL zero in the featuresState, the driver will return the current
3610 	 * state of all the supported features, the data field will not be
3611 	 * valid.
3612 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3613 	 * a specific bit set in the featuresState, the driver will return the
3614 	 * current state of this specific feature and whatever data that are
3615 	 * associated with the feature in the data field or perform whatever
3616 	 * action needed indicates in the data field.
3617 	 */
3618 	if (f.feat.fValue == 0) {
3619 		f.feat.fBits.largeLBA =
3620 		    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3621 		/* TODO: In the future, add other features state here as well */
3622 	} else {
3623 		if (f.feat.fBits.largeLBA)
3624 			f.feat.fBits.largeLBA =
3625 			    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3626 		/* TODO: Add other features state and data in the future */
3627 	}
3628 
3629 	error = copyout(&f, uptr, sizeof (f));
3630 	return (error);
3631 }
3632 
3633 /*
3634  * Give the userland some information about the container.  The AAC arch
3635  * expects the driver to be a SCSI passthrough type driver, so it expects
3636  * the containers to have b:t:l numbers.  Fake it.
3637  */
3638 static int
3639 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
3640 {
3641 	struct aac_query_disk query_disk;
3642 	struct aac_container *co;
3643 	struct aac_disk	*disk;
3644 	int error, id;
3645 
3646 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3647 
3648 	disk = NULL;
3649 
3650 	error = copyin(uptr, (caddr_t)&query_disk,
3651 		       sizeof(struct aac_query_disk));
3652 	if (error)
3653 		return (error);
3654 
3655 	id = query_disk.ContainerNumber;
3656 	if (id == -1)
3657 		return (EINVAL);
3658 
3659 	mtx_lock(&sc->aac_container_lock);
3660 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
3661 		if (co->co_mntobj.ObjectId == id)
3662 			break;
3663 		}
3664 
3665 	if (co == NULL) {
3666 			query_disk.Valid = 0;
3667 			query_disk.Locked = 0;
3668 			query_disk.Deleted = 1;		/* XXX is this right? */
3669 	} else {
3670 		disk = device_get_softc(co->co_disk);
3671 		query_disk.Valid = 1;
3672 		query_disk.Locked =
3673 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
3674 		query_disk.Deleted = 0;
3675 		query_disk.Bus = device_get_unit(sc->aac_dev);
3676 		query_disk.Target = disk->unit;
3677 		query_disk.Lun = 0;
3678 		query_disk.UnMapped = 0;
3679 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
3680 			disk->ad_disk->d_name, disk->ad_disk->d_unit);
3681 	}
3682 	mtx_unlock(&sc->aac_container_lock);
3683 
3684 	error = copyout((caddr_t)&query_disk, uptr,
3685 			sizeof(struct aac_query_disk));
3686 
3687 	return (error);
3688 }
3689 
3690 static void
3691 aac_get_bus_info(struct aac_softc *sc)
3692 {
3693 	struct aac_fib *fib;
3694 	struct aac_ctcfg *c_cmd;
3695 	struct aac_ctcfg_resp *c_resp;
3696 	struct aac_vmioctl *vmi;
3697 	struct aac_vmi_businf_resp *vmi_resp;
3698 	struct aac_getbusinf businfo;
3699 	struct aac_sim *caminf;
3700 	device_t child;
3701 	int i, found, error;
3702 
3703 	mtx_lock(&sc->aac_io_lock);
3704 	aac_alloc_sync_fib(sc, &fib);
3705 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
3706 	bzero(c_cmd, sizeof(struct aac_ctcfg));
3707 
3708 	c_cmd->Command = VM_ContainerConfig;
3709 	c_cmd->cmd = CT_GET_SCSI_METHOD;
3710 	c_cmd->param = 0;
3711 
3712 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3713 	    sizeof(struct aac_ctcfg));
3714 	if (error) {
3715 		device_printf(sc->aac_dev, "Error %d sending "
3716 		    "VM_ContainerConfig command\n", error);
3717 		aac_release_sync_fib(sc);
3718 		mtx_unlock(&sc->aac_io_lock);
3719 		return;
3720 	}
3721 
3722 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
3723 	if (c_resp->Status != ST_OK) {
3724 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
3725 		    c_resp->Status);
3726 		aac_release_sync_fib(sc);
3727 		mtx_unlock(&sc->aac_io_lock);
3728 		return;
3729 	}
3730 
3731 	sc->scsi_method_id = c_resp->param;
3732 
3733 	vmi = (struct aac_vmioctl *)&fib->data[0];
3734 	bzero(vmi, sizeof(struct aac_vmioctl));
3735 
3736 	vmi->Command = VM_Ioctl;
3737 	vmi->ObjType = FT_DRIVE;
3738 	vmi->MethId = sc->scsi_method_id;
3739 	vmi->ObjId = 0;
3740 	vmi->IoctlCmd = GetBusInfo;
3741 
3742 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3743 	    sizeof(struct aac_vmi_businf_resp));
3744 	if (error) {
3745 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3746 		    error);
3747 		aac_release_sync_fib(sc);
3748 		mtx_unlock(&sc->aac_io_lock);
3749 		return;
3750 	}
3751 
3752 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3753 	if (vmi_resp->Status != ST_OK) {
3754 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3755 		    vmi_resp->Status);
3756 		aac_release_sync_fib(sc);
3757 		mtx_unlock(&sc->aac_io_lock);
3758 		return;
3759 	}
3760 
3761 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3762 	aac_release_sync_fib(sc);
3763 	mtx_unlock(&sc->aac_io_lock);
3764 
3765 	found = 0;
3766 	for (i = 0; i < businfo.BusCount; i++) {
3767 		if (businfo.BusValid[i] != AAC_BUS_VALID)
3768 			continue;
3769 
3770 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3771 		    M_AACBUF, M_NOWAIT | M_ZERO);
3772 		if (caminf == NULL) {
3773 			device_printf(sc->aac_dev,
3774 			    "No memory to add passthrough bus %d\n", i);
3775 			break;
3776 		}
3777 
3778 		child = device_add_child(sc->aac_dev, "aacp", -1);
3779 		if (child == NULL) {
3780 			device_printf(sc->aac_dev,
3781 			    "device_add_child failed for passthrough bus %d\n",
3782 			    i);
3783 			free(caminf, M_AACBUF);
3784 			break;
3785 		}
3786 
3787 		caminf->TargetsPerBus = businfo.TargetsPerBus;
3788 		caminf->BusNumber = i;
3789 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3790 		caminf->aac_sc = sc;
3791 		caminf->sim_dev = child;
3792 
3793 		device_set_ivars(child, caminf);
3794 		device_set_desc(child, "SCSI Passthrough Bus");
3795 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3796 
3797 		found = 1;
3798 	}
3799 
3800 	if (found)
3801 		bus_generic_attach(sc->aac_dev);
3802 }
3803