xref: /freebsd/sys/dev/aac/aac.c (revision 7660b554bc59a07be0431c17e0e33815818baa69)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 
37 #include "opt_aac.h"
38 
39 /* #include <stddef.h> */
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/malloc.h>
43 #include <sys/kernel.h>
44 #include <sys/kthread.h>
45 #include <sys/sysctl.h>
46 #include <sys/poll.h>
47 #include <sys/ioccom.h>
48 
49 #include <sys/bus.h>
50 #include <sys/conf.h>
51 #include <sys/signalvar.h>
52 #include <sys/time.h>
53 #include <sys/eventhandler.h>
54 
55 #include <machine/bus_memio.h>
56 #include <machine/bus.h>
57 #include <machine/resource.h>
58 
59 #include <dev/aac/aacreg.h>
60 #include <dev/aac/aac_ioctl.h>
61 #include <dev/aac/aacvar.h>
62 #include <dev/aac/aac_tables.h>
63 
64 static void	aac_startup(void *arg);
65 static void	aac_add_container(struct aac_softc *sc,
66 				  struct aac_mntinforesp *mir, int f);
67 static void	aac_get_bus_info(struct aac_softc *sc);
68 
69 /* Command Processing */
70 static void	aac_timeout(struct aac_softc *sc);
71 static int	aac_map_command(struct aac_command *cm);
72 static void	aac_complete(void *context, int pending);
73 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
74 static void	aac_bio_complete(struct aac_command *cm);
75 static int	aac_wait_command(struct aac_command *cm, int timeout);
76 static void	aac_command_thread(struct aac_softc *sc);
77 
78 /* Command Buffer Management */
79 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
80 				   int nseg, int error);
81 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
82 				       int nseg, int error);
83 static int	aac_alloc_commands(struct aac_softc *sc);
84 static void	aac_free_commands(struct aac_softc *sc);
85 static void	aac_unmap_command(struct aac_command *cm);
86 
87 /* Hardware Interface */
88 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
89 			       int error);
90 static int	aac_check_firmware(struct aac_softc *sc);
91 static int	aac_init(struct aac_softc *sc);
92 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
93 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
94 				 u_int32_t arg3, u_int32_t *sp);
95 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
96 				struct aac_command *cm);
97 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
98 				u_int32_t *fib_size, struct aac_fib **fib_addr);
99 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
100 				     struct aac_fib *fib);
101 
102 /* Falcon/PPC interface */
103 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
104 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
105 static int	aac_fa_get_istatus(struct aac_softc *sc);
106 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
107 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
108 				   u_int32_t arg0, u_int32_t arg1,
109 				   u_int32_t arg2, u_int32_t arg3);
110 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
111 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
112 
113 struct aac_interface aac_fa_interface = {
114 	aac_fa_get_fwstatus,
115 	aac_fa_qnotify,
116 	aac_fa_get_istatus,
117 	aac_fa_clear_istatus,
118 	aac_fa_set_mailbox,
119 	aac_fa_get_mailbox,
120 	aac_fa_set_interrupts
121 };
122 
123 /* StrongARM interface */
124 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
125 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
126 static int	aac_sa_get_istatus(struct aac_softc *sc);
127 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
128 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
129 				   u_int32_t arg0, u_int32_t arg1,
130 				   u_int32_t arg2, u_int32_t arg3);
131 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
132 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
133 
134 struct aac_interface aac_sa_interface = {
135 	aac_sa_get_fwstatus,
136 	aac_sa_qnotify,
137 	aac_sa_get_istatus,
138 	aac_sa_clear_istatus,
139 	aac_sa_set_mailbox,
140 	aac_sa_get_mailbox,
141 	aac_sa_set_interrupts
142 };
143 
144 /* i960Rx interface */
145 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
146 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
147 static int	aac_rx_get_istatus(struct aac_softc *sc);
148 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
149 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
150 				   u_int32_t arg0, u_int32_t arg1,
151 				   u_int32_t arg2, u_int32_t arg3);
152 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
153 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
154 
155 struct aac_interface aac_rx_interface = {
156 	aac_rx_get_fwstatus,
157 	aac_rx_qnotify,
158 	aac_rx_get_istatus,
159 	aac_rx_clear_istatus,
160 	aac_rx_set_mailbox,
161 	aac_rx_get_mailbox,
162 	aac_rx_set_interrupts
163 };
164 
165 /* Debugging and Diagnostics */
166 static void	aac_describe_controller(struct aac_softc *sc);
167 static char	*aac_describe_code(struct aac_code_lookup *table,
168 				   u_int32_t code);
169 
170 /* Management Interface */
171 static d_open_t		aac_open;
172 static d_close_t	aac_close;
173 static d_ioctl_t	aac_ioctl;
174 static d_poll_t		aac_poll;
175 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
176 static void		aac_handle_aif(struct aac_softc *sc,
177 					   struct aac_fib *fib);
178 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
179 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
180 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
181 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
182 
183 #define AAC_CDEV_MAJOR	150
184 
185 static struct cdevsw aac_cdevsw = {
186 	.d_open =	aac_open,
187 	.d_close =	aac_close,
188 	.d_ioctl =	aac_ioctl,
189 	.d_poll =	aac_poll,
190 	.d_name =	"aac",
191 	.d_maj =	AAC_CDEV_MAJOR,
192 };
193 
194 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
195 
196 /* sysctl node */
197 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
198 
199 /*
200  * Device Interface
201  */
202 
203 /*
204  * Initialise the controller and softc
205  */
206 int
207 aac_attach(struct aac_softc *sc)
208 {
209 	int error, unit;
210 
211 	debug_called(1);
212 
213 	/*
214 	 * Initialise per-controller queues.
215 	 */
216 	aac_initq_free(sc);
217 	aac_initq_ready(sc);
218 	aac_initq_busy(sc);
219 	aac_initq_bio(sc);
220 
221 	/*
222 	 * Initialise command-completion task.
223 	 */
224 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
225 
226 	/* disable interrupts before we enable anything */
227 	AAC_MASK_INTERRUPTS(sc);
228 
229 	/* mark controller as suspended until we get ourselves organised */
230 	sc->aac_state |= AAC_STATE_SUSPEND;
231 
232 	/*
233 	 * Check that the firmware on the card is supported.
234 	 */
235 	if ((error = aac_check_firmware(sc)) != 0)
236 		return(error);
237 
238 	/*
239 	 * Initialize locks
240 	 */
241 	AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock");
242 	AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock");
243 	AAC_LOCK_INIT(&sc->aac_io_lock, "AAC I/O lock");
244 	AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock");
245 	TAILQ_INIT(&sc->aac_container_tqh);
246 
247 
248 	/*
249 	 * Initialise the adapter.
250 	 */
251 	if ((error = aac_init(sc)) != 0)
252 		return(error);
253 
254 	/*
255 	 * Print a little information about the controller.
256 	 */
257 	aac_describe_controller(sc);
258 
259 	/*
260 	 * Register to probe our containers later.
261 	 */
262 	sc->aac_ich.ich_func = aac_startup;
263 	sc->aac_ich.ich_arg = sc;
264 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
265 		device_printf(sc->aac_dev,
266 			      "can't establish configuration hook\n");
267 		return(ENXIO);
268 	}
269 
270 	/*
271 	 * Make the control device.
272 	 */
273 	unit = device_get_unit(sc->aac_dev);
274 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
275 				 0640, "aac%d", unit);
276 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
277 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
278 	sc->aac_dev_t->si_drv1 = sc;
279 
280 	/* Create the AIF thread */
281 	if (kthread_create((void(*)(void *))aac_command_thread, sc,
282 			   &sc->aifthread, 0, 0, "aac%daif", unit))
283 		panic("Could not create AIF thread\n");
284 
285 	/* Register the shutdown method to only be called post-dump */
286 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
287 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
288 		device_printf(sc->aac_dev,
289 			      "shutdown event registration failed\n");
290 
291 	/* Register with CAM for the non-DASD devices */
292 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
293 		TAILQ_INIT(&sc->aac_sim_tqh);
294 		aac_get_bus_info(sc);
295 	}
296 
297 	return(0);
298 }
299 
300 /*
301  * Probe for containers, create disks.
302  */
303 static void
304 aac_startup(void *arg)
305 {
306 	struct aac_softc *sc;
307 	struct aac_fib *fib;
308 	struct aac_mntinfo *mi;
309 	struct aac_mntinforesp *mir = NULL;
310 	int count = 0, i = 0;
311 
312 	debug_called(1);
313 
314 	sc = (struct aac_softc *)arg;
315 
316 	/* disconnect ourselves from the intrhook chain */
317 	config_intrhook_disestablish(&sc->aac_ich);
318 
319 	aac_alloc_sync_fib(sc, &fib, 0);
320 	mi = (struct aac_mntinfo *)&fib->data[0];
321 
322 	/* loop over possible containers */
323 	do {
324 		/* request information on this container */
325 		bzero(mi, sizeof(struct aac_mntinfo));
326 		mi->Command = VM_NameServe;
327 		mi->MntType = FT_FILESYS;
328 		mi->MntCount = i;
329 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
330 				 sizeof(struct aac_mntinfo))) {
331 			printf("error probing container %d", i);
332 			continue;
333 		}
334 
335 		mir = (struct aac_mntinforesp *)&fib->data[0];
336 		/* XXX Need to check if count changed */
337 		count = mir->MntRespCount;
338 		aac_add_container(sc, mir, 0);
339 		i++;
340 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
341 
342 	aac_release_sync_fib(sc);
343 
344 	/* poke the bus to actually attach the child devices */
345 	if (bus_generic_attach(sc->aac_dev))
346 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
347 
348 	/* mark the controller up */
349 	sc->aac_state &= ~AAC_STATE_SUSPEND;
350 
351 	/* enable interrupts now */
352 	AAC_UNMASK_INTERRUPTS(sc);
353 }
354 
355 /*
356  * Create a device to respresent a new container
357  */
358 static void
359 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
360 {
361 	struct aac_container *co;
362 	device_t child;
363 
364 	/*
365 	 * Check container volume type for validity.  Note that many of
366 	 * the possible types may never show up.
367 	 */
368 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
369 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
370 		       M_NOWAIT | M_ZERO);
371 		if (co == NULL)
372 			panic("Out of memory?!\n");
373 		debug(1, "id %x  name '%.16s'  size %u  type %d",
374 		      mir->MntTable[0].ObjectId,
375 		      mir->MntTable[0].FileSystemName,
376 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
377 
378 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
379 			device_printf(sc->aac_dev, "device_add_child failed\n");
380 		else
381 			device_set_ivars(child, co);
382 		device_set_desc(child, aac_describe_code(aac_container_types,
383 				mir->MntTable[0].VolType));
384 		co->co_disk = child;
385 		co->co_found = f;
386 		bcopy(&mir->MntTable[0], &co->co_mntobj,
387 		      sizeof(struct aac_mntobj));
388 		AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
389 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
390 		AAC_LOCK_RELEASE(&sc->aac_container_lock);
391 	}
392 }
393 
394 /*
395  * Free all of the resources associated with (sc)
396  *
397  * Should not be called if the controller is active.
398  */
399 void
400 aac_free(struct aac_softc *sc)
401 {
402 
403 	debug_called(1);
404 
405 	/* remove the control device */
406 	if (sc->aac_dev_t != NULL)
407 		destroy_dev(sc->aac_dev_t);
408 
409 	/* throw away any FIB buffers, discard the FIB DMA tag */
410 	aac_free_commands(sc);
411 	if (sc->aac_fib_dmat)
412 		bus_dma_tag_destroy(sc->aac_fib_dmat);
413 
414 	free(sc->aac_commands, M_AACBUF);
415 
416 	/* destroy the common area */
417 	if (sc->aac_common) {
418 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
419 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
420 				sc->aac_common_dmamap);
421 	}
422 	if (sc->aac_common_dmat)
423 		bus_dma_tag_destroy(sc->aac_common_dmat);
424 
425 	/* disconnect the interrupt handler */
426 	if (sc->aac_intr)
427 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
428 	if (sc->aac_irq != NULL)
429 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
430 				     sc->aac_irq);
431 
432 	/* destroy data-transfer DMA tag */
433 	if (sc->aac_buffer_dmat)
434 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
435 
436 	/* destroy the parent DMA tag */
437 	if (sc->aac_parent_dmat)
438 		bus_dma_tag_destroy(sc->aac_parent_dmat);
439 
440 	/* release the register window mapping */
441 	if (sc->aac_regs_resource != NULL)
442 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
443 				     sc->aac_regs_rid, sc->aac_regs_resource);
444 }
445 
446 /*
447  * Disconnect from the controller completely, in preparation for unload.
448  */
449 int
450 aac_detach(device_t dev)
451 {
452 	struct aac_softc *sc;
453 	struct aac_container *co;
454 	struct aac_sim	*sim;
455 	int error;
456 
457 	debug_called(1);
458 
459 	sc = device_get_softc(dev);
460 
461 	if (sc->aac_state & AAC_STATE_OPEN)
462 		return(EBUSY);
463 
464 	/* Remove the child containers */
465 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
466 		error = device_delete_child(dev, co->co_disk);
467 		if (error)
468 			return (error);
469 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
470 		free(co, M_AACBUF);
471 	}
472 
473 	/* Remove the CAM SIMs */
474 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
475 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
476 		error = device_delete_child(dev, sim->sim_dev);
477 		if (error)
478 			return (error);
479 		free(sim, M_AACBUF);
480 	}
481 
482 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
483 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
484 		wakeup(sc->aifthread);
485 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
486 	}
487 
488 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
489 		panic("Cannot shutdown AIF thread\n");
490 
491 	if ((error = aac_shutdown(dev)))
492 		return(error);
493 
494 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
495 
496 	aac_free(sc);
497 
498 	return(0);
499 }
500 
501 /*
502  * Bring the controller down to a dormant state and detach all child devices.
503  *
504  * This function is called before detach or system shutdown.
505  *
506  * Note that we can assume that the bioq on the controller is empty, as we won't
507  * allow shutdown if any device is open.
508  */
509 int
510 aac_shutdown(device_t dev)
511 {
512 	struct aac_softc *sc;
513 	struct aac_fib *fib;
514 	struct aac_close_command *cc;
515 
516 	debug_called(1);
517 
518 	sc = device_get_softc(dev);
519 
520 	sc->aac_state |= AAC_STATE_SUSPEND;
521 
522 	/*
523 	 * Send a Container shutdown followed by a HostShutdown FIB to the
524 	 * controller to convince it that we don't want to talk to it anymore.
525 	 * We've been closed and all I/O completed already
526 	 */
527 	device_printf(sc->aac_dev, "shutting down controller...");
528 
529 	aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE);
530 	cc = (struct aac_close_command *)&fib->data[0];
531 
532 	bzero(cc, sizeof(struct aac_close_command));
533 	cc->Command = VM_CloseAll;
534 	cc->ContainerId = 0xffffffff;
535 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
536 	    sizeof(struct aac_close_command)))
537 		printf("FAILED.\n");
538 	else
539 		printf("done\n");
540 #if 0
541 	else {
542 		fib->data[0] = 0;
543 		/*
544 		 * XXX Issuing this command to the controller makes it shut down
545 		 * but also keeps it from coming back up without a reset of the
546 		 * PCI bus.  This is not desirable if you are just unloading the
547 		 * driver module with the intent to reload it later.
548 		 */
549 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
550 		    fib, 1)) {
551 			printf("FAILED.\n");
552 		} else {
553 			printf("done.\n");
554 		}
555 	}
556 #endif
557 
558 	AAC_MASK_INTERRUPTS(sc);
559 
560 	return(0);
561 }
562 
563 /*
564  * Bring the controller to a quiescent state, ready for system suspend.
565  */
566 int
567 aac_suspend(device_t dev)
568 {
569 	struct aac_softc *sc;
570 
571 	debug_called(1);
572 
573 	sc = device_get_softc(dev);
574 
575 	sc->aac_state |= AAC_STATE_SUSPEND;
576 
577 	AAC_MASK_INTERRUPTS(sc);
578 	return(0);
579 }
580 
581 /*
582  * Bring the controller back to a state ready for operation.
583  */
584 int
585 aac_resume(device_t dev)
586 {
587 	struct aac_softc *sc;
588 
589 	debug_called(1);
590 
591 	sc = device_get_softc(dev);
592 
593 	sc->aac_state &= ~AAC_STATE_SUSPEND;
594 	AAC_UNMASK_INTERRUPTS(sc);
595 	return(0);
596 }
597 
598 /*
599  * Take an interrupt.
600  */
601 void
602 aac_intr(void *arg)
603 {
604 	struct aac_softc *sc;
605 	u_int32_t *resp_queue;
606 	u_int16_t reason;
607 
608 	debug_called(2);
609 
610 	sc = (struct aac_softc *)arg;
611 
612 	/*
613 	 * Optimize the common case of adapter response interrupts.
614 	 * We must read from the card prior to processing the responses
615 	 * to ensure the clear is flushed prior to accessing the queues.
616 	 * Reading the queues from local memory might save us a PCI read.
617 	 */
618 	resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE];
619 	if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX])
620 		reason = AAC_DB_RESPONSE_READY;
621 	else
622 		reason = AAC_GET_ISTATUS(sc);
623 	AAC_CLEAR_ISTATUS(sc, reason);
624 	(void)AAC_GET_ISTATUS(sc);
625 
626 	/* It's not ok to return here because of races with the previous step */
627 	if (reason & AAC_DB_RESPONSE_READY)
628 		/* handle completion processing */
629 		taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete);
630 
631 	/* controller wants to talk to the log */
632 	if (reason & AAC_DB_PRINTF) {
633 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
634 			sc->aifflags |= AAC_AIFFLAGS_PRINTF;
635 		} else
636 			aac_print_printf(sc);
637 	}
638 
639 	/* controller has a message for us? */
640 	if (reason & AAC_DB_COMMAND_READY) {
641 		if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
642 			sc->aifflags |= AAC_AIFFLAGS_AIF;
643 		} else {
644 			/*
645 			 * XXX If the kthread is dead and we're at this point,
646 			 * there are bigger problems than just figuring out
647 			 * what to do with an AIF.
648 			 */
649 		}
650 
651 	}
652 
653 	if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0)
654 		/* XXX Should this be done with cv_signal? */
655 		wakeup(sc->aifthread);
656 }
657 
658 /*
659  * Command Processing
660  */
661 
662 /*
663  * Start as much queued I/O as possible on the controller
664  */
665 void
666 aac_startio(struct aac_softc *sc)
667 {
668 	struct aac_command *cm;
669 
670 	debug_called(2);
671 
672 	if (sc->flags & AAC_QUEUE_FRZN)
673 		return;
674 
675 	for (;;) {
676 		/*
677 		 * Try to get a command that's been put off for lack of
678 		 * resources
679 		 */
680 		cm = aac_dequeue_ready(sc);
681 
682 		/*
683 		 * Try to build a command off the bio queue (ignore error
684 		 * return)
685 		 */
686 		if (cm == NULL)
687 			aac_bio_command(sc, &cm);
688 
689 		/* nothing to do? */
690 		if (cm == NULL)
691 			break;
692 
693 		/* try to give the command to the controller */
694 		if (aac_map_command(cm) == EBUSY) {
695 			/* put it on the ready queue for later */
696 			aac_requeue_ready(cm);
697 			break;
698 		}
699 	}
700 }
701 
702 /*
703  * Deliver a command to the controller; allocate controller resources at the
704  * last moment when possible.
705  */
706 static int
707 aac_map_command(struct aac_command *cm)
708 {
709 	struct aac_softc *sc;
710 	int error;
711 
712 	debug_called(2);
713 
714 	sc = cm->cm_sc;
715 	error = 0;
716 
717 	/* don't map more than once */
718 	if (cm->cm_flags & AAC_CMD_MAPPED)
719 		return (0);
720 
721 	if (cm->cm_datalen != 0) {
722 		error = bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap,
723 					cm->cm_data, cm->cm_datalen,
724 					aac_map_command_sg, cm, 0);
725 		if (error == EINPROGRESS) {
726 			debug(1, "freezing queue\n");
727 			sc->flags |= AAC_QUEUE_FRZN;
728 			error = 0;
729 		}
730 	} else {
731 		aac_map_command_sg(cm, NULL, 0, 0);
732 	}
733 	return (error);
734 }
735 
736 /*
737  * Handle notification of one or more FIBs coming from the controller.
738  */
739 static void
740 aac_command_thread(struct aac_softc *sc)
741 {
742 	struct aac_fib *fib;
743 	u_int32_t fib_size;
744 	int size;
745 
746 	debug_called(2);
747 
748 	sc->aifflags |= AAC_AIFFLAGS_RUNNING;
749 
750 	while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) {
751 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
752 			tsleep(sc->aifthread, PRIBIO, "aifthd",
753 			       AAC_PERIODIC_INTERVAL * hz);
754 
755 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
756 			aac_timeout(sc);
757 
758 		/* Check the hardware printf message buffer */
759 		if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) {
760 			sc->aifflags &= ~AAC_AIFFLAGS_PRINTF;
761 			aac_print_printf(sc);
762 		}
763 
764 		/* See if any FIBs need to be allocated */
765 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
766 			AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
767 			aac_alloc_commands(sc);
768 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
769 			AAC_LOCK_RELEASE(&sc->aac_io_lock);
770 		}
771 
772 		/* While we're here, check to see if any commands are stuck */
773 		while (sc->aifflags & AAC_AIFFLAGS_AIF) {
774 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
775 					    &fib_size, &fib)) {
776 				sc->aifflags &= ~AAC_AIFFLAGS_AIF;
777 				break;	/* nothing to do */
778 			}
779 
780 			AAC_PRINT_FIB(sc, fib);
781 
782 			switch (fib->Header.Command) {
783 			case AifRequest:
784 				aac_handle_aif(sc, fib);
785 				break;
786 			default:
787 				device_printf(sc->aac_dev, "unknown command "
788 					      "from controller\n");
789 				break;
790 			}
791 
792 			if ((fib->Header.XferState == 0) ||
793 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB))
794 				break;
795 
796 			/* Return the AIF to the controller. */
797 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
798 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
799 				*(AAC_FSAStatus*)fib->data = ST_OK;
800 
801 				/* XXX Compute the Size field? */
802 				size = fib->Header.Size;
803 				if (size > sizeof(struct aac_fib)) {
804 					size = sizeof(struct aac_fib);
805 					fib->Header.Size = size;
806 				}
807 				/*
808 				 * Since we did not generate this command, it
809 				 * cannot go through the normal
810 				 * enqueue->startio chain.
811 				 */
812 				aac_enqueue_response(sc,
813 						     AAC_ADAP_NORM_RESP_QUEUE,
814 						     fib);
815 			}
816 		}
817 	}
818 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
819 	wakeup(sc->aac_dev);
820 
821 	mtx_lock(&Giant);
822 	kthread_exit(0);
823 }
824 
825 /*
826  * Process completed commands.
827  */
828 static void
829 aac_complete(void *context, int pending)
830 {
831 	struct aac_softc *sc;
832 	struct aac_command *cm;
833 	struct aac_fib *fib;
834 	u_int32_t fib_size;
835 
836 	debug_called(2);
837 
838 	sc = (struct aac_softc *)context;
839 
840 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
841 
842 	/* pull completed commands off the queue */
843 	for (;;) {
844 		/* look for completed FIBs on our queue */
845 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
846 				    &fib))
847 			break;	/* nothing to do */
848 
849 		/* get the command, unmap and queue for later processing */
850 		cm = sc->aac_commands + fib->Header.SenderData;
851 		if (cm == NULL) {
852 			AAC_PRINT_FIB(sc, fib);
853 			break;
854 		}
855 
856 		aac_remove_busy(cm);
857 		aac_unmap_command(cm);		/* XXX defer? */
858 		cm->cm_flags |= AAC_CMD_COMPLETED;
859 
860 		/* is there a completion handler? */
861 		if (cm->cm_complete != NULL) {
862 			cm->cm_complete(cm);
863 		} else {
864 			/* assume that someone is sleeping on this command */
865 			wakeup(cm);
866 		}
867 	}
868 
869 	/* see if we can start some more I/O */
870 	sc->flags &= ~AAC_QUEUE_FRZN;
871 	aac_startio(sc);
872 
873 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
874 }
875 
876 /*
877  * Handle a bio submitted from a disk device.
878  */
879 void
880 aac_submit_bio(struct bio *bp)
881 {
882 	struct aac_disk *ad;
883 	struct aac_softc *sc;
884 
885 	debug_called(2);
886 
887 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
888 	sc = ad->ad_controller;
889 
890 	/* queue the BIO and try to get some work done */
891 	aac_enqueue_bio(sc, bp);
892 	aac_startio(sc);
893 }
894 
895 /*
896  * Get a bio and build a command to go with it.
897  */
898 static int
899 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
900 {
901 	struct aac_command *cm;
902 	struct aac_fib *fib;
903 	struct aac_disk *ad;
904 	struct bio *bp;
905 
906 	debug_called(2);
907 
908 	/* get the resources we will need */
909 	cm = NULL;
910 	if ((bp = aac_dequeue_bio(sc)) == NULL)
911 		goto fail;
912 	if (aac_alloc_command(sc, &cm))	/* get a command */
913 		goto fail;
914 
915 	/* fill out the command */
916 	cm->cm_data = (void *)bp->bio_data;
917 	cm->cm_datalen = bp->bio_bcount;
918 	cm->cm_complete = aac_bio_complete;
919 	cm->cm_private = bp;
920 	cm->cm_timestamp = time_second;
921 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
922 
923 	/* build the FIB */
924 	fib = cm->cm_fib;
925 	fib->Header.Size = sizeof(struct aac_fib_header);
926 	fib->Header.XferState =
927 		AAC_FIBSTATE_HOSTOWNED   |
928 		AAC_FIBSTATE_INITIALISED |
929 		AAC_FIBSTATE_EMPTY	 |
930 		AAC_FIBSTATE_FROMHOST	 |
931 		AAC_FIBSTATE_REXPECTED   |
932 		AAC_FIBSTATE_NORM	 |
933 		AAC_FIBSTATE_ASYNC	 |
934 		AAC_FIBSTATE_FAST_RESPONSE;
935 
936 	/* build the read/write request */
937 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
938 
939 	if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
940 		fib->Header.Command = ContainerCommand;
941 		if (bp->bio_cmd == BIO_READ) {
942 			struct aac_blockread *br;
943 			br = (struct aac_blockread *)&fib->data[0];
944 			br->Command = VM_CtBlockRead;
945 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
946 			br->BlockNumber = bp->bio_pblkno;
947 			br->ByteCount = bp->bio_bcount;
948 			fib->Header.Size += sizeof(struct aac_blockread);
949 			cm->cm_sgtable = &br->SgMap;
950 			cm->cm_flags |= AAC_CMD_DATAIN;
951 		} else {
952 			struct aac_blockwrite *bw;
953 			bw = (struct aac_blockwrite *)&fib->data[0];
954 			bw->Command = VM_CtBlockWrite;
955 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
956 			bw->BlockNumber = bp->bio_pblkno;
957 			bw->ByteCount = bp->bio_bcount;
958 			bw->Stable = CUNSTABLE;
959 			fib->Header.Size += sizeof(struct aac_blockwrite);
960 			cm->cm_flags |= AAC_CMD_DATAOUT;
961 			cm->cm_sgtable = &bw->SgMap;
962 		}
963 	} else {
964 		fib->Header.Command = ContainerCommand64;
965 		if (bp->bio_cmd == BIO_READ) {
966 			struct aac_blockread64 *br;
967 			br = (struct aac_blockread64 *)&fib->data[0];
968 			br->Command = VM_CtHostRead64;
969 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
970 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
971 			br->BlockNumber = bp->bio_pblkno;
972 			br->Pad = 0;
973 			br->Flags = 0;
974 			fib->Header.Size += sizeof(struct aac_blockread64);
975 			cm->cm_flags |= AAC_CMD_DATAOUT;
976 			(struct aac_sg_table64 *)cm->cm_sgtable = &br->SgMap64;
977 		} else {
978 			struct aac_blockwrite64 *bw;
979 			bw = (struct aac_blockwrite64 *)&fib->data[0];
980 			bw->Command = VM_CtHostWrite64;
981 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
982 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
983 			bw->BlockNumber = bp->bio_pblkno;
984 			bw->Pad = 0;
985 			bw->Flags = 0;
986 			fib->Header.Size += sizeof(struct aac_blockwrite64);
987 			cm->cm_flags |= AAC_CMD_DATAIN;
988 			(struct aac_sg_table64 *)cm->cm_sgtable = &bw->SgMap64;
989 		}
990 	}
991 
992 	*cmp = cm;
993 	return(0);
994 
995 fail:
996 	if (bp != NULL)
997 		aac_enqueue_bio(sc, bp);
998 	if (cm != NULL)
999 		aac_release_command(cm);
1000 	return(ENOMEM);
1001 }
1002 
1003 /*
1004  * Handle a bio-instigated command that has been completed.
1005  */
1006 static void
1007 aac_bio_complete(struct aac_command *cm)
1008 {
1009 	struct aac_blockread_response *brr;
1010 	struct aac_blockwrite_response *bwr;
1011 	struct bio *bp;
1012 	AAC_FSAStatus status;
1013 
1014 	/* fetch relevant status and then release the command */
1015 	bp = (struct bio *)cm->cm_private;
1016 	if (bp->bio_cmd == BIO_READ) {
1017 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1018 		status = brr->Status;
1019 	} else {
1020 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1021 		status = bwr->Status;
1022 	}
1023 	aac_release_command(cm);
1024 
1025 	/* fix up the bio based on status */
1026 	if (status == ST_OK) {
1027 		bp->bio_resid = 0;
1028 	} else {
1029 		bp->bio_error = EIO;
1030 		bp->bio_flags |= BIO_ERROR;
1031 		/* pass an error string out to the disk layer */
1032 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1033 						    status);
1034 	}
1035 	aac_biodone(bp);
1036 }
1037 
1038 /*
1039  * Submit a command to the controller, return when it completes.
1040  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1041  *     be stuck here forever.  At the same time, signals are not caught
1042  *     because there is a risk that a signal could wakeup the tsleep before
1043  *     the card has a chance to complete the command.  The passed in timeout
1044  *     is ignored for the same reason.  Since there is no way to cancel a
1045  *     command in progress, we should probably create a 'dead' queue where
1046  *     commands go that have been interrupted/timed-out/etc, that keeps them
1047  *     out of the free pool.  That way, if the card is just slow, it won't
1048  *     spam the memory of a command that has been recycled.
1049  */
1050 static int
1051 aac_wait_command(struct aac_command *cm, int timeout)
1052 {
1053 	struct aac_softc *sc;
1054 	int error = 0;
1055 
1056 	debug_called(2);
1057 
1058 	sc = cm->cm_sc;
1059 
1060 	/* Put the command on the ready queue and get things going */
1061 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1062 	aac_enqueue_ready(cm);
1063 	aac_startio(sc);
1064 	while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) {
1065 		error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1066 	}
1067 	return(error);
1068 }
1069 
1070 /*
1071  *Command Buffer Management
1072  */
1073 
1074 /*
1075  * Allocate a command.
1076  */
1077 int
1078 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1079 {
1080 	struct aac_command *cm;
1081 
1082 	debug_called(3);
1083 
1084 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1085 		if (sc->total_fibs < sc->aac_max_fibs) {
1086 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1087 			wakeup(sc->aifthread);
1088 		}
1089 		return (EBUSY);
1090 	}
1091 
1092 	*cmp = cm;
1093 	return(0);
1094 }
1095 
1096 /*
1097  * Release a command back to the freelist.
1098  */
1099 void
1100 aac_release_command(struct aac_command *cm)
1101 {
1102 	debug_called(3);
1103 
1104 	/* (re)initialise the command/FIB */
1105 	cm->cm_sgtable = NULL;
1106 	cm->cm_flags = 0;
1107 	cm->cm_complete = NULL;
1108 	cm->cm_private = NULL;
1109 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1110 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1111 	cm->cm_fib->Header.Flags = 0;
1112 	cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib);
1113 
1114 	/*
1115 	 * These are duplicated in aac_start to cover the case where an
1116 	 * intermediate stage may have destroyed them.  They're left
1117 	 * initialised here for debugging purposes only.
1118 	 */
1119 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1120 	cm->cm_fib->Header.SenderData = 0;
1121 
1122 	aac_enqueue_free(cm);
1123 }
1124 
1125 /*
1126  * Map helper for command/FIB allocation.
1127  */
1128 static void
1129 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1130 {
1131 	uint32_t	*fibphys;
1132 
1133 	fibphys = (uint32_t *)arg;
1134 
1135 	debug_called(3);
1136 
1137 	*fibphys = segs[0].ds_addr;
1138 }
1139 
1140 /*
1141  * Allocate and initialise commands/FIBs for this adapter.
1142  */
1143 static int
1144 aac_alloc_commands(struct aac_softc *sc)
1145 {
1146 	struct aac_command *cm;
1147 	struct aac_fibmap *fm;
1148 	uint32_t fibphys;
1149 	int i, error;
1150 
1151 	debug_called(2);
1152 
1153 	if (sc->total_fibs + AAC_FIB_COUNT > sc->aac_max_fibs)
1154 		return (ENOMEM);
1155 
1156 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1157 	if (fm == NULL)
1158 		return (ENOMEM);
1159 
1160 	/* allocate the FIBs in DMAable memory and load them */
1161 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1162 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1163 		device_printf(sc->aac_dev,
1164 			      "Not enough contiguous memory available.\n");
1165 		free(fm, M_AACBUF);
1166 		return (ENOMEM);
1167 	}
1168 
1169 	/* Ignore errors since this doesn't bounce */
1170 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1171 			      AAC_FIB_COUNT * sizeof(struct aac_fib),
1172 			      aac_map_command_helper, &fibphys, 0);
1173 
1174 	/* initialise constant fields in the command structure */
1175 	bzero(fm->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib));
1176 	for (i = 0; i < AAC_FIB_COUNT; i++) {
1177 		cm = sc->aac_commands + sc->total_fibs;
1178 		fm->aac_commands = cm;
1179 		cm->cm_sc = sc;
1180 		cm->cm_fib = fm->aac_fibs + i;
1181 		cm->cm_fibphys = fibphys + (i * sizeof(struct aac_fib));
1182 		cm->cm_index = sc->total_fibs;
1183 
1184 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1185 					       &cm->cm_datamap)) == 0)
1186 			aac_release_command(cm);
1187 		else
1188 			break;
1189 		sc->total_fibs++;
1190 	}
1191 
1192 	if (i > 0) {
1193 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1194 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1195 		return (0);
1196 	}
1197 
1198 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1199 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1200 	free(fm, M_AACBUF);
1201 	return (ENOMEM);
1202 }
1203 
1204 /*
1205  * Free FIBs owned by this adapter.
1206  */
1207 static void
1208 aac_free_commands(struct aac_softc *sc)
1209 {
1210 	struct aac_fibmap *fm;
1211 	struct aac_command *cm;
1212 	int i;
1213 
1214 	debug_called(1);
1215 
1216 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1217 
1218 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1219 		/*
1220 		 * We check against total_fibs to handle partially
1221 		 * allocated blocks.
1222 		 */
1223 		for (i = 0; i < AAC_FIB_COUNT && sc->total_fibs--; i++) {
1224 			cm = fm->aac_commands + i;
1225 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1226 		}
1227 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1228 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1229 		free(fm, M_AACBUF);
1230 	}
1231 }
1232 
1233 /*
1234  * Command-mapping helper function - populate this command's s/g table.
1235  */
1236 static void
1237 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1238 {
1239 	struct aac_softc *sc;
1240 	struct aac_command *cm;
1241 	struct aac_fib *fib;
1242 	int i;
1243 
1244 	debug_called(3);
1245 
1246 	cm = (struct aac_command *)arg;
1247 	sc = cm->cm_sc;
1248 	fib = cm->cm_fib;
1249 
1250 	/* copy into the FIB */
1251 	if (cm->cm_sgtable != NULL) {
1252 		if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1253 			struct aac_sg_table *sg;
1254 			sg = cm->cm_sgtable;
1255 			sg->SgCount = nseg;
1256 			for (i = 0; i < nseg; i++) {
1257 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1258 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1259 			}
1260 			/* update the FIB size for the s/g count */
1261 			fib->Header.Size += nseg * sizeof(struct aac_sg_entry);
1262 		} else {
1263 			struct aac_sg_table64 *sg;
1264 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1265 			sg->SgCount = nseg;
1266 			for (i = 0; i < nseg; i++) {
1267 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1268 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1269 			}
1270 			/* update the FIB size for the s/g count */
1271 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1272 		}
1273 	}
1274 
1275 	/* Fix up the address values in the FIB.  Use the command array index
1276 	 * instead of a pointer since these fields are only 32 bits.  Shift
1277 	 * the SenderFibAddress over to make room for the fast response bit.
1278 	 */
1279 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 1);
1280 	cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys;
1281 
1282 	/* save a pointer to the command for speedy reverse-lookup */
1283 	cm->cm_fib->Header.SenderData = cm->cm_index;
1284 
1285 	if (cm->cm_flags & AAC_CMD_DATAIN)
1286 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1287 				BUS_DMASYNC_PREREAD);
1288 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1289 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1290 				BUS_DMASYNC_PREWRITE);
1291 	cm->cm_flags |= AAC_CMD_MAPPED;
1292 
1293 	/* put the FIB on the outbound queue */
1294 	if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY)
1295 		aac_requeue_ready(cm);
1296 
1297 	return;
1298 }
1299 
1300 /*
1301  * Unmap a command from controller-visible space.
1302  */
1303 static void
1304 aac_unmap_command(struct aac_command *cm)
1305 {
1306 	struct aac_softc *sc;
1307 
1308 	debug_called(2);
1309 
1310 	sc = cm->cm_sc;
1311 
1312 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1313 		return;
1314 
1315 	if (cm->cm_datalen != 0) {
1316 		if (cm->cm_flags & AAC_CMD_DATAIN)
1317 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1318 					BUS_DMASYNC_POSTREAD);
1319 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1320 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1321 					BUS_DMASYNC_POSTWRITE);
1322 
1323 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1324 	}
1325 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1326 }
1327 
1328 /*
1329  * Hardware Interface
1330  */
1331 
1332 /*
1333  * Initialise the adapter.
1334  */
1335 static void
1336 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1337 {
1338 	struct aac_softc *sc;
1339 
1340 	debug_called(1);
1341 
1342 	sc = (struct aac_softc *)arg;
1343 
1344 	sc->aac_common_busaddr = segs[0].ds_addr;
1345 }
1346 
1347 static int
1348 aac_check_firmware(struct aac_softc *sc)
1349 {
1350 	u_int32_t major, minor, options;
1351 
1352 	debug_called(1);
1353 
1354 	/*
1355 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1356 	 * firmware version 1.x are not compatible with this driver.
1357 	 */
1358 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1359 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1360 				     NULL)) {
1361 			device_printf(sc->aac_dev,
1362 				      "Error reading firmware version\n");
1363 			return (EIO);
1364 		}
1365 
1366 		/* These numbers are stored as ASCII! */
1367 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1368 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1369 		if (major == 1) {
1370 			device_printf(sc->aac_dev,
1371 			    "Firmware version %d.%d is not supported.\n",
1372 			    major, minor);
1373 			return (EINVAL);
1374 		}
1375 	}
1376 
1377 	/*
1378 	 * Retrieve the capabilities/supported options word so we know what
1379 	 * work-arounds to enable.
1380 	 */
1381 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, NULL)) {
1382 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
1383 		return (EIO);
1384 	}
1385 	options = AAC_GET_MAILBOX(sc, 1);
1386 	sc->supported_options = options;
1387 
1388 	if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1389 	    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1390 		sc->flags |= AAC_FLAGS_4GB_WINDOW;
1391 	if (options & AAC_SUPPORTED_NONDASD)
1392 		sc->flags |= AAC_FLAGS_ENABLE_CAM;
1393 	if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1394 	     && (sizeof(bus_addr_t) > 4)) {
1395 		device_printf(sc->aac_dev, "Enabling 64-bit address support\n");
1396 		sc->flags |= AAC_FLAGS_SG_64BIT;
1397 	}
1398 
1399 	/* Check for broken hardware that does a lower number of commands */
1400 	if ((sc->flags & AAC_FLAGS_256FIBS) == 0)
1401 		sc->aac_max_fibs = AAC_MAX_FIBS;
1402 	else
1403 		sc->aac_max_fibs = 256;
1404 
1405 	return (0);
1406 }
1407 
1408 static int
1409 aac_init(struct aac_softc *sc)
1410 {
1411 	struct aac_adapter_init	*ip;
1412 	time_t then;
1413 	u_int32_t code, qoffset;
1414 	int error;
1415 
1416 	debug_called(1);
1417 
1418 	/*
1419 	 * First wait for the adapter to come ready.
1420 	 */
1421 	then = time_second;
1422 	do {
1423 		code = AAC_GET_FWSTATUS(sc);
1424 		if (code & AAC_SELF_TEST_FAILED) {
1425 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1426 			return(ENXIO);
1427 		}
1428 		if (code & AAC_KERNEL_PANIC) {
1429 			device_printf(sc->aac_dev,
1430 				      "FATAL: controller kernel panic\n");
1431 			return(ENXIO);
1432 		}
1433 		if (time_second > (then + AAC_BOOT_TIMEOUT)) {
1434 			device_printf(sc->aac_dev,
1435 				      "FATAL: controller not coming ready, "
1436 					   "status %x\n", code);
1437 			return(ENXIO);
1438 		}
1439 	} while (!(code & AAC_UP_AND_RUNNING));
1440 
1441 	error = ENOMEM;
1442 	/*
1443 	 * Create DMA tag for mapping buffers into controller-addressable space.
1444 	 */
1445 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1446 			       1, 0, 			/* algnmnt, boundary */
1447 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1448 			       BUS_SPACE_MAXADDR :
1449 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1450 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1451 			       NULL, NULL, 		/* filter, filterarg */
1452 			       MAXBSIZE,		/* maxsize */
1453 			       AAC_MAXSGENTRIES,	/* nsegments */
1454 			       MAXBSIZE,		/* maxsegsize */
1455 			       BUS_DMA_ALLOCNOW,	/* flags */
1456 			       busdma_lock_mutex,	/* lockfunc */
1457 			       &sc->aac_io_lock,	/* lockfuncarg */
1458 			       &sc->aac_buffer_dmat)) {
1459 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1460 		goto out;
1461 	}
1462 
1463 	/*
1464 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1465 	 */
1466 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1467 			       1, 0, 			/* algnmnt, boundary */
1468 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1469 			       BUS_SPACE_MAXADDR_32BIT :
1470 			       0x7fffffff,		/* lowaddr */
1471 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1472 			       NULL, NULL, 		/* filter, filterarg */
1473 			       AAC_FIB_COUNT *
1474 			       sizeof(struct aac_fib),  /* maxsize */
1475 			       1,			/* nsegments */
1476 			       AAC_FIB_COUNT *
1477 			       sizeof(struct aac_fib),	/* maxsegsize */
1478 			       BUS_DMA_ALLOCNOW,	/* flags */
1479 			       NULL, NULL,		/* No locking needed */
1480 			       &sc->aac_fib_dmat)) {
1481 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1482 		goto out;
1483 	}
1484 
1485 	/*
1486 	 * Create DMA tag for the common structure and allocate it.
1487 	 */
1488 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1489 			       1, 0,			/* algnmnt, boundary */
1490 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1491 			       BUS_SPACE_MAXADDR_32BIT :
1492 			       0x7fffffff,		/* lowaddr */
1493 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1494 			       NULL, NULL, 		/* filter, filterarg */
1495 			       8192 + sizeof(struct aac_common), /* maxsize */
1496 			       1,			/* nsegments */
1497 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1498 			       BUS_DMA_ALLOCNOW,	/* flags */
1499 			       NULL, NULL,		/* No locking needed */
1500 			       &sc->aac_common_dmat)) {
1501 		device_printf(sc->aac_dev,
1502 			      "can't allocate common structure DMA tag\n");
1503 		goto out;
1504 	}
1505 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1506 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1507 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1508 		goto out;
1509 	}
1510 
1511 	/*
1512 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1513 	 * below address 8192 in physical memory.
1514 	 * XXX If the padding is not needed, can it be put to use instead
1515 	 * of ignored?
1516 	 */
1517 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1518 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1519 			aac_common_map, sc, 0);
1520 
1521 	if (sc->aac_common_busaddr < 8192) {
1522 		(uint8_t *)sc->aac_common += 8192;
1523 		sc->aac_common_busaddr += 8192;
1524 	}
1525 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1526 
1527 	/* Allocate some FIBs and associated command structs */
1528 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1529 	sc->aac_commands = malloc(AAC_MAX_FIBS * sizeof(struct aac_command),
1530 				  M_AACBUF, M_WAITOK|M_ZERO);
1531 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1532 		if (aac_alloc_commands(sc) != 0)
1533 			break;
1534 	}
1535 	if (sc->total_fibs == 0)
1536 		goto out;
1537 
1538 	/*
1539 	 * Fill in the init structure.  This tells the adapter about the
1540 	 * physical location of various important shared data structures.
1541 	 */
1542 	ip = &sc->aac_common->ac_init;
1543 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1544 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1545 
1546 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1547 					 offsetof(struct aac_common, ac_fibs);
1548 	ip->AdapterFibsVirtualAddress = 0;
1549 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1550 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1551 
1552 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1553 				  offsetof(struct aac_common, ac_printf);
1554 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1555 
1556 	/*
1557 	 * The adapter assumes that pages are 4K in size, except on some
1558  	 * broken firmware versions that do the page->byte conversion twice,
1559 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1560 	 * Round up since the granularity is so high.
1561 	 */
1562 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1563 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1564 		ip->HostPhysMemPages =
1565 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1566 	}
1567 	ip->HostElapsedSeconds = time_second;	/* reset later if invalid */
1568 
1569 	/*
1570 	 * Initialise FIB queues.  Note that it appears that the layout of the
1571 	 * indexes and the segmentation of the entries may be mandated by the
1572 	 * adapter, which is only told about the base of the queue index fields.
1573 	 *
1574 	 * The initial values of the indices are assumed to inform the adapter
1575 	 * of the sizes of the respective queues, and theoretically it could
1576 	 * work out the entire layout of the queue structures from this.  We
1577 	 * take the easy route and just lay this area out like everyone else
1578 	 * does.
1579 	 *
1580 	 * The Linux driver uses a much more complex scheme whereby several
1581 	 * header records are kept for each queue.  We use a couple of generic
1582 	 * list manipulation functions which 'know' the size of each list by
1583 	 * virtue of a table.
1584 	 */
1585 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1586 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1587 	sc->aac_queues =
1588 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1589 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1590 
1591 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1592 		AAC_HOST_NORM_CMD_ENTRIES;
1593 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1594 		AAC_HOST_NORM_CMD_ENTRIES;
1595 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1596 		AAC_HOST_HIGH_CMD_ENTRIES;
1597 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1598 		AAC_HOST_HIGH_CMD_ENTRIES;
1599 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1600 		AAC_ADAP_NORM_CMD_ENTRIES;
1601 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1602 		AAC_ADAP_NORM_CMD_ENTRIES;
1603 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1604 		AAC_ADAP_HIGH_CMD_ENTRIES;
1605 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1606 		AAC_ADAP_HIGH_CMD_ENTRIES;
1607 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1608 		AAC_HOST_NORM_RESP_ENTRIES;
1609 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1610 		AAC_HOST_NORM_RESP_ENTRIES;
1611 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1612 		AAC_HOST_HIGH_RESP_ENTRIES;
1613 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1614 		AAC_HOST_HIGH_RESP_ENTRIES;
1615 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1616 		AAC_ADAP_NORM_RESP_ENTRIES;
1617 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1618 		AAC_ADAP_NORM_RESP_ENTRIES;
1619 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1620 		AAC_ADAP_HIGH_RESP_ENTRIES;
1621 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1622 		AAC_ADAP_HIGH_RESP_ENTRIES;
1623 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1624 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1625 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1626 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1627 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1628 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1629 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1630 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1631 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1632 		&sc->aac_queues->qt_HostNormRespQueue[0];
1633 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1634 		&sc->aac_queues->qt_HostHighRespQueue[0];
1635 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1636 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1637 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1638 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1639 
1640 	/*
1641 	 * Do controller-type-specific initialisation
1642 	 */
1643 	switch (sc->aac_hwif) {
1644 	case AAC_HWIF_I960RX:
1645 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1646 		break;
1647 	}
1648 
1649 	/*
1650 	 * Give the init structure to the controller.
1651 	 */
1652 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1653 			     sc->aac_common_busaddr +
1654 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1655 			     NULL)) {
1656 		device_printf(sc->aac_dev,
1657 			      "error establishing init structure\n");
1658 		error = EIO;
1659 		goto out;
1660 	}
1661 
1662 	error = 0;
1663 out:
1664 	return(error);
1665 }
1666 
1667 /*
1668  * Send a synchronous command to the controller and wait for a result.
1669  */
1670 static int
1671 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1672 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1673 		 u_int32_t *sp)
1674 {
1675 	time_t then;
1676 	u_int32_t status;
1677 
1678 	debug_called(3);
1679 
1680 	/* populate the mailbox */
1681 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1682 
1683 	/* ensure the sync command doorbell flag is cleared */
1684 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1685 
1686 	/* then set it to signal the adapter */
1687 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1688 
1689 	/* spin waiting for the command to complete */
1690 	then = time_second;
1691 	do {
1692 		if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) {
1693 			debug(1, "timed out");
1694 			return(EIO);
1695 		}
1696 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
1697 
1698 	/* clear the completion flag */
1699 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1700 
1701 	/* get the command status */
1702 	status = AAC_GET_MAILBOX(sc, 0);
1703 	if (sp != NULL)
1704 		*sp = status;
1705 	return(0);
1706 }
1707 
1708 /*
1709  * Grab the sync fib area.
1710  */
1711 int
1712 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags)
1713 {
1714 
1715 	/*
1716 	 * If the force flag is set, the system is shutting down, or in
1717 	 * trouble.  Ignore the mutex.
1718 	 */
1719 	if (!(flags & AAC_SYNC_LOCK_FORCE))
1720 		AAC_LOCK_ACQUIRE(&sc->aac_sync_lock);
1721 
1722 	*fib = &sc->aac_common->ac_sync_fib;
1723 
1724 	return (1);
1725 }
1726 
1727 /*
1728  * Release the sync fib area.
1729  */
1730 void
1731 aac_release_sync_fib(struct aac_softc *sc)
1732 {
1733 
1734 	AAC_LOCK_RELEASE(&sc->aac_sync_lock);
1735 }
1736 
1737 /*
1738  * Send a synchronous FIB to the controller and wait for a result.
1739  */
1740 int
1741 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
1742 		 struct aac_fib *fib, u_int16_t datasize)
1743 {
1744 	debug_called(3);
1745 
1746 	if (datasize > AAC_FIB_DATASIZE)
1747 		return(EINVAL);
1748 
1749 	/*
1750 	 * Set up the sync FIB
1751 	 */
1752 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
1753 				AAC_FIBSTATE_INITIALISED |
1754 				AAC_FIBSTATE_EMPTY;
1755 	fib->Header.XferState |= xferstate;
1756 	fib->Header.Command = command;
1757 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
1758 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
1759 	fib->Header.SenderSize = sizeof(struct aac_fib);
1760 	fib->Header.SenderFibAddress = 0;	/* Not needed */
1761 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
1762 					 offsetof(struct aac_common,
1763 						  ac_sync_fib);
1764 
1765 	/*
1766 	 * Give the FIB to the controller, wait for a response.
1767 	 */
1768 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
1769 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
1770 		debug(2, "IO error");
1771 		return(EIO);
1772 	}
1773 
1774 	return (0);
1775 }
1776 
1777 /*
1778  * Adapter-space FIB queue manipulation
1779  *
1780  * Note that the queue implementation here is a little funky; neither the PI or
1781  * CI will ever be zero.  This behaviour is a controller feature.
1782  */
1783 static struct {
1784 	int		size;
1785 	int		notify;
1786 } aac_qinfo[] = {
1787 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
1788 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
1789 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
1790 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
1791 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
1792 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
1793 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
1794 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
1795 };
1796 
1797 /*
1798  * Atomically insert an entry into the nominated queue, returns 0 on success or
1799  * EBUSY if the queue is full.
1800  *
1801  * Note: it would be more efficient to defer notifying the controller in
1802  *	 the case where we may be inserting several entries in rapid succession,
1803  *	 but implementing this usefully may be difficult (it would involve a
1804  *	 separate queue/notify interface).
1805  */
1806 static int
1807 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
1808 {
1809 	u_int32_t pi, ci;
1810 	int error;
1811 	u_int32_t fib_size;
1812 	u_int32_t fib_addr;
1813 
1814 	debug_called(3);
1815 
1816 	fib_size = cm->cm_fib->Header.Size;
1817 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
1818 
1819 	/* get the producer/consumer indices */
1820 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1821 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1822 
1823 	/* wrap the queue? */
1824 	if (pi >= aac_qinfo[queue].size)
1825 		pi = 0;
1826 
1827 	/* check for queue full */
1828 	if ((pi + 1) == ci) {
1829 		error = EBUSY;
1830 		goto out;
1831 	}
1832 
1833 	/* populate queue entry */
1834 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1835 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1836 
1837 	/* update producer index */
1838 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1839 
1840 	/*
1841 	 * To avoid a race with its completion interrupt, place this command on
1842 	 * the busy queue prior to advertising it to the controller.
1843 	 */
1844 	aac_enqueue_busy(cm);
1845 
1846 	/* notify the adapter if we know how */
1847 	if (aac_qinfo[queue].notify != 0)
1848 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1849 
1850 	error = 0;
1851 
1852 out:
1853 	return(error);
1854 }
1855 
1856 /*
1857  * Atomically remove one entry from the nominated queue, returns 0 on
1858  * success or ENOENT if the queue is empty.
1859  */
1860 static int
1861 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
1862 		struct aac_fib **fib_addr)
1863 {
1864 	u_int32_t pi, ci;
1865 	u_int32_t fib_index;
1866 	int error;
1867 	int notify;
1868 
1869 	debug_called(3);
1870 
1871 	/* get the producer/consumer indices */
1872 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1873 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1874 
1875 	/* check for queue empty */
1876 	if (ci == pi) {
1877 		error = ENOENT;
1878 		goto out;
1879 	}
1880 
1881 	/* wrap the pi so the following test works */
1882 	if (pi >= aac_qinfo[queue].size)
1883 		pi = 0;
1884 
1885 	notify = 0;
1886 	if (ci == pi + 1)
1887 		notify++;
1888 
1889 	/* wrap the queue? */
1890 	if (ci >= aac_qinfo[queue].size)
1891 		ci = 0;
1892 
1893 	/* fetch the entry */
1894 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
1895 
1896 	switch (queue) {
1897 	case AAC_HOST_NORM_CMD_QUEUE:
1898 	case AAC_HOST_HIGH_CMD_QUEUE:
1899 		/*
1900 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
1901 		 * on to hold an address.  For AIF's, the adapter assumes
1902 		 * that it's giving us an address into the array of AIF fibs.
1903 		 * Therefore, we have to convert it to an index.
1904 		 */
1905 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
1906 			sizeof(struct aac_fib);
1907 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
1908 		break;
1909 
1910 	case AAC_HOST_NORM_RESP_QUEUE:
1911 	case AAC_HOST_HIGH_RESP_QUEUE:
1912 	{
1913 		struct aac_command *cm;
1914 
1915 		/*
1916 		 * As above, an index is used instead of an actual address.
1917 		 * Gotta shift the index to account for the fast response
1918 		 * bit.  No other correction is needed since this value was
1919 		 * originally provided by the driver via the SenderFibAddress
1920 		 * field.
1921 		 */
1922 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
1923 		cm = sc->aac_commands + (fib_index >> 1);
1924 		*fib_addr = cm->cm_fib;
1925 
1926 		/*
1927 		 * Is this a fast response? If it is, update the fib fields in
1928 		 * local memory since the whole fib isn't DMA'd back up.
1929 		 */
1930 		if (fib_index & 0x01) {
1931 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
1932 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
1933 		}
1934 		break;
1935 	}
1936 	default:
1937 		panic("Invalid queue in aac_dequeue_fib()");
1938 		break;
1939 	}
1940 
1941 	/* update consumer index */
1942 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
1943 
1944 	/* if we have made the queue un-full, notify the adapter */
1945 	if (notify && (aac_qinfo[queue].notify != 0))
1946 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1947 	error = 0;
1948 
1949 out:
1950 	return(error);
1951 }
1952 
1953 /*
1954  * Put our response to an Adapter Initialed Fib on the response queue
1955  */
1956 static int
1957 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
1958 {
1959 	u_int32_t pi, ci;
1960 	int error;
1961 	u_int32_t fib_size;
1962 	u_int32_t fib_addr;
1963 
1964 	debug_called(1);
1965 
1966 	/* Tell the adapter where the FIB is */
1967 	fib_size = fib->Header.Size;
1968 	fib_addr = fib->Header.SenderFibAddress;
1969 	fib->Header.ReceiverFibAddress = fib_addr;
1970 
1971 	/* get the producer/consumer indices */
1972 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
1973 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
1974 
1975 	/* wrap the queue? */
1976 	if (pi >= aac_qinfo[queue].size)
1977 		pi = 0;
1978 
1979 	/* check for queue full */
1980 	if ((pi + 1) == ci) {
1981 		error = EBUSY;
1982 		goto out;
1983 	}
1984 
1985 	/* populate queue entry */
1986 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
1987 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
1988 
1989 	/* update producer index */
1990 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
1991 
1992 	/* notify the adapter if we know how */
1993 	if (aac_qinfo[queue].notify != 0)
1994 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
1995 
1996 	error = 0;
1997 
1998 out:
1999 	return(error);
2000 }
2001 
2002 /*
2003  * Check for commands that have been outstanding for a suspiciously long time,
2004  * and complain about them.
2005  */
2006 static void
2007 aac_timeout(struct aac_softc *sc)
2008 {
2009 	struct aac_command *cm;
2010 	time_t deadline;
2011 
2012 	/*
2013 	 * Traverse the busy command list, bitch about late commands once
2014 	 * only.
2015 	 */
2016 	deadline = time_second - AAC_CMD_TIMEOUT;
2017 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2018 		if ((cm->cm_timestamp  < deadline)
2019 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2020 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2021 			device_printf(sc->aac_dev,
2022 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2023 				      cm, (int)(time_second-cm->cm_timestamp));
2024 			AAC_PRINT_FIB(sc, cm->cm_fib);
2025 		}
2026 	}
2027 
2028 	return;
2029 }
2030 
2031 /*
2032  * Interface Function Vectors
2033  */
2034 
2035 /*
2036  * Read the current firmware status word.
2037  */
2038 static int
2039 aac_sa_get_fwstatus(struct aac_softc *sc)
2040 {
2041 	debug_called(3);
2042 
2043 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2044 }
2045 
2046 static int
2047 aac_rx_get_fwstatus(struct aac_softc *sc)
2048 {
2049 	debug_called(3);
2050 
2051 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2052 }
2053 
2054 static int
2055 aac_fa_get_fwstatus(struct aac_softc *sc)
2056 {
2057 	int val;
2058 
2059 	debug_called(3);
2060 
2061 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2062 	return (val);
2063 }
2064 
2065 /*
2066  * Notify the controller of a change in a given queue
2067  */
2068 
2069 static void
2070 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2071 {
2072 	debug_called(3);
2073 
2074 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2075 }
2076 
2077 static void
2078 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2079 {
2080 	debug_called(3);
2081 
2082 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2083 }
2084 
2085 static void
2086 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2087 {
2088 	debug_called(3);
2089 
2090 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2091 	AAC_FA_HACK(sc);
2092 }
2093 
2094 /*
2095  * Get the interrupt reason bits
2096  */
2097 static int
2098 aac_sa_get_istatus(struct aac_softc *sc)
2099 {
2100 	debug_called(3);
2101 
2102 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2103 }
2104 
2105 static int
2106 aac_rx_get_istatus(struct aac_softc *sc)
2107 {
2108 	debug_called(3);
2109 
2110 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2111 }
2112 
2113 static int
2114 aac_fa_get_istatus(struct aac_softc *sc)
2115 {
2116 	int val;
2117 
2118 	debug_called(3);
2119 
2120 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2121 	return (val);
2122 }
2123 
2124 /*
2125  * Clear some interrupt reason bits
2126  */
2127 static void
2128 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2129 {
2130 	debug_called(3);
2131 
2132 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2133 }
2134 
2135 static void
2136 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2137 {
2138 	debug_called(3);
2139 
2140 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2141 }
2142 
2143 static void
2144 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2145 {
2146 	debug_called(3);
2147 
2148 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2149 	AAC_FA_HACK(sc);
2150 }
2151 
2152 /*
2153  * Populate the mailbox and set the command word
2154  */
2155 static void
2156 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2157 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2158 {
2159 	debug_called(4);
2160 
2161 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2162 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2163 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2164 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2165 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2166 }
2167 
2168 static void
2169 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2170 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2171 {
2172 	debug_called(4);
2173 
2174 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2175 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2176 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2177 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2178 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2179 }
2180 
2181 static void
2182 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2183 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2184 {
2185 	debug_called(4);
2186 
2187 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2188 	AAC_FA_HACK(sc);
2189 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2190 	AAC_FA_HACK(sc);
2191 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2192 	AAC_FA_HACK(sc);
2193 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2194 	AAC_FA_HACK(sc);
2195 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2196 	AAC_FA_HACK(sc);
2197 }
2198 
2199 /*
2200  * Fetch the immediate command status word
2201  */
2202 static int
2203 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2204 {
2205 	debug_called(4);
2206 
2207 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2208 }
2209 
2210 static int
2211 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2212 {
2213 	debug_called(4);
2214 
2215 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2216 }
2217 
2218 static int
2219 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2220 {
2221 	int val;
2222 
2223 	debug_called(4);
2224 
2225 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2226 	return (val);
2227 }
2228 
2229 /*
2230  * Set/clear interrupt masks
2231  */
2232 static void
2233 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2234 {
2235 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2236 
2237 	if (enable) {
2238 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2239 	} else {
2240 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2241 	}
2242 }
2243 
2244 static void
2245 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2246 {
2247 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2248 
2249 	if (enable) {
2250 		AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2251 	} else {
2252 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2253 	}
2254 }
2255 
2256 static void
2257 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2258 {
2259 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2260 
2261 	if (enable) {
2262 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2263 		AAC_FA_HACK(sc);
2264 	} else {
2265 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2266 		AAC_FA_HACK(sc);
2267 	}
2268 }
2269 
2270 /*
2271  * Debugging and Diagnostics
2272  */
2273 
2274 /*
2275  * Print some information about the controller.
2276  */
2277 static void
2278 aac_describe_controller(struct aac_softc *sc)
2279 {
2280 	struct aac_fib *fib;
2281 	struct aac_adapter_info	*info;
2282 
2283 	debug_called(2);
2284 
2285 	aac_alloc_sync_fib(sc, &fib, 0);
2286 
2287 	fib->data[0] = 0;
2288 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2289 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2290 		aac_release_sync_fib(sc);
2291 		return;
2292 	}
2293 	info = (struct aac_adapter_info *)&fib->data[0];
2294 
2295 	device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n",
2296 		      aac_describe_code(aac_cpu_variant, info->CpuVariant),
2297 		      info->ClockSpeed, info->BufferMem / (1024 * 1024),
2298 		      aac_describe_code(aac_battery_platform,
2299 					info->batteryPlatform));
2300 
2301 	/* save the kernel revision structure for later use */
2302 	sc->aac_revision = info->KernelRevision;
2303 	device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2304 		      info->KernelRevision.external.comp.major,
2305 		      info->KernelRevision.external.comp.minor,
2306 		      info->KernelRevision.external.comp.dash,
2307 		      info->KernelRevision.buildNumber,
2308 		      (u_int32_t)(info->SerialNumber & 0xffffff));
2309 
2310 	aac_release_sync_fib(sc);
2311 
2312 	if (1 || bootverbose) {
2313 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2314 			      sc->supported_options,
2315 			      "\20"
2316 			      "\1SNAPSHOT"
2317 			      "\2CLUSTERS"
2318 			      "\3WCACHE"
2319 			      "\4DATA64"
2320 			      "\5HOSTTIME"
2321 			      "\6RAID50"
2322 			      "\7WINDOW4GB"
2323 			      "\10SCSIUPGD"
2324 			      "\11SOFTERR"
2325 			      "\12NORECOND"
2326 			      "\13SGMAP64"
2327 			      "\14ALARM"
2328 			      "\15NONDASD");
2329 	}
2330 }
2331 
2332 /*
2333  * Look up a text description of a numeric error code and return a pointer to
2334  * same.
2335  */
2336 static char *
2337 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2338 {
2339 	int i;
2340 
2341 	for (i = 0; table[i].string != NULL; i++)
2342 		if (table[i].code == code)
2343 			return(table[i].string);
2344 	return(table[i + 1].string);
2345 }
2346 
2347 /*
2348  * Management Interface
2349  */
2350 
2351 static int
2352 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td)
2353 {
2354 	struct aac_softc *sc;
2355 
2356 	debug_called(2);
2357 
2358 	sc = dev->si_drv1;
2359 
2360 	/* Check to make sure the device isn't already open */
2361 	if (sc->aac_state & AAC_STATE_OPEN) {
2362 		return EBUSY;
2363 	}
2364 	sc->aac_state |= AAC_STATE_OPEN;
2365 
2366 	return 0;
2367 }
2368 
2369 static int
2370 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td)
2371 {
2372 	struct aac_softc *sc;
2373 
2374 	debug_called(2);
2375 
2376 	sc = dev->si_drv1;
2377 
2378 	/* Mark this unit as no longer open  */
2379 	sc->aac_state &= ~AAC_STATE_OPEN;
2380 
2381 	return 0;
2382 }
2383 
2384 static int
2385 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2386 {
2387 	union aac_statrequest *as;
2388 	struct aac_softc *sc;
2389 	int error = 0;
2390 	uint32_t cookie;
2391 
2392 	debug_called(2);
2393 
2394 	as = (union aac_statrequest *)arg;
2395 	sc = dev->si_drv1;
2396 
2397 	switch (cmd) {
2398 	case AACIO_STATS:
2399 		switch (as->as_item) {
2400 		case AACQ_FREE:
2401 		case AACQ_BIO:
2402 		case AACQ_READY:
2403 		case AACQ_BUSY:
2404 		case AACQ_COMPLETE:
2405 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2406 			      sizeof(struct aac_qstat));
2407 			break;
2408 		default:
2409 			error = ENOENT;
2410 			break;
2411 		}
2412 	break;
2413 
2414 	case FSACTL_SENDFIB:
2415 		arg = *(caddr_t*)arg;
2416 	case FSACTL_LNX_SENDFIB:
2417 		debug(1, "FSACTL_SENDFIB");
2418 		error = aac_ioctl_sendfib(sc, arg);
2419 		break;
2420 	case FSACTL_AIF_THREAD:
2421 	case FSACTL_LNX_AIF_THREAD:
2422 		debug(1, "FSACTL_AIF_THREAD");
2423 		error = EINVAL;
2424 		break;
2425 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2426 		arg = *(caddr_t*)arg;
2427 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2428 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2429 		/*
2430 		 * Pass the caller out an AdapterFibContext.
2431 		 *
2432 		 * Note that because we only support one opener, we
2433 		 * basically ignore this.  Set the caller's context to a magic
2434 		 * number just in case.
2435 		 *
2436 		 * The Linux code hands the driver a pointer into kernel space,
2437 		 * and then trusts it when the caller hands it back.  Aiee!
2438 		 * Here, we give it the proc pointer of the per-adapter aif
2439 		 * thread. It's only used as a sanity check in other calls.
2440 		 */
2441 		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2442 		error = copyout(&cookie, arg, sizeof(cookie));
2443 		break;
2444 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2445 		arg = *(caddr_t*)arg;
2446 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2447 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2448 		error = aac_getnext_aif(sc, arg);
2449 		break;
2450 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2451 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2452 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2453 		/* don't do anything here */
2454 		break;
2455 	case FSACTL_MINIPORT_REV_CHECK:
2456 		arg = *(caddr_t*)arg;
2457 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2458 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2459 		error = aac_rev_check(sc, arg);
2460 		break;
2461 	case FSACTL_QUERY_DISK:
2462 		arg = *(caddr_t*)arg;
2463 	case FSACTL_LNX_QUERY_DISK:
2464 		debug(1, "FSACTL_QUERY_DISK");
2465 		error = aac_query_disk(sc, arg);
2466 			break;
2467 	case FSACTL_DELETE_DISK:
2468 	case FSACTL_LNX_DELETE_DISK:
2469 		/*
2470 		 * We don't trust the underland to tell us when to delete a
2471 		 * container, rather we rely on an AIF coming from the
2472 		 * controller
2473 		 */
2474 		error = 0;
2475 		break;
2476 	default:
2477 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2478 		error = EINVAL;
2479 		break;
2480 	}
2481 	return(error);
2482 }
2483 
2484 static int
2485 aac_poll(dev_t dev, int poll_events, d_thread_t *td)
2486 {
2487 	struct aac_softc *sc;
2488 	int revents;
2489 
2490 	sc = dev->si_drv1;
2491 	revents = 0;
2492 
2493 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2494 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2495 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2496 			revents |= poll_events & (POLLIN | POLLRDNORM);
2497 	}
2498 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2499 
2500 	if (revents == 0) {
2501 		if (poll_events & (POLLIN | POLLRDNORM))
2502 			selrecord(td, &sc->rcv_select);
2503 	}
2504 
2505 	return (revents);
2506 }
2507 
2508 /*
2509  * Send a FIB supplied from userspace
2510  */
2511 static int
2512 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2513 {
2514 	struct aac_command *cm;
2515 	int size, error;
2516 
2517 	debug_called(2);
2518 
2519 	cm = NULL;
2520 
2521 	/*
2522 	 * Get a command
2523 	 */
2524 	AAC_LOCK_ACQUIRE(&sc->aac_io_lock);
2525 	if (aac_alloc_command(sc, &cm)) {
2526 		error = EBUSY;
2527 		goto out;
2528 	}
2529 
2530 	/*
2531 	 * Fetch the FIB header, then re-copy to get data as well.
2532 	 */
2533 	if ((error = copyin(ufib, cm->cm_fib,
2534 			    sizeof(struct aac_fib_header))) != 0)
2535 		goto out;
2536 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
2537 	if (size > sizeof(struct aac_fib)) {
2538 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
2539 			      size, sizeof(struct aac_fib));
2540 		size = sizeof(struct aac_fib);
2541 	}
2542 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
2543 		goto out;
2544 	cm->cm_fib->Header.Size = size;
2545 	cm->cm_timestamp = time_second;
2546 
2547 	/*
2548 	 * Pass the FIB to the controller, wait for it to complete.
2549 	 */
2550 	if ((error = aac_wait_command(cm, 30)) != 0) {	/* XXX user timeout? */
2551 		device_printf(sc->aac_dev,
2552 			      "aac_wait_command return %d\n", error);
2553 		goto out;
2554 	}
2555 
2556 	/*
2557 	 * Copy the FIB and data back out to the caller.
2558 	 */
2559 	size = cm->cm_fib->Header.Size;
2560 	if (size > sizeof(struct aac_fib)) {
2561 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
2562 			      size, sizeof(struct aac_fib));
2563 		size = sizeof(struct aac_fib);
2564 	}
2565 	error = copyout(cm->cm_fib, ufib, size);
2566 
2567 out:
2568 	if (cm != NULL) {
2569 		aac_release_command(cm);
2570 	}
2571 
2572 	AAC_LOCK_RELEASE(&sc->aac_io_lock);
2573 	return(error);
2574 }
2575 
2576 /*
2577  * Handle an AIF sent to us by the controller; queue it for later reference.
2578  * If the queue fills up, then drop the older entries.
2579  */
2580 static void
2581 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
2582 {
2583 	struct aac_aif_command *aif;
2584 	struct aac_container *co, *co_next;
2585 	struct aac_mntinfo *mi;
2586 	struct aac_mntinforesp *mir = NULL;
2587 	u_int16_t rsize;
2588 	int next, found;
2589 	int count = 0, added = 0, i = 0;
2590 
2591 	debug_called(2);
2592 
2593 	aif = (struct aac_aif_command*)&fib->data[0];
2594 	aac_print_aif(sc, aif);
2595 
2596 	/* Is it an event that we should care about? */
2597 	switch (aif->command) {
2598 	case AifCmdEventNotify:
2599 		switch (aif->data.EN.type) {
2600 		case AifEnAddContainer:
2601 		case AifEnDeleteContainer:
2602 			/*
2603 			 * A container was added or deleted, but the message
2604 			 * doesn't tell us anything else!  Re-enumerate the
2605 			 * containers and sort things out.
2606 			 */
2607 			aac_alloc_sync_fib(sc, &fib, 0);
2608 			mi = (struct aac_mntinfo *)&fib->data[0];
2609 			do {
2610 				/*
2611 				 * Ask the controller for its containers one at
2612 				 * a time.
2613 				 * XXX What if the controller's list changes
2614 				 * midway through this enumaration?
2615 				 * XXX This should be done async.
2616 				 */
2617 				bzero(mi, sizeof(struct aac_mntinfo));
2618 				mi->Command = VM_NameServe;
2619 				mi->MntType = FT_FILESYS;
2620 				mi->MntCount = i;
2621 				rsize = sizeof(mir);
2622 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
2623 						 sizeof(struct aac_mntinfo))) {
2624 					printf("Error probing container %d\n",
2625 					      i);
2626 					continue;
2627 				}
2628 				mir = (struct aac_mntinforesp *)&fib->data[0];
2629 				/* XXX Need to check if count changed */
2630 				count = mir->MntRespCount;
2631 				/*
2632 				 * Check the container against our list.
2633 				 * co->co_found was already set to 0 in a
2634 				 * previous run.
2635 				 */
2636 				if ((mir->Status == ST_OK) &&
2637 				    (mir->MntTable[0].VolType != CT_NONE)) {
2638 					found = 0;
2639 					TAILQ_FOREACH(co,
2640 						      &sc->aac_container_tqh,
2641 						      co_link) {
2642 						if (co->co_mntobj.ObjectId ==
2643 						    mir->MntTable[0].ObjectId) {
2644 							co->co_found = 1;
2645 							found = 1;
2646 							break;
2647 						}
2648 					}
2649 					/*
2650 					 * If the container matched, continue
2651 					 * in the list.
2652 					 */
2653 					if (found) {
2654 						i++;
2655 						continue;
2656 					}
2657 
2658 					/*
2659 					 * This is a new container.  Do all the
2660 					 * appropriate things to set it up.
2661 					 */
2662 					aac_add_container(sc, mir, 1);
2663 					added = 1;
2664 				}
2665 				i++;
2666 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
2667 			aac_release_sync_fib(sc);
2668 
2669 			/*
2670 			 * Go through our list of containers and see which ones
2671 			 * were not marked 'found'.  Since the controller didn't
2672 			 * list them they must have been deleted.  Do the
2673 			 * appropriate steps to destroy the device.  Also reset
2674 			 * the co->co_found field.
2675 			 */
2676 			co = TAILQ_FIRST(&sc->aac_container_tqh);
2677 			while (co != NULL) {
2678 				if (co->co_found == 0) {
2679 					device_delete_child(sc->aac_dev,
2680 							    co->co_disk);
2681 					co_next = TAILQ_NEXT(co, co_link);
2682 					AAC_LOCK_ACQUIRE(&sc->
2683 							aac_container_lock);
2684 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
2685 						     co_link);
2686 					AAC_LOCK_RELEASE(&sc->
2687 							 aac_container_lock);
2688 					FREE(co, M_AACBUF);
2689 					co = co_next;
2690 				} else {
2691 					co->co_found = 0;
2692 					co = TAILQ_NEXT(co, co_link);
2693 				}
2694 			}
2695 
2696 			/* Attach the newly created containers */
2697 			if (added)
2698 				bus_generic_attach(sc->aac_dev);
2699 
2700 			break;
2701 
2702 		default:
2703 			break;
2704 		}
2705 
2706 	default:
2707 		break;
2708 	}
2709 
2710 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
2711 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2712 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
2713 	if (next != sc->aac_aifq_tail) {
2714 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
2715 		sc->aac_aifq_head = next;
2716 
2717 		/* On the off chance that someone is sleeping for an aif... */
2718 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
2719 			wakeup(sc->aac_aifq);
2720 		/* Wakeup any poll()ers */
2721 		selwakeup(&sc->rcv_select);
2722 	}
2723 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2724 
2725 	return;
2726 }
2727 
2728 /*
2729  * Return the Revision of the driver to userspace and check to see if the
2730  * userspace app is possibly compatible.  This is extremely bogus since
2731  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
2732  * returning what the card reported.
2733  */
2734 static int
2735 aac_rev_check(struct aac_softc *sc, caddr_t udata)
2736 {
2737 	struct aac_rev_check rev_check;
2738 	struct aac_rev_check_resp rev_check_resp;
2739 	int error = 0;
2740 
2741 	debug_called(2);
2742 
2743 	/*
2744 	 * Copyin the revision struct from userspace
2745 	 */
2746 	if ((error = copyin(udata, (caddr_t)&rev_check,
2747 			sizeof(struct aac_rev_check))) != 0) {
2748 		return error;
2749 	}
2750 
2751 	debug(2, "Userland revision= %d\n",
2752 	      rev_check.callingRevision.buildNumber);
2753 
2754 	/*
2755 	 * Doctor up the response struct.
2756 	 */
2757 	rev_check_resp.possiblyCompatible = 1;
2758 	rev_check_resp.adapterSWRevision.external.ul =
2759 	    sc->aac_revision.external.ul;
2760 	rev_check_resp.adapterSWRevision.buildNumber =
2761 	    sc->aac_revision.buildNumber;
2762 
2763 	return(copyout((caddr_t)&rev_check_resp, udata,
2764 			sizeof(struct aac_rev_check_resp)));
2765 }
2766 
2767 /*
2768  * Pass the caller the next AIF in their queue
2769  */
2770 static int
2771 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
2772 {
2773 	struct get_adapter_fib_ioctl agf;
2774 	int error;
2775 
2776 	debug_called(2);
2777 
2778 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
2779 
2780 		/*
2781 		 * Check the magic number that we gave the caller.
2782 		 */
2783 		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
2784 			error = EFAULT;
2785 		} else {
2786 			error = aac_return_aif(sc, agf.AifFib);
2787 			if ((error == EAGAIN) && (agf.Wait)) {
2788 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
2789 				while (error == EAGAIN) {
2790 					error = tsleep(sc->aac_aifq, PRIBIO |
2791 						       PCATCH, "aacaif", 0);
2792 					if (error == 0)
2793 						error = aac_return_aif(sc,
2794 						    agf.AifFib);
2795 				}
2796 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
2797 			}
2798 		}
2799 	}
2800 	return(error);
2801 }
2802 
2803 /*
2804  * Hand the next AIF off the top of the queue out to userspace.
2805  */
2806 static int
2807 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
2808 {
2809 	int error;
2810 
2811 	debug_called(2);
2812 
2813 	AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock);
2814 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
2815 		error = EAGAIN;
2816 	} else {
2817 		error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr,
2818 				sizeof(struct aac_aif_command));
2819 		if (error)
2820 			device_printf(sc->aac_dev,
2821 			    "aac_return_aif: copyout returned %d\n", error);
2822 		if (!error)
2823 			sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) %
2824 					    AAC_AIFQ_LENGTH;
2825 	}
2826 	AAC_LOCK_RELEASE(&sc->aac_aifq_lock);
2827 	return(error);
2828 }
2829 
2830 /*
2831  * Give the userland some information about the container.  The AAC arch
2832  * expects the driver to be a SCSI passthrough type driver, so it expects
2833  * the containers to have b:t:l numbers.  Fake it.
2834  */
2835 static int
2836 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
2837 {
2838 	struct aac_query_disk query_disk;
2839 	struct aac_container *co;
2840 	struct aac_disk	*disk;
2841 	int error, id;
2842 
2843 	debug_called(2);
2844 
2845 	disk = NULL;
2846 
2847 	error = copyin(uptr, (caddr_t)&query_disk,
2848 		       sizeof(struct aac_query_disk));
2849 	if (error)
2850 		return (error);
2851 
2852 	id = query_disk.ContainerNumber;
2853 	if (id == -1)
2854 		return (EINVAL);
2855 
2856 	AAC_LOCK_ACQUIRE(&sc->aac_container_lock);
2857 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
2858 		if (co->co_mntobj.ObjectId == id)
2859 			break;
2860 		}
2861 
2862 	if (co == NULL) {
2863 			query_disk.Valid = 0;
2864 			query_disk.Locked = 0;
2865 			query_disk.Deleted = 1;		/* XXX is this right? */
2866 	} else {
2867 		disk = device_get_softc(co->co_disk);
2868 		query_disk.Valid = 1;
2869 		query_disk.Locked =
2870 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
2871 		query_disk.Deleted = 0;
2872 		query_disk.Bus = device_get_unit(sc->aac_dev);
2873 		query_disk.Target = disk->unit;
2874 		query_disk.Lun = 0;
2875 		query_disk.UnMapped = 0;
2876 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
2877 		        disk->ad_disk.d_name, disk->ad_disk.d_unit);
2878 	}
2879 	AAC_LOCK_RELEASE(&sc->aac_container_lock);
2880 
2881 	error = copyout((caddr_t)&query_disk, uptr,
2882 			sizeof(struct aac_query_disk));
2883 
2884 	return (error);
2885 }
2886 
2887 static void
2888 aac_get_bus_info(struct aac_softc *sc)
2889 {
2890 	struct aac_fib *fib;
2891 	struct aac_ctcfg *c_cmd;
2892 	struct aac_ctcfg_resp *c_resp;
2893 	struct aac_vmioctl *vmi;
2894 	struct aac_vmi_businf_resp *vmi_resp;
2895 	struct aac_getbusinf businfo;
2896 	struct aac_sim *caminf;
2897 	device_t child;
2898 	int i, found, error;
2899 
2900 	aac_alloc_sync_fib(sc, &fib, 0);
2901 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
2902 	bzero(c_cmd, sizeof(struct aac_ctcfg));
2903 
2904 	c_cmd->Command = VM_ContainerConfig;
2905 	c_cmd->cmd = CT_GET_SCSI_METHOD;
2906 	c_cmd->param = 0;
2907 
2908 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2909 	    sizeof(struct aac_ctcfg));
2910 	if (error) {
2911 		device_printf(sc->aac_dev, "Error %d sending "
2912 		    "VM_ContainerConfig command\n", error);
2913 		aac_release_sync_fib(sc);
2914 		return;
2915 	}
2916 
2917 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
2918 	if (c_resp->Status != ST_OK) {
2919 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
2920 		    c_resp->Status);
2921 		aac_release_sync_fib(sc);
2922 		return;
2923 	}
2924 
2925 	sc->scsi_method_id = c_resp->param;
2926 
2927 	vmi = (struct aac_vmioctl *)&fib->data[0];
2928 	bzero(vmi, sizeof(struct aac_vmioctl));
2929 
2930 	vmi->Command = VM_Ioctl;
2931 	vmi->ObjType = FT_DRIVE;
2932 	vmi->MethId = sc->scsi_method_id;
2933 	vmi->ObjId = 0;
2934 	vmi->IoctlCmd = GetBusInfo;
2935 
2936 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
2937 	    sizeof(struct aac_vmioctl));
2938 	if (error) {
2939 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
2940 		    error);
2941 		aac_release_sync_fib(sc);
2942 		return;
2943 	}
2944 
2945 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
2946 	if (vmi_resp->Status != ST_OK) {
2947 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
2948 		    vmi_resp->Status);
2949 		aac_release_sync_fib(sc);
2950 		return;
2951 	}
2952 
2953 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
2954 	aac_release_sync_fib(sc);
2955 
2956 	found = 0;
2957 	for (i = 0; i < businfo.BusCount; i++) {
2958 		if (businfo.BusValid[i] != AAC_BUS_VALID)
2959 			continue;
2960 
2961 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
2962 		    M_AACBUF, M_NOWAIT | M_ZERO);
2963 		if (caminf == NULL)
2964 			continue;
2965 
2966 		child = device_add_child(sc->aac_dev, "aacp", -1);
2967 		if (child == NULL) {
2968 			device_printf(sc->aac_dev, "device_add_child failed\n");
2969 			continue;
2970 		}
2971 
2972 		caminf->TargetsPerBus = businfo.TargetsPerBus;
2973 		caminf->BusNumber = i;
2974 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
2975 		caminf->aac_sc = sc;
2976 		caminf->sim_dev = child;
2977 
2978 		device_set_ivars(child, caminf);
2979 		device_set_desc(child, "SCSI Passthrough Bus");
2980 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
2981 
2982 		found = 1;
2983 	}
2984 
2985 	if (found)
2986 		bus_generic_attach(sc->aac_dev);
2987 
2988 	return;
2989 }
2990