xref: /freebsd/sys/dev/aac/aac.c (revision 7773002178c8dbc52b44e4d705f07706409af8e4)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #include <sys/ioccom.h>
48 
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 #include <sys/eventhandler.h>
54 
55 #include <machine/bus_memio.h>
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 
59 #include <dev/aac/aacreg.h>
60 #include <dev/aac/aac_ioctl.h>
61 #include <dev/aac/aacvar.h>
62 #include <dev/aac/aac_tables.h>
63 
64 static void	aac_startup(void *arg);
65 static void	aac_add_container(struct aac_softc *sc,
66 				  struct aac_mntinforesp *mir, int f);
67 static void	aac_get_bus_info(struct aac_softc *sc);
68 
69 /* Command Processing */
70 static void	aac_timeout(struct aac_softc *sc);
71 static int	aac_map_command(struct aac_command *cm);
72 static void	aac_complete(void *context, int pending);
73 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74 static void	aac_bio_complete(struct aac_command *cm);
75 static int	aac_wait_command(struct aac_command *cm, int timeout);
76 static void	aac_command_thread(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80 				   int nseg, int error);
81 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82 				       int nseg, int error);
83 static int	aac_alloc_commands(struct aac_softc *sc);
84 static void	aac_free_commands(struct aac_softc *sc);
85 static void	aac_unmap_command(struct aac_command *cm);
86 
87 /* Hardware Interface */
88 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89 			       int error);
90 static int	aac_check_firmware(struct aac_softc *sc);
91 static int	aac_init(struct aac_softc *sc);
92 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94 				 u_int32_t arg3, u_int32_t *sp);
95 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96 				struct aac_command *cm);
97 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98 				u_int32_t *fib_size, struct aac_fib **fib_addr);
99 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100 				     struct aac_fib *fib);
101 
102 /* Falcon/PPC interface */
103 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105 static int	aac_fa_get_istatus(struct aac_softc *sc);
106 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108 				   u_int32_t arg0, u_int32_t arg1,
109 				   u_int32_t arg2, u_int32_t arg3);
110 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112 
113 struct aac_interface aac_fa_interface = {
114 	aac_fa_get_fwstatus,
115 	aac_fa_qnotify,
116 	aac_fa_get_istatus,
117 	aac_fa_clear_istatus,
118 	aac_fa_set_mailbox,
119 	aac_fa_get_mailbox,
120 	aac_fa_set_interrupts
121 };
122 
123 /* StrongARM interface */
124 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126 static int	aac_sa_get_istatus(struct aac_softc *sc);
127 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129 				   u_int32_t arg0, u_int32_t arg1,
130 				   u_int32_t arg2, u_int32_t arg3);
131 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133 
134 struct aac_interface aac_sa_interface = {
135 	aac_sa_get_fwstatus,
136 	aac_sa_qnotify,
137 	aac_sa_get_istatus,
138 	aac_sa_clear_istatus,
139 	aac_sa_set_mailbox,
140 	aac_sa_get_mailbox,
141 	aac_sa_set_interrupts
142 };
143 
144 /* i960Rx interface */
145 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147 static int	aac_rx_get_istatus(struct aac_softc *sc);
148 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150 				   u_int32_t arg0, u_int32_t arg1,
151 				   u_int32_t arg2, u_int32_t arg3);
152 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154 
155 struct aac_interface aac_rx_interface = {
156 	aac_rx_get_fwstatus,
157 	aac_rx_qnotify,
158 	aac_rx_get_istatus,
159 	aac_rx_clear_istatus,
160 	aac_rx_set_mailbox,
161 	aac_rx_get_mailbox,
162 	aac_rx_set_interrupts
163 };
164 
165 /* Debugging and Diagnostics */
166 static void	aac_describe_controller(struct aac_softc *sc);
167 static char	*aac_describe_code(struct aac_code_lookup *table,
168 				   u_int32_t code);
169 
170 /* Management Interface */
171 static d_open_t		aac_open;
172 static d_close_t	aac_close;
173 static d_ioctl_t	aac_ioctl;
174 static d_poll_t		aac_poll;
175 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
176 static void		aac_handle_aif(struct aac_softc *sc,
177 					   struct aac_fib *fib);
178 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
179 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
180 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
181 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182 
183 static struct cdevsw aac_cdevsw = {
184 	.d_open =	aac_open,
185 	.d_close =	aac_close,
186 	.d_ioctl =	aac_ioctl,
187 	.d_poll =	aac_poll,
188 	.d_name =	"aac",
189 };
190 
191 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
192 
193 /* sysctl node */
194 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
195 
196 /*
197  * Device Interface
198  */
199 
200 /*
201  * Initialise the controller and softc
202  */
203 int
204 aac_attach(struct aac_softc *sc)
205 {
206 	int error, unit;
207 
208 	debug_called(1);
209 
210 	/*
211 	 * Initialise per-controller queues.
212 	 */
213 	aac_initq_free(sc);
214 	aac_initq_ready(sc);
215 	aac_initq_busy(sc);
216 	aac_initq_bio(sc);
217 
218 	/*
219 	 * Initialise command-completion task.
220 	 */
221 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
222 
223 	/* disable interrupts before we enable anything */
224 	AAC_MASK_INTERRUPTS(sc);
225 
226 	/* mark controller as suspended until we get ourselves organised */
227 	sc->aac_state |= AAC_STATE_SUSPEND;
228 
229 	/*
230 	 * Check that the firmware on the card is supported.
231 	 */
232 	if ((error = aac_check_firmware(sc)) != 0)
233 		return(error);
234 
235 	/*
236 	 * Initialize locks
237 	 */
238 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
239 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
240 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
241 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
242 	TAILQ_INIT(&sc->aac_container_tqh);
243 
244 	/* Initialize the local AIF queue pointers */
245 	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
246 
247 	/*
248 	 * Initialise the adapter.
249 	 */
250 	if ((error = aac_init(sc)) != 0)
251 		return(error);
252 
253 	/*
254 	 * Print a little information about the controller.
255 	 */
256 	aac_describe_controller(sc);
257 
258 	/*
259 	 * Register to probe our containers later.
260 	 */
261 	sc->aac_ich.ich_func = aac_startup;
262 	sc->aac_ich.ich_arg = sc;
263 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
264 		device_printf(sc->aac_dev,
265 			      "can't establish configuration hook\n");
266 		return(ENXIO);
267 	}
268 
269 	/*
270 	 * Make the control device.
271 	 */
272 	unit = device_get_unit(sc->aac_dev);
273 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
274 				 0640, "aac%d", unit);
275 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
276 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
277 	sc->aac_dev_t->si_drv1 = sc;
278 
279 	/* Create the AIF thread */
280 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
281 			   &sc->aifthread, 0, 0, "aac%daif", unit))
282 		panic("Could not create AIF thread\n");
283 
284 	/* Register the shutdown method to only be called post-dump */
285 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
286 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
287 		device_printf(sc->aac_dev,
288 			      "shutdown event registration failed\n");
289 
290 	/* Register with CAM for the non-DASD devices */
291 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
292 		TAILQ_INIT(&sc->aac_sim_tqh);
293 		aac_get_bus_info(sc);
294 	}
295 
296 	return(0);
297 }
298 
299 /*
300  * Probe for containers, create disks.
301  */
302 static void
303 aac_startup(void *arg)
304 {
305 	struct aac_softc *sc;
306 	struct aac_fib *fib;
307 	struct aac_mntinfo *mi;
308 	struct aac_mntinforesp *mir = NULL;
309 	int count = 0, i = 0;
310 
311 	debug_called(1);
312 
313 	sc = (struct aac_softc *)arg;
314 
315 	/* disconnect ourselves from the intrhook chain */
316 	config_intrhook_disestablish(&sc->aac_ich);
317 
318 	aac_alloc_sync_fib(sc, &fib, 0);
319 	mi = (struct aac_mntinfo *)&fib->data[0];
320 
321 	/* loop over possible containers */
322 	do {
323 		/* request information on this container */
324 		bzero(mi, sizeof(struct aac_mntinfo));
325 		mi->Command = VM_NameServe;
326 		mi->MntType = FT_FILESYS;
327 		mi->MntCount = i;
328 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
329 				 sizeof(struct aac_mntinfo))) {
330 			printf("error probing container %d", i);
331 			continue;
332 		}
333 
334 		mir = (struct aac_mntinforesp *)&fib->data[0];
335 		/* XXX Need to check if count changed */
336 		count = mir->MntRespCount;
337 		aac_add_container(sc, mir, 0);
338 		i++;
339 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
340 
341 	aac_release_sync_fib(sc);
342 
343 	/* poke the bus to actually attach the child devices */
344 	if (bus_generic_attach(sc->aac_dev))
345 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
346 
347 	/* mark the controller up */
348 	sc->aac_state &= ~AAC_STATE_SUSPEND;
349 
350 	/* enable interrupts now */
351 	AAC_UNMASK_INTERRUPTS(sc);
352 }
353 
354 /*
355  * Create a device to respresent a new container
356  */
357 static void
358 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
359 {
360 	struct aac_container *co;
361 	device_t child;
362 
363 	/*
364 	 * Check container volume type for validity.  Note that many of
365 	 * the possible types may never show up.
366 	 */
367 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
368 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
369 		       M_NOWAIT | M_ZERO);
370 		if (co == NULL)
371 			panic("Out of memory?!\n");
372 		debug(1, "id %x  name '%.16s'  size %u  type %d",
373 		      mir->MntTable[0].ObjectId,
374 		      mir->MntTable[0].FileSystemName,
375 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
376 
377 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
378 			device_printf(sc->aac_dev, "device_add_child failed\n");
379 		else
380 			device_set_ivars(child, co);
381 		device_set_desc(child, aac_describe_code(aac_container_types,
382 				mir->MntTable[0].VolType));
383 		co->co_disk = child;
384 		co->co_found = f;
385 		bcopy(&mir->MntTable[0], &co->co_mntobj,
386 		      sizeof(struct aac_mntobj));
387 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
388 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
389 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
390 	}
391 }
392 
393 /*
394  * Free all of the resources associated with (sc)
395  *
396  * Should not be called if the controller is active.
397  */
398 void
399 aac_free(struct aac_softc *sc)
400 {
401 
402 	debug_called(1);
403 
404 	/* remove the control device */
405 	if (sc->aac_dev_t != NULL)
406 		destroy_dev(sc->aac_dev_t);
407 
408 	/* throw away any FIB buffers, discard the FIB DMA tag */
409 	aac_free_commands(sc);
410 	if (sc->aac_fib_dmat)
411 		bus_dma_tag_destroy(sc->aac_fib_dmat);
412 
413 	free(sc->aac_commands, M_AACBUF);
414 
415 	/* destroy the common area */
416 	if (sc->aac_common) {
417 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
418 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
419 				sc->aac_common_dmamap);
420 	}
421 	if (sc->aac_common_dmat)
422 		bus_dma_tag_destroy(sc->aac_common_dmat);
423 
424 	/* disconnect the interrupt handler */
425 	if (sc->aac_intr)
426 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
427 	if (sc->aac_irq != NULL)
428 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
429 				     sc->aac_irq);
430 
431 	/* destroy data-transfer DMA tag */
432 	if (sc->aac_buffer_dmat)
433 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
434 
435 	/* destroy the parent DMA tag */
436 	if (sc->aac_parent_dmat)
437 		bus_dma_tag_destroy(sc->aac_parent_dmat);
438 
439 	/* release the register window mapping */
440 	if (sc->aac_regs_resource != NULL)
441 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
442 				     sc->aac_regs_rid, sc->aac_regs_resource);
443 }
444 
445 /*
446  * Disconnect from the controller completely, in preparation for unload.
447  */
448 int
449 aac_detach(device_t dev)
450 {
451 	struct aac_softc *sc;
452 	struct aac_container *co;
453 	struct aac_sim	*sim;
454 	int error;
455 
456 	debug_called(1);
457 
458 	sc = device_get_softc(dev);
459 
460 	if (sc->aac_state & AAC_STATE_OPEN)
461 		return(EBUSY);
462 
463 	/* Remove the child containers */
464 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
465 		error = device_delete_child(dev, co->co_disk);
466 		if (error)
467 			return (error);
468 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
469 		free(co, M_AACBUF);
470 	}
471 
472 	/* Remove the CAM SIMs */
473 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
474 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
475 		error = device_delete_child(dev, sim->sim_dev);
476 		if (error)
477 			return (error);
478 		free(sim, M_AACBUF);
479 	}
480 
481 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
482 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
483 		wakeup(sc->aifthread);
484 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
485 	}
486 
487 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
488 		panic("Cannot shutdown AIF thread\n");
489 
490 	if ((error = aac_shutdown(dev)))
491 		return(error);
492 
493 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
494 
495 	aac_free(sc);
496 
497 	return(0);
498 }
499 
500 /*
501  * Bring the controller down to a dormant state and detach all child devices.
502  *
503  * This function is called before detach or system shutdown.
504  *
505  * Note that we can assume that the bioq on the controller is empty, as we won't
506  * allow shutdown if any device is open.
507  */
508 int
509 aac_shutdown(device_t dev)
510 {
511 	struct aac_softc *sc;
512 	struct aac_fib *fib;
513 	struct aac_close_command *cc;
514 
515 	debug_called(1);
516 
517 	sc = device_get_softc(dev);
518 
519 	sc->aac_state |= AAC_STATE_SUSPEND;
520 
521 	/*
522 	 * Send a Container shutdown followed by a HostShutdown FIB to the
523 	 * controller to convince it that we don't want to talk to it anymore.
524 	 * We've been closed and all I/O completed already
525 	 */
526 	device_printf(sc->aac_dev, "shutting down controller...");
527 
528 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
529 	cc = (struct aac_close_command *)&fib->data[0];
530 
531 	bzero(cc, sizeof(struct aac_close_command));
532 	cc->Command = VM_CloseAll;
533 	cc->ContainerId = 0xffffffff;
534 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
535 	    sizeof(struct aac_close_command)))
536 		printf("FAILED.\n");
537 	else
538 		printf("done\n");
539 #if 0
540 	else {
541 		fib->data[0] = 0;
542 		/*
543 		 * XXX Issuing this command to the controller makes it shut down
544 		 * but also keeps it from coming back up without a reset of the
545 		 * PCI bus.  This is not desirable if you are just unloading the
546 		 * driver module with the intent to reload it later.
547 		 */
548 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
549 		    fib, 1)) {
550 			printf("FAILED.\n");
551 		} else {
552 			printf("done.\n");
553 		}
554 	}
555 #endif
556 
557 	AAC_MASK_INTERRUPTS(sc);
558 
559 	return(0);
560 }
561 
562 /*
563  * Bring the controller to a quiescent state, ready for system suspend.
564  */
565 int
566 aac_suspend(device_t dev)
567 {
568 	struct aac_softc *sc;
569 
570 	debug_called(1);
571 
572 	sc = device_get_softc(dev);
573 
574 	sc->aac_state |= AAC_STATE_SUSPEND;
575 
576 	AAC_MASK_INTERRUPTS(sc);
577 	return(0);
578 }
579 
580 /*
581  * Bring the controller back to a state ready for operation.
582  */
583 int
584 aac_resume(device_t dev)
585 {
586 	struct aac_softc *sc;
587 
588 	debug_called(1);
589 
590 	sc = device_get_softc(dev);
591 
592 	sc->aac_state &= ~AAC_STATE_SUSPEND;
593 	AAC_UNMASK_INTERRUPTS(sc);
594 	return(0);
595 }
596 
597 /*
598  * Take an interrupt.
599  */
600 void
601 aac_intr(void *arg)
602 {
603 	struct aac_softc *sc;
604 	u_int32_t *resp_queue;
605 	u_int16_t reason;
606 
607 	debug_called(2);
608 
609 	sc = (struct aac_softc *)arg;
610 
611 	/*
612 	 * Optimize the common case of adapter response interrupts.
613 	 * We must read from the card prior to processing the responses
614 	 * to ensure the clear is flushed prior to accessing the queues.
615 	 * Reading the queues from local memory might save us a PCI read.
616 	 */
617 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
618 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
619 		reason = AAC_DB_RESPONSE_READY;
620 	else
621 		reason = AAC_GET_ISTATUS(sc);
622 	AAC_CLEAR_ISTATUS(sc, reason);
623 	(void)AAC_GET_ISTATUS(sc);
624 
625 	/* It's not ok to return here because of races with the previous step */
626 	if (reason & AAC_DB_RESPONSE_READY)
627 		/* handle completion processing */
628 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
629 
630 	/* controller wants to talk to the log */
631 	if (reason & AAC_DB_PRINTF) {
632 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
633 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
634 		} else
635 			aac_print_printf(sc);
636 	}
637 
638 	/* controller has a message for us? */
639 	if (reason & AAC_DB_COMMAND_READY) {
640 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
641 			sc->aifflags |= AAC_AIFFLAGS_AIF;
642 		} else {
643 			/*
644 			 * XXX If the kthread is dead and we're at this point,
645 			 * there are bigger problems than just figuring out
646 			 * what to do with an AIF.
647 			 */
648 		}
649 
650 	}
651 
652 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
653 		/* XXX Should this be done with cv_signal? */
654 		wakeup(sc->aifthread);
655 }
656 
657 /*
658  * Command Processing
659  */
660 
661 /*
662  * Start as much queued I/O as possible on the controller
663  */
664 void
665 aac_startio(struct aac_softc *sc)
666 {
667 	struct aac_command *cm;
668 
669 	debug_called(2);
670 
671 	if (sc->flags & AAC_QUEUE_FRZN)
672 		return;
673 
674 	for (;;) {
675 		/*
676 		 * Try to get a command that's been put off for lack of
677 		 * resources
678 		 */
679 		cm = aac_dequeue_ready(sc);
680 
681 		/*
682 		 * Try to build a command off the bio queue (ignore error
683 		 * return)
684 		 */
685 		if (cm == NULL)
686 			aac_bio_command(sc, &cm);
687 
688 		/* nothing to do? */
689 		if (cm == NULL)
690 			break;
691 
692 		/* try to give the command to the controller */
693 		if (aac_map_command(cm) == EBUSY) {
694 			/* put it on the ready queue for later */
695 			aac_requeue_ready(cm);
696 			break;
697 		}
698 	}
699 }
700 
701 /*
702  * Deliver a command to the controller; allocate controller resources at the
703  * last moment when possible.
704  */
705 static int
706 aac_map_command(struct aac_command *cm)
707 {
708 	struct aac_softc *sc;
709 	int error;
710 
711 	debug_called(2);
712 
713 	sc = cm->cm_sc;
714 	error = 0;
715 
716 	/* don't map more than once */
717 	if (cm->cm_flags & AAC_CMD_MAPPED)
718 		return (0);
719 
720 	if (cm->cm_datalen != 0) {
721 		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
722 					cm->cm_data, cm->cm_datalen,
723 					aac_map_command_sg, cm, 0);
724 		if (error == EINPROGRESS) {
725 			debug(1, "freezing queue\n");
726 			sc->flags |= AAC_QUEUE_FRZN;
727 			error = 0;
728 		}
729 	} else {
730 		aac_map_command_sg(cm, NULL, 0, 0);
731 	}
732 	return (error);
733 }
734 
735 /*
736  * Handle notification of one or more FIBs coming from the controller.
737  */
738 static void
739 aac_command_thread(struct aac_softc *sc)
740 {
741 	struct aac_fib *fib;
742 	u_int32_t fib_size;
743 	int size;
744 
745 	debug_called(2);
746 
747 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
748 
749 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
750 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
751 			tsleep(sc->aifthread, PRIBIO, "aifthd",
752 			       AAC_PERIODIC_INTERVAL * hz);
753 
754 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
755 			aac_timeout(sc);
756 
757 		/* Check the hardware printf message buffer */
758 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
759 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
760 			aac_print_printf(sc);
761 		}
762 
763 		/* See if any FIBs need to be allocated */
764 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
765 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
766 			aac_alloc_commands(sc);
767 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
768 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
769 		}
770 
771 		/* While we're here, check to see if any commands are stuck */
772 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
773 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
774 					    &fib_size, &fib)) {
775 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
776 				break;	/* nothing to do */
777 			}
778 
779 			AAC_PRINT_FIB(sc, fib);
780 
781 			switch (fib->Header.Command) {
782 			case AifRequest:
783 				aac_handle_aif(sc, fib);
784 				break;
785 			default:
786 				device_printf(sc->aac_dev, "unknown command "
787 					      "from controller\n");
788 				break;
789 			}
790 
791 			if ((fib->Header.XferState == 0) ||
792 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
793 				break;
794 
795 			/* Return the AIF to the controller. */
796 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
797 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
798 				*(AAC_FSAStatus*)fib->data = ST_OK;
799 
800 				/* XXX Compute the Size field? */
801 				size = fib->Header.Size;
802 				if (size > sizeof(struct aac_fib)) {
803 					size = sizeof(struct aac_fib);
804 					fib->Header.Size = size;
805 				}
806 				/*
807 				 * Since we did not generate this command, it
808 				 * cannot go through the normal
809 				 * enqueue->startio chain.
810 				 */
811 				aac_enqueue_response(sc,
812 						     AAC_ADAP_NORM_RESP_QUEUE,
813 						     fib);
814 			}
815 		}
816 	}
817 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
818 	wakeup(sc->aac_dev);
819 
820 	mtx_lock(&Giant);
821 	kthread_exit(0);
822 }
823 
824 /*
825  * Process completed commands.
826  */
827 static void
828 aac_complete(void *context, int pending)
829 {
830 	struct aac_softc *sc;
831 	struct aac_command *cm;
832 	struct aac_fib *fib;
833 	u_int32_t fib_size;
834 
835 	debug_called(2);
836 
837 	sc = (struct aac_softc *)context;
838 
839 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
840 
841 	/* pull completed commands off the queue */
842 	for (;;) {
843 		/* look for completed FIBs on our queue */
844 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
845 				    &fib))
846 			break;	/* nothing to do */
847 
848 		/* get the command, unmap and queue for later processing */
849 		cm = sc->aac_commands + fib->Header.SenderData;
850 		if (cm == NULL) {
851 			AAC_PRINT_FIB(sc, fib);
852 			break;
853 		}
854 
855 		aac_remove_busy(cm);
856 		aac_unmap_command(cm);		/* XXX defer? */
857 		cm->cm_flags |= AAC_CMD_COMPLETED;
858 
859 		/* is there a completion handler? */
860 		if (cm->cm_complete != NULL) {
861 			cm->cm_complete(cm);
862 		} else {
863 			/* assume that someone is sleeping on this command */
864 			wakeup(cm);
865 		}
866 	}
867 
868 	/* see if we can start some more I/O */
869 	sc->flags &= ~AAC_QUEUE_FRZN;
870 	aac_startio(sc);
871 
872 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
873 }
874 
875 /*
876  * Handle a bio submitted from a disk device.
877  */
878 void
879 aac_submit_bio(struct bio *bp)
880 {
881 	struct aac_disk *ad;
882 	struct aac_softc *sc;
883 
884 	debug_called(2);
885 
886 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
887 	sc = ad->ad_controller;
888 
889 	/* queue the BIO and try to get some work done */
890 	aac_enqueue_bio(sc, bp);
891 	aac_startio(sc);
892 }
893 
894 /*
895  * Get a bio and build a command to go with it.
896  */
897 static int
898 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
899 {
900 	struct aac_command *cm;
901 	struct aac_fib *fib;
902 	struct aac_disk *ad;
903 	struct bio *bp;
904 
905 	debug_called(2);
906 
907 	/* get the resources we will need */
908 	cm = NULL;
909 	if ((bp = aac_dequeue_bio(sc)) == NULL)
910 		goto fail;
911 	if (aac_alloc_command(sc, &cm))	/* get a command */
912 		goto fail;
913 
914 	/* fill out the command */
915 	cm->cm_data = (void *)bp->bio_data;
916 	cm->cm_datalen = bp->bio_bcount;
917 	cm->cm_complete = aac_bio_complete;
918 	cm->cm_private = bp;
919 	cm->cm_timestamp = time_second;
920 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
921 
922 	/* build the FIB */
923 	fib = cm->cm_fib;
924 	fib->Header.Size = sizeof(struct aac_fib_header);
925 	fib->Header.XferState =
926 		AAC_FIBSTATE_HOSTOWNED   |
927 		AAC_FIBSTATE_INITIALISED |
928 		AAC_FIBSTATE_EMPTY	 |
929 		AAC_FIBSTATE_FROMHOST	 |
930 		AAC_FIBSTATE_REXPECTED   |
931 		AAC_FIBSTATE_NORM	 |
932 		AAC_FIBSTATE_ASYNC	 |
933 		AAC_FIBSTATE_FAST_RESPONSE;
934 
935 	/* build the read/write request */
936 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
937 
938 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
939 		fib->Header.Command = ContainerCommand;
940 		if (bp->bio_cmd == BIO_READ) {
941 			struct aac_blockread *br;
942 			br = (struct aac_blockread *)&fib->data[0];
943 			br->Command = VM_CtBlockRead;
944 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
945 			br->BlockNumber = bp->bio_pblkno;
946 			br->ByteCount = bp->bio_bcount;
947 			fib->Header.Size += sizeof(struct aac_blockread);
948 			cm->cm_sgtable = &br->SgMap;
949 			cm->cm_flags |= AAC_CMD_DATAIN;
950 		} else {
951 			struct aac_blockwrite *bw;
952 			bw = (struct aac_blockwrite *)&fib->data[0];
953 			bw->Command = VM_CtBlockWrite;
954 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
955 			bw->BlockNumber = bp->bio_pblkno;
956 			bw->ByteCount = bp->bio_bcount;
957 			bw->Stable = CUNSTABLE;
958 			fib->Header.Size += sizeof(struct aac_blockwrite);
959 			cm->cm_flags |= AAC_CMD_DATAOUT;
960 			cm->cm_sgtable = &bw->SgMap;
961 		}
962 	} else {
963 		fib->Header.Command = ContainerCommand64;
964 		if (bp->bio_cmd == BIO_READ) {
965 			struct aac_blockread64 *br;
966 			br = (struct aac_blockread64 *)&fib->data[0];
967 			br->Command = VM_CtHostRead64;
968 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
969 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
970 			br->BlockNumber = bp->bio_pblkno;
971 			br->Pad = 0;
972 			br->Flags = 0;
973 			fib->Header.Size += sizeof(struct aac_blockread64);
974 			cm->cm_flags |= AAC_CMD_DATAOUT;
975 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
976 		} else {
977 			struct aac_blockwrite64 *bw;
978 			bw = (struct aac_blockwrite64 *)&fib->data[0];
979 			bw->Command = VM_CtHostWrite64;
980 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
981 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
982 			bw->BlockNumber = bp->bio_pblkno;
983 			bw->Pad = 0;
984 			bw->Flags = 0;
985 			fib->Header.Size += sizeof(struct aac_blockwrite64);
986 			cm->cm_flags |= AAC_CMD_DATAIN;
987 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
988 		}
989 	}
990 
991 	*cmp = cm;
992 	return(0);
993 
994 fail:
995 	if (bp != NULL)
996 		aac_enqueue_bio(sc, bp);
997 	if (cm != NULL)
998 		aac_release_command(cm);
999 	return(ENOMEM);
1000 }
1001 
1002 /*
1003  * Handle a bio-instigated command that has been completed.
1004  */
1005 static void
1006 aac_bio_complete(struct aac_command *cm)
1007 {
1008 	struct aac_blockread_response *brr;
1009 	struct aac_blockwrite_response *bwr;
1010 	struct bio *bp;
1011 	AAC_FSAStatus status;
1012 
1013 	/* fetch relevant status and then release the command */
1014 	bp = (struct bio *)cm->cm_private;
1015 	if (bp->bio_cmd == BIO_READ) {
1016 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1017 		status = brr->Status;
1018 	} else {
1019 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1020 		status = bwr->Status;
1021 	}
1022 	aac_release_command(cm);
1023 
1024 	/* fix up the bio based on status */
1025 	if (status == ST_OK) {
1026 		bp->bio_resid = 0;
1027 	} else {
1028 		bp->bio_error = EIO;
1029 		bp->bio_flags |= BIO_ERROR;
1030 		/* pass an error string out to the disk layer */
1031 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1032 						    status);
1033 	}
1034 	aac_biodone(bp);
1035 }
1036 
1037 /*
1038  * Submit a command to the controller, return when it completes.
1039  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1040  *     be stuck here forever.  At the same time, signals are not caught
1041  *     because there is a risk that a signal could wakeup the tsleep before
1042  *     the card has a chance to complete the command.  The passed in timeout
1043  *     is ignored for the same reason.  Since there is no way to cancel a
1044  *     command in progress, we should probably create a 'dead' queue where
1045  *     commands go that have been interrupted/timed-out/etc, that keeps them
1046  *     out of the free pool.  That way, if the card is just slow, it won't
1047  *     spam the memory of a command that has been recycled.
1048  */
1049 static int
1050 aac_wait_command(struct aac_command *cm, int timeout)
1051 {
1052 	struct aac_softc *sc;
1053 	int error = 0;
1054 
1055 	debug_called(2);
1056 
1057 	sc = cm->cm_sc;
1058 
1059 	/* Put the command on the ready queue and get things going */
1060 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1061 	aac_enqueue_ready(cm);
1062 	aac_startio(sc);
1063 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1064 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1065 	}
1066 	return(error);
1067 }
1068 
1069 /*
1070  *Command Buffer Management
1071  */
1072 
1073 /*
1074  * Allocate a command.
1075  */
1076 int
1077 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1078 {
1079 	struct aac_command *cm;
1080 
1081 	debug_called(3);
1082 
1083 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1084 		if (sc->total_fibs < sc->aac_max_fibs) {
1085 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1086 			wakeup(sc->aifthread);
1087 		}
1088 		return (EBUSY);
1089 	}
1090 
1091 	*cmp = cm;
1092 	return(0);
1093 }
1094 
1095 /*
1096  * Release a command back to the freelist.
1097  */
1098 void
1099 aac_release_command(struct aac_command *cm)
1100 {
1101 	debug_called(3);
1102 
1103 	/* (re)initialise the command/FIB */
1104 	cm->cm_sgtable = NULL;
1105 	cm->cm_flags = 0;
1106 	cm->cm_complete = NULL;
1107 	cm->cm_private = NULL;
1108 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1109 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1110 	cm->cm_fib->Header.Flags = 0;
1111 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1112 
1113 	/*
1114 	 * These are duplicated in aac_start to cover the case where an
1115 	 * intermediate stage may have destroyed them.  They're left
1116 	 * initialised here for debugging purposes only.
1117 	 */
1118 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1119 	cm->cm_fib->Header.SenderData = 0;
1120 
1121 	aac_enqueue_free(cm);
1122 }
1123 
1124 /*
1125  * Map helper for command/FIB allocation.
1126  */
1127 static void
1128 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1129 {
1130 	uint32_t	*fibphys;
1131 
1132 	fibphys = (uint32_t *)arg;
1133 
1134 	debug_called(3);
1135 
1136 	*fibphys = segs[0].ds_addr;
1137 }
1138 
1139 /*
1140  * Allocate and initialise commands/FIBs for this adapter.
1141  */
1142 static int
1143 aac_alloc_commands(struct aac_softc *sc)
1144 {
1145 	struct aac_command *cm;
1146 	struct aac_fibmap *fm;
1147 	uint32_t fibphys;
1148 	int i, error;
1149 
1150 	debug_called(2);
1151 
1152 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1153 		return (ENOMEM);
1154 
1155 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1156 	if (fm == NULL)
1157 		return (ENOMEM);
1158 
1159 	/* allocate the FIBs in DMAable memory and load them */
1160 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1161 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1162 		device_printf(sc->aac_dev,
1163 			      "Not enough contiguous memory available.\n");
1164 		free(fm, M_AACBUF);
1165 		return (ENOMEM);
1166 	}
1167 
1168 	/* Ignore errors since this doesn't bounce */
1169 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1170 			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1171 			      aac_map_command_helper, &fibphys, 0);
1172 
1173 	/* initialise constant fields in the command structure */
1174 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1175 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1176 		cm = sc->aac_commands + sc->total_fibs;
1177 		fm->aac_commands = cm;
1178 		cm->cm_sc = sc;
1179 		cm->cm_fib = fm->aac_fibs + i;
1180 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1181 		cm->cm_index = sc->total_fibs;
1182 
1183 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1184 					       &cm->cm_datamap)) == 0)
1185 			aac_release_command(cm);
1186 		else
1187 			break;
1188 		sc->total_fibs++;
1189 	}
1190 
1191 	if (i > 0) {
1192 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1193 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1194 		return (0);
1195 	}
1196 
1197 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1198 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1199 	free(fm, M_AACBUF);
1200 	return (ENOMEM);
1201 }
1202 
1203 /*
1204  * Free FIBs owned by this adapter.
1205  */
1206 static void
1207 aac_free_commands(struct aac_softc *sc)
1208 {
1209 	struct aac_fibmap *fm;
1210 	struct aac_command *cm;
1211 	int i;
1212 
1213 	debug_called(1);
1214 
1215 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1216 
1217 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1218 		/*
1219 		 * We check against total_fibs to handle partially
1220 		 * allocated blocks.
1221 		 */
1222 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1223 			cm = fm->aac_commands + i;
1224 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1225 		}
1226 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1227 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1228 		free(fm, M_AACBUF);
1229 	}
1230 }
1231 
1232 /*
1233  * Command-mapping helper function - populate this command's s/g table.
1234  */
1235 static void
1236 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1237 {
1238 	struct aac_softc *sc;
1239 	struct aac_command *cm;
1240 	struct aac_fib *fib;
1241 	int i;
1242 
1243 	debug_called(3);
1244 
1245 	cm = (struct aac_command *)arg;
1246 	sc = cm->cm_sc;
1247 	fib = cm->cm_fib;
1248 
1249 	/* copy into the FIB */
1250 	if (cm->cm_sgtable != NULL) {
1251 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1252 			struct aac_sg_table *sg;
1253 			sg = cm->cm_sgtable;
1254 			sg->SgCount = nseg;
1255 			for (i = 0; i < nseg; i++) {
1256 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1257 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1258 			}
1259 			/* update the FIB size for the s/g count */
1260 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1261 		} else {
1262 			struct aac_sg_table64 *sg;
1263 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1264 			sg->SgCount = nseg;
1265 			for (i = 0; i < nseg; i++) {
1266 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1267 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1268 			}
1269 			/* update the FIB size for the s/g count */
1270 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1271 		}
1272 	}
1273 
1274 	/* Fix up the address values in the FIB.  Use the command array index
1275 	 * instead of a pointer since these fields are only 32 bits.  Shift
1276 	 * the SenderFibAddress over to make room for the fast response bit.
1277 	 */
1278 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1279 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1280 
1281 	/* save a pointer to the command for speedy reverse-lookup */
1282 	cm->cm_fib->Header.SenderData = cm->cm_index;
1283 
1284 	if (cm->cm_flags & AAC_CMD_DATAIN)
1285 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1286 				BUS_DMASYNC_PREREAD);
1287 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1288 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1289 				BUS_DMASYNC_PREWRITE);
1290 	cm->cm_flags |= AAC_CMD_MAPPED;
1291 
1292 	/* put the FIB on the outbound queue */
1293 	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY)
1294 		aac_requeue_ready(cm);
1295 
1296 	return;
1297 }
1298 
1299 /*
1300  * Unmap a command from controller-visible space.
1301  */
1302 static void
1303 aac_unmap_command(struct aac_command *cm)
1304 {
1305 	struct aac_softc *sc;
1306 
1307 	debug_called(2);
1308 
1309 	sc = cm->cm_sc;
1310 
1311 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1312 		return;
1313 
1314 	if (cm->cm_datalen != 0) {
1315 		if (cm->cm_flags & AAC_CMD_DATAIN)
1316 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1317 					BUS_DMASYNC_POSTREAD);
1318 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1319 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1320 					BUS_DMASYNC_POSTWRITE);
1321 
1322 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1323 	}
1324 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1325 }
1326 
1327 /*
1328  * Hardware Interface
1329  */
1330 
1331 /*
1332  * Initialise the adapter.
1333  */
1334 static void
1335 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1336 {
1337 	struct aac_softc *sc;
1338 
1339 	debug_called(1);
1340 
1341 	sc = (struct aac_softc *)arg;
1342 
1343 	sc->aac_common_busaddr = segs[0].ds_addr;
1344 }
1345 
1346 static int
1347 aac_check_firmware(struct aac_softc *sc)
1348 {
1349 	u_int32_t major, minor, options;
1350 
1351 	debug_called(1);
1352 
1353 	/*
1354 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1355 	 * firmware version 1.x are not compatible with this driver.
1356 	 */
1357 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1358 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1359 				     NULL)) {
1360 			device_printf(sc->aac_dev,
1361 				      "Error reading firmware version\n");
1362 			return (EIO);
1363 		}
1364 
1365 		/* These numbers are stored as ASCII! */
1366 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1367 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1368 		if (major == 1) {
1369 			device_printf(sc->aac_dev,
1370 			    "Firmware version %d.%d is not supported.\n",
1371 			    major, minor);
1372 			return (EINVAL);
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Retrieve the capabilities/supported options word so we know what
1378 	 * work-arounds to enable.
1379 	 */
1380 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1381 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1382 		return (EIO);
1383 	}
1384 	options = AAC_GET_MAILBOX(sc, 1);
1385 	sc->supported_options = options;
1386 
1387 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1388 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1389 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1390 	if (options & AAC_SUPPORTED_NONDASD)
1391 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1392 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1393 	     && (sizeof(bus_addr_t) > 4)) {
1394 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1395 		sc->flags |= AAC_FLAGS_SG_64BIT;
1396 	}
1397 
1398 	/* Check for broken hardware that does a lower number of commands */
1399 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1400 		sc->aac_max_fibs = AAC_MAX_FIBS;
1401 	else
1402 		sc->aac_max_fibs = 256;
1403 
1404 	return (0);
1405 }
1406 
1407 static int
1408 aac_init(struct aac_softc *sc)
1409 {
1410 	struct aac_adapter_init	*ip;
1411 	time_t then;
1412 	u_int32_t code, qoffset;
1413 	int error;
1414 
1415 	debug_called(1);
1416 
1417 	/*
1418 	 * First wait for the adapter to come ready.
1419 	 */
1420 	then = time_second;
1421 	do {
1422 		code = AAC_GET_FWSTATUS(sc);
1423 		if (code & AAC_SELF_TEST_FAILED) {
1424 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1425 			return(ENXIO);
1426 		}
1427 		if (code & AAC_KERNEL_PANIC) {
1428 			device_printf(sc->aac_dev,
1429 				      "FATAL: controller kernel panic\n");
1430 			return(ENXIO);
1431 		}
1432 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1433 			device_printf(sc->aac_dev,
1434 				      "FATAL: controller not coming ready, "
1435 					   "status %x\n", code);
1436 			return(ENXIO);
1437 		}
1438 	} while (!(code & AAC_UP_AND_RUNNING));
1439 
1440 	error = ENOMEM;
1441 	/*
1442 	 * Create DMA tag for mapping buffers into controller-addressable space.
1443 	 */
1444 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1445 			       1, 0, 			/* algnmnt, boundary */
1446 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1447 			       BUS_SPACE_MAXADDR :
1448 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1449 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1450 			       NULL, NULL, 		/* filter, filterarg */
1451 			       MAXBSIZE,		/* maxsize */
1452 			       AAC_MAXSGENTRIES,	/* nsegments */
1453 			       MAXBSIZE,		/* maxsegsize */
1454 			       BUS_DMA_ALLOCNOW,	/* flags */
1455 			       busdma_lock_mutex,	/* lockfunc */
1456 			       &sc->aac_io_lock,	/* lockfuncarg */
1457 			       &sc->aac_buffer_dmat)) {
1458 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1459 		goto out;
1460 	}
1461 
1462 	/*
1463 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1464 	 */
1465 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1466 			       1, 0, 			/* algnmnt, boundary */
1467 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1468 			       BUS_SPACE_MAXADDR_32BIT :
1469 			       0x7fffffff,		/* lowaddr */
1470 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1471 			       NULL, NULL, 		/* filter, filterarg */
1472 			       AAC_FIB_COUNT *
1473 			       sizeof(struct aac_fib),  /* maxsize */
1474 			       1,			/* nsegments */
1475 			       AAC_FIB_COUNT *
1476 			       sizeof(struct aac_fib),	/* maxsegsize */
1477 			       BUS_DMA_ALLOCNOW,	/* flags */
1478 			       NULL, NULL,		/* No locking needed */
1479 			       &sc->aac_fib_dmat)) {
1480 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1481 		goto out;
1482 	}
1483 
1484 	/*
1485 	 * Create DMA tag for the common structure and allocate it.
1486 	 */
1487 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1488 			       1, 0,			/* algnmnt, boundary */
1489 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1490 			       BUS_SPACE_MAXADDR_32BIT :
1491 			       0x7fffffff,		/* lowaddr */
1492 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1493 			       NULL, NULL, 		/* filter, filterarg */
1494 			       8192 + sizeof(struct aac_common), /* maxsize */
1495 			       1,			/* nsegments */
1496 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1497 			       BUS_DMA_ALLOCNOW,	/* flags */
1498 			       NULL, NULL,		/* No locking needed */
1499 			       &sc->aac_common_dmat)) {
1500 		device_printf(sc->aac_dev,
1501 			      "can't allocate common structure DMA tag\n");
1502 		goto out;
1503 	}
1504 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1505 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1506 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1507 		goto out;
1508 	}
1509 
1510 	/*
1511 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1512 	 * below address 8192 in physical memory.
1513 	 * XXX If the padding is not needed, can it be put to use instead
1514 	 * of ignored?
1515 	 */
1516 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1517 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1518 			aac_common_map, sc, 0);
1519 
1520 	if (sc->aac_common_busaddr < 8192) {
1521 		(uint8_t *)sc->aac_common += 8192;
1522 		sc->aac_common_busaddr += 8192;
1523 	}
1524 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1525 
1526 	/* Allocate some FIBs and associated command structs */
1527 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1528 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1529 				  M_AACBUF, M_WAITOK|M_ZERO);
1530 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1531 		if (aac_alloc_commands(sc) != 0)
1532 			break;
1533 	}
1534 	if (sc->total_fibs == 0)
1535 		goto out;
1536 
1537 	/*
1538 	 * Fill in the init structure.  This tells the adapter about the
1539 	 * physical location of various important shared data structures.
1540 	 */
1541 	ip = &sc->aac_common->ac_init;
1542 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1543 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1544 
1545 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1546 					 offsetof(struct aac_common, ac_fibs);
1547 	ip->AdapterFibsVirtualAddress = 0;
1548 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1549 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1550 
1551 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1552 				  offsetof(struct aac_common, ac_printf);
1553 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1554 
1555 	/*
1556 	 * The adapter assumes that pages are 4K in size, except on some
1557  	 * broken firmware versions that do the page->byte conversion twice,
1558 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1559 	 * Round up since the granularity is so high.
1560 	 */
1561 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1562 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1563 		ip->HostPhysMemPages =
1564 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1565 	}
1566 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1567 
1568 	/*
1569 	 * Initialise FIB queues.  Note that it appears that the layout of the
1570 	 * indexes and the segmentation of the entries may be mandated by the
1571 	 * adapter, which is only told about the base of the queue index fields.
1572 	 *
1573 	 * The initial values of the indices are assumed to inform the adapter
1574 	 * of the sizes of the respective queues, and theoretically it could
1575 	 * work out the entire layout of the queue structures from this.  We
1576 	 * take the easy route and just lay this area out like everyone else
1577 	 * does.
1578 	 *
1579 	 * The Linux driver uses a much more complex scheme whereby several
1580 	 * header records are kept for each queue.  We use a couple of generic
1581 	 * list manipulation functions which 'know' the size of each list by
1582 	 * virtue of a table.
1583 	 */
1584 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1585 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1586 	sc->aac_queues =
1587 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1588 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1589 
1590 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1591 		AAC_HOST_NORM_CMD_ENTRIES;
1592 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1593 		AAC_HOST_NORM_CMD_ENTRIES;
1594 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1595 		AAC_HOST_HIGH_CMD_ENTRIES;
1596 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1597 		AAC_HOST_HIGH_CMD_ENTRIES;
1598 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1599 		AAC_ADAP_NORM_CMD_ENTRIES;
1600 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1601 		AAC_ADAP_NORM_CMD_ENTRIES;
1602 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1603 		AAC_ADAP_HIGH_CMD_ENTRIES;
1604 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1605 		AAC_ADAP_HIGH_CMD_ENTRIES;
1606 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1607 		AAC_HOST_NORM_RESP_ENTRIES;
1608 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1609 		AAC_HOST_NORM_RESP_ENTRIES;
1610 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1611 		AAC_HOST_HIGH_RESP_ENTRIES;
1612 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1613 		AAC_HOST_HIGH_RESP_ENTRIES;
1614 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1615 		AAC_ADAP_NORM_RESP_ENTRIES;
1616 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1617 		AAC_ADAP_NORM_RESP_ENTRIES;
1618 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1619 		AAC_ADAP_HIGH_RESP_ENTRIES;
1620 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1621 		AAC_ADAP_HIGH_RESP_ENTRIES;
1622 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1623 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1624 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1625 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1626 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1627 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1628 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1629 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1630 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1631 		&sc->aac_queues->qt_HostNormRespQueue[0];
1632 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1633 		&sc->aac_queues->qt_HostHighRespQueue[0];
1634 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1635 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1636 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1637 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1638 
1639 	/*
1640 	 * Do controller-type-specific initialisation
1641 	 */
1642 	switch (sc->aac_hwif) {
1643 	case AAC_HWIF_I960RX:
1644 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1645 		break;
1646 	}
1647 
1648 	/*
1649 	 * Give the init structure to the controller.
1650 	 */
1651 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1652 			     sc->aac_common_busaddr +
1653 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1654 			     NULL)) {
1655 		device_printf(sc->aac_dev,
1656 			      "error establishing init structure\n");
1657 		error = EIO;
1658 		goto out;
1659 	}
1660 
1661 	error = 0;
1662 out:
1663 	return(error);
1664 }
1665 
1666 /*
1667  * Send a synchronous command to the controller and wait for a result.
1668  */
1669 static int
1670 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1671 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1672 		 u_int32_t *sp)
1673 {
1674 	time_t then;
1675 	u_int32_t status;
1676 
1677 	debug_called(3);
1678 
1679 	/* populate the mailbox */
1680 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1681 
1682 	/* ensure the sync command doorbell flag is cleared */
1683 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1684 
1685 	/* then set it to signal the adapter */
1686 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1687 
1688 	/* spin waiting for the command to complete */
1689 	then = time_second;
1690 	do {
1691 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1692 			debug(1, "timed out");
1693 			return(EIO);
1694 		}
1695 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1696 
1697 	/* clear the completion flag */
1698 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1699 
1700 	/* get the command status */
1701 	status = AAC_GET_MAILBOX(sc, 0);
1702 	if (sp != NULL)
1703 		*sp = status;
1704 	return(0);
1705 }
1706 
1707 /*
1708  * Grab the sync fib area.
1709  */
1710 int
1711 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1712 {
1713 
1714 	/*
1715 	 * If the force flag is set, the system is shutting down, or in
1716 	 * trouble.  Ignore the mutex.
1717 	 */
1718 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1719 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1720 
1721 	*fib = &sc->aac_common->ac_sync_fib;
1722 
1723 	return (1);
1724 }
1725 
1726 /*
1727  * Release the sync fib area.
1728  */
1729 void
1730 aac_release_sync_fib(struct aac_softc *sc)
1731 {
1732 
1733 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1734 }
1735 
1736 /*
1737  * Send a synchronous FIB to the controller and wait for a result.
1738  */
1739 int
1740 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1741 		 struct aac_fib *fib, u_int16_t datasize)
1742 {
1743 	debug_called(3);
1744 
1745 	if (datasize > AAC_FIB_DATASIZE)
1746 		return(EINVAL);
1747 
1748 	/*
1749 	 * Set up the sync FIB
1750 	 */
1751 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1752 				AAC_FIBSTATE_INITIALISED |
1753 				AAC_FIBSTATE_EMPTY;
1754 	fib->Header.XferState |= xferstate;
1755 	fib->Header.Command = command;
1756 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1757 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1758 	fib->Header.SenderSize = sizeof(struct aac_fib);
1759 	fib->Header.SenderFibAddress = 0;	/* Not needed */
1760 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1761 					 offsetof(struct aac_common,
1762 						  ac_sync_fib);
1763 
1764 	/*
1765 	 * Give the FIB to the controller, wait for a response.
1766 	 */
1767 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1768 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1769 		debug(2, "IO error");
1770 		return(EIO);
1771 	}
1772 
1773 	return (0);
1774 }
1775 
1776 /*
1777  * Adapter-space FIB queue manipulation
1778  *
1779  * Note that the queue implementation here is a little funky; neither the PI or
1780  * CI will ever be zero.  This behaviour is a controller feature.
1781  */
1782 static struct {
1783 	int		size;
1784 	int		notify;
1785 } aac_qinfo[] = {
1786 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1787 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1788 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1789 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1790 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1791 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1792 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1793 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1794 };
1795 
1796 /*
1797  * Atomically insert an entry into the nominated queue, returns 0 on success or
1798  * EBUSY if the queue is full.
1799  *
1800  * Note: it would be more efficient to defer notifying the controller in
1801  *	 the case where we may be inserting several entries in rapid succession,
1802  *	 but implementing this usefully may be difficult (it would involve a
1803  *	 separate queue/notify interface).
1804  */
1805 static int
1806 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1807 {
1808 	u_int32_t pi, ci;
1809 	int error;
1810 	u_int32_t fib_size;
1811 	u_int32_t fib_addr;
1812 
1813 	debug_called(3);
1814 
1815 	fib_size = cm->cm_fib->Header.Size;
1816 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1817 
1818 	/* get the producer/consumer indices */
1819 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1820 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1821 
1822 	/* wrap the queue? */
1823 	if (pi >= aac_qinfo[queue].size)
1824 		pi = 0;
1825 
1826 	/* check for queue full */
1827 	if ((pi + 1) == ci) {
1828 		error = EBUSY;
1829 		goto out;
1830 	}
1831 
1832 	/* populate queue entry */
1833 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1834 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1835 
1836 	/* update producer index */
1837 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1838 
1839 	/*
1840 	 * To avoid a race with its completion interrupt, place this command on
1841 	 * the busy queue prior to advertising it to the controller.
1842 	 */
1843 	aac_enqueue_busy(cm);
1844 
1845 	/* notify the adapter if we know how */
1846 	if (aac_qinfo[queue].notify != 0)
1847 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1848 
1849 	error = 0;
1850 
1851 out:
1852 	return(error);
1853 }
1854 
1855 /*
1856  * Atomically remove one entry from the nominated queue, returns 0 on
1857  * success or ENOENT if the queue is empty.
1858  */
1859 static int
1860 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1861 		struct aac_fib **fib_addr)
1862 {
1863 	u_int32_t pi, ci;
1864 	u_int32_t fib_index;
1865 	int error;
1866 	int notify;
1867 
1868 	debug_called(3);
1869 
1870 	/* get the producer/consumer indices */
1871 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1872 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1873 
1874 	/* check for queue empty */
1875 	if (ci == pi) {
1876 		error = ENOENT;
1877 		goto out;
1878 	}
1879 
1880 	/* wrap the pi so the following test works */
1881 	if (pi >= aac_qinfo[queue].size)
1882 		pi = 0;
1883 
1884 	notify = 0;
1885 	if (ci == pi + 1)
1886 		notify++;
1887 
1888 	/* wrap the queue? */
1889 	if (ci >= aac_qinfo[queue].size)
1890 		ci = 0;
1891 
1892 	/* fetch the entry */
1893 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1894 
1895 	switch (queue) {
1896 	case AAC_HOST_NORM_CMD_QUEUE:
1897 	case AAC_HOST_HIGH_CMD_QUEUE:
1898 		/*
1899 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1900 		 * on to hold an address.  For AIF's, the adapter assumes
1901 		 * that it's giving us an address into the array of AIF fibs.
1902 		 * Therefore, we have to convert it to an index.
1903 		 */
1904 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1905 			sizeof(struct aac_fib);
1906 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1907 		break;
1908 
1909 	case AAC_HOST_NORM_RESP_QUEUE:
1910 	case AAC_HOST_HIGH_RESP_QUEUE:
1911 	{
1912 		struct aac_command *cm;
1913 
1914 		/*
1915 		 * As above, an index is used instead of an actual address.
1916 		 * Gotta shift the index to account for the fast response
1917 		 * bit.  No other correction is needed since this value was
1918 		 * originally provided by the driver via the SenderFibAddress
1919 		 * field.
1920 		 */
1921 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1922 		cm = sc->aac_commands + (fib_index >> 1);
1923 		*fib_addr = cm->cm_fib;
1924 
1925 		/*
1926 		 * Is this a fast response? If it is, update the fib fields in
1927 		 * local memory since the whole fib isn't DMA'd back up.
1928 		 */
1929 		if (fib_index & 0x01) {
1930 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1931 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1932 		}
1933 		break;
1934 	}
1935 	default:
1936 		panic("Invalid queue in aac_dequeue_fib()");
1937 		break;
1938 	}
1939 
1940 	/* update consumer index */
1941 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1942 
1943 	/* if we have made the queue un-full, notify the adapter */
1944 	if (notify && (aac_qinfo[queue].notify != 0))
1945 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1946 	error = 0;
1947 
1948 out:
1949 	return(error);
1950 }
1951 
1952 /*
1953  * Put our response to an Adapter Initialed Fib on the response queue
1954  */
1955 static int
1956 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1957 {
1958 	u_int32_t pi, ci;
1959 	int error;
1960 	u_int32_t fib_size;
1961 	u_int32_t fib_addr;
1962 
1963 	debug_called(1);
1964 
1965 	/* Tell the adapter where the FIB is */
1966 	fib_size = fib->Header.Size;
1967 	fib_addr = fib->Header.SenderFibAddress;
1968 	fib->Header.ReceiverFibAddress = fib_addr;
1969 
1970 	/* get the producer/consumer indices */
1971 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1972 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1973 
1974 	/* wrap the queue? */
1975 	if (pi >= aac_qinfo[queue].size)
1976 		pi = 0;
1977 
1978 	/* check for queue full */
1979 	if ((pi + 1) == ci) {
1980 		error = EBUSY;
1981 		goto out;
1982 	}
1983 
1984 	/* populate queue entry */
1985 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1986 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1987 
1988 	/* update producer index */
1989 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1990 
1991 	/* notify the adapter if we know how */
1992 	if (aac_qinfo[queue].notify != 0)
1993 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1994 
1995 	error = 0;
1996 
1997 out:
1998 	return(error);
1999 }
2000 
2001 /*
2002  * Check for commands that have been outstanding for a suspiciously long time,
2003  * and complain about them.
2004  */
2005 static void
2006 aac_timeout(struct aac_softc *sc)
2007 {
2008 	struct aac_command *cm;
2009 	time_t deadline;
2010 
2011 	/*
2012 	 * Traverse the busy command list, bitch about late commands once
2013 	 * only.
2014 	 */
2015 	deadline = time_second - AAC_CMD_TIMEOUT;
2016 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2017 		if ((cm->cm_timestamp  < deadline)
2018 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2019 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2020 			device_printf(sc->aac_dev,
2021 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2022 				      cm, (int)(time_second-cm->cm_timestamp));
2023 			AAC_PRINT_FIB(sc, cm->cm_fib);
2024 		}
2025 	}
2026 
2027 	return;
2028 }
2029 
2030 /*
2031  * Interface Function Vectors
2032  */
2033 
2034 /*
2035  * Read the current firmware status word.
2036  */
2037 static int
2038 aac_sa_get_fwstatus(struct aac_softc *sc)
2039 {
2040 	debug_called(3);
2041 
2042 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2043 }
2044 
2045 static int
2046 aac_rx_get_fwstatus(struct aac_softc *sc)
2047 {
2048 	debug_called(3);
2049 
2050 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2051 }
2052 
2053 static int
2054 aac_fa_get_fwstatus(struct aac_softc *sc)
2055 {
2056 	int val;
2057 
2058 	debug_called(3);
2059 
2060 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2061 	return (val);
2062 }
2063 
2064 /*
2065  * Notify the controller of a change in a given queue
2066  */
2067 
2068 static void
2069 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2070 {
2071 	debug_called(3);
2072 
2073 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2074 }
2075 
2076 static void
2077 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2078 {
2079 	debug_called(3);
2080 
2081 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2082 }
2083 
2084 static void
2085 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2086 {
2087 	debug_called(3);
2088 
2089 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2090 	AAC_FA_HACK(sc);
2091 }
2092 
2093 /*
2094  * Get the interrupt reason bits
2095  */
2096 static int
2097 aac_sa_get_istatus(struct aac_softc *sc)
2098 {
2099 	debug_called(3);
2100 
2101 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2102 }
2103 
2104 static int
2105 aac_rx_get_istatus(struct aac_softc *sc)
2106 {
2107 	debug_called(3);
2108 
2109 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2110 }
2111 
2112 static int
2113 aac_fa_get_istatus(struct aac_softc *sc)
2114 {
2115 	int val;
2116 
2117 	debug_called(3);
2118 
2119 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2120 	return (val);
2121 }
2122 
2123 /*
2124  * Clear some interrupt reason bits
2125  */
2126 static void
2127 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2128 {
2129 	debug_called(3);
2130 
2131 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2132 }
2133 
2134 static void
2135 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2136 {
2137 	debug_called(3);
2138 
2139 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2140 }
2141 
2142 static void
2143 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2144 {
2145 	debug_called(3);
2146 
2147 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2148 	AAC_FA_HACK(sc);
2149 }
2150 
2151 /*
2152  * Populate the mailbox and set the command word
2153  */
2154 static void
2155 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2156 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2157 {
2158 	debug_called(4);
2159 
2160 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2161 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2162 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2163 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2164 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2165 }
2166 
2167 static void
2168 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2169 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2170 {
2171 	debug_called(4);
2172 
2173 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2174 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2175 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2176 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2177 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2178 }
2179 
2180 static void
2181 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2182 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2183 {
2184 	debug_called(4);
2185 
2186 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2187 	AAC_FA_HACK(sc);
2188 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2189 	AAC_FA_HACK(sc);
2190 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2191 	AAC_FA_HACK(sc);
2192 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2193 	AAC_FA_HACK(sc);
2194 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2195 	AAC_FA_HACK(sc);
2196 }
2197 
2198 /*
2199  * Fetch the immediate command status word
2200  */
2201 static int
2202 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2203 {
2204 	debug_called(4);
2205 
2206 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2207 }
2208 
2209 static int
2210 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2211 {
2212 	debug_called(4);
2213 
2214 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2215 }
2216 
2217 static int
2218 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2219 {
2220 	int val;
2221 
2222 	debug_called(4);
2223 
2224 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2225 	return (val);
2226 }
2227 
2228 /*
2229  * Set/clear interrupt masks
2230  */
2231 static void
2232 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2233 {
2234 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2235 
2236 	if (enable) {
2237 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2238 	} else {
2239 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2240 	}
2241 }
2242 
2243 static void
2244 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2245 {
2246 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2247 
2248 	if (enable) {
2249 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2250 	} else {
2251 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2252 	}
2253 }
2254 
2255 static void
2256 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2257 {
2258 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2259 
2260 	if (enable) {
2261 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2262 		AAC_FA_HACK(sc);
2263 	} else {
2264 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2265 		AAC_FA_HACK(sc);
2266 	}
2267 }
2268 
2269 /*
2270  * Debugging and Diagnostics
2271  */
2272 
2273 /*
2274  * Print some information about the controller.
2275  */
2276 static void
2277 aac_describe_controller(struct aac_softc *sc)
2278 {
2279 	struct aac_fib *fib;
2280 	struct aac_adapter_info	*info;
2281 
2282 	debug_called(2);
2283 
2284 	aac_alloc_sync_fib(sc, &fib, 0);
2285 
2286 	fib->data[0] = 0;
2287 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2288 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2289 		aac_release_sync_fib(sc);
2290 		return;
2291 	}
2292 	info = (struct aac_adapter_info *)&fib->data[0];
2293 
2294 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2295 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2296 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2297 		      aac_describe_code(aac_battery_platform,
2298 					info->batteryPlatform));
2299 
2300 	/* save the kernel revision structure for later use */
2301 	sc->aac_revision = info->KernelRevision;
2302 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2303 		      info->KernelRevision.external.comp.major,
2304 		      info->KernelRevision.external.comp.minor,
2305 		      info->KernelRevision.external.comp.dash,
2306 		      info->KernelRevision.buildNumber,
2307 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2308 
2309 	aac_release_sync_fib(sc);
2310 
2311 	if (1 || bootverbose) {
2312 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2313 			      sc->supported_options,
2314 			      "\20"
2315 			      "\1SNAPSHOT"
2316 			      "\2CLUSTERS"
2317 			      "\3WCACHE"
2318 			      "\4DATA64"
2319 			      "\5HOSTTIME"
2320 			      "\6RAID50"
2321 			      "\7WINDOW4GB"
2322 			      "\10SCSIUPGD"
2323 			      "\11SOFTERR"
2324 			      "\12NORECOND"
2325 			      "\13SGMAP64"
2326 			      "\14ALARM"
2327 			      "\15NONDASD");
2328 	}
2329 }
2330 
2331 /*
2332  * Look up a text description of a numeric error code and return a pointer to
2333  * same.
2334  */
2335 static char *
2336 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2337 {
2338 	int i;
2339 
2340 	for (i = 0; table[i].string != NULL; i++)
2341 		if (table[i].code == code)
2342 			return(table[i].string);
2343 	return(table[i + 1].string);
2344 }
2345 
2346 /*
2347  * Management Interface
2348  */
2349 
2350 static int
2351 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2352 {
2353 	struct aac_softc *sc;
2354 
2355 	debug_called(2);
2356 
2357 	sc = dev->si_drv1;
2358 
2359 	/* Check to make sure the device isn't already open */
2360 	if (sc->aac_state & AAC_STATE_OPEN) {
2361 		return EBUSY;
2362 	}
2363 	sc->aac_state |= AAC_STATE_OPEN;
2364 
2365 	return 0;
2366 }
2367 
2368 static int
2369 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2370 {
2371 	struct aac_softc *sc;
2372 
2373 	debug_called(2);
2374 
2375 	sc = dev->si_drv1;
2376 
2377 	/* Mark this unit as no longer open  */
2378 	sc->aac_state &= ~AAC_STATE_OPEN;
2379 
2380 	return 0;
2381 }
2382 
2383 static int
2384 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2385 {
2386 	union aac_statrequest *as;
2387 	struct aac_softc *sc;
2388 	int error = 0;
2389 	uint32_t cookie;
2390 
2391 	debug_called(2);
2392 
2393 	as = (union aac_statrequest *)arg;
2394 	sc = dev->si_drv1;
2395 
2396 	switch (cmd) {
2397 	case AACIO_STATS:
2398 		switch (as->as_item) {
2399 		case AACQ_FREE:
2400 		case AACQ_BIO:
2401 		case AACQ_READY:
2402 		case AACQ_BUSY:
2403 		case AACQ_COMPLETE:
2404 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2405 			      sizeof(struct aac_qstat));
2406 			break;
2407 		default:
2408 			error = ENOENT;
2409 			break;
2410 		}
2411 	break;
2412 
2413 	case FSACTL_SENDFIB:
2414 		arg = *(caddr_t*)arg;
2415 	case FSACTL_LNX_SENDFIB:
2416 		debug(1, "FSACTL_SENDFIB");
2417 		error = aac_ioctl_sendfib(sc, arg);
2418 		break;
2419 	case FSACTL_AIF_THREAD:
2420 	case FSACTL_LNX_AIF_THREAD:
2421 		debug(1, "FSACTL_AIF_THREAD");
2422 		error = EINVAL;
2423 		break;
2424 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2425 		arg = *(caddr_t*)arg;
2426 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2427 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2428 		/*
2429 		 * Pass the caller out an AdapterFibContext.
2430 		 *
2431 		 * Note that because we only support one opener, we
2432 		 * basically ignore this.  Set the caller's context to a magic
2433 		 * number just in case.
2434 		 *
2435 		 * The Linux code hands the driver a pointer into kernel space,
2436 		 * and then trusts it when the caller hands it back.  Aiee!
2437 		 * Here, we give it the proc pointer of the per-adapter aif
2438 		 * thread. It's only used as a sanity check in other calls.
2439 		 */
2440 		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2441 		error = copyout(&cookie, arg, sizeof(cookie));
2442 		break;
2443 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2444 		arg = *(caddr_t*)arg;
2445 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2446 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2447 		error = aac_getnext_aif(sc, arg);
2448 		break;
2449 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2450 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2451 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2452 		/* don't do anything here */
2453 		break;
2454 	case FSACTL_MINIPORT_REV_CHECK:
2455 		arg = *(caddr_t*)arg;
2456 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2457 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2458 		error = aac_rev_check(sc, arg);
2459 		break;
2460 	case FSACTL_QUERY_DISK:
2461 		arg = *(caddr_t*)arg;
2462 	case FSACTL_LNX_QUERY_DISK:
2463 		debug(1, "FSACTL_QUERY_DISK");
2464 		error = aac_query_disk(sc, arg);
2465 			break;
2466 	case FSACTL_DELETE_DISK:
2467 	case FSACTL_LNX_DELETE_DISK:
2468 		/*
2469 		 * We don't trust the underland to tell us when to delete a
2470 		 * container, rather we rely on an AIF coming from the
2471 		 * controller
2472 		 */
2473 		error = 0;
2474 		break;
2475 	default:
2476 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2477 		error = EINVAL;
2478 		break;
2479 	}
2480 	return(error);
2481 }
2482 
2483 static int
2484 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2485 {
2486 	struct aac_softc *sc;
2487 	int revents;
2488 
2489 	sc = dev->si_drv1;
2490 	revents = 0;
2491 
2492 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2493 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2494 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2495 			revents |= poll_events & (POLLIN | POLLRDNORM);
2496 	}
2497 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2498 
2499 	if (revents == 0) {
2500 		if (poll_events & (POLLIN | POLLRDNORM))
2501 			selrecord(td, &sc->rcv_select);
2502 	}
2503 
2504 	return (revents);
2505 }
2506 
2507 /*
2508  * Send a FIB supplied from userspace
2509  */
2510 static int
2511 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2512 {
2513 	struct aac_command *cm;
2514 	int size, error;
2515 
2516 	debug_called(2);
2517 
2518 	cm = NULL;
2519 
2520 	/*
2521 	 * Get a command
2522 	 */
2523 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2524 	if (aac_alloc_command(sc, &cm)) {
2525 		error = EBUSY;
2526 		goto out;
2527 	}
2528 
2529 	/*
2530 	 * Fetch the FIB header, then re-copy to get data as well.
2531 	 */
2532 	if ((error = copyin(ufib, cm->cm_fib,
2533 			    sizeof(struct aac_fib_header))) != 0)
2534 		goto out;
2535 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2536 	if (size > sizeof(struct aac_fib)) {
2537 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2538 			      size, sizeof(struct aac_fib));
2539 		size = sizeof(struct aac_fib);
2540 	}
2541 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2542 		goto out;
2543 	cm->cm_fib->Header.Size = size;
2544 	cm->cm_timestamp = time_second;
2545 
2546 	/*
2547 	 * Pass the FIB to the controller, wait for it to complete.
2548 	 */
2549 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2550 		device_printf(sc->aac_dev,
2551 			      "aac_wait_command return %d\n", error);
2552 		goto out;
2553 	}
2554 
2555 	/*
2556 	 * Copy the FIB and data back out to the caller.
2557 	 */
2558 	size = cm->cm_fib->Header.Size;
2559 	if (size > sizeof(struct aac_fib)) {
2560 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2561 			      size, sizeof(struct aac_fib));
2562 		size = sizeof(struct aac_fib);
2563 	}
2564 	error = copyout(cm->cm_fib, ufib, size);
2565 
2566 out:
2567 	if (cm != NULL) {
2568 		aac_release_command(cm);
2569 	}
2570 
2571 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2572 	return(error);
2573 }
2574 
2575 /*
2576  * Handle an AIF sent to us by the controller; queue it for later reference.
2577  * If the queue fills up, then drop the older entries.
2578  */
2579 static void
2580 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2581 {
2582 	struct aac_aif_command *aif;
2583 	struct aac_container *co, *co_next;
2584 	struct aac_mntinfo *mi;
2585 	struct aac_mntinforesp *mir = NULL;
2586 	u_int16_t rsize;
2587 	int next, found;
2588 	int count = 0, added = 0, i = 0;
2589 
2590 	debug_called(2);
2591 
2592 	aif = (struct aac_aif_command*)&fib->data[0];
2593 	aac_print_aif(sc, aif);
2594 
2595 	/* Is it an event that we should care about? */
2596 	switch (aif->command) {
2597 	case AifCmdEventNotify:
2598 		switch (aif->data.EN.type) {
2599 		case AifEnAddContainer:
2600 		case AifEnDeleteContainer:
2601 			/*
2602 			 * A container was added or deleted, but the message
2603 			 * doesn't tell us anything else!  Re-enumerate the
2604 			 * containers and sort things out.
2605 			 */
2606 			aac_alloc_sync_fib(sc, &fib, 0);
2607 			mi = (struct aac_mntinfo *)&fib->data[0];
2608 			do {
2609 				/*
2610 				 * Ask the controller for its containers one at
2611 				 * a time.
2612 				 * XXX What if the controller's list changes
2613 				 * midway through this enumaration?
2614 				 * XXX This should be done async.
2615 				 */
2616 				bzero(mi, sizeof(struct aac_mntinfo));
2617 				mi->Command = VM_NameServe;
2618 				mi->MntType = FT_FILESYS;
2619 				mi->MntCount = i;
2620 				rsize = sizeof(mir);
2621 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2622 						 sizeof(struct aac_mntinfo))) {
2623 					printf("Error probing container %d\n",
2624 					      i);
2625 					continue;
2626 				}
2627 				mir = (struct aac_mntinforesp *)&fib->data[0];
2628 				/* XXX Need to check if count changed */
2629 				count = mir->MntRespCount;
2630 				/*
2631 				 * Check the container against our list.
2632 				 * co->co_found was already set to 0 in a
2633 				 * previous run.
2634 				 */
2635 				if ((mir->Status == ST_OK) &&
2636 				    (mir->MntTable[0].VolType != CT_NONE)) {
2637 					found = 0;
2638 					TAILQ_FOREACH(co,
2639 						      &sc->aac_container_tqh,
2640 						      co_link) {
2641 						if (co->co_mntobj.ObjectId ==
2642 						    mir->MntTable[0].ObjectId) {
2643 							co->co_found = 1;
2644 							found = 1;
2645 							break;
2646 						}
2647 					}
2648 					/*
2649 					 * If the container matched, continue
2650 					 * in the list.
2651 					 */
2652 					if (found) {
2653 						i++;
2654 						continue;
2655 					}
2656 
2657 					/*
2658 					 * This is a new container.  Do all the
2659 					 * appropriate things to set it up.
2660 					 */
2661 					aac_add_container(sc, mir, 1);
2662 					added = 1;
2663 				}
2664 				i++;
2665 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2666 			aac_release_sync_fib(sc);
2667 
2668 			/*
2669 			 * Go through our list of containers and see which ones
2670 			 * were not marked 'found'.  Since the controller didn't
2671 			 * list them they must have been deleted.  Do the
2672 			 * appropriate steps to destroy the device.  Also reset
2673 			 * the co->co_found field.
2674 			 */
2675 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2676 			while (co != NULL) {
2677 				if (co->co_found == 0) {
2678 					device_delete_child(sc->aac_dev,
2679 							    co->co_disk);
2680 					co_next = TAILQ_NEXT(co, co_link);
2681 					AAC_LOCK_ACQUIRE(&sc->
2682 							aac_container_lock);
2683 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2684 						     co_link);
2685 					AAC_LOCK_RELEASE(&sc->
2686 							 aac_container_lock);
2687 					FREE(co, M_AACBUF);
2688 					co = co_next;
2689 				} else {
2690 					co->co_found = 0;
2691 					co = TAILQ_NEXT(co, co_link);
2692 				}
2693 			}
2694 
2695 			/* Attach the newly created containers */
2696 			if (added)
2697 				bus_generic_attach(sc->aac_dev);
2698 
2699 			break;
2700 
2701 		default:
2702 			break;
2703 		}
2704 
2705 	default:
2706 		break;
2707 	}
2708 
2709 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2710 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2711 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2712 	if (next != sc->aac_aifq_tail) {
2713 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2714 		sc->aac_aifq_head = next;
2715 
2716 		/* On the off chance that someone is sleeping for an aif... */
2717 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2718 			wakeup(sc->aac_aifq);
2719 		/* Wakeup any poll()ers */
2720 		selwakeup(&sc->rcv_select);
2721 	}
2722 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2723 
2724 	return;
2725 }
2726 
2727 /*
2728  * Return the Revision of the driver to userspace and check to see if the
2729  * userspace app is possibly compatible.  This is extremely bogus since
2730  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2731  * returning what the card reported.
2732  */
2733 static int
2734 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2735 {
2736 	struct aac_rev_check rev_check;
2737 	struct aac_rev_check_resp rev_check_resp;
2738 	int error = 0;
2739 
2740 	debug_called(2);
2741 
2742 	/*
2743 	 * Copyin the revision struct from userspace
2744 	 */
2745 	if ((error = copyin(udata, (caddr_t)&rev_check,
2746 			sizeof(struct aac_rev_check))) != 0) {
2747 		return error;
2748 	}
2749 
2750 	debug(2, "Userland revision= %d\n",
2751 	      rev_check.callingRevision.buildNumber);
2752 
2753 	/*
2754 	 * Doctor up the response struct.
2755 	 */
2756 	rev_check_resp.possiblyCompatible = 1;
2757 	rev_check_resp.adapterSWRevision.external.ul =
2758 	    sc->aac_revision.external.ul;
2759 	rev_check_resp.adapterSWRevision.buildNumber =
2760 	    sc->aac_revision.buildNumber;
2761 
2762 	return(copyout((caddr_t)&rev_check_resp, udata,
2763 			sizeof(struct aac_rev_check_resp)));
2764 }
2765 
2766 /*
2767  * Pass the caller the next AIF in their queue
2768  */
2769 static int
2770 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2771 {
2772 	struct get_adapter_fib_ioctl agf;
2773 	int error;
2774 
2775 	debug_called(2);
2776 
2777 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2778 
2779 		/*
2780 		 * Check the magic number that we gave the caller.
2781 		 */
2782 		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2783 			error = EFAULT;
2784 		} else {
2785 			error = aac_return_aif(sc, agf.AifFib);
2786 			if ((error == EAGAIN) && (agf.Wait)) {
2787 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2788 				while (error == EAGAIN) {
2789 					error = tsleep(sc->aac_aifq, PRIBIO |
2790 						       PCATCH, "aacaif", 0);
2791 					if (error == 0)
2792 						error = aac_return_aif(sc,
2793 						    agf.AifFib);
2794 				}
2795 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2796 			}
2797 		}
2798 	}
2799 	return(error);
2800 }
2801 
2802 /*
2803  * Hand the next AIF off the top of the queue out to userspace.
2804  */
2805 static int
2806 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2807 {
2808 	int next, error;
2809 
2810 	debug_called(2);
2811 
2812 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2813 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2814 		AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2815 		return (EAGAIN);
2816 	}
2817 
2818 	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
2819 	error = copyout(&sc->aac_aifq[next], uptr,
2820 			sizeof(struct aac_aif_command));
2821 	if (error)
2822 		device_printf(sc->aac_dev,
2823 		    "aac_return_aif: copyout returned %d\n", error);
2824 	else
2825 		sc->aac_aifq_tail = next;
2826 
2827 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2828 	return(error);
2829 }
2830 
2831 /*
2832  * Give the userland some information about the container.  The AAC arch
2833  * expects the driver to be a SCSI passthrough type driver, so it expects
2834  * the containers to have b:t:l numbers.  Fake it.
2835  */
2836 static int
2837 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2838 {
2839 	struct aac_query_disk query_disk;
2840 	struct aac_container *co;
2841 	struct aac_disk	*disk;
2842 	int error, id;
2843 
2844 	debug_called(2);
2845 
2846 	disk = NULL;
2847 
2848 	error = copyin(uptr, (caddr_t)&query_disk,
2849 		       sizeof(struct aac_query_disk));
2850 	if (error)
2851 		return (error);
2852 
2853 	id = query_disk.ContainerNumber;
2854 	if (id == -1)
2855 		return (EINVAL);
2856 
2857 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2858 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2859 		if (co->co_mntobj.ObjectId == id)
2860 			break;
2861 		}
2862 
2863 	if (co == NULL) {
2864 			query_disk.Valid = 0;
2865 			query_disk.Locked = 0;
2866 			query_disk.Deleted = 1;		/* XXX is this right? */
2867 	} else {
2868 		disk = device_get_softc(co->co_disk);
2869 		query_disk.Valid = 1;
2870 		query_disk.Locked =
2871 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2872 		query_disk.Deleted = 0;
2873 		query_disk.Bus = device_get_unit(sc->aac_dev);
2874 		query_disk.Target = disk->unit;
2875 		query_disk.Lun = 0;
2876 		query_disk.UnMapped = 0;
2877 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2878 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2879 	}
2880 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2881 
2882 	error = copyout((caddr_t)&query_disk, uptr,
2883 			sizeof(struct aac_query_disk));
2884 
2885 	return (error);
2886 }
2887 
2888 static void
2889 aac_get_bus_info(struct aac_softc *sc)
2890 {
2891 	struct aac_fib *fib;
2892 	struct aac_ctcfg *c_cmd;
2893 	struct aac_ctcfg_resp *c_resp;
2894 	struct aac_vmioctl *vmi;
2895 	struct aac_vmi_businf_resp *vmi_resp;
2896 	struct aac_getbusinf businfo;
2897 	struct aac_sim *caminf;
2898 	device_t child;
2899 	int i, found, error;
2900 
2901 	aac_alloc_sync_fib(sc, &fib, 0);
2902 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2903 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2904 
2905 	c_cmd->Command = VM_ContainerConfig;
2906 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2907 	c_cmd->param = 0;
2908 
2909 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2910 	    sizeof(struct aac_ctcfg));
2911 	if (error) {
2912 		device_printf(sc->aac_dev, "Error %d sending "
2913 		    "VM_ContainerConfig command\n", error);
2914 		aac_release_sync_fib(sc);
2915 		return;
2916 	}
2917 
2918 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2919 	if (c_resp->Status != ST_OK) {
2920 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2921 		    c_resp->Status);
2922 		aac_release_sync_fib(sc);
2923 		return;
2924 	}
2925 
2926 	sc->scsi_method_id = c_resp->param;
2927 
2928 	vmi = (struct aac_vmioctl *)&fib->data[0];
2929 	bzero(vmi, sizeof(struct aac_vmioctl));
2930 
2931 	vmi->Command = VM_Ioctl;
2932 	vmi->ObjType = FT_DRIVE;
2933 	vmi->MethId = sc->scsi_method_id;
2934 	vmi->ObjId = 0;
2935 	vmi->IoctlCmd = GetBusInfo;
2936 
2937 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2938 	    sizeof(struct aac_vmioctl));
2939 	if (error) {
2940 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2941 		    error);
2942 		aac_release_sync_fib(sc);
2943 		return;
2944 	}
2945 
2946 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2947 	if (vmi_resp->Status != ST_OK) {
2948 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2949 		    vmi_resp->Status);
2950 		aac_release_sync_fib(sc);
2951 		return;
2952 	}
2953 
2954 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2955 	aac_release_sync_fib(sc);
2956 
2957 	found = 0;
2958 	for (i = 0; i < businfo.BusCount; i++) {
2959 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2960 			continue;
2961 
2962 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2963 		    M_AACBUF, M_NOWAIT | M_ZERO);
2964 		if (caminf == NULL)
2965 			continue;
2966 
2967 		child = device_add_child(sc->aac_dev, "aacp", -1);
2968 		if (child == NULL) {
2969 			device_printf(sc->aac_dev, "device_add_child failed\n");
2970 			continue;
2971 		}
2972 
2973 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2974 		caminf->BusNumber = i;
2975 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2976 		caminf->aac_sc = sc;
2977 		caminf->sim_dev = child;
2978 
2979 		device_set_ivars(child, caminf);
2980 		device_set_desc(child, "SCSI Passthrough Bus");
2981 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2982 
2983 		found = 1;
2984 	}
2985 
2986 	if (found)
2987 		bus_generic_attach(sc->aac_dev);
2988 
2989 	return;
2990 }
2991