1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 */ 31 32 /* 33 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 34 */ 35 36 #include "opt_aac.h" 37 38 /* #include <stddef.h> */ 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/malloc.h> 42 #include <sys/kernel.h> 43 #include <sys/kthread.h> 44 #include <sys/lock.h> 45 #include <sys/mutex.h> 46 #include <sys/sysctl.h> 47 #include <sys/poll.h> 48 #if __FreeBSD_version >= 500005 49 #include <sys/selinfo.h> 50 #else 51 #include <sys/select.h> 52 #endif 53 54 #include <dev/aac/aac_compat.h> 55 56 #include <sys/bus.h> 57 #include <sys/conf.h> 58 #include <sys/devicestat.h> 59 #include <sys/disk.h> 60 #include <sys/signalvar.h> 61 #include <sys/time.h> 62 #include <sys/eventhandler.h> 63 64 #include <machine/bus_memio.h> 65 #include <machine/bus.h> 66 #include <machine/resource.h> 67 68 #include <dev/aac/aacreg.h> 69 #include <dev/aac/aac_ioctl.h> 70 #include <dev/aac/aacvar.h> 71 #include <dev/aac/aac_tables.h> 72 73 static void aac_startup(void *arg); 74 static void aac_add_container(struct aac_softc *sc, 75 struct aac_mntinforesp *mir, int f); 76 static void aac_get_bus_info(struct aac_softc *sc); 77 78 /* Command Processing */ 79 static void aac_timeout(struct aac_softc *sc); 80 static int aac_start(struct aac_command *cm); 81 static void aac_complete(void *context, int pending); 82 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 83 static void aac_bio_complete(struct aac_command *cm); 84 static int aac_wait_command(struct aac_command *cm, int timeout); 85 static void aac_command_thread(struct aac_softc *sc); 86 static void aac_host_response(struct aac_softc *sc); 87 88 /* Command Buffer Management */ 89 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 90 int nseg, int error); 91 static int aac_alloc_commands(struct aac_softc *sc); 92 static void aac_free_commands(struct aac_softc *sc); 93 static void aac_map_command(struct aac_command *cm); 94 static void aac_unmap_command(struct aac_command *cm); 95 96 /* Hardware Interface */ 97 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 98 int error); 99 static int aac_check_firmware(struct aac_softc *sc); 100 static int aac_init(struct aac_softc *sc); 101 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 102 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 103 u_int32_t arg3, u_int32_t *sp); 104 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 105 struct aac_command *cm); 106 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 107 u_int32_t *fib_size, struct aac_fib **fib_addr); 108 static int aac_enqueue_response(struct aac_softc *sc, int queue, 109 struct aac_fib *fib); 110 111 /* Falcon/PPC interface */ 112 static int aac_fa_get_fwstatus(struct aac_softc *sc); 113 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 114 static int aac_fa_get_istatus(struct aac_softc *sc); 115 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 116 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 117 u_int32_t arg0, u_int32_t arg1, 118 u_int32_t arg2, u_int32_t arg3); 119 static int aac_fa_get_mailboxstatus(struct aac_softc *sc); 120 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 121 122 struct aac_interface aac_fa_interface = { 123 aac_fa_get_fwstatus, 124 aac_fa_qnotify, 125 aac_fa_get_istatus, 126 aac_fa_clear_istatus, 127 aac_fa_set_mailbox, 128 aac_fa_get_mailboxstatus, 129 aac_fa_set_interrupts 130 }; 131 132 /* StrongARM interface */ 133 static int aac_sa_get_fwstatus(struct aac_softc *sc); 134 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 135 static int aac_sa_get_istatus(struct aac_softc *sc); 136 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 137 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 138 u_int32_t arg0, u_int32_t arg1, 139 u_int32_t arg2, u_int32_t arg3); 140 static int aac_sa_get_mailboxstatus(struct aac_softc *sc); 141 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 142 143 struct aac_interface aac_sa_interface = { 144 aac_sa_get_fwstatus, 145 aac_sa_qnotify, 146 aac_sa_get_istatus, 147 aac_sa_clear_istatus, 148 aac_sa_set_mailbox, 149 aac_sa_get_mailboxstatus, 150 aac_sa_set_interrupts 151 }; 152 153 /* i960Rx interface */ 154 static int aac_rx_get_fwstatus(struct aac_softc *sc); 155 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 156 static int aac_rx_get_istatus(struct aac_softc *sc); 157 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 158 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 159 u_int32_t arg0, u_int32_t arg1, 160 u_int32_t arg2, u_int32_t arg3); 161 static int aac_rx_get_mailboxstatus(struct aac_softc *sc); 162 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 163 164 struct aac_interface aac_rx_interface = { 165 aac_rx_get_fwstatus, 166 aac_rx_qnotify, 167 aac_rx_get_istatus, 168 aac_rx_clear_istatus, 169 aac_rx_set_mailbox, 170 aac_rx_get_mailboxstatus, 171 aac_rx_set_interrupts 172 }; 173 174 /* Debugging and Diagnostics */ 175 static void aac_describe_controller(struct aac_softc *sc); 176 static char *aac_describe_code(struct aac_code_lookup *table, 177 u_int32_t code); 178 179 /* Management Interface */ 180 static d_open_t aac_open; 181 static d_close_t aac_close; 182 static d_ioctl_t aac_ioctl; 183 static d_poll_t aac_poll; 184 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 185 static void aac_handle_aif(struct aac_softc *sc, 186 struct aac_fib *fib); 187 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 188 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 189 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 190 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 191 192 #define AAC_CDEV_MAJOR 150 193 194 static struct cdevsw aac_cdevsw = { 195 aac_open, /* open */ 196 aac_close, /* close */ 197 noread, /* read */ 198 nowrite, /* write */ 199 aac_ioctl, /* ioctl */ 200 aac_poll, /* poll */ 201 nommap, /* mmap */ 202 nostrategy, /* strategy */ 203 "aac", /* name */ 204 AAC_CDEV_MAJOR, /* major */ 205 nodump, /* dump */ 206 nopsize, /* psize */ 207 0, /* flags */ 208 #if __FreeBSD_version < 500005 209 -1, /* bmaj */ 210 #endif 211 }; 212 213 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 214 215 /* sysctl node */ 216 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 217 218 /* 219 * Device Interface 220 */ 221 222 /* 223 * Initialise the controller and softc 224 */ 225 int 226 aac_attach(struct aac_softc *sc) 227 { 228 int error, unit; 229 230 debug_called(1); 231 232 /* 233 * Initialise per-controller queues. 234 */ 235 aac_initq_free(sc); 236 aac_initq_ready(sc); 237 aac_initq_busy(sc); 238 aac_initq_complete(sc); 239 aac_initq_bio(sc); 240 241 #if __FreeBSD_version >= 500005 242 /* 243 * Initialise command-completion task. 244 */ 245 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 246 #endif 247 248 /* disable interrupts before we enable anything */ 249 AAC_MASK_INTERRUPTS(sc); 250 251 /* mark controller as suspended until we get ourselves organised */ 252 sc->aac_state |= AAC_STATE_SUSPEND; 253 254 /* 255 * Check that the firmware on the card is supported. 256 */ 257 if ((error = aac_check_firmware(sc)) != 0) 258 return(error); 259 260 /* 261 * Allocate command structures. This must be done before aac_init() 262 * in order to work around a 2120/2200 bug. 263 */ 264 if ((error = aac_alloc_commands(sc)) != 0) 265 return(error); 266 267 /* Init the sync fib lock */ 268 AAC_LOCK_INIT(&sc->aac_sync_lock, "AAC sync FIB lock"); 269 270 /* 271 * Initialise the adapter. 272 */ 273 if ((error = aac_init(sc)) != 0) 274 return(error); 275 276 /* 277 * Print a little information about the controller. 278 */ 279 aac_describe_controller(sc); 280 281 /* 282 * Register to probe our containers later. 283 */ 284 TAILQ_INIT(&sc->aac_container_tqh); 285 AAC_LOCK_INIT(&sc->aac_container_lock, "AAC container lock"); 286 287 /* 288 * Lock for the AIF queue 289 */ 290 AAC_LOCK_INIT(&sc->aac_aifq_lock, "AAC AIF lock"); 291 292 sc->aac_ich.ich_func = aac_startup; 293 sc->aac_ich.ich_arg = sc; 294 if (config_intrhook_establish(&sc->aac_ich) != 0) { 295 device_printf(sc->aac_dev, 296 "can't establish configuration hook\n"); 297 return(ENXIO); 298 } 299 300 /* 301 * Make the control device. 302 */ 303 unit = device_get_unit(sc->aac_dev); 304 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR, 305 0640, "aac%d", unit); 306 #if __FreeBSD_version > 500005 307 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 308 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 309 #endif 310 sc->aac_dev_t->si_drv1 = sc; 311 312 /* Create the AIF thread */ 313 #if __FreeBSD_version > 500005 314 if (kthread_create((void(*)(void *))aac_command_thread, sc, 315 &sc->aifthread, 0, 0, "aac%daif", unit)) 316 #else 317 if (kthread_create((void(*)(void *))aac_command_thread, sc, 318 &sc->aifthread, "aac%daif", unit)) 319 #endif 320 panic("Could not create AIF thread\n"); 321 322 /* Register the shutdown method to only be called post-dump */ 323 if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, 324 sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL) 325 device_printf(sc->aac_dev, 326 "shutdown event registration failed\n"); 327 328 /* Register with CAM for the non-DASD devices */ 329 if (!(sc->quirks & AAC_QUIRK_NOCAM)) { 330 TAILQ_INIT(&sc->aac_sim_tqh); 331 aac_get_bus_info(sc); 332 } 333 334 return(0); 335 } 336 337 /* 338 * Probe for containers, create disks. 339 */ 340 static void 341 aac_startup(void *arg) 342 { 343 struct aac_softc *sc; 344 struct aac_fib *fib; 345 struct aac_mntinfo *mi; 346 struct aac_mntinforesp *mir = NULL; 347 int i = 0; 348 349 debug_called(1); 350 351 sc = (struct aac_softc *)arg; 352 353 /* disconnect ourselves from the intrhook chain */ 354 config_intrhook_disestablish(&sc->aac_ich); 355 356 aac_alloc_sync_fib(sc, &fib, 0); 357 mi = (struct aac_mntinfo *)&fib->data[0]; 358 359 /* loop over possible containers */ 360 do { 361 /* request information on this container */ 362 bzero(mi, sizeof(struct aac_mntinfo)); 363 mi->Command = VM_NameServe; 364 mi->MntType = FT_FILESYS; 365 mi->MntCount = i; 366 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 367 sizeof(struct aac_mntinfo))) { 368 debug(2, "error probing container %d", i); 369 continue; 370 } 371 372 mir = (struct aac_mntinforesp *)&fib->data[0]; 373 aac_add_container(sc, mir, 0); 374 i++; 375 } while ((i < mir->MntRespCount) && (i < AAC_MAX_CONTAINERS)); 376 377 aac_release_sync_fib(sc); 378 379 /* poke the bus to actually attach the child devices */ 380 if (bus_generic_attach(sc->aac_dev)) 381 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 382 383 /* mark the controller up */ 384 sc->aac_state &= ~AAC_STATE_SUSPEND; 385 386 /* enable interrupts now */ 387 AAC_UNMASK_INTERRUPTS(sc); 388 } 389 390 /* 391 * Create a device to respresent a new container 392 */ 393 static void 394 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 395 { 396 struct aac_container *co; 397 device_t child; 398 399 /* 400 * Check container volume type for validity. Note that many of 401 * the possible types may never show up. 402 */ 403 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 404 co = (struct aac_container *)malloc(sizeof *co, M_AACBUF, 405 M_NOWAIT | M_ZERO); 406 if (co == NULL) 407 panic("Out of memory?!\n"); 408 debug(1, "id %x name '%.16s' size %u type %d", 409 mir->MntTable[0].ObjectId, 410 mir->MntTable[0].FileSystemName, 411 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 412 413 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 414 device_printf(sc->aac_dev, "device_add_child failed\n"); 415 else 416 device_set_ivars(child, co); 417 device_set_desc(child, aac_describe_code(aac_container_types, 418 mir->MntTable[0].VolType)); 419 co->co_disk = child; 420 co->co_found = f; 421 bcopy(&mir->MntTable[0], &co->co_mntobj, 422 sizeof(struct aac_mntobj)); 423 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 424 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 425 AAC_LOCK_RELEASE(&sc->aac_container_lock); 426 } 427 } 428 429 /* 430 * Free all of the resources associated with (sc) 431 * 432 * Should not be called if the controller is active. 433 */ 434 void 435 aac_free(struct aac_softc *sc) 436 { 437 debug_called(1); 438 439 /* remove the control device */ 440 if (sc->aac_dev_t != NULL) 441 destroy_dev(sc->aac_dev_t); 442 443 /* throw away any FIB buffers, discard the FIB DMA tag */ 444 if (sc->aac_fibs != NULL) 445 aac_free_commands(sc); 446 if (sc->aac_fib_dmat) 447 bus_dma_tag_destroy(sc->aac_fib_dmat); 448 449 /* destroy the common area */ 450 if (sc->aac_common) { 451 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 452 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 453 sc->aac_common_dmamap); 454 } 455 if (sc->aac_common_dmat) 456 bus_dma_tag_destroy(sc->aac_common_dmat); 457 458 /* disconnect the interrupt handler */ 459 if (sc->aac_intr) 460 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 461 if (sc->aac_irq != NULL) 462 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 463 sc->aac_irq); 464 465 /* destroy data-transfer DMA tag */ 466 if (sc->aac_buffer_dmat) 467 bus_dma_tag_destroy(sc->aac_buffer_dmat); 468 469 /* destroy the parent DMA tag */ 470 if (sc->aac_parent_dmat) 471 bus_dma_tag_destroy(sc->aac_parent_dmat); 472 473 /* release the register window mapping */ 474 if (sc->aac_regs_resource != NULL) 475 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 476 sc->aac_regs_rid, sc->aac_regs_resource); 477 } 478 479 /* 480 * Disconnect from the controller completely, in preparation for unload. 481 */ 482 int 483 aac_detach(device_t dev) 484 { 485 struct aac_softc *sc; 486 struct aac_container *co; 487 struct aac_sim *sim; 488 int error; 489 490 debug_called(1); 491 492 sc = device_get_softc(dev); 493 494 if (sc->aac_state & AAC_STATE_OPEN) 495 return(EBUSY); 496 497 /* Remove the child containers */ 498 while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) { 499 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 500 error = device_delete_child(dev, co->co_disk); 501 if (error) 502 return (error); 503 free(co, M_AACBUF); 504 } 505 506 /* Remove the CAM SIMs */ 507 while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) { 508 TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link); 509 error = device_delete_child(dev, sim->sim_dev); 510 if (error) 511 return (error); 512 free(sim, M_AACBUF); 513 } 514 515 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 516 sc->aifflags |= AAC_AIFFLAGS_EXIT; 517 wakeup(sc->aifthread); 518 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 519 } 520 521 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 522 panic("Cannot shutdown AIF thread\n"); 523 524 if ((error = aac_shutdown(dev))) 525 return(error); 526 527 EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh); 528 529 aac_free(sc); 530 531 return(0); 532 } 533 534 /* 535 * Bring the controller down to a dormant state and detach all child devices. 536 * 537 * This function is called before detach or system shutdown. 538 * 539 * Note that we can assume that the bioq on the controller is empty, as we won't 540 * allow shutdown if any device is open. 541 */ 542 int 543 aac_shutdown(device_t dev) 544 { 545 struct aac_softc *sc; 546 struct aac_fib *fib; 547 struct aac_close_command *cc; 548 int s; 549 550 debug_called(1); 551 552 sc = device_get_softc(dev); 553 554 s = splbio(); 555 556 sc->aac_state |= AAC_STATE_SUSPEND; 557 558 /* 559 * Send a Container shutdown followed by a HostShutdown FIB to the 560 * controller to convince it that we don't want to talk to it anymore. 561 * We've been closed and all I/O completed already 562 */ 563 device_printf(sc->aac_dev, "shutting down controller..."); 564 565 aac_alloc_sync_fib(sc, &fib, AAC_SYNC_LOCK_FORCE); 566 cc = (struct aac_close_command *)&fib->data[0]; 567 568 bzero(cc, sizeof(struct aac_close_command)); 569 cc->Command = VM_CloseAll; 570 cc->ContainerId = 0xffffffff; 571 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 572 sizeof(struct aac_close_command))) 573 printf("FAILED.\n"); 574 else 575 printf("done\n"); 576 #if 0 577 else { 578 fib->data[0] = 0; 579 /* 580 * XXX Issuing this command to the controller makes it shut down 581 * but also keeps it from coming back up without a reset of the 582 * PCI bus. This is not desirable if you are just unloading the 583 * driver module with the intent to reload it later. 584 */ 585 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 586 fib, 1)) { 587 printf("FAILED.\n"); 588 } else { 589 printf("done.\n"); 590 } 591 } 592 #endif 593 594 AAC_MASK_INTERRUPTS(sc); 595 596 splx(s); 597 return(0); 598 } 599 600 /* 601 * Bring the controller to a quiescent state, ready for system suspend. 602 */ 603 int 604 aac_suspend(device_t dev) 605 { 606 struct aac_softc *sc; 607 int s; 608 609 debug_called(1); 610 611 sc = device_get_softc(dev); 612 613 s = splbio(); 614 615 sc->aac_state |= AAC_STATE_SUSPEND; 616 617 AAC_MASK_INTERRUPTS(sc); 618 splx(s); 619 return(0); 620 } 621 622 /* 623 * Bring the controller back to a state ready for operation. 624 */ 625 int 626 aac_resume(device_t dev) 627 { 628 struct aac_softc *sc; 629 630 debug_called(1); 631 632 sc = device_get_softc(dev); 633 634 sc->aac_state &= ~AAC_STATE_SUSPEND; 635 AAC_UNMASK_INTERRUPTS(sc); 636 return(0); 637 } 638 639 /* 640 * Take an interrupt. 641 */ 642 void 643 aac_intr(void *arg) 644 { 645 struct aac_softc *sc; 646 u_int32_t *resp_queue; 647 u_int16_t reason; 648 649 debug_called(2); 650 651 sc = (struct aac_softc *)arg; 652 653 /* 654 * Optimize the common case of adapter response interrupts. 655 * We must read from the card prior to processing the responses 656 * to ensure the clear is flushed prior to accessing the queues. 657 * Reading the queues from local memory might save us a PCI read. 658 */ 659 resp_queue = sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE]; 660 if (resp_queue[AAC_PRODUCER_INDEX] != resp_queue[AAC_CONSUMER_INDEX]) 661 reason = AAC_DB_RESPONSE_READY; 662 else 663 reason = AAC_GET_ISTATUS(sc); 664 AAC_CLEAR_ISTATUS(sc, reason); 665 (void)AAC_GET_ISTATUS(sc); 666 667 /* It's not ok to return here because of races with the previous step */ 668 if (reason & AAC_DB_RESPONSE_READY) 669 aac_host_response(sc); 670 671 /* controller wants to talk to the log */ 672 if (reason & AAC_DB_PRINTF) { 673 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 674 sc->aifflags |= AAC_AIFFLAGS_PRINTF; 675 } else 676 aac_print_printf(sc); 677 } 678 679 /* controller has a message for us? */ 680 if (reason & AAC_DB_COMMAND_READY) { 681 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 682 sc->aifflags |= AAC_AIFFLAGS_AIF; 683 } else { 684 /* 685 * XXX If the kthread is dead and we're at this point, 686 * there are bigger problems than just figuring out 687 * what to do with an AIF. 688 */ 689 } 690 691 } 692 693 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) != 0) 694 /* XXX Should this be done with cv_signal? */ 695 wakeup(sc->aifthread); 696 } 697 698 /* 699 * Command Processing 700 */ 701 702 /* 703 * Start as much queued I/O as possible on the controller 704 */ 705 void 706 aac_startio(struct aac_softc *sc) 707 { 708 struct aac_command *cm; 709 710 debug_called(2); 711 712 for (;;) { 713 /* 714 * Try to get a command that's been put off for lack of 715 * resources 716 */ 717 cm = aac_dequeue_ready(sc); 718 719 /* 720 * Try to build a command off the bio queue (ignore error 721 * return) 722 */ 723 if (cm == NULL) 724 aac_bio_command(sc, &cm); 725 726 /* nothing to do? */ 727 if (cm == NULL) 728 break; 729 730 /* try to give the command to the controller */ 731 if (aac_start(cm) == EBUSY) { 732 /* put it on the ready queue for later */ 733 aac_requeue_ready(cm); 734 break; 735 } 736 } 737 } 738 739 /* 740 * Deliver a command to the controller; allocate controller resources at the 741 * last moment when possible. 742 */ 743 static int 744 aac_start(struct aac_command *cm) 745 { 746 struct aac_softc *sc; 747 int error; 748 749 debug_called(2); 750 751 sc = cm->cm_sc; 752 753 /* get the command mapped */ 754 aac_map_command(cm); 755 756 /* fix up the address values in the FIB */ 757 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 758 cm->cm_fib->Header.ReceiverFibAddress = cm->cm_fibphys; 759 760 /* save a pointer to the command for speedy reverse-lookup */ 761 cm->cm_fib->Header.SenderData = (u_int32_t)cm; /* XXX 64-bit physical 762 * address issue */ 763 /* put the FIB on the outbound queue */ 764 error = aac_enqueue_fib(sc, cm->cm_queue, cm); 765 return(error); 766 } 767 768 /* 769 * Handle notification of one or more FIBs coming from the controller. 770 */ 771 static void 772 aac_command_thread(struct aac_softc *sc) 773 { 774 struct aac_fib *fib; 775 u_int32_t fib_size; 776 int size; 777 778 debug_called(2); 779 780 sc->aifflags |= AAC_AIFFLAGS_RUNNING; 781 782 while (!(sc->aifflags & AAC_AIFFLAGS_EXIT)) { 783 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 784 tsleep(sc->aifthread, PRIBIO, "aifthd", 785 AAC_PERIODIC_INTERVAL * hz); 786 787 /* While we're here, check to see if any commands are stuck */ 788 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 789 aac_timeout(sc); 790 791 /* Check the hardware printf message buffer */ 792 if ((sc->aifflags & AAC_AIFFLAGS_PRINTF) != 0) { 793 sc->aifflags &= ~AAC_AIFFLAGS_PRINTF; 794 aac_print_printf(sc); 795 } 796 797 while (sc->aifflags & AAC_AIFFLAGS_AIF) { 798 799 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 800 &fib_size, &fib)) { 801 sc->aifflags &= ~AAC_AIFFLAGS_AIF; 802 break; /* nothing to do */ 803 } 804 805 AAC_PRINT_FIB(sc, fib); 806 807 switch (fib->Header.Command) { 808 case AifRequest: 809 aac_handle_aif(sc, fib); 810 break; 811 default: 812 device_printf(sc->aac_dev, "unknown command " 813 "from controller\n"); 814 break; 815 } 816 817 if ((fib->Header.XferState == 0) || 818 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) 819 break; 820 821 /* Return the AIF to the controller. */ 822 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 823 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 824 *(AAC_FSAStatus*)fib->data = ST_OK; 825 826 /* XXX Compute the Size field? */ 827 size = fib->Header.Size; 828 if (size > sizeof(struct aac_fib)) { 829 size = sizeof(struct aac_fib); 830 fib->Header.Size = size; 831 } 832 /* 833 * Since we did not generate this command, it 834 * cannot go through the normal 835 * enqueue->startio chain. 836 */ 837 aac_enqueue_response(sc, 838 AAC_ADAP_NORM_RESP_QUEUE, 839 fib); 840 } 841 } 842 } 843 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 844 wakeup(sc->aac_dev); 845 846 #if __FreeBSD_version > 500005 847 mtx_lock(&Giant); 848 #endif 849 kthread_exit(0); 850 } 851 852 /* 853 * Handle notification of one or more FIBs completed by the controller 854 */ 855 static void 856 aac_host_response(struct aac_softc *sc) 857 { 858 struct aac_command *cm; 859 struct aac_fib *fib; 860 u_int32_t fib_size; 861 862 debug_called(2); 863 864 for (;;) { 865 /* look for completed FIBs on our queue */ 866 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 867 &fib)) 868 break; /* nothing to do */ 869 870 /* get the command, unmap and queue for later processing */ 871 cm = (struct aac_command *)fib->Header.SenderData; 872 if (cm == NULL) { 873 AAC_PRINT_FIB(sc, fib); 874 } else { 875 aac_remove_busy(cm); 876 aac_unmap_command(cm); /* XXX defer? */ 877 aac_enqueue_complete(cm); 878 } 879 } 880 881 /* handle completion processing */ 882 #if __FreeBSD_version >= 500005 883 taskqueue_enqueue(taskqueue_swi, &sc->aac_task_complete); 884 #else 885 aac_complete(sc, 0); 886 #endif 887 } 888 889 /* 890 * Process completed commands. 891 */ 892 static void 893 aac_complete(void *context, int pending) 894 { 895 struct aac_softc *sc; 896 struct aac_command *cm; 897 898 debug_called(2); 899 900 sc = (struct aac_softc *)context; 901 902 /* pull completed commands off the queue */ 903 for (;;) { 904 cm = aac_dequeue_complete(sc); 905 if (cm == NULL) 906 break; 907 cm->cm_flags |= AAC_CMD_COMPLETED; 908 909 /* is there a completion handler? */ 910 if (cm->cm_complete != NULL) { 911 cm->cm_complete(cm); 912 } else { 913 /* assume that someone is sleeping on this command */ 914 wakeup(cm); 915 } 916 } 917 918 /* see if we can start some more I/O */ 919 aac_startio(sc); 920 } 921 922 /* 923 * Handle a bio submitted from a disk device. 924 */ 925 void 926 aac_submit_bio(struct bio *bp) 927 { 928 struct aac_disk *ad; 929 struct aac_softc *sc; 930 931 debug_called(2); 932 933 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 934 sc = ad->ad_controller; 935 936 /* queue the BIO and try to get some work done */ 937 aac_enqueue_bio(sc, bp); 938 aac_startio(sc); 939 } 940 941 /* 942 * Get a bio and build a command to go with it. 943 */ 944 static int 945 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 946 { 947 struct aac_command *cm; 948 struct aac_fib *fib; 949 struct aac_blockread *br; 950 struct aac_blockwrite *bw; 951 struct aac_disk *ad; 952 struct bio *bp; 953 954 debug_called(2); 955 956 /* get the resources we will need */ 957 cm = NULL; 958 if ((bp = aac_dequeue_bio(sc)) == NULL) 959 goto fail; 960 if (aac_alloc_command(sc, &cm)) /* get a command */ 961 goto fail; 962 963 /* fill out the command */ 964 cm->cm_data = (void *)bp->bio_data; 965 cm->cm_datalen = bp->bio_bcount; 966 cm->cm_complete = aac_bio_complete; 967 cm->cm_private = bp; 968 cm->cm_timestamp = time_second; 969 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 970 971 /* build the FIB */ 972 fib = cm->cm_fib; 973 fib->Header.XferState = 974 AAC_FIBSTATE_HOSTOWNED | 975 AAC_FIBSTATE_INITIALISED | 976 AAC_FIBSTATE_EMPTY | 977 AAC_FIBSTATE_FROMHOST | 978 AAC_FIBSTATE_REXPECTED | 979 AAC_FIBSTATE_NORM | 980 AAC_FIBSTATE_ASYNC | 981 AAC_FIBSTATE_FAST_RESPONSE; 982 fib->Header.Command = ContainerCommand; 983 fib->Header.Size = sizeof(struct aac_fib_header); 984 985 /* build the read/write request */ 986 ad = (struct aac_disk *)bp->bio_dev->si_drv1; 987 if (BIO_IS_READ(bp)) { 988 br = (struct aac_blockread *)&fib->data[0]; 989 br->Command = VM_CtBlockRead; 990 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 991 br->BlockNumber = bp->bio_pblkno; 992 br->ByteCount = bp->bio_bcount; 993 fib->Header.Size += sizeof(struct aac_blockread); 994 cm->cm_sgtable = &br->SgMap; 995 cm->cm_flags |= AAC_CMD_DATAIN; 996 } else { 997 bw = (struct aac_blockwrite *)&fib->data[0]; 998 bw->Command = VM_CtBlockWrite; 999 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1000 bw->BlockNumber = bp->bio_pblkno; 1001 bw->ByteCount = bp->bio_bcount; 1002 bw->Stable = CUNSTABLE; /* XXX what's appropriate here? */ 1003 fib->Header.Size += sizeof(struct aac_blockwrite); 1004 cm->cm_flags |= AAC_CMD_DATAOUT; 1005 cm->cm_sgtable = &bw->SgMap; 1006 } 1007 1008 *cmp = cm; 1009 return(0); 1010 1011 fail: 1012 if (bp != NULL) 1013 aac_enqueue_bio(sc, bp); 1014 if (cm != NULL) 1015 aac_release_command(cm); 1016 return(ENOMEM); 1017 } 1018 1019 /* 1020 * Handle a bio-instigated command that has been completed. 1021 */ 1022 static void 1023 aac_bio_complete(struct aac_command *cm) 1024 { 1025 struct aac_blockread_response *brr; 1026 struct aac_blockwrite_response *bwr; 1027 struct bio *bp; 1028 AAC_FSAStatus status; 1029 1030 /* fetch relevant status and then release the command */ 1031 bp = (struct bio *)cm->cm_private; 1032 if (BIO_IS_READ(bp)) { 1033 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 1034 status = brr->Status; 1035 } else { 1036 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 1037 status = bwr->Status; 1038 } 1039 aac_release_command(cm); 1040 1041 /* fix up the bio based on status */ 1042 if (status == ST_OK) { 1043 bp->bio_resid = 0; 1044 } else { 1045 bp->bio_error = EIO; 1046 bp->bio_flags |= BIO_ERROR; 1047 /* pass an error string out to the disk layer */ 1048 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1049 status); 1050 } 1051 aac_biodone(bp); 1052 } 1053 1054 /* 1055 * Submit a command to the controller, return when it completes. 1056 * XXX This is very dangerous! If the card has gone out to lunch, we could 1057 * be stuck here forever. At the same time, signals are not caught 1058 * because there is a risk that a signal could wakeup the tsleep before 1059 * the card has a chance to complete the command. The passed in timeout 1060 * is ignored for the same reason. Since there is no way to cancel a 1061 * command in progress, we should probably create a 'dead' queue where 1062 * commands go that have been interrupted/timed-out/etc, that keeps them 1063 * out of the free pool. That way, if the card is just slow, it won't 1064 * spam the memory of a command that has been recycled. 1065 */ 1066 static int 1067 aac_wait_command(struct aac_command *cm, int timeout) 1068 { 1069 int s, error = 0; 1070 1071 debug_called(2); 1072 1073 /* Put the command on the ready queue and get things going */ 1074 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1075 aac_enqueue_ready(cm); 1076 aac_startio(cm->cm_sc); 1077 s = splbio(); 1078 while (!(cm->cm_flags & AAC_CMD_COMPLETED) && (error != EWOULDBLOCK)) { 1079 error = tsleep(cm, PRIBIO, "aacwait", 0); 1080 } 1081 splx(s); 1082 return(error); 1083 } 1084 1085 /* 1086 *Command Buffer Management 1087 */ 1088 1089 /* 1090 * Allocate a command. 1091 */ 1092 int 1093 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1094 { 1095 struct aac_command *cm; 1096 1097 debug_called(3); 1098 1099 if ((cm = aac_dequeue_free(sc)) == NULL) 1100 return(ENOMEM); 1101 1102 *cmp = cm; 1103 return(0); 1104 } 1105 1106 /* 1107 * Release a command back to the freelist. 1108 */ 1109 void 1110 aac_release_command(struct aac_command *cm) 1111 { 1112 debug_called(3); 1113 1114 /* (re)initialise the command/FIB */ 1115 cm->cm_sgtable = NULL; 1116 cm->cm_flags = 0; 1117 cm->cm_complete = NULL; 1118 cm->cm_private = NULL; 1119 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1120 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1121 cm->cm_fib->Header.Flags = 0; 1122 cm->cm_fib->Header.SenderSize = sizeof(struct aac_fib); 1123 1124 /* 1125 * These are duplicated in aac_start to cover the case where an 1126 * intermediate stage may have destroyed them. They're left 1127 * initialised here for debugging purposes only. 1128 */ 1129 cm->cm_fib->Header.SenderFibAddress = (u_int32_t)cm->cm_fib; 1130 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1131 cm->cm_fib->Header.SenderData = 0; 1132 1133 aac_enqueue_free(cm); 1134 } 1135 1136 /* 1137 * Map helper for command/FIB allocation. 1138 */ 1139 static void 1140 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1141 { 1142 struct aac_softc *sc; 1143 1144 sc = (struct aac_softc *)arg; 1145 1146 debug_called(3); 1147 1148 sc->aac_fibphys = segs[0].ds_addr; 1149 } 1150 1151 /* 1152 * Allocate and initialise commands/FIBs for this adapter. 1153 */ 1154 static int 1155 aac_alloc_commands(struct aac_softc *sc) 1156 { 1157 struct aac_command *cm; 1158 int i; 1159 1160 debug_called(1); 1161 1162 /* allocate the FIBs in DMAable memory and load them */ 1163 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&sc->aac_fibs, 1164 BUS_DMA_NOWAIT, &sc->aac_fibmap)) { 1165 device_printf(sc->aac_dev, 1166 "Not enough contiguous memory available.\n"); 1167 return (ENOMEM); 1168 } 1169 1170 /* 1171 * Work around a bug in the 2120 and 2200 that cannot DMA commands 1172 * below address 8192 in physical memory. 1173 * XXX If the padding is not needed, can it be put to use instead 1174 * of ignored? 1175 */ 1176 bus_dmamap_load(sc->aac_fib_dmat, sc->aac_fibmap, sc->aac_fibs, 1177 8192 + AAC_FIB_COUNT * sizeof(struct aac_fib), 1178 aac_map_command_helper, sc, 0); 1179 1180 if (sc->aac_fibphys < 8192) { 1181 sc->aac_fibs += (8192 / sizeof(struct aac_fib)); 1182 sc->aac_fibphys += 8192; 1183 } 1184 1185 /* initialise constant fields in the command structure */ 1186 bzero(sc->aac_fibs, AAC_FIB_COUNT * sizeof(struct aac_fib)); 1187 for (i = 0; i < AAC_FIB_COUNT; i++) { 1188 cm = &sc->aac_command[i]; 1189 cm->cm_sc = sc; 1190 cm->cm_fib = sc->aac_fibs + i; 1191 cm->cm_fibphys = sc->aac_fibphys + (i * sizeof(struct aac_fib)); 1192 1193 if (!bus_dmamap_create(sc->aac_buffer_dmat, 0, &cm->cm_datamap)) 1194 aac_release_command(cm); 1195 } 1196 return (0); 1197 } 1198 1199 /* 1200 * Free FIBs owned by this adapter. 1201 */ 1202 static void 1203 aac_free_commands(struct aac_softc *sc) 1204 { 1205 int i; 1206 1207 debug_called(1); 1208 1209 for (i = 0; i < AAC_FIB_COUNT; i++) 1210 bus_dmamap_destroy(sc->aac_buffer_dmat, 1211 sc->aac_command[i].cm_datamap); 1212 1213 bus_dmamap_unload(sc->aac_fib_dmat, sc->aac_fibmap); 1214 bus_dmamem_free(sc->aac_fib_dmat, sc->aac_fibs, sc->aac_fibmap); 1215 } 1216 1217 /* 1218 * Command-mapping helper function - populate this command's s/g table. 1219 */ 1220 static void 1221 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1222 { 1223 struct aac_command *cm; 1224 struct aac_fib *fib; 1225 struct aac_sg_table *sg; 1226 int i; 1227 1228 debug_called(3); 1229 1230 cm = (struct aac_command *)arg; 1231 fib = cm->cm_fib; 1232 1233 /* find the s/g table */ 1234 sg = cm->cm_sgtable; 1235 1236 /* copy into the FIB */ 1237 if (sg != NULL) { 1238 sg->SgCount = nseg; 1239 for (i = 0; i < nseg; i++) { 1240 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1241 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1242 } 1243 /* update the FIB size for the s/g count */ 1244 fib->Header.Size += nseg * sizeof(struct aac_sg_entry); 1245 } 1246 1247 } 1248 1249 /* 1250 * Map a command into controller-visible space. 1251 */ 1252 static void 1253 aac_map_command(struct aac_command *cm) 1254 { 1255 struct aac_softc *sc; 1256 1257 debug_called(2); 1258 1259 sc = cm->cm_sc; 1260 1261 /* don't map more than once */ 1262 if (cm->cm_flags & AAC_CMD_MAPPED) 1263 return; 1264 1265 if (cm->cm_datalen != 0) { 1266 bus_dmamap_load(sc->aac_buffer_dmat, cm->cm_datamap, 1267 cm->cm_data, cm->cm_datalen, 1268 aac_map_command_sg, cm, 0); 1269 1270 if (cm->cm_flags & AAC_CMD_DATAIN) 1271 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1272 BUS_DMASYNC_PREREAD); 1273 if (cm->cm_flags & AAC_CMD_DATAOUT) 1274 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1275 BUS_DMASYNC_PREWRITE); 1276 } 1277 cm->cm_flags |= AAC_CMD_MAPPED; 1278 } 1279 1280 /* 1281 * Unmap a command from controller-visible space. 1282 */ 1283 static void 1284 aac_unmap_command(struct aac_command *cm) 1285 { 1286 struct aac_softc *sc; 1287 1288 debug_called(2); 1289 1290 sc = cm->cm_sc; 1291 1292 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1293 return; 1294 1295 if (cm->cm_datalen != 0) { 1296 if (cm->cm_flags & AAC_CMD_DATAIN) 1297 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1298 BUS_DMASYNC_POSTREAD); 1299 if (cm->cm_flags & AAC_CMD_DATAOUT) 1300 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1301 BUS_DMASYNC_POSTWRITE); 1302 1303 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1304 } 1305 cm->cm_flags &= ~AAC_CMD_MAPPED; 1306 } 1307 1308 /* 1309 * Hardware Interface 1310 */ 1311 1312 /* 1313 * Initialise the adapter. 1314 */ 1315 static void 1316 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1317 { 1318 struct aac_softc *sc; 1319 1320 debug_called(1); 1321 1322 sc = (struct aac_softc *)arg; 1323 1324 sc->aac_common_busaddr = segs[0].ds_addr; 1325 } 1326 1327 /* 1328 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1329 * firmware version 1.x are not compatible with this driver. 1330 */ 1331 static int 1332 aac_check_firmware(struct aac_softc *sc) 1333 { 1334 u_int32_t major, minor; 1335 1336 debug_called(1); 1337 1338 if (sc->quirks & AAC_QUIRK_PERC2QC) { 1339 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1340 NULL)) { 1341 device_printf(sc->aac_dev, 1342 "Error reading firmware version\n"); 1343 return (EIO); 1344 } 1345 1346 /* These numbers are stored as ASCII! */ 1347 major = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 4) & 0xff) - 0x30; 1348 minor = (AAC_GETREG4(sc, AAC_SA_MAILBOX + 8) & 0xff) - 0x30; 1349 if (major == 1) { 1350 device_printf(sc->aac_dev, 1351 "Firmware version %d.%d is not supported.\n", 1352 major, minor); 1353 return (EINVAL); 1354 } 1355 } 1356 1357 return (0); 1358 } 1359 1360 static int 1361 aac_init(struct aac_softc *sc) 1362 { 1363 struct aac_adapter_init *ip; 1364 time_t then; 1365 u_int32_t code; 1366 u_int8_t *qaddr; 1367 1368 debug_called(1); 1369 1370 /* 1371 * First wait for the adapter to come ready. 1372 */ 1373 then = time_second; 1374 do { 1375 code = AAC_GET_FWSTATUS(sc); 1376 if (code & AAC_SELF_TEST_FAILED) { 1377 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1378 return(ENXIO); 1379 } 1380 if (code & AAC_KERNEL_PANIC) { 1381 device_printf(sc->aac_dev, 1382 "FATAL: controller kernel panic\n"); 1383 return(ENXIO); 1384 } 1385 if (time_second > (then + AAC_BOOT_TIMEOUT)) { 1386 device_printf(sc->aac_dev, 1387 "FATAL: controller not coming ready, " 1388 "status %x\n", code); 1389 return(ENXIO); 1390 } 1391 } while (!(code & AAC_UP_AND_RUNNING)); 1392 1393 /* 1394 * Create DMA tag for the common structure and allocate it. 1395 */ 1396 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1397 1, 0, /* algnmnt, boundary */ 1398 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1399 BUS_SPACE_MAXADDR, /* highaddr */ 1400 NULL, NULL, /* filter, filterarg */ 1401 sizeof(struct aac_common), /* maxsize */ 1402 1, /* nsegments */ 1403 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1404 0, /* flags */ 1405 &sc->aac_common_dmat)) { 1406 device_printf(sc->aac_dev, 1407 "can't allocate common structure DMA tag\n"); 1408 return(ENOMEM); 1409 } 1410 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1411 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1412 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1413 return(ENOMEM); 1414 } 1415 bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1416 sc->aac_common, sizeof(*sc->aac_common), aac_common_map, 1417 sc, 0); 1418 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1419 1420 /* 1421 * Fill in the init structure. This tells the adapter about the 1422 * physical location of various important shared data structures. 1423 */ 1424 ip = &sc->aac_common->ac_init; 1425 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1426 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1427 1428 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1429 offsetof(struct aac_common, ac_fibs); 1430 ip->AdapterFibsVirtualAddress = (u_int32_t)&sc->aac_common->ac_fibs[0]; 1431 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1432 ip->AdapterFibAlign = sizeof(struct aac_fib); 1433 1434 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1435 offsetof(struct aac_common, ac_printf); 1436 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1437 1438 /* The adapter assumes that pages are 4K in size */ 1439 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1440 ip->HostElapsedSeconds = time_second; /* reset later if invalid */ 1441 1442 /* 1443 * Initialise FIB queues. Note that it appears that the layout of the 1444 * indexes and the segmentation of the entries may be mandated by the 1445 * adapter, which is only told about the base of the queue index fields. 1446 * 1447 * The initial values of the indices are assumed to inform the adapter 1448 * of the sizes of the respective queues, and theoretically it could 1449 * work out the entire layout of the queue structures from this. We 1450 * take the easy route and just lay this area out like everyone else 1451 * does. 1452 * 1453 * The Linux driver uses a much more complex scheme whereby several 1454 * header records are kept for each queue. We use a couple of generic 1455 * list manipulation functions which 'know' the size of each list by 1456 * virtue of a table. 1457 */ 1458 qaddr = &sc->aac_common->ac_qbuf[0] + AAC_QUEUE_ALIGN; 1459 qaddr -= (u_int32_t)qaddr % AAC_QUEUE_ALIGN; 1460 sc->aac_queues = (struct aac_queue_table *)qaddr; 1461 ip->CommHeaderAddress = sc->aac_common_busaddr + 1462 ((u_int32_t)sc->aac_queues - 1463 (u_int32_t)sc->aac_common); 1464 1465 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1466 AAC_HOST_NORM_CMD_ENTRIES; 1467 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1468 AAC_HOST_NORM_CMD_ENTRIES; 1469 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1470 AAC_HOST_HIGH_CMD_ENTRIES; 1471 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1472 AAC_HOST_HIGH_CMD_ENTRIES; 1473 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1474 AAC_ADAP_NORM_CMD_ENTRIES; 1475 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1476 AAC_ADAP_NORM_CMD_ENTRIES; 1477 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1478 AAC_ADAP_HIGH_CMD_ENTRIES; 1479 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1480 AAC_ADAP_HIGH_CMD_ENTRIES; 1481 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1482 AAC_HOST_NORM_RESP_ENTRIES; 1483 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1484 AAC_HOST_NORM_RESP_ENTRIES; 1485 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1486 AAC_HOST_HIGH_RESP_ENTRIES; 1487 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1488 AAC_HOST_HIGH_RESP_ENTRIES; 1489 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1490 AAC_ADAP_NORM_RESP_ENTRIES; 1491 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1492 AAC_ADAP_NORM_RESP_ENTRIES; 1493 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1494 AAC_ADAP_HIGH_RESP_ENTRIES; 1495 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1496 AAC_ADAP_HIGH_RESP_ENTRIES; 1497 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1498 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1499 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1500 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1501 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1502 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1503 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1504 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1505 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1506 &sc->aac_queues->qt_HostNormRespQueue[0]; 1507 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1508 &sc->aac_queues->qt_HostHighRespQueue[0]; 1509 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1510 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1511 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1512 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1513 1514 /* 1515 * Do controller-type-specific initialisation 1516 */ 1517 switch (sc->aac_hwif) { 1518 case AAC_HWIF_I960RX: 1519 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1520 break; 1521 } 1522 1523 /* 1524 * Give the init structure to the controller. 1525 */ 1526 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1527 sc->aac_common_busaddr + 1528 offsetof(struct aac_common, ac_init), 0, 0, 0, 1529 NULL)) { 1530 device_printf(sc->aac_dev, 1531 "error establishing init structure\n"); 1532 return(EIO); 1533 } 1534 1535 return(0); 1536 } 1537 1538 /* 1539 * Send a synchronous command to the controller and wait for a result. 1540 */ 1541 static int 1542 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1543 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1544 u_int32_t *sp) 1545 { 1546 time_t then; 1547 u_int32_t status; 1548 1549 debug_called(3); 1550 1551 /* populate the mailbox */ 1552 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1553 1554 /* ensure the sync command doorbell flag is cleared */ 1555 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1556 1557 /* then set it to signal the adapter */ 1558 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1559 1560 /* spin waiting for the command to complete */ 1561 then = time_second; 1562 do { 1563 if (time_second > (then + AAC_IMMEDIATE_TIMEOUT)) { 1564 debug(2, "timed out"); 1565 return(EIO); 1566 } 1567 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 1568 1569 /* clear the completion flag */ 1570 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1571 1572 /* get the command status */ 1573 status = AAC_GET_MAILBOXSTATUS(sc); 1574 if (sp != NULL) 1575 *sp = status; 1576 return(0); 1577 } 1578 1579 /* 1580 * Grab the sync fib area. 1581 */ 1582 int 1583 aac_alloc_sync_fib(struct aac_softc *sc, struct aac_fib **fib, int flags) 1584 { 1585 1586 /* 1587 * If the force flag is set, the system is shutting down, or in 1588 * trouble. Ignore the mutex. 1589 */ 1590 if (!(flags & AAC_SYNC_LOCK_FORCE)) 1591 AAC_LOCK_ACQUIRE(&sc->aac_sync_lock); 1592 1593 *fib = &sc->aac_common->ac_sync_fib; 1594 1595 return (1); 1596 } 1597 1598 /* 1599 * Release the sync fib area. 1600 */ 1601 void 1602 aac_release_sync_fib(struct aac_softc *sc) 1603 { 1604 1605 AAC_LOCK_RELEASE(&sc->aac_sync_lock); 1606 } 1607 1608 /* 1609 * Send a synchronous FIB to the controller and wait for a result. 1610 */ 1611 int 1612 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 1613 struct aac_fib *fib, u_int16_t datasize) 1614 { 1615 debug_called(3); 1616 1617 if (datasize > AAC_FIB_DATASIZE) 1618 return(EINVAL); 1619 1620 /* 1621 * Set up the sync FIB 1622 */ 1623 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 1624 AAC_FIBSTATE_INITIALISED | 1625 AAC_FIBSTATE_EMPTY; 1626 fib->Header.XferState |= xferstate; 1627 fib->Header.Command = command; 1628 fib->Header.StructType = AAC_FIBTYPE_TFIB; 1629 fib->Header.Size = sizeof(struct aac_fib) + datasize; 1630 fib->Header.SenderSize = sizeof(struct aac_fib); 1631 fib->Header.SenderFibAddress = (u_int32_t)fib; 1632 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 1633 offsetof(struct aac_common, 1634 ac_sync_fib); 1635 1636 /* 1637 * Give the FIB to the controller, wait for a response. 1638 */ 1639 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 1640 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 1641 debug(2, "IO error"); 1642 return(EIO); 1643 } 1644 1645 return (0); 1646 } 1647 1648 /* 1649 * Adapter-space FIB queue manipulation 1650 * 1651 * Note that the queue implementation here is a little funky; neither the PI or 1652 * CI will ever be zero. This behaviour is a controller feature. 1653 */ 1654 static struct { 1655 int size; 1656 int notify; 1657 } aac_qinfo[] = { 1658 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 1659 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 1660 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 1661 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 1662 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 1663 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 1664 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 1665 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 1666 }; 1667 1668 /* 1669 * Atomically insert an entry into the nominated queue, returns 0 on success or 1670 * EBUSY if the queue is full. 1671 * 1672 * Note: it would be more efficient to defer notifying the controller in 1673 * the case where we may be inserting several entries in rapid succession, 1674 * but implementing this usefully may be difficult (it would involve a 1675 * separate queue/notify interface). 1676 */ 1677 static int 1678 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 1679 { 1680 u_int32_t pi, ci; 1681 int s, error; 1682 u_int32_t fib_size; 1683 u_int32_t fib_addr; 1684 1685 debug_called(3); 1686 1687 fib_size = cm->cm_fib->Header.Size; 1688 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 1689 1690 s = splbio(); 1691 1692 /* get the producer/consumer indices */ 1693 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1694 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1695 1696 /* wrap the queue? */ 1697 if (pi >= aac_qinfo[queue].size) 1698 pi = 0; 1699 1700 /* check for queue full */ 1701 if ((pi + 1) == ci) { 1702 error = EBUSY; 1703 goto out; 1704 } 1705 1706 /* populate queue entry */ 1707 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1708 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1709 1710 /* update producer index */ 1711 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1712 1713 /* 1714 * To avoid a race with its completion interrupt, place this command on 1715 * the busy queue prior to advertising it to the controller. 1716 */ 1717 aac_enqueue_busy(cm); 1718 1719 /* notify the adapter if we know how */ 1720 if (aac_qinfo[queue].notify != 0) 1721 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1722 1723 error = 0; 1724 1725 out: 1726 splx(s); 1727 return(error); 1728 } 1729 1730 /* 1731 * Atomically remove one entry from the nominated queue, returns 0 on 1732 * success or ENOENT if the queue is empty. 1733 */ 1734 static int 1735 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 1736 struct aac_fib **fib_addr) 1737 { 1738 u_int32_t pi, ci; 1739 int s, error; 1740 int notify; 1741 1742 debug_called(3); 1743 1744 s = splbio(); 1745 1746 /* get the producer/consumer indices */ 1747 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1748 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1749 1750 /* check for queue empty */ 1751 if (ci == pi) { 1752 error = ENOENT; 1753 goto out; 1754 } 1755 1756 notify = 0; 1757 if (ci == pi + 1) 1758 notify++; 1759 1760 /* wrap the queue? */ 1761 if (ci >= aac_qinfo[queue].size) 1762 ci = 0; 1763 1764 /* fetch the entry */ 1765 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 1766 *fib_addr = (struct aac_fib *)(sc->aac_qentries[queue] + 1767 ci)->aq_fib_addr; 1768 1769 /* 1770 * Is this a fast response? If it is, update the fib fields in 1771 * local memory so the whole fib doesn't have to be DMA'd back up. 1772 */ 1773 if (*(uintptr_t *)fib_addr & 0x01) { 1774 *(uintptr_t *)fib_addr &= ~0x01; 1775 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 1776 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 1777 } 1778 /* update consumer index */ 1779 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 1780 1781 /* if we have made the queue un-full, notify the adapter */ 1782 if (notify && (aac_qinfo[queue].notify != 0)) 1783 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1784 error = 0; 1785 1786 out: 1787 splx(s); 1788 return(error); 1789 } 1790 1791 /* 1792 * Put our response to an Adapter Initialed Fib on the response queue 1793 */ 1794 static int 1795 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 1796 { 1797 u_int32_t pi, ci; 1798 int s, error; 1799 u_int32_t fib_size; 1800 u_int32_t fib_addr; 1801 1802 debug_called(1); 1803 1804 /* Tell the adapter where the FIB is */ 1805 fib_size = fib->Header.Size; 1806 fib_addr = fib->Header.SenderFibAddress; 1807 fib->Header.ReceiverFibAddress = fib_addr; 1808 1809 s = splbio(); 1810 1811 /* get the producer/consumer indices */ 1812 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 1813 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 1814 1815 /* wrap the queue? */ 1816 if (pi >= aac_qinfo[queue].size) 1817 pi = 0; 1818 1819 /* check for queue full */ 1820 if ((pi + 1) == ci) { 1821 error = EBUSY; 1822 goto out; 1823 } 1824 1825 /* populate queue entry */ 1826 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 1827 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 1828 1829 /* update producer index */ 1830 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 1831 1832 /* notify the adapter if we know how */ 1833 if (aac_qinfo[queue].notify != 0) 1834 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 1835 1836 error = 0; 1837 1838 out: 1839 splx(s); 1840 return(error); 1841 } 1842 1843 /* 1844 * Check for commands that have been outstanding for a suspiciously long time, 1845 * and complain about them. 1846 */ 1847 static void 1848 aac_timeout(struct aac_softc *sc) 1849 { 1850 int s; 1851 struct aac_command *cm; 1852 time_t deadline; 1853 1854 /* 1855 * Traverse the busy command list, bitch about late commands once 1856 * only. 1857 */ 1858 deadline = time_second - AAC_CMD_TIMEOUT; 1859 s = splbio(); 1860 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 1861 if ((cm->cm_timestamp < deadline) 1862 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 1863 cm->cm_flags |= AAC_CMD_TIMEDOUT; 1864 device_printf(sc->aac_dev, 1865 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 1866 cm, (int)(time_second-cm->cm_timestamp)); 1867 AAC_PRINT_FIB(sc, cm->cm_fib); 1868 } 1869 } 1870 splx(s); 1871 1872 return; 1873 } 1874 1875 /* 1876 * Interface Function Vectors 1877 */ 1878 1879 /* 1880 * Read the current firmware status word. 1881 */ 1882 static int 1883 aac_sa_get_fwstatus(struct aac_softc *sc) 1884 { 1885 debug_called(3); 1886 1887 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 1888 } 1889 1890 static int 1891 aac_rx_get_fwstatus(struct aac_softc *sc) 1892 { 1893 debug_called(3); 1894 1895 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 1896 } 1897 1898 static int 1899 aac_fa_get_fwstatus(struct aac_softc *sc) 1900 { 1901 int val; 1902 1903 debug_called(3); 1904 1905 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 1906 return (val); 1907 } 1908 1909 /* 1910 * Notify the controller of a change in a given queue 1911 */ 1912 1913 static void 1914 aac_sa_qnotify(struct aac_softc *sc, int qbit) 1915 { 1916 debug_called(3); 1917 1918 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 1919 } 1920 1921 static void 1922 aac_rx_qnotify(struct aac_softc *sc, int qbit) 1923 { 1924 debug_called(3); 1925 1926 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 1927 } 1928 1929 static void 1930 aac_fa_qnotify(struct aac_softc *sc, int qbit) 1931 { 1932 debug_called(3); 1933 1934 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 1935 AAC_FA_HACK(sc); 1936 } 1937 1938 /* 1939 * Get the interrupt reason bits 1940 */ 1941 static int 1942 aac_sa_get_istatus(struct aac_softc *sc) 1943 { 1944 debug_called(3); 1945 1946 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 1947 } 1948 1949 static int 1950 aac_rx_get_istatus(struct aac_softc *sc) 1951 { 1952 debug_called(3); 1953 1954 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 1955 } 1956 1957 static int 1958 aac_fa_get_istatus(struct aac_softc *sc) 1959 { 1960 int val; 1961 1962 debug_called(3); 1963 1964 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 1965 return (val); 1966 } 1967 1968 /* 1969 * Clear some interrupt reason bits 1970 */ 1971 static void 1972 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 1973 { 1974 debug_called(3); 1975 1976 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 1977 } 1978 1979 static void 1980 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 1981 { 1982 debug_called(3); 1983 1984 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 1985 } 1986 1987 static void 1988 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 1989 { 1990 debug_called(3); 1991 1992 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 1993 AAC_FA_HACK(sc); 1994 } 1995 1996 /* 1997 * Populate the mailbox and set the command word 1998 */ 1999 static void 2000 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2001 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2002 { 2003 debug_called(4); 2004 2005 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 2006 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2007 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2008 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2009 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2010 } 2011 2012 static void 2013 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2014 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2015 { 2016 debug_called(4); 2017 2018 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 2019 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2020 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2021 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2022 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2023 } 2024 2025 static void 2026 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2027 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2028 { 2029 debug_called(4); 2030 2031 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 2032 AAC_FA_HACK(sc); 2033 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 2034 AAC_FA_HACK(sc); 2035 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 2036 AAC_FA_HACK(sc); 2037 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 2038 AAC_FA_HACK(sc); 2039 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 2040 AAC_FA_HACK(sc); 2041 } 2042 2043 /* 2044 * Fetch the immediate command status word 2045 */ 2046 static int 2047 aac_sa_get_mailboxstatus(struct aac_softc *sc) 2048 { 2049 debug_called(4); 2050 2051 return(AAC_GETREG4(sc, AAC_SA_MAILBOX)); 2052 } 2053 2054 static int 2055 aac_rx_get_mailboxstatus(struct aac_softc *sc) 2056 { 2057 debug_called(4); 2058 2059 return(AAC_GETREG4(sc, AAC_RX_MAILBOX)); 2060 } 2061 2062 static int 2063 aac_fa_get_mailboxstatus(struct aac_softc *sc) 2064 { 2065 int val; 2066 2067 debug_called(4); 2068 2069 val = AAC_GETREG4(sc, AAC_FA_MAILBOX); 2070 return (val); 2071 } 2072 2073 /* 2074 * Set/clear interrupt masks 2075 */ 2076 static void 2077 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2078 { 2079 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2080 2081 if (enable) { 2082 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2083 } else { 2084 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2085 } 2086 } 2087 2088 static void 2089 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2090 { 2091 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2092 2093 if (enable) { 2094 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2095 } else { 2096 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2097 } 2098 } 2099 2100 static void 2101 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2102 { 2103 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2104 2105 if (enable) { 2106 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2107 AAC_FA_HACK(sc); 2108 } else { 2109 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2110 AAC_FA_HACK(sc); 2111 } 2112 } 2113 2114 /* 2115 * Debugging and Diagnostics 2116 */ 2117 2118 /* 2119 * Print some information about the controller. 2120 */ 2121 static void 2122 aac_describe_controller(struct aac_softc *sc) 2123 { 2124 struct aac_fib *fib; 2125 struct aac_adapter_info *info; 2126 2127 debug_called(2); 2128 2129 aac_alloc_sync_fib(sc, &fib, 0); 2130 2131 fib->data[0] = 0; 2132 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2133 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2134 aac_release_sync_fib(sc); 2135 return; 2136 } 2137 info = (struct aac_adapter_info *)&fib->data[0]; 2138 2139 device_printf(sc->aac_dev, "%s %dMHz, %dMB cache memory, %s\n", 2140 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2141 info->ClockSpeed, info->BufferMem / (1024 * 1024), 2142 aac_describe_code(aac_battery_platform, 2143 info->batteryPlatform)); 2144 2145 /* save the kernel revision structure for later use */ 2146 sc->aac_revision = info->KernelRevision; 2147 device_printf(sc->aac_dev, "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2148 info->KernelRevision.external.comp.major, 2149 info->KernelRevision.external.comp.minor, 2150 info->KernelRevision.external.comp.dash, 2151 info->KernelRevision.buildNumber, 2152 (u_int32_t)(info->SerialNumber & 0xffffff)); 2153 2154 aac_release_sync_fib(sc); 2155 } 2156 2157 /* 2158 * Look up a text description of a numeric error code and return a pointer to 2159 * same. 2160 */ 2161 static char * 2162 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2163 { 2164 int i; 2165 2166 for (i = 0; table[i].string != NULL; i++) 2167 if (table[i].code == code) 2168 return(table[i].string); 2169 return(table[i + 1].string); 2170 } 2171 2172 /* 2173 * Management Interface 2174 */ 2175 2176 static int 2177 aac_open(dev_t dev, int flags, int fmt, d_thread_t *td) 2178 { 2179 struct aac_softc *sc; 2180 2181 debug_called(2); 2182 2183 sc = dev->si_drv1; 2184 2185 /* Check to make sure the device isn't already open */ 2186 if (sc->aac_state & AAC_STATE_OPEN) { 2187 return EBUSY; 2188 } 2189 sc->aac_state |= AAC_STATE_OPEN; 2190 2191 return 0; 2192 } 2193 2194 static int 2195 aac_close(dev_t dev, int flags, int fmt, d_thread_t *td) 2196 { 2197 struct aac_softc *sc; 2198 2199 debug_called(2); 2200 2201 sc = dev->si_drv1; 2202 2203 /* Mark this unit as no longer open */ 2204 sc->aac_state &= ~AAC_STATE_OPEN; 2205 2206 return 0; 2207 } 2208 2209 static int 2210 aac_ioctl(dev_t dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2211 { 2212 union aac_statrequest *as; 2213 struct aac_softc *sc; 2214 int error = 0; 2215 int i; 2216 2217 debug_called(2); 2218 2219 as = (union aac_statrequest *)arg; 2220 sc = dev->si_drv1; 2221 2222 switch (cmd) { 2223 case AACIO_STATS: 2224 switch (as->as_item) { 2225 case AACQ_FREE: 2226 case AACQ_BIO: 2227 case AACQ_READY: 2228 case AACQ_BUSY: 2229 case AACQ_COMPLETE: 2230 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2231 sizeof(struct aac_qstat)); 2232 break; 2233 default: 2234 error = ENOENT; 2235 break; 2236 } 2237 break; 2238 2239 case FSACTL_SENDFIB: 2240 arg = *(caddr_t*)arg; 2241 case FSACTL_LNX_SENDFIB: 2242 debug(1, "FSACTL_SENDFIB"); 2243 error = aac_ioctl_sendfib(sc, arg); 2244 break; 2245 case FSACTL_AIF_THREAD: 2246 case FSACTL_LNX_AIF_THREAD: 2247 debug(1, "FSACTL_AIF_THREAD"); 2248 error = EINVAL; 2249 break; 2250 case FSACTL_OPEN_GET_ADAPTER_FIB: 2251 arg = *(caddr_t*)arg; 2252 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2253 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2254 /* 2255 * Pass the caller out an AdapterFibContext. 2256 * 2257 * Note that because we only support one opener, we 2258 * basically ignore this. Set the caller's context to a magic 2259 * number just in case. 2260 * 2261 * The Linux code hands the driver a pointer into kernel space, 2262 * and then trusts it when the caller hands it back. Aiee! 2263 * Here, we give it the proc pointer of the per-adapter aif 2264 * thread. It's only used as a sanity check in other calls. 2265 */ 2266 i = (int)sc->aifthread; 2267 error = copyout(&i, arg, sizeof(i)); 2268 break; 2269 case FSACTL_GET_NEXT_ADAPTER_FIB: 2270 arg = *(caddr_t*)arg; 2271 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2272 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2273 error = aac_getnext_aif(sc, arg); 2274 break; 2275 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2276 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2277 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2278 /* don't do anything here */ 2279 break; 2280 case FSACTL_MINIPORT_REV_CHECK: 2281 arg = *(caddr_t*)arg; 2282 case FSACTL_LNX_MINIPORT_REV_CHECK: 2283 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2284 error = aac_rev_check(sc, arg); 2285 break; 2286 case FSACTL_QUERY_DISK: 2287 arg = *(caddr_t*)arg; 2288 case FSACTL_LNX_QUERY_DISK: 2289 debug(1, "FSACTL_QUERY_DISK"); 2290 error = aac_query_disk(sc, arg); 2291 break; 2292 case FSACTL_DELETE_DISK: 2293 case FSACTL_LNX_DELETE_DISK: 2294 /* 2295 * We don't trust the underland to tell us when to delete a 2296 * container, rather we rely on an AIF coming from the 2297 * controller 2298 */ 2299 error = 0; 2300 break; 2301 default: 2302 debug(1, "unsupported cmd 0x%lx\n", cmd); 2303 error = EINVAL; 2304 break; 2305 } 2306 return(error); 2307 } 2308 2309 static int 2310 aac_poll(dev_t dev, int poll_events, d_thread_t *td) 2311 { 2312 struct aac_softc *sc; 2313 int revents; 2314 2315 sc = dev->si_drv1; 2316 revents = 0; 2317 2318 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2319 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2320 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2321 revents |= poll_events & (POLLIN | POLLRDNORM); 2322 } 2323 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2324 2325 if (revents == 0) { 2326 if (poll_events & (POLLIN | POLLRDNORM)) 2327 selrecord(td, &sc->rcv_select); 2328 } 2329 2330 return (revents); 2331 } 2332 2333 /* 2334 * Send a FIB supplied from userspace 2335 */ 2336 static int 2337 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2338 { 2339 struct aac_command *cm; 2340 int size, error; 2341 2342 debug_called(2); 2343 2344 cm = NULL; 2345 2346 /* 2347 * Get a command 2348 */ 2349 if (aac_alloc_command(sc, &cm)) { 2350 error = EBUSY; 2351 goto out; 2352 } 2353 2354 /* 2355 * Fetch the FIB header, then re-copy to get data as well. 2356 */ 2357 if ((error = copyin(ufib, cm->cm_fib, 2358 sizeof(struct aac_fib_header))) != 0) 2359 goto out; 2360 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 2361 if (size > sizeof(struct aac_fib)) { 2362 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 2363 size, sizeof(struct aac_fib)); 2364 size = sizeof(struct aac_fib); 2365 } 2366 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 2367 goto out; 2368 cm->cm_fib->Header.Size = size; 2369 cm->cm_timestamp = time_second; 2370 2371 /* 2372 * Pass the FIB to the controller, wait for it to complete. 2373 */ 2374 if ((error = aac_wait_command(cm, 30)) != 0) { /* XXX user timeout? */ 2375 device_printf(sc->aac_dev, 2376 "aac_wait_command return %d\n", error); 2377 goto out; 2378 } 2379 2380 /* 2381 * Copy the FIB and data back out to the caller. 2382 */ 2383 size = cm->cm_fib->Header.Size; 2384 if (size > sizeof(struct aac_fib)) { 2385 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 2386 size, sizeof(struct aac_fib)); 2387 size = sizeof(struct aac_fib); 2388 } 2389 error = copyout(cm->cm_fib, ufib, size); 2390 2391 out: 2392 if (cm != NULL) { 2393 aac_release_command(cm); 2394 } 2395 return(error); 2396 } 2397 2398 /* 2399 * Handle an AIF sent to us by the controller; queue it for later reference. 2400 * If the queue fills up, then drop the older entries. 2401 */ 2402 static void 2403 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 2404 { 2405 struct aac_aif_command *aif; 2406 struct aac_container *co, *co_next; 2407 struct aac_mntinfo *mi; 2408 struct aac_mntinforesp *mir = NULL; 2409 u_int16_t rsize; 2410 int next, found; 2411 int added = 0, i = 0; 2412 2413 debug_called(2); 2414 2415 aif = (struct aac_aif_command*)&fib->data[0]; 2416 aac_print_aif(sc, aif); 2417 2418 /* Is it an event that we should care about? */ 2419 switch (aif->command) { 2420 case AifCmdEventNotify: 2421 switch (aif->data.EN.type) { 2422 case AifEnAddContainer: 2423 case AifEnDeleteContainer: 2424 /* 2425 * A container was added or deleted, but the message 2426 * doesn't tell us anything else! Re-enumerate the 2427 * containers and sort things out. 2428 */ 2429 aac_alloc_sync_fib(sc, &fib, 0); 2430 mi = (struct aac_mntinfo *)&fib->data[0]; 2431 do { 2432 /* 2433 * Ask the controller for its containers one at 2434 * a time. 2435 * XXX What if the controller's list changes 2436 * midway through this enumaration? 2437 * XXX This should be done async. 2438 */ 2439 bzero(mi, sizeof(struct aac_mntinfo)); 2440 mi->Command = VM_NameServe; 2441 mi->MntType = FT_FILESYS; 2442 mi->MntCount = i; 2443 rsize = sizeof(mir); 2444 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 2445 sizeof(struct aac_mntinfo))) { 2446 debug(2, "Error probing container %d\n", 2447 i); 2448 continue; 2449 } 2450 mir = (struct aac_mntinforesp *)&fib->data[0]; 2451 /* 2452 * Check the container against our list. 2453 * co->co_found was already set to 0 in a 2454 * previous run. 2455 */ 2456 if ((mir->Status == ST_OK) && 2457 (mir->MntTable[0].VolType != CT_NONE)) { 2458 found = 0; 2459 TAILQ_FOREACH(co, 2460 &sc->aac_container_tqh, 2461 co_link) { 2462 if (co->co_mntobj.ObjectId == 2463 mir->MntTable[0].ObjectId) { 2464 co->co_found = 1; 2465 found = 1; 2466 break; 2467 } 2468 } 2469 /* 2470 * If the container matched, continue 2471 * in the list. 2472 */ 2473 if (found) { 2474 i++; 2475 continue; 2476 } 2477 2478 /* 2479 * This is a new container. Do all the 2480 * appropriate things to set it up. 2481 */ 2482 aac_add_container(sc, mir, 1); 2483 added = 1; 2484 } 2485 i++; 2486 } while ((i < mir->MntRespCount) && 2487 (i < AAC_MAX_CONTAINERS)); 2488 aac_release_sync_fib(sc); 2489 2490 /* 2491 * Go through our list of containers and see which ones 2492 * were not marked 'found'. Since the controller didn't 2493 * list them they must have been deleted. Do the 2494 * appropriate steps to destroy the device. Also reset 2495 * the co->co_found field. 2496 */ 2497 co = TAILQ_FIRST(&sc->aac_container_tqh); 2498 while (co != NULL) { 2499 if (co->co_found == 0) { 2500 device_delete_child(sc->aac_dev, 2501 co->co_disk); 2502 co_next = TAILQ_NEXT(co, co_link); 2503 AAC_LOCK_ACQUIRE(&sc-> 2504 aac_container_lock); 2505 TAILQ_REMOVE(&sc->aac_container_tqh, co, 2506 co_link); 2507 AAC_LOCK_RELEASE(&sc-> 2508 aac_container_lock); 2509 FREE(co, M_AACBUF); 2510 co = co_next; 2511 } else { 2512 co->co_found = 0; 2513 co = TAILQ_NEXT(co, co_link); 2514 } 2515 } 2516 2517 /* Attach the newly created containers */ 2518 if (added) 2519 bus_generic_attach(sc->aac_dev); 2520 2521 break; 2522 2523 default: 2524 break; 2525 } 2526 2527 default: 2528 break; 2529 } 2530 2531 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 2532 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2533 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 2534 if (next != sc->aac_aifq_tail) { 2535 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 2536 sc->aac_aifq_head = next; 2537 2538 /* On the off chance that someone is sleeping for an aif... */ 2539 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 2540 wakeup(sc->aac_aifq); 2541 /* Wakeup any poll()ers */ 2542 selwakeup(&sc->rcv_select); 2543 } 2544 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2545 2546 return; 2547 } 2548 2549 /* 2550 * Return the Revision of the driver to userspace and check to see if the 2551 * userspace app is possibly compatible. This is extremely bogus since 2552 * our driver doesn't follow Adaptec's versioning system. Cheat by just 2553 * returning what the card reported. 2554 */ 2555 static int 2556 aac_rev_check(struct aac_softc *sc, caddr_t udata) 2557 { 2558 struct aac_rev_check rev_check; 2559 struct aac_rev_check_resp rev_check_resp; 2560 int error = 0; 2561 2562 debug_called(2); 2563 2564 /* 2565 * Copyin the revision struct from userspace 2566 */ 2567 if ((error = copyin(udata, (caddr_t)&rev_check, 2568 sizeof(struct aac_rev_check))) != 0) { 2569 return error; 2570 } 2571 2572 debug(2, "Userland revision= %d\n", 2573 rev_check.callingRevision.buildNumber); 2574 2575 /* 2576 * Doctor up the response struct. 2577 */ 2578 rev_check_resp.possiblyCompatible = 1; 2579 rev_check_resp.adapterSWRevision.external.ul = 2580 sc->aac_revision.external.ul; 2581 rev_check_resp.adapterSWRevision.buildNumber = 2582 sc->aac_revision.buildNumber; 2583 2584 return(copyout((caddr_t)&rev_check_resp, udata, 2585 sizeof(struct aac_rev_check_resp))); 2586 } 2587 2588 /* 2589 * Pass the caller the next AIF in their queue 2590 */ 2591 static int 2592 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 2593 { 2594 struct get_adapter_fib_ioctl agf; 2595 int error, s; 2596 2597 debug_called(2); 2598 2599 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 2600 2601 /* 2602 * Check the magic number that we gave the caller. 2603 */ 2604 if (agf.AdapterFibContext != (int)sc->aifthread) { 2605 error = EFAULT; 2606 } else { 2607 2608 s = splbio(); 2609 error = aac_return_aif(sc, agf.AifFib); 2610 2611 if ((error == EAGAIN) && (agf.Wait)) { 2612 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 2613 while (error == EAGAIN) { 2614 error = tsleep(sc->aac_aifq, PRIBIO | 2615 PCATCH, "aacaif", 0); 2616 if (error == 0) 2617 error = aac_return_aif(sc, 2618 agf.AifFib); 2619 } 2620 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 2621 } 2622 splx(s); 2623 } 2624 } 2625 return(error); 2626 } 2627 2628 /* 2629 * Hand the next AIF off the top of the queue out to userspace. 2630 */ 2631 static int 2632 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 2633 { 2634 int error; 2635 2636 debug_called(2); 2637 2638 AAC_LOCK_ACQUIRE(&sc->aac_aifq_lock); 2639 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 2640 error = EAGAIN; 2641 } else { 2642 error = copyout(&sc->aac_aifq[sc->aac_aifq_tail], uptr, 2643 sizeof(struct aac_aif_command)); 2644 if (error) 2645 device_printf(sc->aac_dev, 2646 "aac_return_aif: copyout returned %d\n", error); 2647 if (!error) 2648 sc->aac_aifq_tail = (sc->aac_aifq_tail + 1) % 2649 AAC_AIFQ_LENGTH; 2650 } 2651 AAC_LOCK_RELEASE(&sc->aac_aifq_lock); 2652 return(error); 2653 } 2654 2655 /* 2656 * Give the userland some information about the container. The AAC arch 2657 * expects the driver to be a SCSI passthrough type driver, so it expects 2658 * the containers to have b:t:l numbers. Fake it. 2659 */ 2660 static int 2661 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 2662 { 2663 struct aac_query_disk query_disk; 2664 struct aac_container *co; 2665 struct aac_disk *disk; 2666 int error, id; 2667 2668 debug_called(2); 2669 2670 disk = NULL; 2671 2672 error = copyin(uptr, (caddr_t)&query_disk, 2673 sizeof(struct aac_query_disk)); 2674 if (error) 2675 return (error); 2676 2677 id = query_disk.ContainerNumber; 2678 if (id == -1) 2679 return (EINVAL); 2680 2681 AAC_LOCK_ACQUIRE(&sc->aac_container_lock); 2682 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 2683 if (co->co_mntobj.ObjectId == id) 2684 break; 2685 } 2686 2687 if (co == NULL) { 2688 query_disk.Valid = 0; 2689 query_disk.Locked = 0; 2690 query_disk.Deleted = 1; /* XXX is this right? */ 2691 } else { 2692 disk = device_get_softc(co->co_disk); 2693 query_disk.Valid = 1; 2694 query_disk.Locked = 2695 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 2696 query_disk.Deleted = 0; 2697 query_disk.Bus = device_get_unit(sc->aac_dev); 2698 query_disk.Target = disk->unit; 2699 query_disk.Lun = 0; 2700 query_disk.UnMapped = 0; 2701 bcopy(disk->ad_dev_t->si_name, 2702 &query_disk.diskDeviceName[0], 10); 2703 } 2704 AAC_LOCK_RELEASE(&sc->aac_container_lock); 2705 2706 error = copyout((caddr_t)&query_disk, uptr, 2707 sizeof(struct aac_query_disk)); 2708 2709 return (error); 2710 } 2711 2712 static void 2713 aac_get_bus_info(struct aac_softc *sc) 2714 { 2715 struct aac_fib *fib; 2716 struct aac_ctcfg *c_cmd; 2717 struct aac_ctcfg_resp *c_resp; 2718 struct aac_vmioctl *vmi; 2719 struct aac_vmi_businf_resp *vmi_resp; 2720 struct aac_getbusinf businfo; 2721 struct aac_sim *caminf; 2722 device_t child; 2723 int i, found, error; 2724 2725 aac_alloc_sync_fib(sc, &fib, 0); 2726 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 2727 bzero(c_cmd, sizeof(struct aac_ctcfg)); 2728 2729 c_cmd->Command = VM_ContainerConfig; 2730 c_cmd->cmd = CT_GET_SCSI_METHOD; 2731 c_cmd->param = 0; 2732 2733 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2734 sizeof(struct aac_ctcfg)); 2735 if (error) { 2736 device_printf(sc->aac_dev, "Error %d sending " 2737 "VM_ContainerConfig command\n", error); 2738 aac_release_sync_fib(sc); 2739 return; 2740 } 2741 2742 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 2743 if (c_resp->Status != ST_OK) { 2744 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 2745 c_resp->Status); 2746 aac_release_sync_fib(sc); 2747 return; 2748 } 2749 2750 sc->scsi_method_id = c_resp->param; 2751 2752 vmi = (struct aac_vmioctl *)&fib->data[0]; 2753 bzero(vmi, sizeof(struct aac_vmioctl)); 2754 2755 vmi->Command = VM_Ioctl; 2756 vmi->ObjType = FT_DRIVE; 2757 vmi->MethId = sc->scsi_method_id; 2758 vmi->ObjId = 0; 2759 vmi->IoctlCmd = GetBusInfo; 2760 2761 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 2762 sizeof(struct aac_vmioctl)); 2763 if (error) { 2764 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 2765 error); 2766 aac_release_sync_fib(sc); 2767 return; 2768 } 2769 2770 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 2771 if (vmi_resp->Status != ST_OK) { 2772 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 2773 vmi_resp->Status); 2774 aac_release_sync_fib(sc); 2775 return; 2776 } 2777 2778 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 2779 aac_release_sync_fib(sc); 2780 2781 found = 0; 2782 for (i = 0; i < businfo.BusCount; i++) { 2783 if (businfo.BusValid[i] != AAC_BUS_VALID) 2784 continue; 2785 2786 caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim), 2787 M_AACBUF, M_NOWAIT | M_ZERO); 2788 if (caminf == NULL) 2789 continue; 2790 2791 child = device_add_child(sc->aac_dev, "aacp", -1); 2792 if (child == NULL) { 2793 device_printf(sc->aac_dev, "device_add_child failed\n"); 2794 continue; 2795 } 2796 2797 caminf->TargetsPerBus = businfo.TargetsPerBus; 2798 caminf->BusNumber = i; 2799 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 2800 caminf->aac_sc = sc; 2801 caminf->sim_dev = child; 2802 2803 device_set_ivars(child, caminf); 2804 device_set_desc(child, "SCSI Passthrough Bus"); 2805 TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link); 2806 2807 found = 1; 2808 } 2809 2810 if (found) 2811 bus_generic_attach(sc->aac_dev); 2812 2813 return; 2814 } 2815