1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 34 */ 35 36 #include "opt_aac.h" 37 38 /* #include <stddef.h> */ 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/sysctl.h> 45 46 #include <dev/aac/aac_compat.h> 47 48 #include <sys/bus.h> 49 #include <sys/conf.h> 50 #include <sys/devicestat.h> 51 #include <sys/disk.h> 52 #include <sys/file.h> 53 #include <sys/signalvar.h> 54 #include <sys/time.h> 55 #include <sys/eventhandler.h> 56 57 #include <machine/bus_memio.h> 58 #include <machine/bus.h> 59 #include <machine/resource.h> 60 61 #include <dev/aac/aacreg.h> 62 #include <dev/aac/aac_ioctl.h> 63 #include <dev/aac/aacvar.h> 64 #include <dev/aac/aac_tables.h> 65 66 devclass_t aac_devclass; 67 68 static void aac_startup(void *arg); 69 70 /* Command Processing */ 71 static void aac_startio(struct aac_softc *sc); 72 static void aac_timeout(struct aac_softc *sc); 73 static int aac_start(struct aac_command *cm); 74 static void aac_complete(void *context, int pending); 75 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 76 static void aac_bio_complete(struct aac_command *cm); 77 static int aac_wait_command(struct aac_command *cm, int timeout); 78 static void aac_host_command(struct aac_softc *sc); 79 static void aac_host_response(struct aac_softc *sc); 80 81 /* Command Buffer Management */ 82 static int aac_alloc_command(struct aac_softc *sc, 83 struct aac_command **cmp); 84 static void aac_release_command(struct aac_command *cm); 85 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 86 int nseg, int error); 87 static int aac_alloc_commands(struct aac_softc *sc); 88 static void aac_free_commands(struct aac_softc *sc); 89 static void aac_map_command(struct aac_command *cm); 90 static void aac_unmap_command(struct aac_command *cm); 91 92 /* Hardware Interface */ 93 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 94 int error); 95 static int aac_init(struct aac_softc *sc); 96 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 97 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 98 u_int32_t arg3, u_int32_t *sp); 99 static int aac_sync_fib(struct aac_softc *sc, u_int32_t command, 100 u_int32_t xferstate, void *data, 101 u_int16_t datasize, void *result, 102 u_int16_t *resultsize); 103 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 104 struct aac_command *cm); 105 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 106 u_int32_t *fib_size, 107 struct aac_fib **fib_addr); 108 static int aac_enqueue_response(struct aac_softc *sc, int queue, 109 struct aac_fib *fib); 110 111 /* StrongARM interface */ 112 static int aac_sa_get_fwstatus(struct aac_softc *sc); 113 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 114 static int aac_sa_get_istatus(struct aac_softc *sc); 115 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 116 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 117 u_int32_t arg0, u_int32_t arg1, 118 u_int32_t arg2, u_int32_t arg3); 119 static int aac_sa_get_mailboxstatus(struct aac_softc *sc); 120 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 121 122 struct aac_interface aac_sa_interface = { 123 aac_sa_get_fwstatus, 124 aac_sa_qnotify, 125 aac_sa_get_istatus, 126 aac_sa_clear_istatus, 127 aac_sa_set_mailbox, 128 aac_sa_get_mailboxstatus, 129 aac_sa_set_interrupts 130 }; 131 132 /* i960Rx interface */ 133 static int aac_rx_get_fwstatus(struct aac_softc *sc); 134 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 135 static int aac_rx_get_istatus(struct aac_softc *sc); 136 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 137 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 138 u_int32_t arg0, u_int32_t arg1, 139 u_int32_t arg2, u_int32_t arg3); 140 static int aac_rx_get_mailboxstatus(struct aac_softc *sc); 141 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 142 143 struct aac_interface aac_rx_interface = { 144 aac_rx_get_fwstatus, 145 aac_rx_qnotify, 146 aac_rx_get_istatus, 147 aac_rx_clear_istatus, 148 aac_rx_set_mailbox, 149 aac_rx_get_mailboxstatus, 150 aac_rx_set_interrupts 151 }; 152 153 /* Debugging and Diagnostics */ 154 static void aac_describe_controller(struct aac_softc *sc); 155 static char *aac_describe_code(struct aac_code_lookup *table, 156 u_int32_t code); 157 158 /* Management Interface */ 159 static d_open_t aac_open; 160 static d_close_t aac_close; 161 static d_ioctl_t aac_ioctl; 162 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 163 static void aac_handle_aif(struct aac_softc *sc, 164 struct aac_fib *fib); 165 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 166 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 167 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 168 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 169 170 #define AAC_CDEV_MAJOR 150 171 172 static struct cdevsw aac_cdevsw = { 173 aac_open, /* open */ 174 aac_close, /* close */ 175 noread, /* read */ 176 nowrite, /* write */ 177 aac_ioctl, /* ioctl */ 178 nopoll, /* poll */ 179 nommap, /* mmap */ 180 nostrategy, /* strategy */ 181 "aac", /* name */ 182 AAC_CDEV_MAJOR, /* major */ 183 nodump, /* dump */ 184 nopsize, /* psize */ 185 0, /* flags */ 186 #if __FreeBSD_version < 500005 187 -1, /* bmaj */ 188 #endif 189 }; 190 191 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 192 193 /* sysctl node */ 194 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 195 196 /****************************************************************************** 197 ****************************************************************************** 198 Device Interface 199 ****************************************************************************** 200 ******************************************************************************/ 201 202 /****************************************************************************** 203 * Initialise the controller and softc 204 */ 205 int 206 aac_attach(struct aac_softc *sc) 207 { 208 int error, unit; 209 210 debug_called(1); 211 212 /* 213 * Initialise per-controller queues. 214 */ 215 aac_initq_free(sc); 216 aac_initq_ready(sc); 217 aac_initq_busy(sc); 218 aac_initq_complete(sc); 219 aac_initq_bio(sc); 220 221 #if __FreeBSD_version >= 500005 222 /* 223 * Initialise command-completion task. 224 */ 225 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 226 #endif 227 228 /* disable interrupts before we enable anything */ 229 AAC_MASK_INTERRUPTS(sc); 230 231 /* mark controller as suspended until we get ourselves organised */ 232 sc->aac_state |= AAC_STATE_SUSPEND; 233 234 /* 235 * Allocate command structures. 236 */ 237 if ((error = aac_alloc_commands(sc)) != 0) 238 return(error); 239 240 /* 241 * Initialise the adapter. 242 */ 243 if ((error = aac_init(sc)) != 0) 244 return(error); 245 246 /* 247 * Print a little information about the controller. 248 */ 249 aac_describe_controller(sc); 250 251 /* 252 * Register to probe our containers later. 253 */ 254 TAILQ_INIT(&sc->aac_container_tqh); 255 AAC_LOCK_INIT(&sc->aac_container_lock); 256 257 sc->aac_ich.ich_func = aac_startup; 258 sc->aac_ich.ich_arg = sc; 259 if (config_intrhook_establish(&sc->aac_ich) != 0) { 260 device_printf(sc->aac_dev, "can't establish configuration hook\n"); 261 return(ENXIO); 262 } 263 264 /* 265 * Make the control device. 266 */ 267 unit = device_get_unit(sc->aac_dev); 268 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_WHEEL, 0644, 269 "aac%d", unit); 270 #if __FreeBSD_version > 500005 271 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 272 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 273 #endif 274 sc->aac_dev_t->si_drv1 = sc; 275 276 /* Create the AIF thread */ 277 #if __FreeBSD_version > 500005 278 if (kthread_create((void(*)(void *))aac_host_command, sc, &sc->aifthread, 279 0, "aac%daif", unit)) 280 #else 281 if (kthread_create((void(*)(void *))aac_host_command, sc, &sc->aifthread, 282 "aac%daif", unit)) 283 #endif 284 panic("Could not create AIF thread\n"); 285 286 /* Register the shutdown method to only be called post-dump */ 287 if ((EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, sc->aac_dev, 288 SHUTDOWN_PRI_DEFAULT)) == NULL) 289 device_printf(sc->aac_dev, "shutdown event registration failed\n"); 290 291 return(0); 292 } 293 294 /****************************************************************************** 295 * Probe for containers, create disks. 296 */ 297 static void 298 aac_startup(void *arg) 299 { 300 struct aac_softc *sc = (struct aac_softc *)arg; 301 struct aac_mntinfo mi; 302 struct aac_mntinforesponse mir; 303 struct aac_container *co; 304 device_t child; 305 u_int16_t rsize; 306 int i = 0; 307 308 debug_called(1); 309 310 /* disconnect ourselves from the intrhook chain */ 311 config_intrhook_disestablish(&sc->aac_ich); 312 313 /* loop over possible containers */ 314 mi.Command = VM_NameServe; 315 mi.MntType = FT_FILESYS; 316 do { 317 /* request information on this container */ 318 mi.MntCount = i; 319 rsize = sizeof(mir); 320 if (aac_sync_fib(sc, ContainerCommand, 0, &mi, 321 sizeof(struct aac_mntinfo), &mir, &rsize)) { 322 debug(2, "error probing container %d", i); 323 continue; 324 } 325 /* check response size */ 326 if (rsize != sizeof(mir)) { 327 debug(2, "container info response wrong size (%d should be %d)", 328 rsize, sizeof(mir)); 329 continue; 330 } 331 /* 332 * Check container volume type for validity. Note that many of the 333 * possible types may never show up. 334 */ 335 if ((mir.Status == ST_OK) && (mir.MntTable[0].VolType != CT_NONE)) { 336 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, M_NOWAIT); 337 if (co == NULL) 338 panic("Out of memory?!\n"); 339 debug(1, "%d: id %x name '%.16s' size %u type %d", 340 i, mir.MntTable[0].ObjectId, 341 mir.MntTable[0].FileSystemName, mir.MntTable[0].Capacity, 342 mir.MntTable[0].VolType); 343 344 if ((child = device_add_child(sc->aac_dev, NULL, -1)) == NULL) { 345 device_printf(sc->aac_dev, "device_add_child failed\n"); 346 } else { 347 device_set_ivars(child, co); 348 } 349 device_set_desc(child, aac_describe_code(aac_container_types, 350 mir.MntTable[0].VolType)); 351 co->co_disk = child; 352 co->co_found = 0; 353 bcopy(&mir.MntTable[0], &co->co_mntobj, sizeof(struct aac_mntobj)); 354 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 355 } 356 i++; 357 } while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS)); 358 359 /* poke the bus to actually attach the child devices */ 360 if (bus_generic_attach(sc->aac_dev)) 361 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 362 363 /* mark the controller up */ 364 sc->aac_state &= ~AAC_STATE_SUSPEND; 365 366 /* enable interrupts now */ 367 AAC_UNMASK_INTERRUPTS(sc); 368 369 /* enable the timeout watchdog */ 370 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 371 } 372 373 /****************************************************************************** 374 * Free all of the resources associated with (sc) 375 * 376 * Should not be called if the controller is active. 377 */ 378 void 379 aac_free(struct aac_softc *sc) 380 { 381 debug_called(1); 382 383 /* remove the control device */ 384 if (sc->aac_dev_t != NULL) 385 destroy_dev(sc->aac_dev_t); 386 387 /* throw away any FIB buffers, discard the FIB DMA tag */ 388 if (sc->aac_fibs != NULL) 389 aac_free_commands(sc); 390 if (sc->aac_fib_dmat) 391 bus_dma_tag_destroy(sc->aac_fib_dmat); 392 393 /* destroy the common area */ 394 if (sc->aac_common) { 395 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 396 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 397 sc->aac_common_dmamap); 398 } 399 if (sc->aac_common_dmat) 400 bus_dma_tag_destroy(sc->aac_common_dmat); 401 402 /* disconnect the interrupt handler */ 403 if (sc->aac_intr) 404 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 405 if (sc->aac_irq != NULL) 406 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 407 sc->aac_irq); 408 409 /* destroy data-transfer DMA tag */ 410 if (sc->aac_buffer_dmat) 411 bus_dma_tag_destroy(sc->aac_buffer_dmat); 412 413 /* destroy the parent DMA tag */ 414 if (sc->aac_parent_dmat) 415 bus_dma_tag_destroy(sc->aac_parent_dmat); 416 417 /* release the register window mapping */ 418 if (sc->aac_regs_resource != NULL) 419 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, sc->aac_regs_rid, 420 sc->aac_regs_resource); 421 } 422 423 /****************************************************************************** 424 * Disconnect from the controller completely, in preparation for unload. 425 */ 426 int 427 aac_detach(device_t dev) 428 { 429 struct aac_softc *sc = device_get_softc(dev); 430 #if AAC_BROKEN 431 int error; 432 #endif 433 434 debug_called(1); 435 436 if (sc->aac_state & AAC_STATE_OPEN) 437 return(EBUSY); 438 439 #if AAC_BROKEN 440 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 441 sc->aifflags |= AAC_AIFFLAGS_EXIT; 442 wakeup(sc->aifthread); 443 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 444 } 445 446 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 447 panic("Cannot shutdown AIF thread\n"); 448 449 if ((error = aac_shutdown(dev))) 450 return(error); 451 452 aac_free(sc); 453 454 return(0); 455 #else 456 return (EBUSY); 457 #endif 458 } 459 460 /****************************************************************************** 461 * Bring the controller down to a dormant state and detach all child devices. 462 * 463 * This function is called before detach or system shutdown. 464 * 465 * Note that we can assume that the bioq on the controller is empty, as we won't 466 * allow shutdown if any device is open. 467 */ 468 int 469 aac_shutdown(device_t dev) 470 { 471 struct aac_softc *sc = device_get_softc(dev); 472 struct aac_close_command cc; 473 int s, i; 474 475 debug_called(1); 476 477 s = splbio(); 478 479 sc->aac_state |= AAC_STATE_SUSPEND; 480 481 /* 482 * Send a Container shutdown followed by a HostShutdown FIB to the 483 * controller to convince it that we don't want to talk to it anymore. 484 * We've been closed and all I/O completed already 485 */ 486 device_printf(sc->aac_dev, "shutting down controller..."); 487 488 cc.Command = VM_CloseAll; 489 cc.ContainerId = 0xffffffff; 490 if (aac_sync_fib(sc, ContainerCommand, 0, &cc, sizeof(cc), NULL, NULL)) { 491 printf("FAILED.\n"); 492 } else { 493 i = 0; 494 /* 495 * XXX Issuing this command to the controller makes it shut down, 496 * but also keeps it from coming back up without a reset of the 497 * PCI bus. This is not desirable if you are just unloading the 498 * driver module with the intent to reload it later. 499 */ 500 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, &i, 501 sizeof(i), NULL, NULL)) { 502 printf("FAILED.\n"); 503 } else { 504 printf("done.\n"); 505 } 506 } 507 508 AAC_MASK_INTERRUPTS(sc); 509 510 splx(s); 511 return(0); 512 } 513 514 /****************************************************************************** 515 * Bring the controller to a quiescent state, ready for system suspend. 516 */ 517 int 518 aac_suspend(device_t dev) 519 { 520 struct aac_softc *sc = device_get_softc(dev); 521 int s; 522 523 debug_called(1); 524 s = splbio(); 525 526 sc->aac_state |= AAC_STATE_SUSPEND; 527 528 AAC_MASK_INTERRUPTS(sc); 529 splx(s); 530 return(0); 531 } 532 533 /****************************************************************************** 534 * Bring the controller back to a state ready for operation. 535 */ 536 int 537 aac_resume(device_t dev) 538 { 539 struct aac_softc *sc = device_get_softc(dev); 540 541 debug_called(1); 542 sc->aac_state &= ~AAC_STATE_SUSPEND; 543 AAC_UNMASK_INTERRUPTS(sc); 544 return(0); 545 } 546 547 /******************************************************************************* 548 * Take an interrupt. 549 */ 550 void 551 aac_intr(void *arg) 552 { 553 struct aac_softc *sc = (struct aac_softc *)arg; 554 u_int16_t reason; 555 556 debug_called(2); 557 558 reason = AAC_GET_ISTATUS(sc); 559 560 /* controller wants to talk to the log? Defer it to the AIF thread */ 561 if (reason & AAC_DB_PRINTF) { 562 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 563 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 564 sc->aifflags |= AAC_AIFFLAGS_PENDING; 565 wakeup(sc->aifthread); 566 } else 567 aac_print_printf(sc); 568 } 569 570 /* controller has a message for us? */ 571 if (reason & AAC_DB_COMMAND_READY) { 572 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_READY); 573 /* XXX What happens if the thread is already awake? */ 574 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 575 sc->aifflags |= AAC_AIFFLAGS_PENDING; 576 wakeup(sc->aifthread); 577 } 578 } 579 580 /* controller has a response for us? */ 581 if (reason & AAC_DB_RESPONSE_READY) { 582 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 583 aac_host_response(sc); 584 } 585 586 /* 587 * spurious interrupts that we don't use - reset the mask and clear the 588 * interrupts 589 */ 590 if (reason & (AAC_DB_COMMAND_NOT_FULL | AAC_DB_RESPONSE_NOT_FULL)) { 591 AAC_UNMASK_INTERRUPTS(sc); 592 AAC_CLEAR_ISTATUS(sc, AAC_DB_COMMAND_NOT_FULL | 593 AAC_DB_RESPONSE_NOT_FULL); 594 } 595 }; 596 597 /****************************************************************************** 598 ****************************************************************************** 599 Command Processing 600 ****************************************************************************** 601 ******************************************************************************/ 602 603 /****************************************************************************** 604 * Start as much queued I/O as possible on the controller 605 */ 606 static void 607 aac_startio(struct aac_softc *sc) 608 { 609 struct aac_command *cm; 610 611 debug_called(2); 612 613 for(;;) { 614 /* try to get a command that's been put off for lack of resources */ 615 cm = aac_dequeue_ready(sc); 616 617 /* try to build a command off the bio queue (ignore error return) */ 618 if (cm == NULL) 619 aac_bio_command(sc, &cm); 620 621 /* nothing to do? */ 622 if (cm == NULL) 623 break; 624 625 /* try to give the command to the controller */ 626 if (aac_start(cm) == EBUSY) { 627 /* put it on the ready queue for later */ 628 aac_requeue_ready(cm); 629 break; 630 } 631 } 632 } 633 634 /****************************************************************************** 635 * Deliver a command to the controller; allocate controller resources at the 636 * last moment when possible. 637 */ 638 static int 639 aac_start(struct aac_command *cm) 640 { 641 struct aac_softc *sc = cm->cm_sc; 642 int error; 643 644 debug_called(2); 645 646 /* get the command mapped */ 647 aac_map_command(cm); 648 649 /* fix up the address values in the FIB */ 650 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 651 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 652 653 /* save a pointer to the command for speedy reverse-lookup */ 654 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 655 * address issue */ 656 657 /* put the FIB on the outbound queue */ 658 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 659 return(error); 660 } 661 662 /****************************************************************************** 663 * Handle notification of one or more FIBs coming from the controller. 664 */ 665 static void 666 aac_host_command(struct aac_softc *sc) 667 { 668 struct aac_fib *fib; 669 u_int32_t fib_size; 670 int size; 671 672 debug_called(2); 673 674 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 675 676 while(!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 677 if (!(sc->aifflags & AAC_AIFFLAGS_PENDING)) 678 tsleep(sc->aifthread, PRIBIO, "aifthd", 15 * hz); 679 680 sc->aifflags &= ~AAC_AIFFLAGS_PENDING; 681 for (;;) { 682 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, &fib_size, &fib)) 683 break; /* nothing to do */ 684 685 AAC_PRINT_FIB(sc, fib); 686 687 switch(fib->Header.Command) { 688 case AifRequest: 689 aac_handle_aif(sc, fib); 690 break; 691 default: 692 device_printf(sc->aac_dev, "unknown command from controller\n"); 693 break; 694 } 695 696 /* Return the AIF to the controller. */ 697 if ((fib->Header.XferState == 0) || 698 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 699 break; 700 701 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 702 if (!(fib->Header.XferState & AAC_FIBSTATE_NORM)) { 703 /* 704 * XXX How to recover from this? If anything goes on 705 * the high priority queue, the controller will panic. 706 * Since it came on the normal priority queue, just 707 * punt and return it there. 708 */ 709 device_printf(sc->aac_dev, "Error: Attempted to return " 710 "an AIF not at normal priority\n"); 711 } 712 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 713 *(AAC_FSAStatus*)fib->data = ST_OK; 714 715 /* XXX Compute the Size field? */ 716 size = fib->Header.Size; 717 if (size > sizeof(struct aac_fib)) { 718 size = sizeof(struct aac_fib); 719 fib->Header.Size = size; 720 } 721 /* 722 * Since we did not generate this command, it cannot go 723 * through the normal enqueue->startio chain. 724 */ 725 aac_enqueue_response(sc, AAC_ADAP_NORM_RESP_QUEUE, fib); 726 } 727 } 728 aac_print_printf(sc); 729 730 } 731 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 732 wakeup(sc->aac_dev); 733 734 #if __FreeBSD_version > 500005 735 mtx_lock(&Giant); 736 #endif 737 kthread_exit(0); 738 } 739 740 /****************************************************************************** 741 * Handle notification of one or more FIBs completed by the controller 742 */ 743 static void 744 aac_host_response(struct aac_softc *sc) 745 { 746 struct aac_command *cm; 747 struct aac_fib *fib; 748 u_int32_t fib_size; 749 750 debug_called(2); 751 752 for (;;) { 753 /* look for completed FIBs on our queue */ 754 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, &fib)) 755 break; /* nothing to do */ 756 757 /* get the command, unmap and queue for later processing */ 758 cm = (struct aac_command *)fib->Header.SenderData; 759 if (cm == NULL) { 760 AAC_PRINT_FIB(sc, fib); 761 } else { 762 aac_remove_busy(cm); 763 aac_unmap_command(cm); /* XXX defer? */ 764 aac_enqueue_complete(cm); 765 } 766 } 767 768 /* handle completion processing */ 769 #if __FreeBSD_version >= 500005 770 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 771 #else 772 aac_complete(sc, 0); 773 #endif 774 } 775 776 /****************************************************************************** 777 * Process completed commands. 778 */ 779 static void 780 aac_complete(void *context, int pending) 781 { 782 struct aac_softc *sc = (struct aac_softc *)context; 783 struct aac_command *cm; 784 785 debug_called(2); 786 787 /* pull completed commands off the queue */ 788 for (;;) { 789 cm = aac_dequeue_complete(sc); 790 if (cm == NULL) 791 break; 792 cm->cm_flags |= AAC_CMD_COMPLETED; 793 794 /* is there a completion handler? */ 795 if (cm->cm_complete != NULL) { 796 cm->cm_complete(cm); 797 } else { 798 /* assume that someone is sleeping on this command */ 799 wakeup(cm); 800 } 801 } 802 803 /* see if we can start some more I/O */ 804 aac_startio(sc); 805 } 806 807 /****************************************************************************** 808 * Handle a bio submitted from a disk device. 809 */ 810 void 811 aac_submit_bio(struct bio *bp) 812 { 813 struct aac_disk *ad = (struct aac_disk *)bp->bio_dev->si_drv1; 814 struct aac_softc *sc = ad->ad_controller; 815 816 debug_called(2); 817 818 /* queue the BIO and try to get some work done */ 819 aac_enqueue_bio(sc, bp); 820 aac_startio(sc); 821 } 822 823 /****************************************************************************** 824 * Get a bio and build a command to go with it. 825 */ 826 static int 827 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 828 { 829 struct aac_command *cm; 830 struct aac_fib *fib; 831 struct aac_blockread *br; 832 struct aac_blockwrite *bw; 833 struct aac_disk *ad; 834 struct bio *bp; 835 836 debug_called(2); 837 838 /* get the resources we will need */ 839 cm = NULL; 840 if ((bp = aac_dequeue_bio(sc)) == NULL) 841 goto fail; 842 if (aac_alloc_command(sc, &cm)) /* get a command */ 843 goto fail; 844 845 /* fill out the command */ 846 cm->cm_data = (void *)bp->bio_data; 847 cm->cm_datalen = bp->bio_bcount; 848 cm->cm_complete = aac_bio_complete; 849 cm->cm_private = bp; 850 cm->cm_timestamp = time_second; 851 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 852 853 /* build the FIB */ 854 fib = cm->cm_fib; 855 fib->Header.XferState = 856 AAC_FIBSTATE_HOSTOWNED | 857 AAC_FIBSTATE_INITIALISED | 858 AAC_FIBSTATE_FROMHOST | 859 AAC_FIBSTATE_REXPECTED | 860 AAC_FIBSTATE_NORM; 861 fib->Header.Command = ContainerCommand; 862 fib->Header.Size = sizeof(struct aac_fib_header); 863 864 /* build the read/write request */ 865 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 866 if (BIO_IS_READ(bp)) { 867 br = (struct aac_blockread *)&fib->data[0]; 868 br->Command = VM_CtBlockRead; 869 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 870 br->BlockNumber = bp->bio_pblkno; 871 br->ByteCount = bp->bio_bcount; 872 fib->Header.Size += sizeof(struct aac_blockread); 873 cm->cm_sgtable = &br->SgMap; 874 cm->cm_flags |= AAC_CMD_DATAIN; 875 } else { 876 bw = (struct aac_blockwrite *)&fib->data[0]; 877 bw->Command = VM_CtBlockWrite; 878 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 879 bw->BlockNumber = bp->bio_pblkno; 880 bw->ByteCount = bp->bio_bcount; 881 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 882 fib->Header.Size += sizeof(struct aac_blockwrite); 883 cm->cm_flags |= AAC_CMD_DATAOUT; 884 cm->cm_sgtable = &bw->SgMap; 885 } 886 887 *cmp = cm; 888 return(0); 889 890 fail: 891 if (bp != NULL) 892 aac_enqueue_bio(sc, bp); 893 if (cm != NULL) 894 aac_release_command(cm); 895 return(ENOMEM); 896 } 897 898 /****************************************************************************** 899 * Handle a bio-instigated command that has been completed. 900 */ 901 static void 902 aac_bio_complete(struct aac_command *cm) 903 { 904 struct aac_blockread_response *brr; 905 struct aac_blockwrite_response *bwr; 906 struct bio *bp; 907 AAC_FSAStatus status; 908 909 /* fetch relevant status and then release the command */ 910 bp = (struct bio *)cm->cm_private; 911 if (BIO_IS_READ(bp)) { 912 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 913 status = brr->Status; 914 } else { 915 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 916 status = bwr->Status; 917 } 918 aac_release_command(cm); 919 920 /* fix up the bio based on status */ 921 if (status == ST_OK) { 922 bp->bio_resid = 0; 923 } else { 924 bp->bio_error = EIO; 925 bp->bio_flags |= BIO_ERROR; 926 /* pass an error string out to the disk layer */ 927 bp->bio_driver1 = aac_describe_code(aac_command_status_table, status); 928 } 929 aac_biodone(bp); 930 } 931 932 /****************************************************************************** 933 * Dump a block of data to the controller. If the queue is full, tell the 934 * caller to hold off and wait for the queue to drain 935 */ 936 int 937 aac_dump_enqueue(struct aac_disk *ad, u_int32_t lba, void *data, int dumppages) 938 { 939 struct aac_softc *sc = ad->ad_controller; 940 struct aac_command *cm = NULL; 941 struct aac_fib *fib; 942 struct aac_blockwrite *bw; 943 944 if (aac_alloc_command(sc, &cm)) 945 return (EBUSY); 946 947 /* fill out the command */ 948 cm->cm_data = data; 949 cm->cm_datalen = dumppages * PAGE_SIZE; 950 cm->cm_complete = NULL; 951 cm->cm_private = NULL; 952 cm->cm_timestamp = time_second; 953 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 954 955 /* build the FIB */ 956 fib = cm->cm_fib; 957 fib->Header.XferState = 958 AAC_FIBSTATE_HOSTOWNED | 959 AAC_FIBSTATE_INITIALISED | 960 AAC_FIBSTATE_FROMHOST | 961 AAC_FIBSTATE_REXPECTED | 962 AAC_FIBSTATE_NORM; 963 fib->Header.Command = ContainerCommand; 964 fib->Header.Size = sizeof(struct aac_fib_header); 965 966 bw = (struct aac_blockwrite *)&fib->data[0]; 967 bw->Command = VM_CtBlockWrite; 968 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 969 bw->BlockNumber = lba; 970 bw->ByteCount = dumppages * PAGE_SIZE; 971 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 972 fib->Header.Size += sizeof(struct aac_blockwrite); 973 cm->cm_flags |= AAC_CMD_DATAOUT; 974 cm->cm_sgtable = &bw->SgMap; 975 976 return (aac_start(cm)); 977 } 978 979 /****************************************************************************** 980 * Wait for the card's queue to drain when dumping. Also check for monitor 981 * printf's 982 */ 983 void 984 aac_dump_complete(struct aac_softc *sc) 985 { 986 struct aac_fib *fib; 987 struct aac_command *cm; 988 u_int16_t reason; 989 u_int32_t pi, ci, fib_size; 990 991 do { 992 reason = AAC_GET_ISTATUS(sc); 993 if (reason & AAC_DB_RESPONSE_READY) { 994 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 995 for (;;) { 996 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, 997 &fib_size, &fib)) 998 break; 999 cm = (struct aac_command *)fib->Header.SenderData; 1000 if (cm == NULL) { 1001 AAC_PRINT_FIB(sc, fib); 1002 } else { 1003 aac_remove_busy(cm); 1004 aac_unmap_command(cm); 1005 aac_enqueue_complete(cm); 1006 aac_release_command(cm); 1007 } 1008 } 1009 } 1010 if (reason & AAC_DB_PRINTF) { 1011 AAC_CLEAR_ISTATUS(sc, AAC_DB_PRINTF); 1012 aac_print_printf(sc); 1013 } 1014 pi = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX]; 1015 ci = sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX]; 1016 } while (ci != pi); 1017 1018 return; 1019 } 1020 1021 /****************************************************************************** 1022 * Submit a command to the controller, return when it completes. 1023 */ 1024 static int 1025 aac_wait_command(struct aac_command *cm, int timeout) 1026 { 1027 int s, error = 0; 1028 1029 debug_called(2); 1030 1031 /* Put the command on the ready queue and get things going */ 1032 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1033 aac_enqueue_ready(cm); 1034 aac_startio(cm->cm_sc); 1035 s = splbio(); 1036 while(!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1037 error = tsleep(cm, PRIBIO | PCATCH, "aacwait", 0); 1038 if ((error == ERESTART) || (error == EINTR)) 1039 break; 1040 } 1041 splx(s); 1042 return(error); 1043 } 1044 1045 /****************************************************************************** 1046 ****************************************************************************** 1047 Command Buffer Management 1048 ****************************************************************************** 1049 ******************************************************************************/ 1050 1051 /****************************************************************************** 1052 * Allocate a command. 1053 */ 1054 static int 1055 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1056 { 1057 struct aac_command *cm; 1058 1059 debug_called(3); 1060 1061 if ((cm = aac_dequeue_free(sc)) == NULL) 1062 return(ENOMEM); 1063 1064 *cmp = cm; 1065 return(0); 1066 } 1067 1068 /****************************************************************************** 1069 * Release a command back to the freelist. 1070 */ 1071 static void 1072 aac_release_command(struct aac_command *cm) 1073 { 1074 debug_called(3); 1075 1076 /* (re)initialise the command/FIB */ 1077 cm->cm_sgtable = NULL; 1078 cm->cm_flags = 0; 1079 cm->cm_complete = NULL; 1080 cm->cm_private = NULL; 1081 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1082 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1083 cm->cm_fib->Header.Flags = 0; 1084 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1085 1086 /* 1087 * These are duplicated in aac_start to cover the case where an 1088 * intermediate stage may have destroyed them. They're left 1089 * initialised here for debugging purposes only. 1090 */ 1091 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1092 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 1093 1094 aac_enqueue_free(cm); 1095 } 1096 1097 /****************************************************************************** 1098 * Map helper for command/FIB allocation. 1099 */ 1100 static void 1101 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1102 { 1103 struct aac_softc *sc = (struct aac_softc *)arg; 1104 1105 debug_called(3); 1106 1107 sc->aac_fibphys = segs[0].ds_addr; 1108 } 1109 1110 /****************************************************************************** 1111 * Allocate and initialise commands/FIBs for this adapter. 1112 */ 1113 static int 1114 aac_alloc_commands(struct aac_softc *sc) 1115 { 1116 struct aac_command *cm; 1117 int i; 1118 1119 debug_called(1); 1120 1121 /* allocate the FIBs in DMAable memory and load them */ 1122 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1123 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1124 return(ENOMEM); 1125 } 1126 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1127 AAC_FIB_COUNT * sizeof(struct aac_fib), 1128 aac_map_command_helper, sc, 0); 1129 1130 /* initialise constant fields in the command structure */ 1131 for (i = 0; i < AAC_FIB_COUNT; i++) { 1132 cm = &sc->aac_command[i]; 1133 cm->cm_sc = sc; 1134 cm->cm_fib = sc->aac_fibs + i; 1135 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1136 1137 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1138 aac_release_command(cm); 1139 } 1140 return(0); 1141 } 1142 1143 /****************************************************************************** 1144 * Free FIBs owned by this adapter. 1145 */ 1146 static void 1147 aac_free_commands(struct aac_softc *sc) 1148 { 1149 int i; 1150 1151 debug_called(1); 1152 1153 for (i = 0; i < AAC_FIB_COUNT; i++) 1154 bus_dmamap_destroy(sc->aac_buffer_dmat, sc->aac_command[i].cm_datamap); 1155 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1156 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1157 } 1158 1159 /****************************************************************************** 1160 * Command-mapping helper function - populate this command's s/g table. 1161 */ 1162 static void 1163 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1164 { 1165 struct aac_command *cm = (struct aac_command *)arg; 1166 struct aac_fib *fib = cm->cm_fib; 1167 struct aac_sg_table *sg; 1168 int i; 1169 1170 debug_called(3); 1171 1172 /* find the s/g table */ 1173 sg = cm->cm_sgtable; 1174 1175 /* copy into the FIB */ 1176 if (sg != NULL) { 1177 sg->SgCount = nseg; 1178 for (i = 0; i < nseg; i++) { 1179 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1180 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1181 } 1182 /* update the FIB size for the s/g count */ 1183 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1184 } 1185 1186 } 1187 1188 /****************************************************************************** 1189 * Map a command into controller-visible space. 1190 */ 1191 static void 1192 aac_map_command(struct aac_command *cm) 1193 { 1194 struct aac_softc *sc = cm->cm_sc; 1195 1196 debug_called(2); 1197 1198 /* don't map more than once */ 1199 if (cm->cm_flags & AAC_CMD_MAPPED) 1200 return; 1201 1202 if (cm->cm_datalen != 0) { 1203 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, cm->cm_data, 1204 cm->cm_datalen, aac_map_command_sg, cm, 0); 1205 1206 if (cm->cm_flags & AAC_CMD_DATAIN) 1207 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1208 BUS_DMASYNC_PREREAD); 1209 if (cm->cm_flags & AAC_CMD_DATAOUT) 1210 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1211 BUS_DMASYNC_PREWRITE); 1212 } 1213 cm->cm_flags |= AAC_CMD_MAPPED; 1214 } 1215 1216 /****************************************************************************** 1217 * Unmap a command from controller-visible space. 1218 */ 1219 static void 1220 aac_unmap_command(struct aac_command *cm) 1221 { 1222 struct aac_softc *sc = cm->cm_sc; 1223 1224 debug_called(2); 1225 1226 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1227 return; 1228 1229 if (cm->cm_datalen != 0) { 1230 if (cm->cm_flags & AAC_CMD_DATAIN) 1231 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1232 BUS_DMASYNC_POSTREAD); 1233 if (cm->cm_flags & AAC_CMD_DATAOUT) 1234 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1235 BUS_DMASYNC_POSTWRITE); 1236 1237 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1238 } 1239 cm->cm_flags &= ~AAC_CMD_MAPPED; 1240 } 1241 1242 /****************************************************************************** 1243 ****************************************************************************** 1244 Hardware Interface 1245 ****************************************************************************** 1246 ******************************************************************************/ 1247 1248 /****************************************************************************** 1249 * Initialise the adapter. 1250 */ 1251 static void 1252 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1253 { 1254 struct aac_softc *sc = (struct aac_softc *)arg; 1255 1256 debug_called(1); 1257 1258 sc->aac_common_busaddr = segs[0].ds_addr; 1259 } 1260 1261 static int 1262 aac_init(struct aac_softc *sc) 1263 { 1264 struct aac_adapter_init *ip; 1265 time_t then; 1266 u_int32_t code; 1267 u_int8_t *qaddr; 1268 1269 debug_called(1); 1270 1271 /* 1272 * First wait for the adapter to come ready. 1273 */ 1274 then = time_second; 1275 do { 1276 code = AAC_GET_FWSTATUS(sc); 1277 if (code & AAC_SELF_TEST_FAILED) { 1278 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1279 return(ENXIO); 1280 } 1281 if (code & AAC_KERNEL_PANIC) { 1282 device_printf(sc->aac_dev, "FATAL: controller kernel panic\n"); 1283 return(ENXIO); 1284 } 1285 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1286 device_printf(sc->aac_dev, "FATAL: controller not coming ready, " 1287 "status %x\n", code); 1288 return(ENXIO); 1289 } 1290 } while (!(code & AAC_UP_AND_RUNNING)); 1291 1292 /* 1293 * Create DMA tag for the common structure and allocate it. 1294 */ 1295 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1296 1, 0, /* algnmnt, boundary */ 1297 BUS_SPACE_MAXADDR, /* lowaddr */ 1298 BUS_SPACE_MAXADDR, /* highaddr */ 1299 NULL, NULL, /* filter, filterarg */ 1300 sizeof(struct aac_common), 1,/* maxsize, nsegments */ 1301 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1302 0, /* flags */ 1303 &sc->aac_common_dmat)) { 1304 device_printf(sc->aac_dev, "can't allocate common structure DMA tag\n"); 1305 return(ENOMEM); 1306 } 1307 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1308 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1309 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1310 return(ENOMEM); 1311 } 1312 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, sc->aac_common, 1313 sizeof(*sc->aac_common), aac_common_map, sc, 0); 1314 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1315 1316 /* 1317 * Fill in the init structure. This tells the adapter about the physical 1318 * location of various important shared data structures. 1319 */ 1320 ip = &sc->aac_common->ac_init; 1321 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1322 1323 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1324 offsetof(struct aac_common, ac_fibs); 1325 ip->AdapterFibsVirtualAddress = &sc->aac_common->ac_fibs[0]; 1326 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1327 ip->AdapterFibAlign = sizeof(struct aac_fib); 1328 1329 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1330 offsetof(struct aac_common, ac_printf); 1331 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1332 1333 ip->HostPhysMemPages = 0; /* not used? */ 1334 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1335 1336 /* 1337 * Initialise FIB queues. Note that it appears that the layout of the 1338 * indexes and the segmentation of the entries may be mandated by the 1339 * adapter, which is only told about the base of the queue index fields. 1340 * 1341 * The initial values of the indices are assumed to inform the adapter 1342 * of the sizes of the respective queues, and theoretically it could work 1343 * out the entire layout of the queue structures from this. We take the 1344 * easy route and just lay this area out like everyone else does. 1345 * 1346 * The Linux driver uses a much more complex scheme whereby several header 1347 * records are kept for each queue. We use a couple of generic list 1348 * manipulation functions which 'know' the size of each list by virtue of a 1349 * table. 1350 */ 1351 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1352 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1353 sc->aac_queues = (struct aac_queue_table *)qaddr; 1354 ip->CommHeaderAddress = sc->aac_common_busaddr + ((u_int32_t)sc->aac_queues 1355 - (u_int32_t)sc->aac_common); 1356 bzero(sc->aac_queues, sizeof(struct aac_queue_table)); 1357 1358 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1359 AAC_HOST_NORM_CMD_ENTRIES; 1360 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1361 AAC_HOST_NORM_CMD_ENTRIES; 1362 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1363 AAC_HOST_HIGH_CMD_ENTRIES; 1364 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1365 AAC_HOST_HIGH_CMD_ENTRIES; 1366 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1367 AAC_ADAP_NORM_CMD_ENTRIES; 1368 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1369 AAC_ADAP_NORM_CMD_ENTRIES; 1370 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1371 AAC_ADAP_HIGH_CMD_ENTRIES; 1372 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1373 AAC_ADAP_HIGH_CMD_ENTRIES; 1374 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = 1375 AAC_HOST_NORM_RESP_ENTRIES; 1376 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = 1377 AAC_HOST_NORM_RESP_ENTRIES; 1378 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = 1379 AAC_HOST_HIGH_RESP_ENTRIES; 1380 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = 1381 AAC_HOST_HIGH_RESP_ENTRIES; 1382 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX] = 1383 AAC_ADAP_NORM_RESP_ENTRIES; 1384 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX] = 1385 AAC_ADAP_NORM_RESP_ENTRIES; 1386 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX] = 1387 AAC_ADAP_HIGH_RESP_ENTRIES; 1388 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX] = 1389 AAC_ADAP_HIGH_RESP_ENTRIES; 1390 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1391 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1392 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1393 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1394 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1395 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1396 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1397 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1398 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1399 &sc->aac_queues->qt_HostNormRespQueue[0]; 1400 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1401 &sc->aac_queues->qt_HostHighRespQueue[0]; 1402 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1403 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1404 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1405 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1406 1407 /* 1408 * Do controller-type-specific initialisation 1409 */ 1410 switch (sc->aac_hwif) { 1411 case AAC_HWIF_I960RX: 1412 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1413 break; 1414 } 1415 1416 /* 1417 * Give the init structure to the controller. 1418 */ 1419 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1420 sc->aac_common_busaddr + offsetof(struct aac_common, 1421 ac_init), 0, 0, 0, NULL)) { 1422 device_printf(sc->aac_dev, "error establishing init structure\n"); 1423 return(EIO); 1424 } 1425 1426 return(0); 1427 } 1428 1429 /****************************************************************************** 1430 * Send a synchronous command to the controller and wait for a result. 1431 */ 1432 static int 1433 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1434 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1435 u_int32_t *sp) 1436 { 1437 time_t then; 1438 u_int32_t status; 1439 1440 debug_called(3); 1441 1442 /* populate the mailbox */ 1443 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1444 1445 /* ensure the sync command doorbell flag is cleared */ 1446 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1447 1448 /* then set it to signal the adapter */ 1449 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1450 1451 /* spin waiting for the command to complete */ 1452 then = time_second; 1453 do { 1454 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1455 debug(2, "timed out"); 1456 return(EIO); 1457 } 1458 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1459 1460 /* clear the completion flag */ 1461 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1462 1463 /* get the command status */ 1464 status = AAC_GET_MAILBOXSTATUS(sc); 1465 if (sp != NULL) 1466 *sp = status; 1467 return(0); 1468 } 1469 1470 /****************************************************************************** 1471 * Send a synchronous FIB to the controller and wait for a result. 1472 */ 1473 static int 1474 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1475 void *data, u_int16_t datasize, 1476 void *result, u_int16_t *resultsize) 1477 { 1478 struct aac_fib *fib = &sc->aac_common->ac_sync_fib; 1479 1480 debug_called(3); 1481 1482 if (datasize > AAC_FIB_DATASIZE) 1483 return(EINVAL); 1484 1485 /* 1486 * Set up the sync FIB 1487 */ 1488 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | AAC_FIBSTATE_INITIALISED | 1489 AAC_FIBSTATE_EMPTY; 1490 fib->Header.XferState |= xferstate; 1491 fib->Header.Command = command; 1492 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1493 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1494 fib->Header.SenderSize = sizeof(struct aac_fib); 1495 fib->Header.SenderFibAddress = (u_int32_t)fib; 1496 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1497 offsetof(struct aac_common, ac_sync_fib); 1498 1499 /* 1500 * Copy in data. 1501 */ 1502 if (data != NULL) { 1503 KASSERT(datasize <= sizeof(fib->data), 1504 ("aac_sync_fib: datasize to large")); 1505 bcopy(data, fib->data, datasize); 1506 fib->Header.XferState |= AAC_FIBSTATE_FROMHOST | AAC_FIBSTATE_NORM; 1507 } 1508 1509 /* 1510 * Give the FIB to the controller, wait for a response. 1511 */ 1512 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, fib->Header.ReceiverFibAddress, 1513 0, 0, 0, NULL)) { 1514 debug(2, "IO error"); 1515 return(EIO); 1516 } 1517 1518 /* 1519 * Copy out the result 1520 */ 1521 if (result != NULL) { 1522 u_int copysize; 1523 1524 copysize = fib->Header.Size - sizeof(struct aac_fib_header); 1525 if (copysize > *resultsize) 1526 copysize = *resultsize; 1527 *resultsize = fib->Header.Size - sizeof(struct aac_fib_header); 1528 bcopy(fib->data, result, copysize); 1529 } 1530 return(0); 1531 } 1532 1533 /****************************************************************************** 1534 * Adapter-space FIB queue manipulation 1535 * 1536 * Note that the queue implementation here is a little funky; neither the PI or 1537 * CI will ever be zero. This behaviour is a controller feature. 1538 */ 1539 static struct { 1540 int size; 1541 int notify; 1542 } aac_qinfo[] = { 1543 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1544 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1545 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1546 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1547 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1548 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1549 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1550 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1551 }; 1552 1553 /* 1554 * Atomically insert an entry into the nominated queue, returns 0 on success or 1555 * EBUSY if the queue is full. 1556 * 1557 * Note: it would be more efficient to defer notifying the controller in 1558 * the case where we may be inserting several entries in rapid succession, * but implementing this usefully may be difficult (it would involve a 1559 * separate queue/notify interface). 1560 */ 1561 static int 1562 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1563 { 1564 u_int32_t pi, ci; 1565 int s, error; 1566 u_int32_t fib_size; 1567 u_int32_t fib_addr; 1568 1569 debug_called(3); 1570 1571 fib_size = cm->cm_fib->Header.Size; 1572 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1573 1574 s = splbio(); 1575 1576 /* get the producer/consumer indices */ 1577 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1578 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1579 1580 /* wrap the queue? */ 1581 if (pi >= aac_qinfo[queue].size) 1582 pi = 0; 1583 1584 /* check for queue full */ 1585 if ((pi + 1) == ci) { 1586 error = EBUSY; 1587 goto out; 1588 } 1589 1590 /* populate queue entry */ 1591 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1592 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1593 1594 /* update producer index */ 1595 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1596 1597 /* 1598 * To avoid a race with its completion interrupt, place this command on the 1599 * busy queue prior to advertising it to the controller. 1600 */ 1601 aac_enqueue_busy(cm); 1602 1603 /* notify the adapter if we know how */ 1604 if (aac_qinfo[queue].notify != 0) 1605 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1606 1607 error = 0; 1608 1609 out: 1610 splx(s); 1611 return(error); 1612 } 1613 1614 /* 1615 * Atomically remove one entry from the nominated queue, returns 0 on 1616 * success or ENOENT if the queue is empty. 1617 */ 1618 static int 1619 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1620 struct aac_fib **fib_addr) 1621 { 1622 u_int32_t pi, ci; 1623 int s, error; 1624 int notify; 1625 1626 debug_called(3); 1627 1628 s = splbio(); 1629 1630 /* get the producer/consumer indices */ 1631 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1632 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1633 1634 /* check for queue empty */ 1635 if (ci == pi) { 1636 error = ENOENT; 1637 goto out; 1638 } 1639 1640 notify = 0; 1641 if (ci == pi + 1) 1642 notify++; 1643 1644 /* wrap the queue? */ 1645 if (ci >= aac_qinfo[queue].size) 1646 ci = 0; 1647 1648 /* fetch the entry */ 1649 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1650 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + ci)->aq_fib_addr; 1651 1652 /* update consumer index */ 1653 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1654 1655 /* if we have made the queue un-full, notify the adapter */ 1656 if (notify && (aac_qinfo[queue].notify != 0)) 1657 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1658 error = 0; 1659 1660 out: 1661 splx(s); 1662 return(error); 1663 } 1664 1665 /****************************************************************************** 1666 * Put our response to an Adapter Initialed Fib on the response queue 1667 */ 1668 static int 1669 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1670 { 1671 u_int32_t pi, ci; 1672 int s, error; 1673 u_int32_t fib_size; 1674 u_int32_t fib_addr; 1675 1676 debug_called(1); 1677 1678 /* Tell the adapter where the FIB is */ 1679 fib_size = fib->Header.Size; 1680 fib_addr = fib->Header.SenderFibAddress; 1681 fib->Header.ReceiverFibAddress = fib_addr; 1682 1683 s = splbio(); 1684 1685 /* get the producer/consumer indices */ 1686 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1687 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1688 1689 /* wrap the queue? */ 1690 if (pi >= aac_qinfo[queue].size) 1691 pi = 0; 1692 1693 /* check for queue full */ 1694 if ((pi + 1) == ci) { 1695 error = EBUSY; 1696 goto out; 1697 } 1698 1699 /* populate queue entry */ 1700 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1701 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1702 1703 /* update producer index */ 1704 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1705 1706 /* notify the adapter if we know how */ 1707 if (aac_qinfo[queue].notify != 0) 1708 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1709 1710 error = 0; 1711 1712 out: 1713 splx(s); 1714 return(error); 1715 } 1716 1717 /****************************************************************************** 1718 * Check for commands that have been outstanding for a suspiciously long time, 1719 * and complain about them. 1720 */ 1721 static void 1722 aac_timeout(struct aac_softc *sc) 1723 { 1724 int s; 1725 struct aac_command *cm; 1726 time_t deadline; 1727 1728 #if 0 1729 /* simulate an interrupt to handle possibly-missed interrupts */ 1730 /* 1731 * XXX This was done to work around another bug which has since been 1732 * fixed. It is dangerous anyways because you don't want multiple 1733 * threads in the interrupt handler at the same time! If calling 1734 * is deamed neccesary in the future, proper mutexes must be used. 1735 */ 1736 s = splbio(); 1737 aac_intr(sc); 1738 splx(s); 1739 1740 /* kick the I/O queue to restart it in the case of deadlock */ 1741 aac_startio(sc); 1742 #endif 1743 1744 /* traverse the busy command list, bitch about late commands once only */ 1745 deadline = time_second - AAC_CMD_TIMEOUT; 1746 s = splbio(); 1747 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1748 if ((cm->cm_timestamp < deadline) 1749 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1750 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1751 device_printf(sc->aac_dev, "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1752 cm, (int)(time_second - cm->cm_timestamp)); 1753 AAC_PRINT_FIB(sc, cm->cm_fib); 1754 } 1755 } 1756 splx(s); 1757 1758 /* reset the timer for next time */ 1759 timeout((timeout_t*)aac_timeout, sc, AAC_PERIODIC_INTERVAL * hz); 1760 return; 1761 } 1762 1763 /****************************************************************************** 1764 ****************************************************************************** 1765 Interface Function Vectors 1766 ****************************************************************************** 1767 ******************************************************************************/ 1768 1769 /****************************************************************************** 1770 * Read the current firmware status word. 1771 */ 1772 static int 1773 aac_sa_get_fwstatus(struct aac_softc *sc) 1774 { 1775 debug_called(3); 1776 1777 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 1778 } 1779 1780 static int 1781 aac_rx_get_fwstatus(struct aac_softc *sc) 1782 { 1783 debug_called(3); 1784 1785 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 1786 } 1787 1788 /****************************************************************************** 1789 * Notify the controller of a change in a given queue 1790 */ 1791 1792 static void 1793 aac_sa_qnotify(struct aac_softc *sc, int qbit) 1794 { 1795 debug_called(3); 1796 1797 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 1798 } 1799 1800 static void 1801 aac_rx_qnotify(struct aac_softc *sc, int qbit) 1802 { 1803 debug_called(3); 1804 1805 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 1806 } 1807 1808 /****************************************************************************** 1809 * Get the interrupt reason bits 1810 */ 1811 static int 1812 aac_sa_get_istatus(struct aac_softc *sc) 1813 { 1814 debug_called(3); 1815 1816 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 1817 } 1818 1819 static int 1820 aac_rx_get_istatus(struct aac_softc *sc) 1821 { 1822 debug_called(3); 1823 1824 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 1825 } 1826 1827 /****************************************************************************** 1828 * Clear some interrupt reason bits 1829 */ 1830 static void 1831 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 1832 { 1833 debug_called(3); 1834 1835 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 1836 } 1837 1838 static void 1839 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 1840 { 1841 debug_called(3); 1842 1843 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 1844 } 1845 1846 /****************************************************************************** 1847 * Populate the mailbox and set the command word 1848 */ 1849 static void 1850 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 1851 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1852 { 1853 debug_called(4); 1854 1855 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 1856 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 1857 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 1858 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 1859 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 1860 } 1861 1862 static void 1863 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 1864 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 1865 { 1866 debug_called(4); 1867 1868 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 1869 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 1870 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 1871 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 1872 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 1873 } 1874 1875 /****************************************************************************** 1876 * Fetch the immediate command status word 1877 */ 1878 static int 1879 aac_sa_get_mailboxstatus(struct aac_softc *sc) 1880 { 1881 debug_called(4); 1882 1883 return(AAC_GETREG4(sc, AAC_SA_MAILBOX)); 1884 } 1885 1886 static int 1887 aac_rx_get_mailboxstatus(struct aac_softc *sc) 1888 { 1889 debug_called(4); 1890 1891 return(AAC_GETREG4(sc, AAC_RX_MAILBOX)); 1892 } 1893 1894 /****************************************************************************** 1895 * Set/clear interrupt masks 1896 */ 1897 static void 1898 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 1899 { 1900 debug(2, "%sable interrupts", enable ? "en" : "dis"); 1901 1902 if (enable) { 1903 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 1904 } else { 1905 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 1906 } 1907 } 1908 1909 static void 1910 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 1911 { 1912 debug(2, "%sable interrupts", enable ? "en" : "dis"); 1913 1914 if (enable) { 1915 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 1916 } else { 1917 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 1918 } 1919 } 1920 1921 /****************************************************************************** 1922 ****************************************************************************** 1923 Debugging and Diagnostics 1924 ****************************************************************************** 1925 ******************************************************************************/ 1926 1927 /****************************************************************************** 1928 * Print some information about the controller. 1929 */ 1930 static void 1931 aac_describe_controller(struct aac_softc *sc) 1932 { 1933 u_int8_t buf[AAC_FIB_DATASIZE]; /* XXX really a bit big 1934 * for the stack */ 1935 u_int16_t bufsize; 1936 struct aac_adapter_info *info; 1937 u_int8_t arg; 1938 1939 debug_called(2); 1940 1941 arg = 0; 1942 bufsize = sizeof(buf); 1943 if (aac_sync_fib(sc, RequestAdapterInfo, 0, &arg, sizeof(arg), &buf, 1944 &bufsize)) { 1945 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 1946 return; 1947 } 1948 if (bufsize != sizeof(*info)) { 1949 device_printf(sc->aac_dev, "RequestAdapterInfo returned wrong data " 1950 "size (%d != %d)\n", bufsize, sizeof(*info)); 1951 /*return;*/ 1952 } 1953 info = (struct aac_adapter_info *)&buf[0]; 1954 1955 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 1956 aac_describe_code(aac_cpu_variant, info->CpuVariant), 1957 info->ClockSpeed, info->BufferMem / (1024 * 1024), 1958 aac_describe_code(aac_battery_platform, info->batteryPlatform)); 1959 1960 /* save the kernel revision structure for later use */ 1961 sc->aac_revision = info->KernelRevision; 1962 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 1963 info->KernelRevision.external.comp.major, 1964 info->KernelRevision.external.comp.minor, 1965 info->KernelRevision.external.comp.dash, 1966 info->KernelRevision.buildNumber, 1967 (u_int32_t)(info->SerialNumber & 0xffffff)); 1968 } 1969 1970 /****************************************************************************** 1971 * Look up a text description of a numeric error code and return a pointer to 1972 * same. 1973 */ 1974 static char * 1975 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 1976 { 1977 int i; 1978 1979 for (i = 0; table[i].string != NULL; i++) 1980 if (table[i].code == code) 1981 return(table[i].string); 1982 return(table[i + 1].string); 1983 } 1984 1985 /***************************************************************************** 1986 ***************************************************************************** 1987 Management Interface 1988 ***************************************************************************** 1989 *****************************************************************************/ 1990 1991 static int 1992 aac_open(dev_t dev, int flags, int fmt, struct proc *p) 1993 { 1994 struct aac_softc *sc = dev->si_drv1; 1995 1996 debug_called(2); 1997 1998 /* Check to make sure the device isn't already open */ 1999 if (sc->aac_state & AAC_STATE_OPEN) { 2000 return EBUSY; 2001 } 2002 sc->aac_state |= AAC_STATE_OPEN; 2003 2004 return 0; 2005 } 2006 2007 static int 2008 aac_close(dev_t dev, int flags, int fmt, struct proc *p) 2009 { 2010 struct aac_softc *sc = dev->si_drv1; 2011 2012 debug_called(2); 2013 2014 /* Mark this unit as no longer open */ 2015 sc->aac_state &= ~AAC_STATE_OPEN; 2016 2017 return 0; 2018 } 2019 2020 static int 2021 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, struct proc *p) 2022 { 2023 union aac_statrequest *as = (union aac_statrequest *)arg; 2024 struct aac_softc *sc = dev->si_drv1; 2025 int error = 0; 2026 int i; 2027 2028 debug_called(2); 2029 2030 switch (cmd) { 2031 case AACIO_STATS: 2032 switch (as->as_item) { 2033 case AACQ_FREE: 2034 case AACQ_BIO: 2035 case AACQ_READY: 2036 case AACQ_BUSY: 2037 case AACQ_COMPLETE: 2038 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2039 sizeof(struct aac_qstat)); 2040 break; 2041 default: 2042 error = ENOENT; 2043 break; 2044 } 2045 break; 2046 2047 case FSACTL_SENDFIB: 2048 arg = *(caddr_t*)arg; 2049 case FSACTL_LNX_SENDFIB: 2050 debug(1, "FSACTL_SENDFIB"); 2051 error = aac_ioctl_sendfib(sc, arg); 2052 break; 2053 case FSACTL_AIF_THREAD: 2054 case FSACTL_LNX_AIF_THREAD: 2055 debug(1, "FSACTL_AIF_THREAD"); 2056 error = EINVAL; 2057 break; 2058 case FSACTL_OPEN_GET_ADAPTER_FIB: 2059 arg = *(caddr_t*)arg; 2060 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2061 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2062 /* 2063 * Pass the caller out an AdapterFibContext. 2064 * 2065 * Note that because we only support one opener, we 2066 * basically ignore this. Set the caller's context to a magic 2067 * number just in case. 2068 * 2069 * The Linux code hands the driver a pointer into kernel space, 2070 * and then trusts it when the caller hands it back. Aiee! 2071 * Here, we give it the proc pointer of the per-adapter aif thread. 2072 * It's only used as a sanity check in other calls. 2073 */ 2074 i = (int)sc->aifthread; 2075 error = copyout(&i, arg, sizeof(i)); 2076 break; 2077 case FSACTL_GET_NEXT_ADAPTER_FIB: 2078 arg = *(caddr_t*)arg; 2079 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2080 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2081 error = aac_getnext_aif(sc, arg); 2082 break; 2083 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2084 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2085 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2086 /* don't do anything here */ 2087 break; 2088 case FSACTL_MINIPORT_REV_CHECK: 2089 arg = *(caddr_t*)arg; 2090 case FSACTL_LNX_MINIPORT_REV_CHECK: 2091 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2092 error = aac_rev_check(sc, arg); 2093 break; 2094 case FSACTL_QUERY_DISK: 2095 arg = *(caddr_t*)arg; 2096 case FSACTL_LNX_QUERY_DISK: 2097 debug(1, "FSACTL_QUERY_DISK"); 2098 error = aac_query_disk(sc, arg); 2099 break; 2100 case FSACTL_DELETE_DISK: 2101 case FSACTL_LNX_DELETE_DISK: 2102 error = 0; 2103 break; 2104 default: 2105 device_printf(sc->aac_dev, "unsupported cmd 0x%lx\n", cmd); 2106 error = EINVAL; 2107 break; 2108 } 2109 return(error); 2110 } 2111 2112 /****************************************************************************** 2113 * Send a FIB supplied from userspace 2114 */ 2115 static int 2116 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2117 { 2118 struct aac_command *cm; 2119 int size, error; 2120 2121 debug_called(2); 2122 2123 cm = NULL; 2124 2125 /* 2126 * Get a command 2127 */ 2128 if (aac_alloc_command(sc, &cm)) { 2129 error = EBUSY; 2130 goto out; 2131 } 2132 2133 /* 2134 * Fetch the FIB header, then re-copy to get data as well. 2135 */ 2136 if ((error = copyin(ufib, cm->cm_fib, sizeof(struct aac_fib_header))) != 0) 2137 goto out; 2138 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2139 if (size > sizeof(struct aac_fib)) { 2140 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", size, 2141 sizeof(struct aac_fib)); 2142 size = sizeof(struct aac_fib); 2143 } 2144 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2145 goto out; 2146 cm->cm_fib->Header.Size = size; 2147 cm->cm_timestamp = time_second; 2148 2149 /* 2150 * Pass the FIB to the controller, wait for it to complete. 2151 */ 2152 if ((error = aac_wait_command(cm, 30)) != 0) /* XXX user timeout? */ 2153 goto out; 2154 2155 /* 2156 * Copy the FIB and data back out to the caller. 2157 */ 2158 size = cm->cm_fib->Header.Size; 2159 if (size > sizeof(struct aac_fib)) { 2160 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", size, 2161 sizeof(struct aac_fib)); 2162 size = sizeof(struct aac_fib); 2163 } 2164 error = copyout(cm->cm_fib, ufib, size); 2165 2166 out: 2167 if (cm != NULL) { 2168 aac_release_command(cm); 2169 } 2170 return(error); 2171 } 2172 2173 /****************************************************************************** 2174 * Handle an AIF sent to us by the controller; queue it for later reference. 2175 * If the queue fills up, then drop the older entries. 2176 */ 2177 static void 2178 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2179 { 2180 device_t child; 2181 struct aac_aif_command *aif; 2182 struct aac_container *co, *co_next; 2183 struct aac_mntinfo mi; 2184 struct aac_mntinforesponse mir; 2185 u_int16_t rsize; 2186 int next, s, found; 2187 int added = 0, i = 0; 2188 2189 debug_called(2); 2190 2191 aif = (struct aac_aif_command*)&fib->data[0]; 2192 aac_print_aif(sc, aif); 2193 2194 /* Is it an event that we should care about? */ 2195 switch (aif->command) { 2196 case AifCmdEventNotify: 2197 switch (aif->data.EN.type) { 2198 case AifEnAddContainer: 2199 case AifEnDeleteContainer: 2200 /* 2201 * A container was added or deleted, but the message doesn't tell us 2202 * anything else! Re-enumerate the containers and sort things out. 2203 */ 2204 mi.Command = VM_NameServe; 2205 mi.MntType = FT_FILESYS; 2206 do { 2207 /* 2208 * Ask the controller for its containers one at a time. 2209 * XXX What if the controller's list changes midway through 2210 * this enumaration? 2211 * XXX This should be done async. 2212 */ 2213 mi.MntCount = i; 2214 rsize = sizeof(mir); 2215 if (aac_sync_fib(sc, ContainerCommand, 0, &mi, sizeof(mi), 2216 &mir, &rsize)) { 2217 debug(2, "Error probing container %d\n", i); 2218 continue; 2219 } 2220 if (rsize != sizeof(mir)) { 2221 debug(2, "Container response size too large\n"); 2222 continue; 2223 } 2224 /* 2225 * Check the container against our list. co->co_found 2226 * was already set to 0 in a previous run. 2227 */ 2228 if ((mir.Status == ST_OK) && (mir.MntTable[0].VolType != 2229 CT_NONE)) { 2230 found = 0; 2231 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2232 if (co->co_mntobj.ObjectId == 2233 mir.MntTable[0].ObjectId) { 2234 co->co_found = 1; 2235 found = 1; 2236 break; 2237 } 2238 } 2239 /* If the container matched, continue on in the list */ 2240 if (found) { 2241 i++; 2242 continue; 2243 } 2244 2245 /* 2246 * This is a new container. Do all the appropriate things 2247 * to set it up. 2248 */ 2249 MALLOC(co, struct aac_container *, sizeof *co, M_AACBUF, 2250 M_WAITOK); 2251 if ((child = device_add_child(sc->aac_dev, NULL, -1)) == 2252 NULL) { 2253 device_printf(sc->aac_dev, "device_add_child failed\n"); 2254 } else { 2255 device_set_ivars(child, co); 2256 } 2257 device_set_desc(child, 2258 aac_describe_code(aac_container_types, 2259 mir.MntTable[0].VolType)); 2260 co->co_disk = child; 2261 co->co_found = 1; 2262 bcopy(&mir.MntTable[0], &co->co_mntobj, 2263 sizeof(struct aac_mntobj)); 2264 AAC_LOCK_AQUIRE(&sc->aac_container_lock); 2265 TAILQ_INSERT_HEAD(&sc->aac_container_tqh, co, co_link); 2266 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2267 added = 1; 2268 } 2269 i++; 2270 } while ((i < mir.MntRespCount) && (i < AAC_MAX_CONTAINERS)); 2271 2272 /* 2273 * Go through our list of containers and see which ones were 2274 * not marked 'found'. Since the controller didn't list them 2275 * they must have been deleted. Do the appropriate steps to 2276 * destroy the device. Also reset the co->co_found field. 2277 */ 2278 co = TAILQ_FIRST(&sc->aac_container_tqh); 2279 while (co != NULL) { 2280 if (co->co_found == 0) { 2281 device_delete_child(sc->aac_dev, co->co_disk); 2282 co_next = TAILQ_NEXT(co, co_link); 2283 AAC_LOCK_AQUIRE(&sc->aac_container_lock); 2284 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 2285 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2286 FREE(co, M_AACBUF); 2287 co = co_next; 2288 } else { 2289 co->co_found = 0; 2290 co = TAILQ_NEXT(co, co_link); 2291 } 2292 } 2293 2294 /* Attach the newly created containers */ 2295 if (added) 2296 bus_generic_attach(sc->aac_dev); 2297 2298 break; 2299 2300 default: 2301 break; 2302 } 2303 2304 default: 2305 break; 2306 } 2307 2308 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2309 s = splbio(); 2310 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2311 if (next != sc->aac_aifq_tail) { 2312 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2313 sc->aac_aifq_head = next; 2314 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2315 wakeup(sc->aac_aifq); 2316 } 2317 splx(s); 2318 2319 return; 2320 } 2321 2322 /****************************************************************************** 2323 ****************************************************************************** 2324 Linux Management Interface 2325 ****************************************************************************** 2326 ******************************************************************************/ 2327 2328 #ifdef AAC_COMPAT_LINUX 2329 2330 #include <sys/proc.h> 2331 #include <machine/../linux/linux.h> 2332 #include <machine/../linux/linux_proto.h> 2333 #include <compat/linux/linux_ioctl.h> 2334 2335 #define AAC_LINUX_IOCTL_MIN 0x0000 2336 #define AAC_LINUX_IOCTL_MAX 0xffff 2337 2338 static linux_ioctl_function_t aac_linux_ioctl; 2339 static struct linux_ioctl_handler aac_handler = {aac_linux_ioctl, 2340 AAC_LINUX_IOCTL_MIN, 2341 AAC_LINUX_IOCTL_MAX}; 2342 2343 SYSINIT (aac_register, SI_SUB_KLD, SI_ORDER_MIDDLE, 2344 linux_ioctl_register_handler, &aac_handler); 2345 SYSUNINIT(aac_unregister, SI_SUB_KLD, SI_ORDER_MIDDLE, 2346 linux_ioctl_unregister_handler, &aac_handler); 2347 2348 MODULE_DEPEND(aac, linux, 1, 1, 1); 2349 2350 static int 2351 aac_linux_ioctl(struct proc *p, struct linux_ioctl_args *args) 2352 { 2353 struct file *fp = p->p_fd->fd_ofiles[args->fd]; 2354 u_long cmd = args->cmd; 2355 2356 debug_called(2); 2357 /* 2358 * Pass the ioctl off to our standard handler. 2359 */ 2360 return(fo_ioctl(fp, cmd, (caddr_t)args->arg, p)); 2361 } 2362 2363 #endif 2364 2365 /****************************************************************************** 2366 * Return the Revision of the driver to userspace and check to see if the 2367 * userspace app is possibly compatible. This is extremely bogus since 2368 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2369 * returning what the card reported. 2370 */ 2371 static int 2372 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2373 { 2374 struct aac_rev_check rev_check; 2375 struct aac_rev_check_resp rev_check_resp; 2376 int error = 0; 2377 2378 debug_called(2); 2379 2380 /* 2381 * Copyin the revision struct from userspace 2382 */ 2383 if ((error = copyin(udata, (caddr_t)&rev_check, 2384 sizeof(struct aac_rev_check))) != 0) { 2385 return error; 2386 } 2387 2388 debug(2, "Userland revision= %d\n", rev_check.callingRevision.buildNumber); 2389 2390 /* 2391 * Doctor up the response struct. 2392 */ 2393 rev_check_resp.possiblyCompatible = 1; 2394 rev_check_resp.adapterSWRevision.external.ul = sc->aac_revision.external.ul; 2395 rev_check_resp.adapterSWRevision.buildNumber = sc->aac_revision.buildNumber; 2396 2397 return(copyout((caddr_t)&rev_check_resp, udata, 2398 sizeof(struct aac_rev_check_resp))); 2399 } 2400 2401 /****************************************************************************** 2402 * Pass the caller the next AIF in their queue 2403 */ 2404 static int 2405 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2406 { 2407 struct get_adapter_fib_ioctl agf; 2408 int error, s; 2409 2410 debug_called(2); 2411 2412 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2413 2414 /* 2415 * Check the magic number that we gave the caller. 2416 */ 2417 if (agf.AdapterFibContext != (int)sc->aifthread) { 2418 error = EFAULT; 2419 } else { 2420 2421 s = splbio(); 2422 error = aac_return_aif(sc, agf.AifFib); 2423 2424 if ((error == EAGAIN) && (agf.Wait)) { 2425 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2426 while (error == EAGAIN) { 2427 error = tsleep(sc->aac_aifq, PRIBIO | PCATCH, "aacaif", 0); 2428 if (error == 0) 2429 error = aac_return_aif(sc, agf.AifFib); 2430 } 2431 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2432 } 2433 splx(s); 2434 } 2435 } 2436 return(error); 2437 } 2438 2439 /****************************************************************************** 2440 * Hand the next AIF off the top of the queue out to userspace. 2441 */ 2442 static int 2443 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2444 { 2445 int error, s; 2446 2447 debug_called(2); 2448 2449 s = splbio(); 2450 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2451 error = EAGAIN; 2452 } else { 2453 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2454 sizeof(struct aac_aif_command)); 2455 if (error) 2456 printf("aac_return_aif: copyout returned %d\n", error); 2457 if (!error) 2458 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH; 2459 } 2460 splx(s); 2461 return(error); 2462 } 2463 2464 /****************************************************************************** 2465 * Give the userland some information about the container. The AAC arch 2466 * expects the driver to be a SCSI passthrough type driver, so it expects 2467 * the containers to have b:t:l numbers. Fake it. 2468 */ 2469 static int 2470 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2471 { 2472 struct aac_query_disk query_disk; 2473 struct aac_container *co; 2474 struct aac_disk *disk = NULL; 2475 int error, id; 2476 2477 debug_called(2); 2478 2479 error = copyin(uptr, (caddr_t)&query_disk, sizeof(struct aac_query_disk)); 2480 if (error) 2481 return (error); 2482 2483 id = query_disk.ContainerNumber; 2484 if (id == -1) 2485 return (EINVAL); 2486 2487 AAC_LOCK_AQUIRE(&sc->aac_container_lock); 2488 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2489 if (co->co_mntobj.ObjectId == id) 2490 break; 2491 } 2492 2493 if (co == NULL) { 2494 query_disk.Valid = 0; 2495 query_disk.Locked = 0; 2496 query_disk.Deleted = 1; /* XXX is this right? */ 2497 } else { 2498 disk = device_get_softc(co->co_disk); 2499 query_disk.Valid = 1; 2500 query_disk.Locked = (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2501 query_disk.Deleted = 0; 2502 query_disk.Bus = 0; 2503 query_disk.Target = disk->unit; 2504 query_disk.Lun = 0; 2505 query_disk.UnMapped = 0; 2506 bcopy(disk->ad_dev_t->si_name, &query_disk.diskDeviceName[0], 10); 2507 } 2508 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2509 2510 error = copyout((caddr_t)&query_disk, uptr, sizeof(struct aac_query_disk)); 2511 2512 return (error); 2513 } 2514 2515