1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 35 */ 36 #define AAC_DRIVERNAME "aac" 37 38 #include "opt_aac.h" 39 40 /* #include <stddef.h> */ 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/malloc.h> 44 #include <sys/kernel.h> 45 #include <sys/kthread.h> 46 #include <sys/sysctl.h> 47 #include <sys/poll.h> 48 #include <sys/ioccom.h> 49 50 #include <sys/bus.h> 51 #include <sys/conf.h> 52 #include <sys/signalvar.h> 53 #include <sys/time.h> 54 #include <sys/eventhandler.h> 55 #include <sys/rman.h> 56 57 #include <machine/bus.h> 58 #include <sys/bus_dma.h> 59 #include <machine/resource.h> 60 61 #include <dev/pci/pcireg.h> 62 #include <dev/pci/pcivar.h> 63 64 #include <dev/aac/aacreg.h> 65 #include <sys/aac_ioctl.h> 66 #include <dev/aac/aacvar.h> 67 #include <dev/aac/aac_tables.h> 68 69 static void aac_startup(void *arg); 70 static void aac_add_container(struct aac_softc *sc, 71 struct aac_mntinforesp *mir, int f); 72 static void aac_get_bus_info(struct aac_softc *sc); 73 static void aac_daemon(void *arg); 74 75 /* Command Processing */ 76 static void aac_timeout(struct aac_softc *sc); 77 static void aac_complete(void *context, int pending); 78 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 79 static void aac_bio_complete(struct aac_command *cm); 80 static int aac_wait_command(struct aac_command *cm); 81 static void aac_command_thread(struct aac_softc *sc); 82 83 /* Command Buffer Management */ 84 static void aac_map_command_sg(void *arg, bus_dma_segment_t *segs, 85 int nseg, int error); 86 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 87 int nseg, int error); 88 static int aac_alloc_commands(struct aac_softc *sc); 89 static void aac_free_commands(struct aac_softc *sc); 90 static void aac_unmap_command(struct aac_command *cm); 91 92 /* Hardware Interface */ 93 static int aac_alloc(struct aac_softc *sc); 94 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 95 int error); 96 static int aac_check_firmware(struct aac_softc *sc); 97 static int aac_init(struct aac_softc *sc); 98 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 99 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 100 u_int32_t arg3, u_int32_t *sp); 101 static int aac_setup_intr(struct aac_softc *sc); 102 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 103 struct aac_command *cm); 104 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 105 u_int32_t *fib_size, struct aac_fib **fib_addr); 106 static int aac_enqueue_response(struct aac_softc *sc, int queue, 107 struct aac_fib *fib); 108 109 /* StrongARM interface */ 110 static int aac_sa_get_fwstatus(struct aac_softc *sc); 111 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 112 static int aac_sa_get_istatus(struct aac_softc *sc); 113 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 114 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 115 u_int32_t arg0, u_int32_t arg1, 116 u_int32_t arg2, u_int32_t arg3); 117 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb); 118 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 119 120 const struct aac_interface aac_sa_interface = { 121 aac_sa_get_fwstatus, 122 aac_sa_qnotify, 123 aac_sa_get_istatus, 124 aac_sa_clear_istatus, 125 aac_sa_set_mailbox, 126 aac_sa_get_mailbox, 127 aac_sa_set_interrupts, 128 NULL, NULL, NULL 129 }; 130 131 /* i960Rx interface */ 132 static int aac_rx_get_fwstatus(struct aac_softc *sc); 133 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 134 static int aac_rx_get_istatus(struct aac_softc *sc); 135 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 136 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 137 u_int32_t arg0, u_int32_t arg1, 138 u_int32_t arg2, u_int32_t arg3); 139 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb); 140 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 141 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm); 142 static int aac_rx_get_outb_queue(struct aac_softc *sc); 143 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index); 144 145 const struct aac_interface aac_rx_interface = { 146 aac_rx_get_fwstatus, 147 aac_rx_qnotify, 148 aac_rx_get_istatus, 149 aac_rx_clear_istatus, 150 aac_rx_set_mailbox, 151 aac_rx_get_mailbox, 152 aac_rx_set_interrupts, 153 aac_rx_send_command, 154 aac_rx_get_outb_queue, 155 aac_rx_set_outb_queue 156 }; 157 158 /* Rocket/MIPS interface */ 159 static int aac_rkt_get_fwstatus(struct aac_softc *sc); 160 static void aac_rkt_qnotify(struct aac_softc *sc, int qbit); 161 static int aac_rkt_get_istatus(struct aac_softc *sc); 162 static void aac_rkt_clear_istatus(struct aac_softc *sc, int mask); 163 static void aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, 164 u_int32_t arg0, u_int32_t arg1, 165 u_int32_t arg2, u_int32_t arg3); 166 static int aac_rkt_get_mailbox(struct aac_softc *sc, int mb); 167 static void aac_rkt_set_interrupts(struct aac_softc *sc, int enable); 168 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm); 169 static int aac_rkt_get_outb_queue(struct aac_softc *sc); 170 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index); 171 172 const struct aac_interface aac_rkt_interface = { 173 aac_rkt_get_fwstatus, 174 aac_rkt_qnotify, 175 aac_rkt_get_istatus, 176 aac_rkt_clear_istatus, 177 aac_rkt_set_mailbox, 178 aac_rkt_get_mailbox, 179 aac_rkt_set_interrupts, 180 aac_rkt_send_command, 181 aac_rkt_get_outb_queue, 182 aac_rkt_set_outb_queue 183 }; 184 185 /* Debugging and Diagnostics */ 186 static void aac_describe_controller(struct aac_softc *sc); 187 static const char *aac_describe_code(const struct aac_code_lookup *table, 188 u_int32_t code); 189 190 /* Management Interface */ 191 static d_open_t aac_open; 192 static d_ioctl_t aac_ioctl; 193 static d_poll_t aac_poll; 194 static void aac_cdevpriv_dtor(void *arg); 195 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 196 static int aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg); 197 static void aac_handle_aif(struct aac_softc *sc, 198 struct aac_fib *fib); 199 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 200 static int aac_open_aif(struct aac_softc *sc, caddr_t arg); 201 static int aac_close_aif(struct aac_softc *sc, caddr_t arg); 202 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 203 static int aac_return_aif(struct aac_softc *sc, 204 struct aac_fib_context *ctx, caddr_t uptr); 205 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 206 static int aac_get_pci_info(struct aac_softc *sc, caddr_t uptr); 207 static int aac_supported_features(struct aac_softc *sc, caddr_t uptr); 208 static void aac_ioctl_event(struct aac_softc *sc, 209 struct aac_event *event, void *arg); 210 static struct aac_mntinforesp * 211 aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid); 212 213 static struct cdevsw aac_cdevsw = { 214 .d_version = D_VERSION, 215 .d_flags = D_NEEDGIANT, 216 .d_open = aac_open, 217 .d_ioctl = aac_ioctl, 218 .d_poll = aac_poll, 219 .d_name = "aac", 220 }; 221 222 static MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 223 224 /* sysctl node */ 225 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 226 227 /* 228 * Device Interface 229 */ 230 231 /* 232 * Initialize the controller and softc 233 */ 234 int 235 aac_attach(struct aac_softc *sc) 236 { 237 int error, unit; 238 239 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 240 241 /* 242 * Initialize per-controller queues. 243 */ 244 aac_initq_free(sc); 245 aac_initq_ready(sc); 246 aac_initq_busy(sc); 247 aac_initq_bio(sc); 248 249 /* 250 * Initialize command-completion task. 251 */ 252 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 253 254 /* mark controller as suspended until we get ourselves organised */ 255 sc->aac_state |= AAC_STATE_SUSPEND; 256 257 /* 258 * Check that the firmware on the card is supported. 259 */ 260 if ((error = aac_check_firmware(sc)) != 0) 261 return(error); 262 263 /* 264 * Initialize locks 265 */ 266 mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF); 267 mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF); 268 mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF); 269 TAILQ_INIT(&sc->aac_container_tqh); 270 TAILQ_INIT(&sc->aac_ev_cmfree); 271 272 /* Initialize the clock daemon callout. */ 273 callout_init_mtx(&sc->aac_daemontime, &sc->aac_io_lock, 0); 274 275 /* 276 * Initialize the adapter. 277 */ 278 if ((error = aac_alloc(sc)) != 0) 279 return(error); 280 if ((error = aac_init(sc)) != 0) 281 return(error); 282 283 /* 284 * Allocate and connect our interrupt. 285 */ 286 if ((error = aac_setup_intr(sc)) != 0) 287 return(error); 288 289 /* 290 * Print a little information about the controller. 291 */ 292 aac_describe_controller(sc); 293 294 /* 295 * Add sysctls. 296 */ 297 SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->aac_dev), 298 SYSCTL_CHILDREN(device_get_sysctl_tree(sc->aac_dev)), 299 OID_AUTO, "firmware_build", CTLFLAG_RD, 300 &sc->aac_revision.buildNumber, 0, 301 "firmware build number"); 302 303 /* 304 * Register to probe our containers later. 305 */ 306 sc->aac_ich.ich_func = aac_startup; 307 sc->aac_ich.ich_arg = sc; 308 if (config_intrhook_establish(&sc->aac_ich) != 0) { 309 device_printf(sc->aac_dev, 310 "can't establish configuration hook\n"); 311 return(ENXIO); 312 } 313 314 /* 315 * Make the control device. 316 */ 317 unit = device_get_unit(sc->aac_dev); 318 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR, 319 0640, "aac%d", unit); 320 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 321 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 322 sc->aac_dev_t->si_drv1 = sc; 323 324 /* Create the AIF thread */ 325 if (kproc_create((void(*)(void *))aac_command_thread, sc, 326 &sc->aifthread, 0, 0, "aac%daif", unit)) 327 panic("Could not create AIF thread"); 328 329 /* Register the shutdown method to only be called post-dump */ 330 if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, 331 sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL) 332 device_printf(sc->aac_dev, 333 "shutdown event registration failed\n"); 334 335 /* Register with CAM for the non-DASD devices */ 336 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) { 337 TAILQ_INIT(&sc->aac_sim_tqh); 338 aac_get_bus_info(sc); 339 } 340 341 mtx_lock(&sc->aac_io_lock); 342 callout_reset(&sc->aac_daemontime, 60 * hz, aac_daemon, sc); 343 mtx_unlock(&sc->aac_io_lock); 344 345 return(0); 346 } 347 348 static void 349 aac_daemon(void *arg) 350 { 351 struct timeval tv; 352 struct aac_softc *sc; 353 struct aac_fib *fib; 354 355 sc = arg; 356 mtx_assert(&sc->aac_io_lock, MA_OWNED); 357 358 if (callout_pending(&sc->aac_daemontime) || 359 callout_active(&sc->aac_daemontime) == 0) 360 return; 361 getmicrotime(&tv); 362 aac_alloc_sync_fib(sc, &fib); 363 *(uint32_t *)fib->data = tv.tv_sec; 364 aac_sync_fib(sc, SendHostTime, 0, fib, sizeof(uint32_t)); 365 aac_release_sync_fib(sc); 366 callout_schedule(&sc->aac_daemontime, 30 * 60 * hz); 367 } 368 369 void 370 aac_add_event(struct aac_softc *sc, struct aac_event *event) 371 { 372 373 switch (event->ev_type & AAC_EVENT_MASK) { 374 case AAC_EVENT_CMFREE: 375 TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links); 376 break; 377 default: 378 device_printf(sc->aac_dev, "aac_add event: unknown event %d\n", 379 event->ev_type); 380 break; 381 } 382 } 383 384 /* 385 * Request information of container #cid 386 */ 387 static struct aac_mntinforesp * 388 aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid) 389 { 390 struct aac_mntinfo *mi; 391 392 mi = (struct aac_mntinfo *)&fib->data[0]; 393 /* use 64-bit LBA if enabled */ 394 mi->Command = (sc->flags & AAC_FLAGS_LBA_64BIT) ? 395 VM_NameServe64 : VM_NameServe; 396 mi->MntType = FT_FILESYS; 397 mi->MntCount = cid; 398 399 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 400 sizeof(struct aac_mntinfo))) { 401 device_printf(sc->aac_dev, "Error probing container %d\n", cid); 402 return (NULL); 403 } 404 405 return ((struct aac_mntinforesp *)&fib->data[0]); 406 } 407 408 /* 409 * Probe for containers, create disks. 410 */ 411 static void 412 aac_startup(void *arg) 413 { 414 struct aac_softc *sc; 415 struct aac_fib *fib; 416 struct aac_mntinforesp *mir; 417 int count = 0, i = 0; 418 419 sc = (struct aac_softc *)arg; 420 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 421 422 /* disconnect ourselves from the intrhook chain */ 423 config_intrhook_disestablish(&sc->aac_ich); 424 425 mtx_lock(&sc->aac_io_lock); 426 aac_alloc_sync_fib(sc, &fib); 427 428 /* loop over possible containers */ 429 do { 430 if ((mir = aac_get_container_info(sc, fib, i)) == NULL) 431 continue; 432 if (i == 0) 433 count = mir->MntRespCount; 434 aac_add_container(sc, mir, 0); 435 i++; 436 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 437 438 aac_release_sync_fib(sc); 439 mtx_unlock(&sc->aac_io_lock); 440 441 /* poke the bus to actually attach the child devices */ 442 if (bus_generic_attach(sc->aac_dev)) 443 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 444 445 /* mark the controller up */ 446 sc->aac_state &= ~AAC_STATE_SUSPEND; 447 448 /* enable interrupts now */ 449 AAC_UNMASK_INTERRUPTS(sc); 450 } 451 452 /* 453 * Create a device to represent a new container 454 */ 455 static void 456 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 457 { 458 struct aac_container *co; 459 device_t child; 460 461 /* 462 * Check container volume type for validity. Note that many of 463 * the possible types may never show up. 464 */ 465 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 466 co = (struct aac_container *)malloc(sizeof *co, M_AACBUF, 467 M_NOWAIT | M_ZERO); 468 if (co == NULL) 469 panic("Out of memory?!"); 470 fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "id %x name '%.16s' size %u type %d", 471 mir->MntTable[0].ObjectId, 472 mir->MntTable[0].FileSystemName, 473 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 474 475 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 476 device_printf(sc->aac_dev, "device_add_child failed\n"); 477 else 478 device_set_ivars(child, co); 479 device_set_desc(child, aac_describe_code(aac_container_types, 480 mir->MntTable[0].VolType)); 481 co->co_disk = child; 482 co->co_found = f; 483 bcopy(&mir->MntTable[0], &co->co_mntobj, 484 sizeof(struct aac_mntobj)); 485 mtx_lock(&sc->aac_container_lock); 486 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 487 mtx_unlock(&sc->aac_container_lock); 488 } 489 } 490 491 /* 492 * Allocate resources associated with (sc) 493 */ 494 static int 495 aac_alloc(struct aac_softc *sc) 496 { 497 498 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 499 500 /* 501 * Create DMA tag for mapping buffers into controller-addressable space. 502 */ 503 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 504 1, 0, /* algnmnt, boundary */ 505 (sc->flags & AAC_FLAGS_SG_64BIT) ? 506 BUS_SPACE_MAXADDR : 507 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 508 BUS_SPACE_MAXADDR, /* highaddr */ 509 NULL, NULL, /* filter, filterarg */ 510 MAXBSIZE, /* maxsize */ 511 sc->aac_sg_tablesize, /* nsegments */ 512 MAXBSIZE, /* maxsegsize */ 513 BUS_DMA_ALLOCNOW, /* flags */ 514 busdma_lock_mutex, /* lockfunc */ 515 &sc->aac_io_lock, /* lockfuncarg */ 516 &sc->aac_buffer_dmat)) { 517 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n"); 518 return (ENOMEM); 519 } 520 521 /* 522 * Create DMA tag for mapping FIBs into controller-addressable space.. 523 */ 524 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 525 1, 0, /* algnmnt, boundary */ 526 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 527 BUS_SPACE_MAXADDR_32BIT : 528 0x7fffffff, /* lowaddr */ 529 BUS_SPACE_MAXADDR, /* highaddr */ 530 NULL, NULL, /* filter, filterarg */ 531 sc->aac_max_fibs_alloc * 532 sc->aac_max_fib_size, /* maxsize */ 533 1, /* nsegments */ 534 sc->aac_max_fibs_alloc * 535 sc->aac_max_fib_size, /* maxsize */ 536 0, /* flags */ 537 NULL, NULL, /* No locking needed */ 538 &sc->aac_fib_dmat)) { 539 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n"); 540 return (ENOMEM); 541 } 542 543 /* 544 * Create DMA tag for the common structure and allocate it. 545 */ 546 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 547 1, 0, /* algnmnt, boundary */ 548 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 549 BUS_SPACE_MAXADDR_32BIT : 550 0x7fffffff, /* lowaddr */ 551 BUS_SPACE_MAXADDR, /* highaddr */ 552 NULL, NULL, /* filter, filterarg */ 553 8192 + sizeof(struct aac_common), /* maxsize */ 554 1, /* nsegments */ 555 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 556 0, /* flags */ 557 NULL, NULL, /* No locking needed */ 558 &sc->aac_common_dmat)) { 559 device_printf(sc->aac_dev, 560 "can't allocate common structure DMA tag\n"); 561 return (ENOMEM); 562 } 563 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 564 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 565 device_printf(sc->aac_dev, "can't allocate common structure\n"); 566 return (ENOMEM); 567 } 568 569 /* 570 * Work around a bug in the 2120 and 2200 that cannot DMA commands 571 * below address 8192 in physical memory. 572 * XXX If the padding is not needed, can it be put to use instead 573 * of ignored? 574 */ 575 (void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 576 sc->aac_common, 8192 + sizeof(*sc->aac_common), 577 aac_common_map, sc, 0); 578 579 if (sc->aac_common_busaddr < 8192) { 580 sc->aac_common = (struct aac_common *) 581 ((uint8_t *)sc->aac_common + 8192); 582 sc->aac_common_busaddr += 8192; 583 } 584 bzero(sc->aac_common, sizeof(*sc->aac_common)); 585 586 /* Allocate some FIBs and associated command structs */ 587 TAILQ_INIT(&sc->aac_fibmap_tqh); 588 sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command), 589 M_AACBUF, M_WAITOK|M_ZERO); 590 while (sc->total_fibs < sc->aac_max_fibs) { 591 if (aac_alloc_commands(sc) != 0) 592 break; 593 } 594 if (sc->total_fibs == 0) 595 return (ENOMEM); 596 597 return (0); 598 } 599 600 /* 601 * Free all of the resources associated with (sc) 602 * 603 * Should not be called if the controller is active. 604 */ 605 void 606 aac_free(struct aac_softc *sc) 607 { 608 609 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 610 611 /* remove the control device */ 612 if (sc->aac_dev_t != NULL) 613 destroy_dev(sc->aac_dev_t); 614 615 /* throw away any FIB buffers, discard the FIB DMA tag */ 616 aac_free_commands(sc); 617 if (sc->aac_fib_dmat) 618 bus_dma_tag_destroy(sc->aac_fib_dmat); 619 620 free(sc->aac_commands, M_AACBUF); 621 622 /* destroy the common area */ 623 if (sc->aac_common) { 624 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 625 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 626 sc->aac_common_dmamap); 627 } 628 if (sc->aac_common_dmat) 629 bus_dma_tag_destroy(sc->aac_common_dmat); 630 631 /* disconnect the interrupt handler */ 632 if (sc->aac_intr) 633 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 634 if (sc->aac_irq != NULL) { 635 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, 636 rman_get_rid(sc->aac_irq), sc->aac_irq); 637 pci_release_msi(sc->aac_dev); 638 } 639 640 /* destroy data-transfer DMA tag */ 641 if (sc->aac_buffer_dmat) 642 bus_dma_tag_destroy(sc->aac_buffer_dmat); 643 644 /* destroy the parent DMA tag */ 645 if (sc->aac_parent_dmat) 646 bus_dma_tag_destroy(sc->aac_parent_dmat); 647 648 /* release the register window mapping */ 649 if (sc->aac_regs_res0 != NULL) 650 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 651 rman_get_rid(sc->aac_regs_res0), sc->aac_regs_res0); 652 if (sc->aac_hwif == AAC_HWIF_NARK && sc->aac_regs_res1 != NULL) 653 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 654 rman_get_rid(sc->aac_regs_res1), sc->aac_regs_res1); 655 } 656 657 /* 658 * Disconnect from the controller completely, in preparation for unload. 659 */ 660 int 661 aac_detach(device_t dev) 662 { 663 struct aac_softc *sc; 664 struct aac_container *co; 665 struct aac_sim *sim; 666 int error; 667 668 sc = device_get_softc(dev); 669 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 670 671 callout_drain(&sc->aac_daemontime); 672 673 mtx_lock(&sc->aac_io_lock); 674 while (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 675 sc->aifflags |= AAC_AIFFLAGS_EXIT; 676 wakeup(sc->aifthread); 677 msleep(sc->aac_dev, &sc->aac_io_lock, PUSER, "aacdch", 0); 678 } 679 mtx_unlock(&sc->aac_io_lock); 680 KASSERT((sc->aifflags & AAC_AIFFLAGS_RUNNING) == 0, 681 ("%s: invalid detach state", __func__)); 682 683 /* Remove the child containers */ 684 while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) { 685 error = device_delete_child(dev, co->co_disk); 686 if (error) 687 return (error); 688 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 689 free(co, M_AACBUF); 690 } 691 692 /* Remove the CAM SIMs */ 693 while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) { 694 TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link); 695 error = device_delete_child(dev, sim->sim_dev); 696 if (error) 697 return (error); 698 free(sim, M_AACBUF); 699 } 700 701 if ((error = aac_shutdown(dev))) 702 return(error); 703 704 EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh); 705 706 aac_free(sc); 707 708 mtx_destroy(&sc->aac_aifq_lock); 709 mtx_destroy(&sc->aac_io_lock); 710 mtx_destroy(&sc->aac_container_lock); 711 712 return(0); 713 } 714 715 /* 716 * Bring the controller down to a dormant state and detach all child devices. 717 * 718 * This function is called before detach or system shutdown. 719 * 720 * Note that we can assume that the bioq on the controller is empty, as we won't 721 * allow shutdown if any device is open. 722 */ 723 int 724 aac_shutdown(device_t dev) 725 { 726 struct aac_softc *sc; 727 struct aac_fib *fib; 728 struct aac_close_command *cc; 729 730 sc = device_get_softc(dev); 731 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 732 733 sc->aac_state |= AAC_STATE_SUSPEND; 734 735 /* 736 * Send a Container shutdown followed by a HostShutdown FIB to the 737 * controller to convince it that we don't want to talk to it anymore. 738 * We've been closed and all I/O completed already 739 */ 740 device_printf(sc->aac_dev, "shutting down controller..."); 741 742 mtx_lock(&sc->aac_io_lock); 743 aac_alloc_sync_fib(sc, &fib); 744 cc = (struct aac_close_command *)&fib->data[0]; 745 746 bzero(cc, sizeof(struct aac_close_command)); 747 cc->Command = VM_CloseAll; 748 cc->ContainerId = 0xffffffff; 749 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 750 sizeof(struct aac_close_command))) 751 printf("FAILED.\n"); 752 else 753 printf("done\n"); 754 #if 0 755 else { 756 fib->data[0] = 0; 757 /* 758 * XXX Issuing this command to the controller makes it shut down 759 * but also keeps it from coming back up without a reset of the 760 * PCI bus. This is not desirable if you are just unloading the 761 * driver module with the intent to reload it later. 762 */ 763 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 764 fib, 1)) { 765 printf("FAILED.\n"); 766 } else { 767 printf("done.\n"); 768 } 769 } 770 #endif 771 772 AAC_MASK_INTERRUPTS(sc); 773 aac_release_sync_fib(sc); 774 mtx_unlock(&sc->aac_io_lock); 775 776 return(0); 777 } 778 779 /* 780 * Bring the controller to a quiescent state, ready for system suspend. 781 */ 782 int 783 aac_suspend(device_t dev) 784 { 785 struct aac_softc *sc; 786 787 sc = device_get_softc(dev); 788 789 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 790 sc->aac_state |= AAC_STATE_SUSPEND; 791 792 AAC_MASK_INTERRUPTS(sc); 793 return(0); 794 } 795 796 /* 797 * Bring the controller back to a state ready for operation. 798 */ 799 int 800 aac_resume(device_t dev) 801 { 802 struct aac_softc *sc; 803 804 sc = device_get_softc(dev); 805 806 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 807 sc->aac_state &= ~AAC_STATE_SUSPEND; 808 AAC_UNMASK_INTERRUPTS(sc); 809 return(0); 810 } 811 812 /* 813 * Interrupt handler for NEW_COMM interface. 814 */ 815 void 816 aac_new_intr(void *arg) 817 { 818 struct aac_softc *sc; 819 u_int32_t index, fast; 820 struct aac_command *cm; 821 struct aac_fib *fib; 822 int i; 823 824 sc = (struct aac_softc *)arg; 825 826 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 827 mtx_lock(&sc->aac_io_lock); 828 while (1) { 829 index = AAC_GET_OUTB_QUEUE(sc); 830 if (index == 0xffffffff) 831 index = AAC_GET_OUTB_QUEUE(sc); 832 if (index == 0xffffffff) 833 break; 834 if (index & 2) { 835 if (index == 0xfffffffe) { 836 /* XXX This means that the controller wants 837 * more work. Ignore it for now. 838 */ 839 continue; 840 } 841 /* AIF */ 842 fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF, 843 M_NOWAIT | M_ZERO); 844 if (fib == NULL) { 845 /* If we're really this short on memory, 846 * hopefully breaking out of the handler will 847 * allow something to get freed. This 848 * actually sucks a whole lot. 849 */ 850 break; 851 } 852 index &= ~2; 853 for (i = 0; i < sizeof(struct aac_fib)/4; ++i) 854 ((u_int32_t *)fib)[i] = AAC_MEM1_GETREG4(sc, index + i*4); 855 aac_handle_aif(sc, fib); 856 free(fib, M_AACBUF); 857 858 /* 859 * AIF memory is owned by the adapter, so let it 860 * know that we are done with it. 861 */ 862 AAC_SET_OUTB_QUEUE(sc, index); 863 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 864 } else { 865 fast = index & 1; 866 cm = sc->aac_commands + (index >> 2); 867 fib = cm->cm_fib; 868 if (fast) { 869 fib->Header.XferState |= AAC_FIBSTATE_DONEADAP; 870 *((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL; 871 } 872 aac_remove_busy(cm); 873 aac_unmap_command(cm); 874 cm->cm_flags |= AAC_CMD_COMPLETED; 875 876 /* is there a completion handler? */ 877 if (cm->cm_complete != NULL) { 878 cm->cm_complete(cm); 879 } else { 880 /* assume that someone is sleeping on this 881 * command 882 */ 883 wakeup(cm); 884 } 885 sc->flags &= ~AAC_QUEUE_FRZN; 886 } 887 } 888 /* see if we can start some more I/O */ 889 if ((sc->flags & AAC_QUEUE_FRZN) == 0) 890 aac_startio(sc); 891 892 mtx_unlock(&sc->aac_io_lock); 893 } 894 895 /* 896 * Interrupt filter for !NEW_COMM interface. 897 */ 898 int 899 aac_filter(void *arg) 900 { 901 struct aac_softc *sc; 902 u_int16_t reason; 903 904 sc = (struct aac_softc *)arg; 905 906 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 907 /* 908 * Read the status register directly. This is faster than taking the 909 * driver lock and reading the queues directly. It also saves having 910 * to turn parts of the driver lock into a spin mutex, which would be 911 * ugly. 912 */ 913 reason = AAC_GET_ISTATUS(sc); 914 AAC_CLEAR_ISTATUS(sc, reason); 915 916 /* handle completion processing */ 917 if (reason & AAC_DB_RESPONSE_READY) 918 taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete); 919 920 /* controller wants to talk to us */ 921 if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) { 922 /* 923 * XXX Make sure that we don't get fooled by strange messages 924 * that start with a NULL. 925 */ 926 if ((reason & AAC_DB_PRINTF) && 927 (sc->aac_common->ac_printf[0] == 0)) 928 sc->aac_common->ac_printf[0] = 32; 929 930 /* 931 * This might miss doing the actual wakeup. However, the 932 * msleep that this is waking up has a timeout, so it will 933 * wake up eventually. AIFs and printfs are low enough 934 * priority that they can handle hanging out for a few seconds 935 * if needed. 936 */ 937 wakeup(sc->aifthread); 938 } 939 return (FILTER_HANDLED); 940 } 941 942 /* 943 * Command Processing 944 */ 945 946 /* 947 * Start as much queued I/O as possible on the controller 948 */ 949 void 950 aac_startio(struct aac_softc *sc) 951 { 952 struct aac_command *cm; 953 int error; 954 955 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 956 957 for (;;) { 958 /* 959 * This flag might be set if the card is out of resources. 960 * Checking it here prevents an infinite loop of deferrals. 961 */ 962 if (sc->flags & AAC_QUEUE_FRZN) 963 break; 964 965 /* 966 * Try to get a command that's been put off for lack of 967 * resources 968 */ 969 cm = aac_dequeue_ready(sc); 970 971 /* 972 * Try to build a command off the bio queue (ignore error 973 * return) 974 */ 975 if (cm == NULL) 976 aac_bio_command(sc, &cm); 977 978 /* nothing to do? */ 979 if (cm == NULL) 980 break; 981 982 /* don't map more than once */ 983 if (cm->cm_flags & AAC_CMD_MAPPED) 984 panic("aac: command %p already mapped", cm); 985 986 /* 987 * Set up the command to go to the controller. If there are no 988 * data buffers associated with the command then it can bypass 989 * busdma. 990 */ 991 if (cm->cm_datalen != 0) { 992 if (cm->cm_flags & AAC_REQ_BIO) 993 error = bus_dmamap_load_bio( 994 sc->aac_buffer_dmat, cm->cm_datamap, 995 (struct bio *)cm->cm_private, 996 aac_map_command_sg, cm, 0); 997 else 998 error = bus_dmamap_load(sc->aac_buffer_dmat, 999 cm->cm_datamap, cm->cm_data, 1000 cm->cm_datalen, aac_map_command_sg, cm, 0); 1001 if (error == EINPROGRESS) { 1002 fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "freezing queue\n"); 1003 sc->flags |= AAC_QUEUE_FRZN; 1004 } else if (error != 0) 1005 panic("aac_startio: unexpected error %d from " 1006 "busdma", error); 1007 } else 1008 aac_map_command_sg(cm, NULL, 0, 0); 1009 } 1010 } 1011 1012 /* 1013 * Handle notification of one or more FIBs coming from the controller. 1014 */ 1015 static void 1016 aac_command_thread(struct aac_softc *sc) 1017 { 1018 struct aac_fib *fib; 1019 u_int32_t fib_size; 1020 int size, retval; 1021 1022 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1023 1024 mtx_lock(&sc->aac_io_lock); 1025 sc->aifflags = AAC_AIFFLAGS_RUNNING; 1026 1027 while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) { 1028 1029 retval = 0; 1030 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 1031 retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO, 1032 "aifthd", AAC_PERIODIC_INTERVAL * hz); 1033 1034 /* 1035 * First see if any FIBs need to be allocated. This needs 1036 * to be called without the driver lock because contigmalloc 1037 * can sleep. 1038 */ 1039 if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) { 1040 mtx_unlock(&sc->aac_io_lock); 1041 aac_alloc_commands(sc); 1042 mtx_lock(&sc->aac_io_lock); 1043 sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS; 1044 aac_startio(sc); 1045 } 1046 1047 /* 1048 * While we're here, check to see if any commands are stuck. 1049 * This is pretty low-priority, so it's ok if it doesn't 1050 * always fire. 1051 */ 1052 if (retval == EWOULDBLOCK) 1053 aac_timeout(sc); 1054 1055 /* Check the hardware printf message buffer */ 1056 if (sc->aac_common->ac_printf[0] != 0) 1057 aac_print_printf(sc); 1058 1059 /* Also check to see if the adapter has a command for us. */ 1060 if (sc->flags & AAC_FLAGS_NEW_COMM) 1061 continue; 1062 for (;;) { 1063 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 1064 &fib_size, &fib)) 1065 break; 1066 1067 AAC_PRINT_FIB(sc, fib); 1068 1069 switch (fib->Header.Command) { 1070 case AifRequest: 1071 aac_handle_aif(sc, fib); 1072 break; 1073 default: 1074 device_printf(sc->aac_dev, "unknown command " 1075 "from controller\n"); 1076 break; 1077 } 1078 1079 if ((fib->Header.XferState == 0) || 1080 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) { 1081 break; 1082 } 1083 1084 /* Return the AIF to the controller. */ 1085 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 1086 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 1087 *(AAC_FSAStatus*)fib->data = ST_OK; 1088 1089 /* XXX Compute the Size field? */ 1090 size = fib->Header.Size; 1091 if (size > sizeof(struct aac_fib)) { 1092 size = sizeof(struct aac_fib); 1093 fib->Header.Size = size; 1094 } 1095 /* 1096 * Since we did not generate this command, it 1097 * cannot go through the normal 1098 * enqueue->startio chain. 1099 */ 1100 aac_enqueue_response(sc, 1101 AAC_ADAP_NORM_RESP_QUEUE, 1102 fib); 1103 } 1104 } 1105 } 1106 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 1107 mtx_unlock(&sc->aac_io_lock); 1108 wakeup(sc->aac_dev); 1109 1110 kproc_exit(0); 1111 } 1112 1113 /* 1114 * Process completed commands. 1115 */ 1116 static void 1117 aac_complete(void *context, int pending) 1118 { 1119 struct aac_softc *sc; 1120 struct aac_command *cm; 1121 struct aac_fib *fib; 1122 u_int32_t fib_size; 1123 1124 sc = (struct aac_softc *)context; 1125 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1126 1127 mtx_lock(&sc->aac_io_lock); 1128 1129 /* pull completed commands off the queue */ 1130 for (;;) { 1131 /* look for completed FIBs on our queue */ 1132 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 1133 &fib)) 1134 break; /* nothing to do */ 1135 1136 /* get the command, unmap and hand off for processing */ 1137 cm = sc->aac_commands + fib->Header.SenderData; 1138 if (cm == NULL) { 1139 AAC_PRINT_FIB(sc, fib); 1140 break; 1141 } 1142 if ((cm->cm_flags & AAC_CMD_TIMEDOUT) != 0) 1143 device_printf(sc->aac_dev, 1144 "COMMAND %p COMPLETED AFTER %d SECONDS\n", 1145 cm, (int)(time_uptime-cm->cm_timestamp)); 1146 1147 aac_remove_busy(cm); 1148 1149 aac_unmap_command(cm); 1150 cm->cm_flags |= AAC_CMD_COMPLETED; 1151 1152 /* is there a completion handler? */ 1153 if (cm->cm_complete != NULL) { 1154 cm->cm_complete(cm); 1155 } else { 1156 /* assume that someone is sleeping on this command */ 1157 wakeup(cm); 1158 } 1159 } 1160 1161 /* see if we can start some more I/O */ 1162 sc->flags &= ~AAC_QUEUE_FRZN; 1163 aac_startio(sc); 1164 1165 mtx_unlock(&sc->aac_io_lock); 1166 } 1167 1168 /* 1169 * Handle a bio submitted from a disk device. 1170 */ 1171 void 1172 aac_submit_bio(struct bio *bp) 1173 { 1174 struct aac_disk *ad; 1175 struct aac_softc *sc; 1176 1177 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 1178 sc = ad->ad_controller; 1179 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1180 1181 /* queue the BIO and try to get some work done */ 1182 aac_enqueue_bio(sc, bp); 1183 aac_startio(sc); 1184 } 1185 1186 /* 1187 * Get a bio and build a command to go with it. 1188 */ 1189 static int 1190 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 1191 { 1192 struct aac_command *cm; 1193 struct aac_fib *fib; 1194 struct aac_disk *ad; 1195 struct bio *bp; 1196 1197 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1198 1199 /* get the resources we will need */ 1200 cm = NULL; 1201 bp = NULL; 1202 if (aac_alloc_command(sc, &cm)) /* get a command */ 1203 goto fail; 1204 if ((bp = aac_dequeue_bio(sc)) == NULL) 1205 goto fail; 1206 1207 /* fill out the command */ 1208 cm->cm_datalen = bp->bio_bcount; 1209 cm->cm_complete = aac_bio_complete; 1210 cm->cm_flags = AAC_REQ_BIO; 1211 cm->cm_private = bp; 1212 cm->cm_timestamp = time_uptime; 1213 1214 /* build the FIB */ 1215 fib = cm->cm_fib; 1216 fib->Header.Size = sizeof(struct aac_fib_header); 1217 fib->Header.XferState = 1218 AAC_FIBSTATE_HOSTOWNED | 1219 AAC_FIBSTATE_INITIALISED | 1220 AAC_FIBSTATE_EMPTY | 1221 AAC_FIBSTATE_FROMHOST | 1222 AAC_FIBSTATE_REXPECTED | 1223 AAC_FIBSTATE_NORM | 1224 AAC_FIBSTATE_ASYNC | 1225 AAC_FIBSTATE_FAST_RESPONSE; 1226 1227 /* build the read/write request */ 1228 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 1229 1230 if (sc->flags & AAC_FLAGS_RAW_IO) { 1231 struct aac_raw_io *raw; 1232 raw = (struct aac_raw_io *)&fib->data[0]; 1233 fib->Header.Command = RawIo; 1234 raw->BlockNumber = (u_int64_t)bp->bio_pblkno; 1235 raw->ByteCount = bp->bio_bcount; 1236 raw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1237 raw->BpTotal = 0; 1238 raw->BpComplete = 0; 1239 fib->Header.Size += sizeof(struct aac_raw_io); 1240 cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw; 1241 if (bp->bio_cmd == BIO_READ) { 1242 raw->Flags = 1; 1243 cm->cm_flags |= AAC_CMD_DATAIN; 1244 } else { 1245 raw->Flags = 0; 1246 cm->cm_flags |= AAC_CMD_DATAOUT; 1247 } 1248 } else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1249 fib->Header.Command = ContainerCommand; 1250 if (bp->bio_cmd == BIO_READ) { 1251 struct aac_blockread *br; 1252 br = (struct aac_blockread *)&fib->data[0]; 1253 br->Command = VM_CtBlockRead; 1254 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1255 br->BlockNumber = bp->bio_pblkno; 1256 br->ByteCount = bp->bio_bcount; 1257 fib->Header.Size += sizeof(struct aac_blockread); 1258 cm->cm_sgtable = &br->SgMap; 1259 cm->cm_flags |= AAC_CMD_DATAIN; 1260 } else { 1261 struct aac_blockwrite *bw; 1262 bw = (struct aac_blockwrite *)&fib->data[0]; 1263 bw->Command = VM_CtBlockWrite; 1264 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1265 bw->BlockNumber = bp->bio_pblkno; 1266 bw->ByteCount = bp->bio_bcount; 1267 bw->Stable = CUNSTABLE; 1268 fib->Header.Size += sizeof(struct aac_blockwrite); 1269 cm->cm_flags |= AAC_CMD_DATAOUT; 1270 cm->cm_sgtable = &bw->SgMap; 1271 } 1272 } else { 1273 fib->Header.Command = ContainerCommand64; 1274 if (bp->bio_cmd == BIO_READ) { 1275 struct aac_blockread64 *br; 1276 br = (struct aac_blockread64 *)&fib->data[0]; 1277 br->Command = VM_CtHostRead64; 1278 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1279 br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 1280 br->BlockNumber = bp->bio_pblkno; 1281 br->Pad = 0; 1282 br->Flags = 0; 1283 fib->Header.Size += sizeof(struct aac_blockread64); 1284 cm->cm_flags |= AAC_CMD_DATAIN; 1285 cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64; 1286 } else { 1287 struct aac_blockwrite64 *bw; 1288 bw = (struct aac_blockwrite64 *)&fib->data[0]; 1289 bw->Command = VM_CtHostWrite64; 1290 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1291 bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 1292 bw->BlockNumber = bp->bio_pblkno; 1293 bw->Pad = 0; 1294 bw->Flags = 0; 1295 fib->Header.Size += sizeof(struct aac_blockwrite64); 1296 cm->cm_flags |= AAC_CMD_DATAOUT; 1297 cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64; 1298 } 1299 } 1300 1301 *cmp = cm; 1302 return(0); 1303 1304 fail: 1305 if (bp != NULL) 1306 aac_enqueue_bio(sc, bp); 1307 if (cm != NULL) 1308 aac_release_command(cm); 1309 return(ENOMEM); 1310 } 1311 1312 /* 1313 * Handle a bio-instigated command that has been completed. 1314 */ 1315 static void 1316 aac_bio_complete(struct aac_command *cm) 1317 { 1318 struct aac_blockread_response *brr; 1319 struct aac_blockwrite_response *bwr; 1320 struct bio *bp; 1321 AAC_FSAStatus status; 1322 1323 /* fetch relevant status and then release the command */ 1324 bp = (struct bio *)cm->cm_private; 1325 if (bp->bio_cmd == BIO_READ) { 1326 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 1327 status = brr->Status; 1328 } else { 1329 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 1330 status = bwr->Status; 1331 } 1332 aac_release_command(cm); 1333 1334 /* fix up the bio based on status */ 1335 if (status == ST_OK) { 1336 bp->bio_resid = 0; 1337 } else { 1338 bp->bio_error = EIO; 1339 bp->bio_flags |= BIO_ERROR; 1340 } 1341 aac_biodone(bp); 1342 } 1343 1344 /* 1345 * Submit a command to the controller, return when it completes. 1346 * XXX This is very dangerous! If the card has gone out to lunch, we could 1347 * be stuck here forever. At the same time, signals are not caught 1348 * because there is a risk that a signal could wakeup the sleep before 1349 * the card has a chance to complete the command. Since there is no way 1350 * to cancel a command that is in progress, we can't protect against the 1351 * card completing a command late and spamming the command and data 1352 * memory. So, we are held hostage until the command completes. 1353 */ 1354 static int 1355 aac_wait_command(struct aac_command *cm) 1356 { 1357 struct aac_softc *sc; 1358 int error; 1359 1360 sc = cm->cm_sc; 1361 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1362 1363 /* Put the command on the ready queue and get things going */ 1364 aac_enqueue_ready(cm); 1365 aac_startio(sc); 1366 error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0); 1367 return(error); 1368 } 1369 1370 /* 1371 *Command Buffer Management 1372 */ 1373 1374 /* 1375 * Allocate a command. 1376 */ 1377 int 1378 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1379 { 1380 struct aac_command *cm; 1381 1382 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1383 1384 if ((cm = aac_dequeue_free(sc)) == NULL) { 1385 if (sc->total_fibs < sc->aac_max_fibs) { 1386 mtx_lock(&sc->aac_io_lock); 1387 sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS; 1388 mtx_unlock(&sc->aac_io_lock); 1389 wakeup(sc->aifthread); 1390 } 1391 return (EBUSY); 1392 } 1393 1394 *cmp = cm; 1395 return(0); 1396 } 1397 1398 /* 1399 * Release a command back to the freelist. 1400 */ 1401 void 1402 aac_release_command(struct aac_command *cm) 1403 { 1404 struct aac_event *event; 1405 struct aac_softc *sc; 1406 1407 sc = cm->cm_sc; 1408 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1409 1410 /* (re)initialize the command/FIB */ 1411 cm->cm_sgtable = NULL; 1412 cm->cm_flags = 0; 1413 cm->cm_complete = NULL; 1414 cm->cm_private = NULL; 1415 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1416 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1417 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1418 cm->cm_fib->Header.Flags = 0; 1419 cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size; 1420 1421 /* 1422 * These are duplicated in aac_start to cover the case where an 1423 * intermediate stage may have destroyed them. They're left 1424 * initialized here for debugging purposes only. 1425 */ 1426 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1427 cm->cm_fib->Header.SenderData = 0; 1428 1429 aac_enqueue_free(cm); 1430 1431 if ((event = TAILQ_FIRST(&sc->aac_ev_cmfree)) != NULL) { 1432 TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links); 1433 event->ev_callback(sc, event, event->ev_arg); 1434 } 1435 } 1436 1437 /* 1438 * Map helper for command/FIB allocation. 1439 */ 1440 static void 1441 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1442 { 1443 uint64_t *fibphys; 1444 1445 fibphys = (uint64_t *)arg; 1446 1447 *fibphys = segs[0].ds_addr; 1448 } 1449 1450 /* 1451 * Allocate and initialize commands/FIBs for this adapter. 1452 */ 1453 static int 1454 aac_alloc_commands(struct aac_softc *sc) 1455 { 1456 struct aac_command *cm; 1457 struct aac_fibmap *fm; 1458 uint64_t fibphys; 1459 int i, error; 1460 1461 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1462 1463 if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs) 1464 return (ENOMEM); 1465 1466 fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO); 1467 if (fm == NULL) 1468 return (ENOMEM); 1469 1470 /* allocate the FIBs in DMAable memory and load them */ 1471 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs, 1472 BUS_DMA_NOWAIT, &fm->aac_fibmap)) { 1473 device_printf(sc->aac_dev, 1474 "Not enough contiguous memory available.\n"); 1475 free(fm, M_AACBUF); 1476 return (ENOMEM); 1477 } 1478 1479 /* Ignore errors since this doesn't bounce */ 1480 (void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs, 1481 sc->aac_max_fibs_alloc * sc->aac_max_fib_size, 1482 aac_map_command_helper, &fibphys, 0); 1483 1484 /* initialize constant fields in the command structure */ 1485 bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size); 1486 for (i = 0; i < sc->aac_max_fibs_alloc; i++) { 1487 cm = sc->aac_commands + sc->total_fibs; 1488 fm->aac_commands = cm; 1489 cm->cm_sc = sc; 1490 cm->cm_fib = (struct aac_fib *) 1491 ((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size); 1492 cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size; 1493 cm->cm_index = sc->total_fibs; 1494 1495 if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0, 1496 &cm->cm_datamap)) != 0) 1497 break; 1498 mtx_lock(&sc->aac_io_lock); 1499 aac_release_command(cm); 1500 sc->total_fibs++; 1501 mtx_unlock(&sc->aac_io_lock); 1502 } 1503 1504 if (i > 0) { 1505 mtx_lock(&sc->aac_io_lock); 1506 TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link); 1507 fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "total_fibs= %d\n", sc->total_fibs); 1508 mtx_unlock(&sc->aac_io_lock); 1509 return (0); 1510 } 1511 1512 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1513 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1514 free(fm, M_AACBUF); 1515 return (ENOMEM); 1516 } 1517 1518 /* 1519 * Free FIBs owned by this adapter. 1520 */ 1521 static void 1522 aac_free_commands(struct aac_softc *sc) 1523 { 1524 struct aac_fibmap *fm; 1525 struct aac_command *cm; 1526 int i; 1527 1528 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1529 1530 while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) { 1531 1532 TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link); 1533 /* 1534 * We check against total_fibs to handle partially 1535 * allocated blocks. 1536 */ 1537 for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) { 1538 cm = fm->aac_commands + i; 1539 bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap); 1540 } 1541 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1542 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1543 free(fm, M_AACBUF); 1544 } 1545 } 1546 1547 /* 1548 * Command-mapping helper function - populate this command's s/g table. 1549 */ 1550 static void 1551 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1552 { 1553 struct aac_softc *sc; 1554 struct aac_command *cm; 1555 struct aac_fib *fib; 1556 int i; 1557 1558 cm = (struct aac_command *)arg; 1559 sc = cm->cm_sc; 1560 fib = cm->cm_fib; 1561 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1562 1563 /* copy into the FIB */ 1564 if (cm->cm_sgtable != NULL) { 1565 if (fib->Header.Command == RawIo) { 1566 struct aac_sg_tableraw *sg; 1567 sg = (struct aac_sg_tableraw *)cm->cm_sgtable; 1568 sg->SgCount = nseg; 1569 for (i = 0; i < nseg; i++) { 1570 sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr; 1571 sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len; 1572 sg->SgEntryRaw[i].Next = 0; 1573 sg->SgEntryRaw[i].Prev = 0; 1574 sg->SgEntryRaw[i].Flags = 0; 1575 } 1576 /* update the FIB size for the s/g count */ 1577 fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw); 1578 } else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1579 struct aac_sg_table *sg; 1580 sg = cm->cm_sgtable; 1581 sg->SgCount = nseg; 1582 for (i = 0; i < nseg; i++) { 1583 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1584 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1585 } 1586 /* update the FIB size for the s/g count */ 1587 fib->Header.Size += nseg*sizeof(struct aac_sg_entry); 1588 } else { 1589 struct aac_sg_table64 *sg; 1590 sg = (struct aac_sg_table64 *)cm->cm_sgtable; 1591 sg->SgCount = nseg; 1592 for (i = 0; i < nseg; i++) { 1593 sg->SgEntry64[i].SgAddress = segs[i].ds_addr; 1594 sg->SgEntry64[i].SgByteCount = segs[i].ds_len; 1595 } 1596 /* update the FIB size for the s/g count */ 1597 fib->Header.Size += nseg*sizeof(struct aac_sg_entry64); 1598 } 1599 } 1600 1601 /* Fix up the address values in the FIB. Use the command array index 1602 * instead of a pointer since these fields are only 32 bits. Shift 1603 * the SenderFibAddress over to make room for the fast response bit 1604 * and for the AIF bit 1605 */ 1606 cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2); 1607 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1608 1609 /* save a pointer to the command for speedy reverse-lookup */ 1610 cm->cm_fib->Header.SenderData = cm->cm_index; 1611 1612 if (cm->cm_flags & AAC_CMD_DATAIN) 1613 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1614 BUS_DMASYNC_PREREAD); 1615 if (cm->cm_flags & AAC_CMD_DATAOUT) 1616 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1617 BUS_DMASYNC_PREWRITE); 1618 cm->cm_flags |= AAC_CMD_MAPPED; 1619 1620 if (sc->flags & AAC_FLAGS_NEW_COMM) { 1621 int count = 10000000L; 1622 while (AAC_SEND_COMMAND(sc, cm) != 0) { 1623 if (--count == 0) { 1624 aac_unmap_command(cm); 1625 sc->flags |= AAC_QUEUE_FRZN; 1626 aac_requeue_ready(cm); 1627 } 1628 DELAY(5); /* wait 5 usec. */ 1629 } 1630 } else { 1631 /* Put the FIB on the outbound queue */ 1632 if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) { 1633 aac_unmap_command(cm); 1634 sc->flags |= AAC_QUEUE_FRZN; 1635 aac_requeue_ready(cm); 1636 } 1637 } 1638 } 1639 1640 /* 1641 * Unmap a command from controller-visible space. 1642 */ 1643 static void 1644 aac_unmap_command(struct aac_command *cm) 1645 { 1646 struct aac_softc *sc; 1647 1648 sc = cm->cm_sc; 1649 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1650 1651 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1652 return; 1653 1654 if (cm->cm_datalen != 0) { 1655 if (cm->cm_flags & AAC_CMD_DATAIN) 1656 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1657 BUS_DMASYNC_POSTREAD); 1658 if (cm->cm_flags & AAC_CMD_DATAOUT) 1659 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1660 BUS_DMASYNC_POSTWRITE); 1661 1662 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1663 } 1664 cm->cm_flags &= ~AAC_CMD_MAPPED; 1665 } 1666 1667 /* 1668 * Hardware Interface 1669 */ 1670 1671 /* 1672 * Initialize the adapter. 1673 */ 1674 static void 1675 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1676 { 1677 struct aac_softc *sc; 1678 1679 sc = (struct aac_softc *)arg; 1680 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1681 1682 sc->aac_common_busaddr = segs[0].ds_addr; 1683 } 1684 1685 static int 1686 aac_check_firmware(struct aac_softc *sc) 1687 { 1688 u_int32_t code, major, minor, options = 0, atu_size = 0; 1689 int rid, status; 1690 time_t then; 1691 1692 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1693 /* 1694 * Wait for the adapter to come ready. 1695 */ 1696 then = time_uptime; 1697 do { 1698 code = AAC_GET_FWSTATUS(sc); 1699 if (code & AAC_SELF_TEST_FAILED) { 1700 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1701 return(ENXIO); 1702 } 1703 if (code & AAC_KERNEL_PANIC) { 1704 device_printf(sc->aac_dev, 1705 "FATAL: controller kernel panic"); 1706 return(ENXIO); 1707 } 1708 if (time_uptime > (then + AAC_BOOT_TIMEOUT)) { 1709 device_printf(sc->aac_dev, 1710 "FATAL: controller not coming ready, " 1711 "status %x\n", code); 1712 return(ENXIO); 1713 } 1714 } while (!(code & AAC_UP_AND_RUNNING)); 1715 1716 /* 1717 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1718 * firmware version 1.x are not compatible with this driver. 1719 */ 1720 if (sc->flags & AAC_FLAGS_PERC2QC) { 1721 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1722 NULL)) { 1723 device_printf(sc->aac_dev, 1724 "Error reading firmware version\n"); 1725 return (EIO); 1726 } 1727 1728 /* These numbers are stored as ASCII! */ 1729 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30; 1730 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30; 1731 if (major == 1) { 1732 device_printf(sc->aac_dev, 1733 "Firmware version %d.%d is not supported.\n", 1734 major, minor); 1735 return (EINVAL); 1736 } 1737 } 1738 1739 /* 1740 * Retrieve the capabilities/supported options word so we know what 1741 * work-arounds to enable. Some firmware revs don't support this 1742 * command. 1743 */ 1744 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) { 1745 if (status != AAC_SRB_STS_INVALID_REQUEST) { 1746 device_printf(sc->aac_dev, 1747 "RequestAdapterInfo failed\n"); 1748 return (EIO); 1749 } 1750 } else { 1751 options = AAC_GET_MAILBOX(sc, 1); 1752 atu_size = AAC_GET_MAILBOX(sc, 2); 1753 sc->supported_options = options; 1754 1755 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 && 1756 (sc->flags & AAC_FLAGS_NO4GB) == 0) 1757 sc->flags |= AAC_FLAGS_4GB_WINDOW; 1758 if (options & AAC_SUPPORTED_NONDASD) 1759 sc->flags |= AAC_FLAGS_ENABLE_CAM; 1760 if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 1761 && (sizeof(bus_addr_t) > 4)) { 1762 device_printf(sc->aac_dev, 1763 "Enabling 64-bit address support\n"); 1764 sc->flags |= AAC_FLAGS_SG_64BIT; 1765 } 1766 if ((options & AAC_SUPPORTED_NEW_COMM) 1767 && sc->aac_if->aif_send_command) 1768 sc->flags |= AAC_FLAGS_NEW_COMM; 1769 if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE) 1770 sc->flags |= AAC_FLAGS_ARRAY_64BIT; 1771 } 1772 1773 /* Check for broken hardware that does a lower number of commands */ 1774 sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512); 1775 1776 /* Remap mem. resource, if required */ 1777 if ((sc->flags & AAC_FLAGS_NEW_COMM) && 1778 atu_size > rman_get_size(sc->aac_regs_res1)) { 1779 rid = rman_get_rid(sc->aac_regs_res1); 1780 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, rid, 1781 sc->aac_regs_res1); 1782 sc->aac_regs_res1 = bus_alloc_resource(sc->aac_dev, 1783 SYS_RES_MEMORY, &rid, 0ul, ~0ul, atu_size, RF_ACTIVE); 1784 if (sc->aac_regs_res1 == NULL) { 1785 sc->aac_regs_res1 = bus_alloc_resource_any( 1786 sc->aac_dev, SYS_RES_MEMORY, &rid, RF_ACTIVE); 1787 if (sc->aac_regs_res1 == NULL) { 1788 device_printf(sc->aac_dev, 1789 "couldn't allocate register window\n"); 1790 return (ENXIO); 1791 } 1792 sc->flags &= ~AAC_FLAGS_NEW_COMM; 1793 } 1794 sc->aac_btag1 = rman_get_bustag(sc->aac_regs_res1); 1795 sc->aac_bhandle1 = rman_get_bushandle(sc->aac_regs_res1); 1796 1797 if (sc->aac_hwif == AAC_HWIF_NARK) { 1798 sc->aac_regs_res0 = sc->aac_regs_res1; 1799 sc->aac_btag0 = sc->aac_btag1; 1800 sc->aac_bhandle0 = sc->aac_bhandle1; 1801 } 1802 } 1803 1804 /* Read preferred settings */ 1805 sc->aac_max_fib_size = sizeof(struct aac_fib); 1806 sc->aac_max_sectors = 128; /* 64KB */ 1807 if (sc->flags & AAC_FLAGS_SG_64BIT) 1808 sc->aac_sg_tablesize = (AAC_FIB_DATASIZE 1809 - sizeof(struct aac_blockwrite64)) 1810 / sizeof(struct aac_sg_entry64); 1811 else 1812 sc->aac_sg_tablesize = (AAC_FIB_DATASIZE 1813 - sizeof(struct aac_blockwrite)) 1814 / sizeof(struct aac_sg_entry); 1815 1816 if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) { 1817 options = AAC_GET_MAILBOX(sc, 1); 1818 sc->aac_max_fib_size = (options & 0xFFFF); 1819 sc->aac_max_sectors = (options >> 16) << 1; 1820 options = AAC_GET_MAILBOX(sc, 2); 1821 sc->aac_sg_tablesize = (options >> 16); 1822 options = AAC_GET_MAILBOX(sc, 3); 1823 sc->aac_max_fibs = (options & 0xFFFF); 1824 } 1825 if (sc->aac_max_fib_size > PAGE_SIZE) 1826 sc->aac_max_fib_size = PAGE_SIZE; 1827 sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size; 1828 1829 if (sc->aac_max_fib_size > sizeof(struct aac_fib)) { 1830 sc->flags |= AAC_FLAGS_RAW_IO; 1831 device_printf(sc->aac_dev, "Enable Raw I/O\n"); 1832 } 1833 if ((sc->flags & AAC_FLAGS_RAW_IO) && 1834 (sc->flags & AAC_FLAGS_ARRAY_64BIT)) { 1835 sc->flags |= AAC_FLAGS_LBA_64BIT; 1836 device_printf(sc->aac_dev, "Enable 64-bit array\n"); 1837 } 1838 1839 return (0); 1840 } 1841 1842 static int 1843 aac_init(struct aac_softc *sc) 1844 { 1845 struct aac_adapter_init *ip; 1846 u_int32_t qoffset; 1847 int error; 1848 1849 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 1850 1851 /* 1852 * Fill in the init structure. This tells the adapter about the 1853 * physical location of various important shared data structures. 1854 */ 1855 ip = &sc->aac_common->ac_init; 1856 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1857 if (sc->aac_max_fib_size > sizeof(struct aac_fib)) { 1858 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4; 1859 sc->flags |= AAC_FLAGS_RAW_IO; 1860 } 1861 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1862 1863 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1864 offsetof(struct aac_common, ac_fibs); 1865 ip->AdapterFibsVirtualAddress = 0; 1866 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1867 ip->AdapterFibAlign = sizeof(struct aac_fib); 1868 1869 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1870 offsetof(struct aac_common, ac_printf); 1871 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1872 1873 /* 1874 * The adapter assumes that pages are 4K in size, except on some 1875 * broken firmware versions that do the page->byte conversion twice, 1876 * therefore 'assuming' that this value is in 16MB units (2^24). 1877 * Round up since the granularity is so high. 1878 */ 1879 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1880 if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) { 1881 ip->HostPhysMemPages = 1882 (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE; 1883 } 1884 ip->HostElapsedSeconds = time_uptime; /* reset later if invalid */ 1885 1886 ip->InitFlags = 0; 1887 if (sc->flags & AAC_FLAGS_NEW_COMM) { 1888 ip->InitFlags |= AAC_INITFLAGS_NEW_COMM_SUPPORTED; 1889 device_printf(sc->aac_dev, "New comm. interface enabled\n"); 1890 } 1891 1892 ip->MaxIoCommands = sc->aac_max_fibs; 1893 ip->MaxIoSize = sc->aac_max_sectors << 9; 1894 ip->MaxFibSize = sc->aac_max_fib_size; 1895 1896 /* 1897 * Initialize FIB queues. Note that it appears that the layout of the 1898 * indexes and the segmentation of the entries may be mandated by the 1899 * adapter, which is only told about the base of the queue index fields. 1900 * 1901 * The initial values of the indices are assumed to inform the adapter 1902 * of the sizes of the respective queues, and theoretically it could 1903 * work out the entire layout of the queue structures from this. We 1904 * take the easy route and just lay this area out like everyone else 1905 * does. 1906 * 1907 * The Linux driver uses a much more complex scheme whereby several 1908 * header records are kept for each queue. We use a couple of generic 1909 * list manipulation functions which 'know' the size of each list by 1910 * virtue of a table. 1911 */ 1912 qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN; 1913 qoffset &= ~(AAC_QUEUE_ALIGN - 1); 1914 sc->aac_queues = 1915 (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset); 1916 ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset; 1917 1918 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1919 AAC_HOST_NORM_CMD_ENTRIES; 1920 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1921 AAC_HOST_NORM_CMD_ENTRIES; 1922 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1923 AAC_HOST_HIGH_CMD_ENTRIES; 1924 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1925 AAC_HOST_HIGH_CMD_ENTRIES; 1926 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1927 AAC_ADAP_NORM_CMD_ENTRIES; 1928 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1929 AAC_ADAP_NORM_CMD_ENTRIES; 1930 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1931 AAC_ADAP_HIGH_CMD_ENTRIES; 1932 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1933 AAC_ADAP_HIGH_CMD_ENTRIES; 1934 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1935 AAC_HOST_NORM_RESP_ENTRIES; 1936 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1937 AAC_HOST_NORM_RESP_ENTRIES; 1938 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1939 AAC_HOST_HIGH_RESP_ENTRIES; 1940 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1941 AAC_HOST_HIGH_RESP_ENTRIES; 1942 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1943 AAC_ADAP_NORM_RESP_ENTRIES; 1944 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1945 AAC_ADAP_NORM_RESP_ENTRIES; 1946 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1947 AAC_ADAP_HIGH_RESP_ENTRIES; 1948 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1949 AAC_ADAP_HIGH_RESP_ENTRIES; 1950 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1951 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1952 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1953 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1954 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1955 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1956 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1957 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1958 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1959 &sc->aac_queues->qt_HostNormRespQueue[0]; 1960 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1961 &sc->aac_queues->qt_HostHighRespQueue[0]; 1962 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1963 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1964 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1965 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1966 1967 /* 1968 * Do controller-type-specific initialisation 1969 */ 1970 switch (sc->aac_hwif) { 1971 case AAC_HWIF_I960RX: 1972 AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, ~0); 1973 break; 1974 case AAC_HWIF_RKT: 1975 AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, ~0); 1976 break; 1977 default: 1978 break; 1979 } 1980 1981 /* 1982 * Give the init structure to the controller. 1983 */ 1984 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1985 sc->aac_common_busaddr + 1986 offsetof(struct aac_common, ac_init), 0, 0, 0, 1987 NULL)) { 1988 device_printf(sc->aac_dev, 1989 "error establishing init structure\n"); 1990 error = EIO; 1991 goto out; 1992 } 1993 1994 error = 0; 1995 out: 1996 return(error); 1997 } 1998 1999 static int 2000 aac_setup_intr(struct aac_softc *sc) 2001 { 2002 2003 if (sc->flags & AAC_FLAGS_NEW_COMM) { 2004 if (bus_setup_intr(sc->aac_dev, sc->aac_irq, 2005 INTR_MPSAFE|INTR_TYPE_BIO, NULL, 2006 aac_new_intr, sc, &sc->aac_intr)) { 2007 device_printf(sc->aac_dev, "can't set up interrupt\n"); 2008 return (EINVAL); 2009 } 2010 } else { 2011 if (bus_setup_intr(sc->aac_dev, sc->aac_irq, 2012 INTR_TYPE_BIO, aac_filter, NULL, 2013 sc, &sc->aac_intr)) { 2014 device_printf(sc->aac_dev, 2015 "can't set up interrupt filter\n"); 2016 return (EINVAL); 2017 } 2018 } 2019 return (0); 2020 } 2021 2022 /* 2023 * Send a synchronous command to the controller and wait for a result. 2024 * Indicate if the controller completed the command with an error status. 2025 */ 2026 static int 2027 aac_sync_command(struct aac_softc *sc, u_int32_t command, 2028 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 2029 u_int32_t *sp) 2030 { 2031 time_t then; 2032 u_int32_t status; 2033 2034 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2035 2036 /* populate the mailbox */ 2037 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 2038 2039 /* ensure the sync command doorbell flag is cleared */ 2040 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 2041 2042 /* then set it to signal the adapter */ 2043 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 2044 2045 /* spin waiting for the command to complete */ 2046 then = time_uptime; 2047 do { 2048 if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) { 2049 fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "timed out"); 2050 return(EIO); 2051 } 2052 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 2053 2054 /* clear the completion flag */ 2055 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 2056 2057 /* get the command status */ 2058 status = AAC_GET_MAILBOX(sc, 0); 2059 if (sp != NULL) 2060 *sp = status; 2061 2062 if (status != AAC_SRB_STS_SUCCESS) 2063 return (-1); 2064 return(0); 2065 } 2066 2067 int 2068 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 2069 struct aac_fib *fib, u_int16_t datasize) 2070 { 2071 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2072 mtx_assert(&sc->aac_io_lock, MA_OWNED); 2073 2074 if (datasize > AAC_FIB_DATASIZE) 2075 return(EINVAL); 2076 2077 /* 2078 * Set up the sync FIB 2079 */ 2080 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 2081 AAC_FIBSTATE_INITIALISED | 2082 AAC_FIBSTATE_EMPTY; 2083 fib->Header.XferState |= xferstate; 2084 fib->Header.Command = command; 2085 fib->Header.StructType = AAC_FIBTYPE_TFIB; 2086 fib->Header.Size = sizeof(struct aac_fib_header) + datasize; 2087 fib->Header.SenderSize = sizeof(struct aac_fib); 2088 fib->Header.SenderFibAddress = 0; /* Not needed */ 2089 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 2090 offsetof(struct aac_common, 2091 ac_sync_fib); 2092 2093 /* 2094 * Give the FIB to the controller, wait for a response. 2095 */ 2096 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 2097 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 2098 fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "IO error"); 2099 return(EIO); 2100 } 2101 2102 return (0); 2103 } 2104 2105 /* 2106 * Adapter-space FIB queue manipulation 2107 * 2108 * Note that the queue implementation here is a little funky; neither the PI or 2109 * CI will ever be zero. This behaviour is a controller feature. 2110 */ 2111 static const struct { 2112 int size; 2113 int notify; 2114 } aac_qinfo[] = { 2115 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 2116 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 2117 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 2118 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 2119 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 2120 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 2121 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 2122 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 2123 }; 2124 2125 /* 2126 * Atomically insert an entry into the nominated queue, returns 0 on success or 2127 * EBUSY if the queue is full. 2128 * 2129 * Note: it would be more efficient to defer notifying the controller in 2130 * the case where we may be inserting several entries in rapid succession, 2131 * but implementing this usefully may be difficult (it would involve a 2132 * separate queue/notify interface). 2133 */ 2134 static int 2135 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 2136 { 2137 u_int32_t pi, ci; 2138 int error; 2139 u_int32_t fib_size; 2140 u_int32_t fib_addr; 2141 2142 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2143 2144 fib_size = cm->cm_fib->Header.Size; 2145 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 2146 2147 /* get the producer/consumer indices */ 2148 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2149 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2150 2151 /* wrap the queue? */ 2152 if (pi >= aac_qinfo[queue].size) 2153 pi = 0; 2154 2155 /* check for queue full */ 2156 if ((pi + 1) == ci) { 2157 error = EBUSY; 2158 goto out; 2159 } 2160 2161 /* 2162 * To avoid a race with its completion interrupt, place this command on 2163 * the busy queue prior to advertising it to the controller. 2164 */ 2165 aac_enqueue_busy(cm); 2166 2167 /* populate queue entry */ 2168 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 2169 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 2170 2171 /* update producer index */ 2172 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 2173 2174 /* notify the adapter if we know how */ 2175 if (aac_qinfo[queue].notify != 0) 2176 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2177 2178 error = 0; 2179 2180 out: 2181 return(error); 2182 } 2183 2184 /* 2185 * Atomically remove one entry from the nominated queue, returns 0 on 2186 * success or ENOENT if the queue is empty. 2187 */ 2188 static int 2189 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 2190 struct aac_fib **fib_addr) 2191 { 2192 u_int32_t pi, ci; 2193 u_int32_t fib_index; 2194 int error; 2195 int notify; 2196 2197 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2198 2199 /* get the producer/consumer indices */ 2200 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2201 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2202 2203 /* check for queue empty */ 2204 if (ci == pi) { 2205 error = ENOENT; 2206 goto out; 2207 } 2208 2209 /* wrap the pi so the following test works */ 2210 if (pi >= aac_qinfo[queue].size) 2211 pi = 0; 2212 2213 notify = 0; 2214 if (ci == pi + 1) 2215 notify++; 2216 2217 /* wrap the queue? */ 2218 if (ci >= aac_qinfo[queue].size) 2219 ci = 0; 2220 2221 /* fetch the entry */ 2222 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 2223 2224 switch (queue) { 2225 case AAC_HOST_NORM_CMD_QUEUE: 2226 case AAC_HOST_HIGH_CMD_QUEUE: 2227 /* 2228 * The aq_fib_addr is only 32 bits wide so it can't be counted 2229 * on to hold an address. For AIF's, the adapter assumes 2230 * that it's giving us an address into the array of AIF fibs. 2231 * Therefore, we have to convert it to an index. 2232 */ 2233 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr / 2234 sizeof(struct aac_fib); 2235 *fib_addr = &sc->aac_common->ac_fibs[fib_index]; 2236 break; 2237 2238 case AAC_HOST_NORM_RESP_QUEUE: 2239 case AAC_HOST_HIGH_RESP_QUEUE: 2240 { 2241 struct aac_command *cm; 2242 2243 /* 2244 * As above, an index is used instead of an actual address. 2245 * Gotta shift the index to account for the fast response 2246 * bit. No other correction is needed since this value was 2247 * originally provided by the driver via the SenderFibAddress 2248 * field. 2249 */ 2250 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr; 2251 cm = sc->aac_commands + (fib_index >> 2); 2252 *fib_addr = cm->cm_fib; 2253 2254 /* 2255 * Is this a fast response? If it is, update the fib fields in 2256 * local memory since the whole fib isn't DMA'd back up. 2257 */ 2258 if (fib_index & 0x01) { 2259 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 2260 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 2261 } 2262 break; 2263 } 2264 default: 2265 panic("Invalid queue in aac_dequeue_fib()"); 2266 break; 2267 } 2268 2269 /* update consumer index */ 2270 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 2271 2272 /* if we have made the queue un-full, notify the adapter */ 2273 if (notify && (aac_qinfo[queue].notify != 0)) 2274 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2275 error = 0; 2276 2277 out: 2278 return(error); 2279 } 2280 2281 /* 2282 * Put our response to an Adapter Initialed Fib on the response queue 2283 */ 2284 static int 2285 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 2286 { 2287 u_int32_t pi, ci; 2288 int error; 2289 u_int32_t fib_size; 2290 u_int32_t fib_addr; 2291 2292 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2293 2294 /* Tell the adapter where the FIB is */ 2295 fib_size = fib->Header.Size; 2296 fib_addr = fib->Header.SenderFibAddress; 2297 fib->Header.ReceiverFibAddress = fib_addr; 2298 2299 /* get the producer/consumer indices */ 2300 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2301 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2302 2303 /* wrap the queue? */ 2304 if (pi >= aac_qinfo[queue].size) 2305 pi = 0; 2306 2307 /* check for queue full */ 2308 if ((pi + 1) == ci) { 2309 error = EBUSY; 2310 goto out; 2311 } 2312 2313 /* populate queue entry */ 2314 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 2315 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 2316 2317 /* update producer index */ 2318 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 2319 2320 /* notify the adapter if we know how */ 2321 if (aac_qinfo[queue].notify != 0) 2322 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2323 2324 error = 0; 2325 2326 out: 2327 return(error); 2328 } 2329 2330 /* 2331 * Check for commands that have been outstanding for a suspiciously long time, 2332 * and complain about them. 2333 */ 2334 static void 2335 aac_timeout(struct aac_softc *sc) 2336 { 2337 struct aac_command *cm; 2338 time_t deadline; 2339 int timedout, code; 2340 2341 /* 2342 * Traverse the busy command list, bitch about late commands once 2343 * only. 2344 */ 2345 timedout = 0; 2346 deadline = time_uptime - AAC_CMD_TIMEOUT; 2347 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 2348 if ((cm->cm_timestamp < deadline) 2349 && !(cm->cm_flags & AAC_CMD_TIMEDOUT)) { 2350 cm->cm_flags |= AAC_CMD_TIMEDOUT; 2351 device_printf(sc->aac_dev, 2352 "COMMAND %p (TYPE %d) TIMEOUT AFTER %d SECONDS\n", 2353 cm, cm->cm_fib->Header.Command, 2354 (int)(time_uptime-cm->cm_timestamp)); 2355 AAC_PRINT_FIB(sc, cm->cm_fib); 2356 timedout++; 2357 } 2358 } 2359 2360 if (timedout) { 2361 code = AAC_GET_FWSTATUS(sc); 2362 if (code != AAC_UP_AND_RUNNING) { 2363 device_printf(sc->aac_dev, "WARNING! Controller is no " 2364 "longer running! code= 0x%x\n", code); 2365 } 2366 } 2367 } 2368 2369 /* 2370 * Interface Function Vectors 2371 */ 2372 2373 /* 2374 * Read the current firmware status word. 2375 */ 2376 static int 2377 aac_sa_get_fwstatus(struct aac_softc *sc) 2378 { 2379 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2380 2381 return(AAC_MEM0_GETREG4(sc, AAC_SA_FWSTATUS)); 2382 } 2383 2384 static int 2385 aac_rx_get_fwstatus(struct aac_softc *sc) 2386 { 2387 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2388 2389 return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ? 2390 AAC_RX_OMR0 : AAC_RX_FWSTATUS)); 2391 } 2392 2393 static int 2394 aac_rkt_get_fwstatus(struct aac_softc *sc) 2395 { 2396 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2397 2398 return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ? 2399 AAC_RKT_OMR0 : AAC_RKT_FWSTATUS)); 2400 } 2401 2402 /* 2403 * Notify the controller of a change in a given queue 2404 */ 2405 2406 static void 2407 aac_sa_qnotify(struct aac_softc *sc, int qbit) 2408 { 2409 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2410 2411 AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 2412 } 2413 2414 static void 2415 aac_rx_qnotify(struct aac_softc *sc, int qbit) 2416 { 2417 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2418 2419 AAC_MEM0_SETREG4(sc, AAC_RX_IDBR, qbit); 2420 } 2421 2422 static void 2423 aac_rkt_qnotify(struct aac_softc *sc, int qbit) 2424 { 2425 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2426 2427 AAC_MEM0_SETREG4(sc, AAC_RKT_IDBR, qbit); 2428 } 2429 2430 /* 2431 * Get the interrupt reason bits 2432 */ 2433 static int 2434 aac_sa_get_istatus(struct aac_softc *sc) 2435 { 2436 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2437 2438 return(AAC_MEM0_GETREG2(sc, AAC_SA_DOORBELL0)); 2439 } 2440 2441 static int 2442 aac_rx_get_istatus(struct aac_softc *sc) 2443 { 2444 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2445 2446 return(AAC_MEM0_GETREG4(sc, AAC_RX_ODBR)); 2447 } 2448 2449 static int 2450 aac_rkt_get_istatus(struct aac_softc *sc) 2451 { 2452 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2453 2454 return(AAC_MEM0_GETREG4(sc, AAC_RKT_ODBR)); 2455 } 2456 2457 /* 2458 * Clear some interrupt reason bits 2459 */ 2460 static void 2461 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 2462 { 2463 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2464 2465 AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 2466 } 2467 2468 static void 2469 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 2470 { 2471 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2472 2473 AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, mask); 2474 } 2475 2476 static void 2477 aac_rkt_clear_istatus(struct aac_softc *sc, int mask) 2478 { 2479 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2480 2481 AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, mask); 2482 } 2483 2484 /* 2485 * Populate the mailbox and set the command word 2486 */ 2487 static void 2488 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2489 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2490 { 2491 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2492 2493 AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX, command); 2494 AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2495 AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2496 AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2497 AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2498 } 2499 2500 static void 2501 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2502 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2503 { 2504 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2505 2506 AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX, command); 2507 AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2508 AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2509 AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2510 AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2511 } 2512 2513 static void 2514 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0, 2515 u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2516 { 2517 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2518 2519 AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX, command); 2520 AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0); 2521 AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1); 2522 AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2); 2523 AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3); 2524 } 2525 2526 /* 2527 * Fetch the immediate command status word 2528 */ 2529 static int 2530 aac_sa_get_mailbox(struct aac_softc *sc, int mb) 2531 { 2532 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2533 2534 return(AAC_MEM1_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4))); 2535 } 2536 2537 static int 2538 aac_rx_get_mailbox(struct aac_softc *sc, int mb) 2539 { 2540 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2541 2542 return(AAC_MEM1_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4))); 2543 } 2544 2545 static int 2546 aac_rkt_get_mailbox(struct aac_softc *sc, int mb) 2547 { 2548 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2549 2550 return(AAC_MEM1_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4))); 2551 } 2552 2553 /* 2554 * Set/clear interrupt masks 2555 */ 2556 static void 2557 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2558 { 2559 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis"); 2560 2561 if (enable) { 2562 AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2563 } else { 2564 AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2565 } 2566 } 2567 2568 static void 2569 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2570 { 2571 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis"); 2572 2573 if (enable) { 2574 if (sc->flags & AAC_FLAGS_NEW_COMM) 2575 AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM); 2576 else 2577 AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2578 } else { 2579 AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~0); 2580 } 2581 } 2582 2583 static void 2584 aac_rkt_set_interrupts(struct aac_softc *sc, int enable) 2585 { 2586 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis"); 2587 2588 if (enable) { 2589 if (sc->flags & AAC_FLAGS_NEW_COMM) 2590 AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM); 2591 else 2592 AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS); 2593 } else { 2594 AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~0); 2595 } 2596 } 2597 2598 /* 2599 * New comm. interface: Send command functions 2600 */ 2601 static int 2602 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm) 2603 { 2604 u_int32_t index, device; 2605 2606 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)"); 2607 2608 index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE); 2609 if (index == 0xffffffffL) 2610 index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE); 2611 if (index == 0xffffffffL) 2612 return index; 2613 aac_enqueue_busy(cm); 2614 device = index; 2615 AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL)); 2616 device += 4; 2617 AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32)); 2618 device += 4; 2619 AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size); 2620 AAC_MEM0_SETREG4(sc, AAC_RX_IQUE, index); 2621 return 0; 2622 } 2623 2624 static int 2625 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm) 2626 { 2627 u_int32_t index, device; 2628 2629 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)"); 2630 2631 index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE); 2632 if (index == 0xffffffffL) 2633 index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE); 2634 if (index == 0xffffffffL) 2635 return index; 2636 aac_enqueue_busy(cm); 2637 device = index; 2638 AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL)); 2639 device += 4; 2640 AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32)); 2641 device += 4; 2642 AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size); 2643 AAC_MEM0_SETREG4(sc, AAC_RKT_IQUE, index); 2644 return 0; 2645 } 2646 2647 /* 2648 * New comm. interface: get, set outbound queue index 2649 */ 2650 static int 2651 aac_rx_get_outb_queue(struct aac_softc *sc) 2652 { 2653 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2654 2655 return(AAC_MEM0_GETREG4(sc, AAC_RX_OQUE)); 2656 } 2657 2658 static int 2659 aac_rkt_get_outb_queue(struct aac_softc *sc) 2660 { 2661 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2662 2663 return(AAC_MEM0_GETREG4(sc, AAC_RKT_OQUE)); 2664 } 2665 2666 static void 2667 aac_rx_set_outb_queue(struct aac_softc *sc, int index) 2668 { 2669 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2670 2671 AAC_MEM0_SETREG4(sc, AAC_RX_OQUE, index); 2672 } 2673 2674 static void 2675 aac_rkt_set_outb_queue(struct aac_softc *sc, int index) 2676 { 2677 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2678 2679 AAC_MEM0_SETREG4(sc, AAC_RKT_OQUE, index); 2680 } 2681 2682 /* 2683 * Debugging and Diagnostics 2684 */ 2685 2686 /* 2687 * Print some information about the controller. 2688 */ 2689 static void 2690 aac_describe_controller(struct aac_softc *sc) 2691 { 2692 struct aac_fib *fib; 2693 struct aac_adapter_info *info; 2694 char *adapter_type = "Adaptec RAID controller"; 2695 2696 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2697 2698 mtx_lock(&sc->aac_io_lock); 2699 aac_alloc_sync_fib(sc, &fib); 2700 2701 fib->data[0] = 0; 2702 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2703 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2704 aac_release_sync_fib(sc); 2705 mtx_unlock(&sc->aac_io_lock); 2706 return; 2707 } 2708 2709 /* save the kernel revision structure for later use */ 2710 info = (struct aac_adapter_info *)&fib->data[0]; 2711 sc->aac_revision = info->KernelRevision; 2712 2713 if (bootverbose) { 2714 device_printf(sc->aac_dev, "%s %dMHz, %dMB memory " 2715 "(%dMB cache, %dMB execution), %s\n", 2716 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2717 info->ClockSpeed, info->TotalMem / (1024 * 1024), 2718 info->BufferMem / (1024 * 1024), 2719 info->ExecutionMem / (1024 * 1024), 2720 aac_describe_code(aac_battery_platform, 2721 info->batteryPlatform)); 2722 2723 device_printf(sc->aac_dev, 2724 "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2725 info->KernelRevision.external.comp.major, 2726 info->KernelRevision.external.comp.minor, 2727 info->KernelRevision.external.comp.dash, 2728 info->KernelRevision.buildNumber, 2729 (u_int32_t)(info->SerialNumber & 0xffffff)); 2730 2731 device_printf(sc->aac_dev, "Supported Options=%b\n", 2732 sc->supported_options, 2733 "\20" 2734 "\1SNAPSHOT" 2735 "\2CLUSTERS" 2736 "\3WCACHE" 2737 "\4DATA64" 2738 "\5HOSTTIME" 2739 "\6RAID50" 2740 "\7WINDOW4GB" 2741 "\10SCSIUPGD" 2742 "\11SOFTERR" 2743 "\12NORECOND" 2744 "\13SGMAP64" 2745 "\14ALARM" 2746 "\15NONDASD" 2747 "\16SCSIMGT" 2748 "\17RAIDSCSI" 2749 "\21ADPTINFO" 2750 "\22NEWCOMM" 2751 "\23ARRAY64BIT" 2752 "\24HEATSENSOR"); 2753 } 2754 2755 if (sc->supported_options & AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO) { 2756 fib->data[0] = 0; 2757 if (aac_sync_fib(sc, RequestSupplementAdapterInfo, 0, fib, 1)) 2758 device_printf(sc->aac_dev, 2759 "RequestSupplementAdapterInfo failed\n"); 2760 else 2761 adapter_type = ((struct aac_supplement_adapter_info *) 2762 &fib->data[0])->AdapterTypeText; 2763 } 2764 device_printf(sc->aac_dev, "%s, aac driver %d.%d.%d-%d\n", 2765 adapter_type, 2766 AAC_DRIVER_MAJOR_VERSION, AAC_DRIVER_MINOR_VERSION, 2767 AAC_DRIVER_BUGFIX_LEVEL, AAC_DRIVER_BUILD); 2768 2769 aac_release_sync_fib(sc); 2770 mtx_unlock(&sc->aac_io_lock); 2771 } 2772 2773 /* 2774 * Look up a text description of a numeric error code and return a pointer to 2775 * same. 2776 */ 2777 static const char * 2778 aac_describe_code(const struct aac_code_lookup *table, u_int32_t code) 2779 { 2780 int i; 2781 2782 for (i = 0; table[i].string != NULL; i++) 2783 if (table[i].code == code) 2784 return(table[i].string); 2785 return(table[i + 1].string); 2786 } 2787 2788 /* 2789 * Management Interface 2790 */ 2791 2792 static int 2793 aac_open(struct cdev *dev, int flags, int fmt, struct thread *td) 2794 { 2795 struct aac_softc *sc; 2796 2797 sc = dev->si_drv1; 2798 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2799 device_busy(sc->aac_dev); 2800 devfs_set_cdevpriv(sc, aac_cdevpriv_dtor); 2801 2802 return 0; 2803 } 2804 2805 static int 2806 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td) 2807 { 2808 union aac_statrequest *as; 2809 struct aac_softc *sc; 2810 int error = 0; 2811 2812 as = (union aac_statrequest *)arg; 2813 sc = dev->si_drv1; 2814 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2815 2816 switch (cmd) { 2817 case AACIO_STATS: 2818 switch (as->as_item) { 2819 case AACQ_FREE: 2820 case AACQ_BIO: 2821 case AACQ_READY: 2822 case AACQ_BUSY: 2823 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2824 sizeof(struct aac_qstat)); 2825 break; 2826 default: 2827 error = ENOENT; 2828 break; 2829 } 2830 break; 2831 2832 case FSACTL_SENDFIB: 2833 case FSACTL_SEND_LARGE_FIB: 2834 arg = *(caddr_t*)arg; 2835 case FSACTL_LNX_SENDFIB: 2836 case FSACTL_LNX_SEND_LARGE_FIB: 2837 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SENDFIB"); 2838 error = aac_ioctl_sendfib(sc, arg); 2839 break; 2840 case FSACTL_SEND_RAW_SRB: 2841 arg = *(caddr_t*)arg; 2842 case FSACTL_LNX_SEND_RAW_SRB: 2843 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SEND_RAW_SRB"); 2844 error = aac_ioctl_send_raw_srb(sc, arg); 2845 break; 2846 case FSACTL_AIF_THREAD: 2847 case FSACTL_LNX_AIF_THREAD: 2848 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_AIF_THREAD"); 2849 error = EINVAL; 2850 break; 2851 case FSACTL_OPEN_GET_ADAPTER_FIB: 2852 arg = *(caddr_t*)arg; 2853 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2854 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2855 error = aac_open_aif(sc, arg); 2856 break; 2857 case FSACTL_GET_NEXT_ADAPTER_FIB: 2858 arg = *(caddr_t*)arg; 2859 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2860 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2861 error = aac_getnext_aif(sc, arg); 2862 break; 2863 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2864 arg = *(caddr_t*)arg; 2865 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2866 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2867 error = aac_close_aif(sc, arg); 2868 break; 2869 case FSACTL_MINIPORT_REV_CHECK: 2870 arg = *(caddr_t*)arg; 2871 case FSACTL_LNX_MINIPORT_REV_CHECK: 2872 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_MINIPORT_REV_CHECK"); 2873 error = aac_rev_check(sc, arg); 2874 break; 2875 case FSACTL_QUERY_DISK: 2876 arg = *(caddr_t*)arg; 2877 case FSACTL_LNX_QUERY_DISK: 2878 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_QUERY_DISK"); 2879 error = aac_query_disk(sc, arg); 2880 break; 2881 case FSACTL_DELETE_DISK: 2882 case FSACTL_LNX_DELETE_DISK: 2883 /* 2884 * We don't trust the underland to tell us when to delete a 2885 * container, rather we rely on an AIF coming from the 2886 * controller 2887 */ 2888 error = 0; 2889 break; 2890 case FSACTL_GET_PCI_INFO: 2891 arg = *(caddr_t*)arg; 2892 case FSACTL_LNX_GET_PCI_INFO: 2893 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_PCI_INFO"); 2894 error = aac_get_pci_info(sc, arg); 2895 break; 2896 case FSACTL_GET_FEATURES: 2897 arg = *(caddr_t*)arg; 2898 case FSACTL_LNX_GET_FEATURES: 2899 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_FEATURES"); 2900 error = aac_supported_features(sc, arg); 2901 break; 2902 default: 2903 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "unsupported cmd 0x%lx\n", cmd); 2904 error = EINVAL; 2905 break; 2906 } 2907 return(error); 2908 } 2909 2910 static int 2911 aac_poll(struct cdev *dev, int poll_events, struct thread *td) 2912 { 2913 struct aac_softc *sc; 2914 struct aac_fib_context *ctx; 2915 int revents; 2916 2917 sc = dev->si_drv1; 2918 revents = 0; 2919 2920 mtx_lock(&sc->aac_aifq_lock); 2921 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2922 for (ctx = sc->fibctx; ctx; ctx = ctx->next) { 2923 if (ctx->ctx_idx != sc->aifq_idx || ctx->ctx_wrap) { 2924 revents |= poll_events & (POLLIN | POLLRDNORM); 2925 break; 2926 } 2927 } 2928 } 2929 mtx_unlock(&sc->aac_aifq_lock); 2930 2931 if (revents == 0) { 2932 if (poll_events & (POLLIN | POLLRDNORM)) 2933 selrecord(td, &sc->rcv_select); 2934 } 2935 2936 return (revents); 2937 } 2938 2939 static void 2940 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg) 2941 { 2942 2943 switch (event->ev_type) { 2944 case AAC_EVENT_CMFREE: 2945 mtx_assert(&sc->aac_io_lock, MA_OWNED); 2946 if (aac_alloc_command(sc, (struct aac_command **)arg)) { 2947 aac_add_event(sc, event); 2948 return; 2949 } 2950 free(event, M_AACBUF); 2951 wakeup(arg); 2952 break; 2953 default: 2954 break; 2955 } 2956 } 2957 2958 /* 2959 * Send a FIB supplied from userspace 2960 */ 2961 static int 2962 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 2963 { 2964 struct aac_command *cm; 2965 int size, error; 2966 2967 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 2968 2969 cm = NULL; 2970 2971 /* 2972 * Get a command 2973 */ 2974 mtx_lock(&sc->aac_io_lock); 2975 if (aac_alloc_command(sc, &cm)) { 2976 struct aac_event *event; 2977 2978 event = malloc(sizeof(struct aac_event), M_AACBUF, 2979 M_NOWAIT | M_ZERO); 2980 if (event == NULL) { 2981 error = EBUSY; 2982 mtx_unlock(&sc->aac_io_lock); 2983 goto out; 2984 } 2985 event->ev_type = AAC_EVENT_CMFREE; 2986 event->ev_callback = aac_ioctl_event; 2987 event->ev_arg = &cm; 2988 aac_add_event(sc, event); 2989 msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0); 2990 } 2991 mtx_unlock(&sc->aac_io_lock); 2992 2993 /* 2994 * Fetch the FIB header, then re-copy to get data as well. 2995 */ 2996 if ((error = copyin(ufib, cm->cm_fib, 2997 sizeof(struct aac_fib_header))) != 0) 2998 goto out; 2999 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 3000 if (size > sc->aac_max_fib_size) { 3001 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n", 3002 size, sc->aac_max_fib_size); 3003 size = sc->aac_max_fib_size; 3004 } 3005 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 3006 goto out; 3007 cm->cm_fib->Header.Size = size; 3008 cm->cm_timestamp = time_uptime; 3009 3010 /* 3011 * Pass the FIB to the controller, wait for it to complete. 3012 */ 3013 mtx_lock(&sc->aac_io_lock); 3014 error = aac_wait_command(cm); 3015 mtx_unlock(&sc->aac_io_lock); 3016 if (error != 0) { 3017 device_printf(sc->aac_dev, 3018 "aac_wait_command return %d\n", error); 3019 goto out; 3020 } 3021 3022 /* 3023 * Copy the FIB and data back out to the caller. 3024 */ 3025 size = cm->cm_fib->Header.Size; 3026 if (size > sc->aac_max_fib_size) { 3027 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n", 3028 size, sc->aac_max_fib_size); 3029 size = sc->aac_max_fib_size; 3030 } 3031 error = copyout(cm->cm_fib, ufib, size); 3032 3033 out: 3034 if (cm != NULL) { 3035 mtx_lock(&sc->aac_io_lock); 3036 aac_release_command(cm); 3037 mtx_unlock(&sc->aac_io_lock); 3038 } 3039 return(error); 3040 } 3041 3042 /* 3043 * Send a passthrough FIB supplied from userspace 3044 */ 3045 static int 3046 aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg) 3047 { 3048 struct aac_command *cm; 3049 struct aac_event *event; 3050 struct aac_fib *fib; 3051 struct aac_srb *srbcmd, *user_srb; 3052 struct aac_sg_entry *sge; 3053 struct aac_sg_entry64 *sge64; 3054 void *srb_sg_address, *ureply; 3055 uint32_t fibsize, srb_sg_bytecount; 3056 int error, transfer_data; 3057 3058 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3059 3060 cm = NULL; 3061 transfer_data = 0; 3062 fibsize = 0; 3063 user_srb = (struct aac_srb *)arg; 3064 3065 mtx_lock(&sc->aac_io_lock); 3066 if (aac_alloc_command(sc, &cm)) { 3067 event = malloc(sizeof(struct aac_event), M_AACBUF, 3068 M_NOWAIT | M_ZERO); 3069 if (event == NULL) { 3070 error = EBUSY; 3071 mtx_unlock(&sc->aac_io_lock); 3072 goto out; 3073 } 3074 event->ev_type = AAC_EVENT_CMFREE; 3075 event->ev_callback = aac_ioctl_event; 3076 event->ev_arg = &cm; 3077 aac_add_event(sc, event); 3078 msleep(cm, &sc->aac_io_lock, 0, "aacraw", 0); 3079 } 3080 mtx_unlock(&sc->aac_io_lock); 3081 3082 cm->cm_data = NULL; 3083 fib = cm->cm_fib; 3084 srbcmd = (struct aac_srb *)fib->data; 3085 error = copyin(&user_srb->data_len, &fibsize, sizeof(uint32_t)); 3086 if (error != 0) 3087 goto out; 3088 if (fibsize > (sc->aac_max_fib_size - sizeof(struct aac_fib_header))) { 3089 error = EINVAL; 3090 goto out; 3091 } 3092 error = copyin(user_srb, srbcmd, fibsize); 3093 if (error != 0) 3094 goto out; 3095 srbcmd->function = 0; 3096 srbcmd->retry_limit = 0; 3097 if (srbcmd->sg_map.SgCount > 1) { 3098 error = EINVAL; 3099 goto out; 3100 } 3101 3102 /* Retrieve correct SG entries. */ 3103 if (fibsize == (sizeof(struct aac_srb) + 3104 srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry))) { 3105 sge = srbcmd->sg_map.SgEntry; 3106 sge64 = NULL; 3107 srb_sg_bytecount = sge->SgByteCount; 3108 srb_sg_address = (void *)(uintptr_t)sge->SgAddress; 3109 } 3110 #ifdef __amd64__ 3111 else if (fibsize == (sizeof(struct aac_srb) + 3112 srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry64))) { 3113 sge = NULL; 3114 sge64 = (struct aac_sg_entry64 *)srbcmd->sg_map.SgEntry; 3115 srb_sg_bytecount = sge64->SgByteCount; 3116 srb_sg_address = (void *)sge64->SgAddress; 3117 if (sge64->SgAddress > 0xffffffffull && 3118 (sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 3119 error = EINVAL; 3120 goto out; 3121 } 3122 } 3123 #endif 3124 else { 3125 error = EINVAL; 3126 goto out; 3127 } 3128 ureply = (char *)arg + fibsize; 3129 srbcmd->data_len = srb_sg_bytecount; 3130 if (srbcmd->sg_map.SgCount == 1) 3131 transfer_data = 1; 3132 3133 cm->cm_sgtable = (struct aac_sg_table *)&srbcmd->sg_map; 3134 if (transfer_data) { 3135 cm->cm_datalen = srb_sg_bytecount; 3136 cm->cm_data = malloc(cm->cm_datalen, M_AACBUF, M_NOWAIT); 3137 if (cm->cm_data == NULL) { 3138 error = ENOMEM; 3139 goto out; 3140 } 3141 if (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN) 3142 cm->cm_flags |= AAC_CMD_DATAIN; 3143 if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT) { 3144 cm->cm_flags |= AAC_CMD_DATAOUT; 3145 error = copyin(srb_sg_address, cm->cm_data, 3146 cm->cm_datalen); 3147 if (error != 0) 3148 goto out; 3149 } 3150 } 3151 3152 fib->Header.Size = sizeof(struct aac_fib_header) + 3153 sizeof(struct aac_srb); 3154 fib->Header.XferState = 3155 AAC_FIBSTATE_HOSTOWNED | 3156 AAC_FIBSTATE_INITIALISED | 3157 AAC_FIBSTATE_EMPTY | 3158 AAC_FIBSTATE_FROMHOST | 3159 AAC_FIBSTATE_REXPECTED | 3160 AAC_FIBSTATE_NORM | 3161 AAC_FIBSTATE_ASYNC | 3162 AAC_FIBSTATE_FAST_RESPONSE; 3163 fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) != 0 ? 3164 ScsiPortCommandU64 : ScsiPortCommand; 3165 3166 mtx_lock(&sc->aac_io_lock); 3167 aac_wait_command(cm); 3168 mtx_unlock(&sc->aac_io_lock); 3169 3170 if (transfer_data && (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN) != 0) { 3171 error = copyout(cm->cm_data, srb_sg_address, cm->cm_datalen); 3172 if (error != 0) 3173 goto out; 3174 } 3175 error = copyout(fib->data, ureply, sizeof(struct aac_srb_response)); 3176 out: 3177 if (cm != NULL) { 3178 if (cm->cm_data != NULL) 3179 free(cm->cm_data, M_AACBUF); 3180 mtx_lock(&sc->aac_io_lock); 3181 aac_release_command(cm); 3182 mtx_unlock(&sc->aac_io_lock); 3183 } 3184 return(error); 3185 } 3186 3187 /* 3188 * cdevpriv interface private destructor. 3189 */ 3190 static void 3191 aac_cdevpriv_dtor(void *arg) 3192 { 3193 struct aac_softc *sc; 3194 3195 sc = arg; 3196 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3197 mtx_lock(&Giant); 3198 device_unbusy(sc->aac_dev); 3199 mtx_unlock(&Giant); 3200 } 3201 3202 /* 3203 * Handle an AIF sent to us by the controller; queue it for later reference. 3204 * If the queue fills up, then drop the older entries. 3205 */ 3206 static void 3207 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 3208 { 3209 struct aac_aif_command *aif; 3210 struct aac_container *co, *co_next; 3211 struct aac_fib_context *ctx; 3212 struct aac_mntinforesp *mir; 3213 int next, current, found; 3214 int count = 0, added = 0, i = 0; 3215 uint32_t channel; 3216 3217 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3218 3219 aif = (struct aac_aif_command*)&fib->data[0]; 3220 aac_print_aif(sc, aif); 3221 3222 /* Is it an event that we should care about? */ 3223 switch (aif->command) { 3224 case AifCmdEventNotify: 3225 switch (aif->data.EN.type) { 3226 case AifEnAddContainer: 3227 case AifEnDeleteContainer: 3228 /* 3229 * A container was added or deleted, but the message 3230 * doesn't tell us anything else! Re-enumerate the 3231 * containers and sort things out. 3232 */ 3233 aac_alloc_sync_fib(sc, &fib); 3234 do { 3235 /* 3236 * Ask the controller for its containers one at 3237 * a time. 3238 * XXX What if the controller's list changes 3239 * midway through this enumaration? 3240 * XXX This should be done async. 3241 */ 3242 if ((mir = aac_get_container_info(sc, fib, i)) == NULL) 3243 continue; 3244 if (i == 0) 3245 count = mir->MntRespCount; 3246 /* 3247 * Check the container against our list. 3248 * co->co_found was already set to 0 in a 3249 * previous run. 3250 */ 3251 if ((mir->Status == ST_OK) && 3252 (mir->MntTable[0].VolType != CT_NONE)) { 3253 found = 0; 3254 TAILQ_FOREACH(co, 3255 &sc->aac_container_tqh, 3256 co_link) { 3257 if (co->co_mntobj.ObjectId == 3258 mir->MntTable[0].ObjectId) { 3259 co->co_found = 1; 3260 found = 1; 3261 break; 3262 } 3263 } 3264 /* 3265 * If the container matched, continue 3266 * in the list. 3267 */ 3268 if (found) { 3269 i++; 3270 continue; 3271 } 3272 3273 /* 3274 * This is a new container. Do all the 3275 * appropriate things to set it up. 3276 */ 3277 aac_add_container(sc, mir, 1); 3278 added = 1; 3279 } 3280 i++; 3281 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 3282 aac_release_sync_fib(sc); 3283 3284 /* 3285 * Go through our list of containers and see which ones 3286 * were not marked 'found'. Since the controller didn't 3287 * list them they must have been deleted. Do the 3288 * appropriate steps to destroy the device. Also reset 3289 * the co->co_found field. 3290 */ 3291 co = TAILQ_FIRST(&sc->aac_container_tqh); 3292 while (co != NULL) { 3293 if (co->co_found == 0) { 3294 mtx_unlock(&sc->aac_io_lock); 3295 mtx_lock(&Giant); 3296 device_delete_child(sc->aac_dev, 3297 co->co_disk); 3298 mtx_unlock(&Giant); 3299 mtx_lock(&sc->aac_io_lock); 3300 co_next = TAILQ_NEXT(co, co_link); 3301 mtx_lock(&sc->aac_container_lock); 3302 TAILQ_REMOVE(&sc->aac_container_tqh, co, 3303 co_link); 3304 mtx_unlock(&sc->aac_container_lock); 3305 free(co, M_AACBUF); 3306 co = co_next; 3307 } else { 3308 co->co_found = 0; 3309 co = TAILQ_NEXT(co, co_link); 3310 } 3311 } 3312 3313 /* Attach the newly created containers */ 3314 if (added) { 3315 mtx_unlock(&sc->aac_io_lock); 3316 mtx_lock(&Giant); 3317 bus_generic_attach(sc->aac_dev); 3318 mtx_unlock(&Giant); 3319 mtx_lock(&sc->aac_io_lock); 3320 } 3321 3322 break; 3323 3324 case AifEnEnclosureManagement: 3325 switch (aif->data.EN.data.EEE.eventType) { 3326 case AIF_EM_DRIVE_INSERTION: 3327 case AIF_EM_DRIVE_REMOVAL: 3328 channel = aif->data.EN.data.EEE.unitID; 3329 if (sc->cam_rescan_cb != NULL) 3330 sc->cam_rescan_cb(sc, 3331 (channel >> 24) & 0xF, 3332 (channel & 0xFFFF)); 3333 break; 3334 } 3335 break; 3336 3337 case AifEnAddJBOD: 3338 case AifEnDeleteJBOD: 3339 channel = aif->data.EN.data.ECE.container; 3340 if (sc->cam_rescan_cb != NULL) 3341 sc->cam_rescan_cb(sc, (channel >> 24) & 0xF, 3342 AAC_CAM_TARGET_WILDCARD); 3343 break; 3344 3345 default: 3346 break; 3347 } 3348 3349 default: 3350 break; 3351 } 3352 3353 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 3354 mtx_lock(&sc->aac_aifq_lock); 3355 current = sc->aifq_idx; 3356 next = (current + 1) % AAC_AIFQ_LENGTH; 3357 if (next == 0) 3358 sc->aifq_filled = 1; 3359 bcopy(fib, &sc->aac_aifq[current], sizeof(struct aac_fib)); 3360 /* modify AIF contexts */ 3361 if (sc->aifq_filled) { 3362 for (ctx = sc->fibctx; ctx; ctx = ctx->next) { 3363 if (next == ctx->ctx_idx) 3364 ctx->ctx_wrap = 1; 3365 else if (current == ctx->ctx_idx && ctx->ctx_wrap) 3366 ctx->ctx_idx = next; 3367 } 3368 } 3369 sc->aifq_idx = next; 3370 /* On the off chance that someone is sleeping for an aif... */ 3371 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 3372 wakeup(sc->aac_aifq); 3373 /* Wakeup any poll()ers */ 3374 selwakeuppri(&sc->rcv_select, PRIBIO); 3375 mtx_unlock(&sc->aac_aifq_lock); 3376 } 3377 3378 /* 3379 * Return the Revision of the driver to userspace and check to see if the 3380 * userspace app is possibly compatible. This is extremely bogus since 3381 * our driver doesn't follow Adaptec's versioning system. Cheat by just 3382 * returning what the card reported. 3383 */ 3384 static int 3385 aac_rev_check(struct aac_softc *sc, caddr_t udata) 3386 { 3387 struct aac_rev_check rev_check; 3388 struct aac_rev_check_resp rev_check_resp; 3389 int error = 0; 3390 3391 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3392 3393 /* 3394 * Copyin the revision struct from userspace 3395 */ 3396 if ((error = copyin(udata, (caddr_t)&rev_check, 3397 sizeof(struct aac_rev_check))) != 0) { 3398 return error; 3399 } 3400 3401 fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "Userland revision= %d\n", 3402 rev_check.callingRevision.buildNumber); 3403 3404 /* 3405 * Doctor up the response struct. 3406 */ 3407 rev_check_resp.possiblyCompatible = 1; 3408 rev_check_resp.adapterSWRevision.external.comp.major = 3409 AAC_DRIVER_MAJOR_VERSION; 3410 rev_check_resp.adapterSWRevision.external.comp.minor = 3411 AAC_DRIVER_MINOR_VERSION; 3412 rev_check_resp.adapterSWRevision.external.comp.type = 3413 AAC_DRIVER_TYPE; 3414 rev_check_resp.adapterSWRevision.external.comp.dash = 3415 AAC_DRIVER_BUGFIX_LEVEL; 3416 rev_check_resp.adapterSWRevision.buildNumber = 3417 AAC_DRIVER_BUILD; 3418 3419 return(copyout((caddr_t)&rev_check_resp, udata, 3420 sizeof(struct aac_rev_check_resp))); 3421 } 3422 3423 /* 3424 * Pass the fib context to the caller 3425 */ 3426 static int 3427 aac_open_aif(struct aac_softc *sc, caddr_t arg) 3428 { 3429 struct aac_fib_context *fibctx, *ctx; 3430 int error = 0; 3431 3432 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3433 3434 fibctx = malloc(sizeof(struct aac_fib_context), M_AACBUF, M_NOWAIT|M_ZERO); 3435 if (fibctx == NULL) 3436 return (ENOMEM); 3437 3438 mtx_lock(&sc->aac_aifq_lock); 3439 /* all elements are already 0, add to queue */ 3440 if (sc->fibctx == NULL) 3441 sc->fibctx = fibctx; 3442 else { 3443 for (ctx = sc->fibctx; ctx->next; ctx = ctx->next) 3444 ; 3445 ctx->next = fibctx; 3446 fibctx->prev = ctx; 3447 } 3448 3449 /* evaluate unique value */ 3450 fibctx->unique = (*(u_int32_t *)&fibctx & 0xffffffff); 3451 ctx = sc->fibctx; 3452 while (ctx != fibctx) { 3453 if (ctx->unique == fibctx->unique) { 3454 fibctx->unique++; 3455 ctx = sc->fibctx; 3456 } else { 3457 ctx = ctx->next; 3458 } 3459 } 3460 mtx_unlock(&sc->aac_aifq_lock); 3461 3462 error = copyout(&fibctx->unique, (void *)arg, sizeof(u_int32_t)); 3463 if (error) 3464 aac_close_aif(sc, (caddr_t)ctx); 3465 return error; 3466 } 3467 3468 /* 3469 * Close the caller's fib context 3470 */ 3471 static int 3472 aac_close_aif(struct aac_softc *sc, caddr_t arg) 3473 { 3474 struct aac_fib_context *ctx; 3475 3476 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3477 3478 mtx_lock(&sc->aac_aifq_lock); 3479 for (ctx = sc->fibctx; ctx; ctx = ctx->next) { 3480 if (ctx->unique == *(uint32_t *)&arg) { 3481 if (ctx == sc->fibctx) 3482 sc->fibctx = NULL; 3483 else { 3484 ctx->prev->next = ctx->next; 3485 if (ctx->next) 3486 ctx->next->prev = ctx->prev; 3487 } 3488 break; 3489 } 3490 } 3491 mtx_unlock(&sc->aac_aifq_lock); 3492 if (ctx) 3493 free(ctx, M_AACBUF); 3494 3495 return 0; 3496 } 3497 3498 /* 3499 * Pass the caller the next AIF in their queue 3500 */ 3501 static int 3502 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 3503 { 3504 struct get_adapter_fib_ioctl agf; 3505 struct aac_fib_context *ctx; 3506 int error; 3507 3508 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3509 3510 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 3511 for (ctx = sc->fibctx; ctx; ctx = ctx->next) { 3512 if (agf.AdapterFibContext == ctx->unique) 3513 break; 3514 } 3515 if (!ctx) 3516 return (EFAULT); 3517 3518 error = aac_return_aif(sc, ctx, agf.AifFib); 3519 if (error == EAGAIN && agf.Wait) { 3520 fwprintf(sc, HBA_FLAGS_DBG_AIF_B, "aac_getnext_aif(): waiting for AIF"); 3521 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 3522 while (error == EAGAIN) { 3523 error = tsleep(sc->aac_aifq, PRIBIO | 3524 PCATCH, "aacaif", 0); 3525 if (error == 0) 3526 error = aac_return_aif(sc, ctx, agf.AifFib); 3527 } 3528 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 3529 } 3530 } 3531 return(error); 3532 } 3533 3534 /* 3535 * Hand the next AIF off the top of the queue out to userspace. 3536 */ 3537 static int 3538 aac_return_aif(struct aac_softc *sc, struct aac_fib_context *ctx, caddr_t uptr) 3539 { 3540 int current, error; 3541 3542 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3543 3544 mtx_lock(&sc->aac_aifq_lock); 3545 current = ctx->ctx_idx; 3546 if (current == sc->aifq_idx && !ctx->ctx_wrap) { 3547 /* empty */ 3548 mtx_unlock(&sc->aac_aifq_lock); 3549 return (EAGAIN); 3550 } 3551 error = 3552 copyout(&sc->aac_aifq[current], (void *)uptr, sizeof(struct aac_fib)); 3553 if (error) 3554 device_printf(sc->aac_dev, 3555 "aac_return_aif: copyout returned %d\n", error); 3556 else { 3557 ctx->ctx_wrap = 0; 3558 ctx->ctx_idx = (current + 1) % AAC_AIFQ_LENGTH; 3559 } 3560 mtx_unlock(&sc->aac_aifq_lock); 3561 return(error); 3562 } 3563 3564 static int 3565 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr) 3566 { 3567 struct aac_pci_info { 3568 u_int32_t bus; 3569 u_int32_t slot; 3570 } pciinf; 3571 int error; 3572 3573 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3574 3575 pciinf.bus = pci_get_bus(sc->aac_dev); 3576 pciinf.slot = pci_get_slot(sc->aac_dev); 3577 3578 error = copyout((caddr_t)&pciinf, uptr, 3579 sizeof(struct aac_pci_info)); 3580 3581 return (error); 3582 } 3583 3584 static int 3585 aac_supported_features(struct aac_softc *sc, caddr_t uptr) 3586 { 3587 struct aac_features f; 3588 int error; 3589 3590 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3591 3592 if ((error = copyin(uptr, &f, sizeof (f))) != 0) 3593 return (error); 3594 3595 /* 3596 * When the management driver receives FSACTL_GET_FEATURES ioctl with 3597 * ALL zero in the featuresState, the driver will return the current 3598 * state of all the supported features, the data field will not be 3599 * valid. 3600 * When the management driver receives FSACTL_GET_FEATURES ioctl with 3601 * a specific bit set in the featuresState, the driver will return the 3602 * current state of this specific feature and whatever data that are 3603 * associated with the feature in the data field or perform whatever 3604 * action needed indicates in the data field. 3605 */ 3606 if (f.feat.fValue == 0) { 3607 f.feat.fBits.largeLBA = 3608 (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0; 3609 /* TODO: In the future, add other features state here as well */ 3610 } else { 3611 if (f.feat.fBits.largeLBA) 3612 f.feat.fBits.largeLBA = 3613 (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0; 3614 /* TODO: Add other features state and data in the future */ 3615 } 3616 3617 error = copyout(&f, uptr, sizeof (f)); 3618 return (error); 3619 } 3620 3621 /* 3622 * Give the userland some information about the container. The AAC arch 3623 * expects the driver to be a SCSI passthrough type driver, so it expects 3624 * the containers to have b:t:l numbers. Fake it. 3625 */ 3626 static int 3627 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 3628 { 3629 struct aac_query_disk query_disk; 3630 struct aac_container *co; 3631 struct aac_disk *disk; 3632 int error, id; 3633 3634 fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, ""); 3635 3636 disk = NULL; 3637 3638 error = copyin(uptr, (caddr_t)&query_disk, 3639 sizeof(struct aac_query_disk)); 3640 if (error) 3641 return (error); 3642 3643 id = query_disk.ContainerNumber; 3644 if (id == -1) 3645 return (EINVAL); 3646 3647 mtx_lock(&sc->aac_container_lock); 3648 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 3649 if (co->co_mntobj.ObjectId == id) 3650 break; 3651 } 3652 3653 if (co == NULL) { 3654 query_disk.Valid = 0; 3655 query_disk.Locked = 0; 3656 query_disk.Deleted = 1; /* XXX is this right? */ 3657 } else { 3658 disk = device_get_softc(co->co_disk); 3659 query_disk.Valid = 1; 3660 query_disk.Locked = 3661 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 3662 query_disk.Deleted = 0; 3663 query_disk.Bus = device_get_unit(sc->aac_dev); 3664 query_disk.Target = disk->unit; 3665 query_disk.Lun = 0; 3666 query_disk.UnMapped = 0; 3667 sprintf(&query_disk.diskDeviceName[0], "%s%d", 3668 disk->ad_disk->d_name, disk->ad_disk->d_unit); 3669 } 3670 mtx_unlock(&sc->aac_container_lock); 3671 3672 error = copyout((caddr_t)&query_disk, uptr, 3673 sizeof(struct aac_query_disk)); 3674 3675 return (error); 3676 } 3677 3678 static void 3679 aac_get_bus_info(struct aac_softc *sc) 3680 { 3681 struct aac_fib *fib; 3682 struct aac_ctcfg *c_cmd; 3683 struct aac_ctcfg_resp *c_resp; 3684 struct aac_vmioctl *vmi; 3685 struct aac_vmi_businf_resp *vmi_resp; 3686 struct aac_getbusinf businfo; 3687 struct aac_sim *caminf; 3688 device_t child; 3689 int i, found, error; 3690 3691 mtx_lock(&sc->aac_io_lock); 3692 aac_alloc_sync_fib(sc, &fib); 3693 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 3694 bzero(c_cmd, sizeof(struct aac_ctcfg)); 3695 3696 c_cmd->Command = VM_ContainerConfig; 3697 c_cmd->cmd = CT_GET_SCSI_METHOD; 3698 c_cmd->param = 0; 3699 3700 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 3701 sizeof(struct aac_ctcfg)); 3702 if (error) { 3703 device_printf(sc->aac_dev, "Error %d sending " 3704 "VM_ContainerConfig command\n", error); 3705 aac_release_sync_fib(sc); 3706 mtx_unlock(&sc->aac_io_lock); 3707 return; 3708 } 3709 3710 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 3711 if (c_resp->Status != ST_OK) { 3712 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 3713 c_resp->Status); 3714 aac_release_sync_fib(sc); 3715 mtx_unlock(&sc->aac_io_lock); 3716 return; 3717 } 3718 3719 sc->scsi_method_id = c_resp->param; 3720 3721 vmi = (struct aac_vmioctl *)&fib->data[0]; 3722 bzero(vmi, sizeof(struct aac_vmioctl)); 3723 3724 vmi->Command = VM_Ioctl; 3725 vmi->ObjType = FT_DRIVE; 3726 vmi->MethId = sc->scsi_method_id; 3727 vmi->ObjId = 0; 3728 vmi->IoctlCmd = GetBusInfo; 3729 3730 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 3731 sizeof(struct aac_vmi_businf_resp)); 3732 if (error) { 3733 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 3734 error); 3735 aac_release_sync_fib(sc); 3736 mtx_unlock(&sc->aac_io_lock); 3737 return; 3738 } 3739 3740 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 3741 if (vmi_resp->Status != ST_OK) { 3742 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 3743 vmi_resp->Status); 3744 aac_release_sync_fib(sc); 3745 mtx_unlock(&sc->aac_io_lock); 3746 return; 3747 } 3748 3749 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 3750 aac_release_sync_fib(sc); 3751 mtx_unlock(&sc->aac_io_lock); 3752 3753 found = 0; 3754 for (i = 0; i < businfo.BusCount; i++) { 3755 if (businfo.BusValid[i] != AAC_BUS_VALID) 3756 continue; 3757 3758 caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim), 3759 M_AACBUF, M_NOWAIT | M_ZERO); 3760 if (caminf == NULL) { 3761 device_printf(sc->aac_dev, 3762 "No memory to add passthrough bus %d\n", i); 3763 break; 3764 }; 3765 3766 child = device_add_child(sc->aac_dev, "aacp", -1); 3767 if (child == NULL) { 3768 device_printf(sc->aac_dev, 3769 "device_add_child failed for passthrough bus %d\n", 3770 i); 3771 free(caminf, M_AACBUF); 3772 break; 3773 } 3774 3775 caminf->TargetsPerBus = businfo.TargetsPerBus; 3776 caminf->BusNumber = i; 3777 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 3778 caminf->aac_sc = sc; 3779 caminf->sim_dev = child; 3780 3781 device_set_ivars(child, caminf); 3782 device_set_desc(child, "SCSI Passthrough Bus"); 3783 TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link); 3784 3785 found = 1; 3786 } 3787 3788 if (found) 3789 bus_generic_attach(sc->aac_dev); 3790 } 3791