xref: /freebsd/sys/dev/aac/aac.c (revision 3b8f08459569bf0faa21473e5cec2491e95c9349)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 #define AAC_DRIVERNAME			"aac"
37 
38 #include "opt_aac.h"
39 
40 /* #include <stddef.h> */
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/kthread.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #include <sys/ioccom.h>
49 
50 #include <sys/bus.h>
51 #include <sys/conf.h>
52 #include <sys/signalvar.h>
53 #include <sys/time.h>
54 #include <sys/eventhandler.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <sys/bus_dma.h>
59 #include <machine/resource.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/aac/aacreg.h>
65 #include <sys/aac_ioctl.h>
66 #include <dev/aac/aacvar.h>
67 #include <dev/aac/aac_tables.h>
68 
69 static void	aac_startup(void *arg);
70 static void	aac_add_container(struct aac_softc *sc,
71 				  struct aac_mntinforesp *mir, int f);
72 static void	aac_get_bus_info(struct aac_softc *sc);
73 static void	aac_daemon(void *arg);
74 
75 /* Command Processing */
76 static void	aac_timeout(struct aac_softc *sc);
77 static void	aac_complete(void *context, int pending);
78 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void	aac_bio_complete(struct aac_command *cm);
80 static int	aac_wait_command(struct aac_command *cm);
81 static void	aac_command_thread(struct aac_softc *sc);
82 
83 /* Command Buffer Management */
84 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
85 				   int nseg, int error);
86 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
87 				       int nseg, int error);
88 static int	aac_alloc_commands(struct aac_softc *sc);
89 static void	aac_free_commands(struct aac_softc *sc);
90 static void	aac_unmap_command(struct aac_command *cm);
91 
92 /* Hardware Interface */
93 static int	aac_alloc(struct aac_softc *sc);
94 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
95 			       int error);
96 static int	aac_check_firmware(struct aac_softc *sc);
97 static int	aac_init(struct aac_softc *sc);
98 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
99 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
100 				 u_int32_t arg3, u_int32_t *sp);
101 static int	aac_setup_intr(struct aac_softc *sc);
102 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
103 				struct aac_command *cm);
104 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
105 				u_int32_t *fib_size, struct aac_fib **fib_addr);
106 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
107 				     struct aac_fib *fib);
108 
109 /* StrongARM interface */
110 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
111 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
112 static int	aac_sa_get_istatus(struct aac_softc *sc);
113 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
114 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
115 				   u_int32_t arg0, u_int32_t arg1,
116 				   u_int32_t arg2, u_int32_t arg3);
117 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
118 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
119 
120 const struct aac_interface aac_sa_interface = {
121 	aac_sa_get_fwstatus,
122 	aac_sa_qnotify,
123 	aac_sa_get_istatus,
124 	aac_sa_clear_istatus,
125 	aac_sa_set_mailbox,
126 	aac_sa_get_mailbox,
127 	aac_sa_set_interrupts,
128 	NULL, NULL, NULL
129 };
130 
131 /* i960Rx interface */
132 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
133 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
134 static int	aac_rx_get_istatus(struct aac_softc *sc);
135 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
136 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
137 				   u_int32_t arg0, u_int32_t arg1,
138 				   u_int32_t arg2, u_int32_t arg3);
139 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
140 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
141 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm);
142 static int aac_rx_get_outb_queue(struct aac_softc *sc);
143 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index);
144 
145 const struct aac_interface aac_rx_interface = {
146 	aac_rx_get_fwstatus,
147 	aac_rx_qnotify,
148 	aac_rx_get_istatus,
149 	aac_rx_clear_istatus,
150 	aac_rx_set_mailbox,
151 	aac_rx_get_mailbox,
152 	aac_rx_set_interrupts,
153 	aac_rx_send_command,
154 	aac_rx_get_outb_queue,
155 	aac_rx_set_outb_queue
156 };
157 
158 /* Rocket/MIPS interface */
159 static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
160 static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
161 static int	aac_rkt_get_istatus(struct aac_softc *sc);
162 static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
163 static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
164 				    u_int32_t arg0, u_int32_t arg1,
165 				    u_int32_t arg2, u_int32_t arg3);
166 static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
167 static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
168 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm);
169 static int aac_rkt_get_outb_queue(struct aac_softc *sc);
170 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index);
171 
172 const struct aac_interface aac_rkt_interface = {
173 	aac_rkt_get_fwstatus,
174 	aac_rkt_qnotify,
175 	aac_rkt_get_istatus,
176 	aac_rkt_clear_istatus,
177 	aac_rkt_set_mailbox,
178 	aac_rkt_get_mailbox,
179 	aac_rkt_set_interrupts,
180 	aac_rkt_send_command,
181 	aac_rkt_get_outb_queue,
182 	aac_rkt_set_outb_queue
183 };
184 
185 /* Debugging and Diagnostics */
186 static void		aac_describe_controller(struct aac_softc *sc);
187 static const char	*aac_describe_code(const struct aac_code_lookup *table,
188 				   u_int32_t code);
189 
190 /* Management Interface */
191 static d_open_t		aac_open;
192 static d_ioctl_t	aac_ioctl;
193 static d_poll_t		aac_poll;
194 static void		aac_cdevpriv_dtor(void *arg);
195 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
196 static int		aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg);
197 static void		aac_handle_aif(struct aac_softc *sc,
198 					   struct aac_fib *fib);
199 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
200 static int		aac_open_aif(struct aac_softc *sc, caddr_t arg);
201 static int		aac_close_aif(struct aac_softc *sc, caddr_t arg);
202 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
203 static int		aac_return_aif(struct aac_softc *sc,
204 					struct aac_fib_context *ctx, caddr_t uptr);
205 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
206 static int		aac_get_pci_info(struct aac_softc *sc, caddr_t uptr);
207 static int		aac_supported_features(struct aac_softc *sc, caddr_t uptr);
208 static void		aac_ioctl_event(struct aac_softc *sc,
209 					struct aac_event *event, void *arg);
210 static struct aac_mntinforesp *
211 	aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid);
212 
213 static struct cdevsw aac_cdevsw = {
214 	.d_version =	D_VERSION,
215 	.d_flags =	D_NEEDGIANT,
216 	.d_open =	aac_open,
217 	.d_ioctl =	aac_ioctl,
218 	.d_poll =	aac_poll,
219 	.d_name =	"aac",
220 };
221 
222 static MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
223 
224 /* sysctl node */
225 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
226 
227 /*
228  * Device Interface
229  */
230 
231 /*
232  * Initialize the controller and softc
233  */
234 int
235 aac_attach(struct aac_softc *sc)
236 {
237 	int error, unit;
238 
239 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
240 
241 	/*
242 	 * Initialize per-controller queues.
243 	 */
244 	aac_initq_free(sc);
245 	aac_initq_ready(sc);
246 	aac_initq_busy(sc);
247 	aac_initq_bio(sc);
248 
249 	/*
250 	 * Initialize command-completion task.
251 	 */
252 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
253 
254 	/* mark controller as suspended until we get ourselves organised */
255 	sc->aac_state |= AAC_STATE_SUSPEND;
256 
257 	/*
258 	 * Check that the firmware on the card is supported.
259 	 */
260 	if ((error = aac_check_firmware(sc)) != 0)
261 		return(error);
262 
263 	/*
264 	 * Initialize locks
265 	 */
266 	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
267 	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
268 	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
269 	TAILQ_INIT(&sc->aac_container_tqh);
270 	TAILQ_INIT(&sc->aac_ev_cmfree);
271 
272 	/* Initialize the clock daemon callout. */
273 	callout_init_mtx(&sc->aac_daemontime, &sc->aac_io_lock, 0);
274 
275 	/*
276 	 * Initialize the adapter.
277 	 */
278 	if ((error = aac_alloc(sc)) != 0)
279 		return(error);
280 	if ((error = aac_init(sc)) != 0)
281 		return(error);
282 
283 	/*
284 	 * Allocate and connect our interrupt.
285 	 */
286 	if ((error = aac_setup_intr(sc)) != 0)
287 		return(error);
288 
289 	/*
290 	 * Print a little information about the controller.
291 	 */
292 	aac_describe_controller(sc);
293 
294 	/*
295 	 * Add sysctls.
296 	 */
297 	SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->aac_dev),
298 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->aac_dev)),
299 	    OID_AUTO, "firmware_build", CTLFLAG_RD,
300 	    &sc->aac_revision.buildNumber, 0,
301 	    "firmware build number");
302 
303 	/*
304 	 * Register to probe our containers later.
305 	 */
306 	sc->aac_ich.ich_func = aac_startup;
307 	sc->aac_ich.ich_arg = sc;
308 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
309 		device_printf(sc->aac_dev,
310 			      "can't establish configuration hook\n");
311 		return(ENXIO);
312 	}
313 
314 	/*
315 	 * Make the control device.
316 	 */
317 	unit = device_get_unit(sc->aac_dev);
318 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
319 				 0640, "aac%d", unit);
320 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
321 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
322 	sc->aac_dev_t->si_drv1 = sc;
323 
324 	/* Create the AIF thread */
325 	if (kproc_create((void(*)(void *))aac_command_thread, sc,
326 		   &sc->aifthread, 0, 0, "aac%daif", unit))
327 		panic("Could not create AIF thread");
328 
329 	/* Register the shutdown method to only be called post-dump */
330 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
331 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
332 		device_printf(sc->aac_dev,
333 			      "shutdown event registration failed\n");
334 
335 	/* Register with CAM for the non-DASD devices */
336 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
337 		TAILQ_INIT(&sc->aac_sim_tqh);
338 		aac_get_bus_info(sc);
339 	}
340 
341 	mtx_lock(&sc->aac_io_lock);
342 	callout_reset(&sc->aac_daemontime, 60 * hz, aac_daemon, sc);
343 	mtx_unlock(&sc->aac_io_lock);
344 
345 	return(0);
346 }
347 
348 static void
349 aac_daemon(void *arg)
350 {
351 	struct timeval tv;
352 	struct aac_softc *sc;
353 	struct aac_fib *fib;
354 
355 	sc = arg;
356 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
357 
358 	if (callout_pending(&sc->aac_daemontime) ||
359 	    callout_active(&sc->aac_daemontime) == 0)
360 		return;
361 	getmicrotime(&tv);
362 	aac_alloc_sync_fib(sc, &fib);
363 	*(uint32_t *)fib->data = tv.tv_sec;
364 	aac_sync_fib(sc, SendHostTime, 0, fib, sizeof(uint32_t));
365 	aac_release_sync_fib(sc);
366 	callout_schedule(&sc->aac_daemontime, 30 * 60 * hz);
367 }
368 
369 void
370 aac_add_event(struct aac_softc *sc, struct aac_event *event)
371 {
372 
373 	switch (event->ev_type & AAC_EVENT_MASK) {
374 	case AAC_EVENT_CMFREE:
375 		TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links);
376 		break;
377 	default:
378 		device_printf(sc->aac_dev, "aac_add event: unknown event %d\n",
379 		    event->ev_type);
380 		break;
381 	}
382 }
383 
384 /*
385  * Request information of container #cid
386  */
387 static struct aac_mntinforesp *
388 aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid)
389 {
390 	struct aac_mntinfo *mi;
391 
392 	mi = (struct aac_mntinfo *)&fib->data[0];
393 	/* use 64-bit LBA if enabled */
394 	mi->Command = (sc->flags & AAC_FLAGS_LBA_64BIT) ?
395 	    VM_NameServe64 : VM_NameServe;
396 	mi->MntType = FT_FILESYS;
397 	mi->MntCount = cid;
398 
399 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
400 			 sizeof(struct aac_mntinfo))) {
401 		device_printf(sc->aac_dev, "Error probing container %d\n", cid);
402 		return (NULL);
403 	}
404 
405 	return ((struct aac_mntinforesp *)&fib->data[0]);
406 }
407 
408 /*
409  * Probe for containers, create disks.
410  */
411 static void
412 aac_startup(void *arg)
413 {
414 	struct aac_softc *sc;
415 	struct aac_fib *fib;
416 	struct aac_mntinforesp *mir;
417 	int count = 0, i = 0;
418 
419 	sc = (struct aac_softc *)arg;
420 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
421 
422 	/* disconnect ourselves from the intrhook chain */
423 	config_intrhook_disestablish(&sc->aac_ich);
424 
425 	mtx_lock(&sc->aac_io_lock);
426 	aac_alloc_sync_fib(sc, &fib);
427 
428 	/* loop over possible containers */
429 	do {
430 		if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
431 			continue;
432 		if (i == 0)
433 			count = mir->MntRespCount;
434 		aac_add_container(sc, mir, 0);
435 		i++;
436 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
437 
438 	aac_release_sync_fib(sc);
439 	mtx_unlock(&sc->aac_io_lock);
440 
441 	/* poke the bus to actually attach the child devices */
442 	if (bus_generic_attach(sc->aac_dev))
443 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
444 
445 	/* mark the controller up */
446 	sc->aac_state &= ~AAC_STATE_SUSPEND;
447 
448 	/* enable interrupts now */
449 	AAC_UNMASK_INTERRUPTS(sc);
450 }
451 
452 /*
453  * Create a device to represent a new container
454  */
455 static void
456 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
457 {
458 	struct aac_container *co;
459 	device_t child;
460 
461 	/*
462 	 * Check container volume type for validity.  Note that many of
463 	 * the possible types may never show up.
464 	 */
465 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
466 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
467 		       M_NOWAIT | M_ZERO);
468 		if (co == NULL)
469 			panic("Out of memory?!");
470 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "id %x  name '%.16s'  size %u  type %d",
471 		      mir->MntTable[0].ObjectId,
472 		      mir->MntTable[0].FileSystemName,
473 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
474 
475 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
476 			device_printf(sc->aac_dev, "device_add_child failed\n");
477 		else
478 			device_set_ivars(child, co);
479 		device_set_desc(child, aac_describe_code(aac_container_types,
480 				mir->MntTable[0].VolType));
481 		co->co_disk = child;
482 		co->co_found = f;
483 		bcopy(&mir->MntTable[0], &co->co_mntobj,
484 		      sizeof(struct aac_mntobj));
485 		mtx_lock(&sc->aac_container_lock);
486 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
487 		mtx_unlock(&sc->aac_container_lock);
488 	}
489 }
490 
491 /*
492  * Allocate resources associated with (sc)
493  */
494 static int
495 aac_alloc(struct aac_softc *sc)
496 {
497 
498 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
499 
500 	/*
501 	 * Create DMA tag for mapping buffers into controller-addressable space.
502 	 */
503 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
504 			       1, 0, 			/* algnmnt, boundary */
505 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
506 			       BUS_SPACE_MAXADDR :
507 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
508 			       BUS_SPACE_MAXADDR, 	/* highaddr */
509 			       NULL, NULL, 		/* filter, filterarg */
510 			       MAXBSIZE,		/* maxsize */
511 			       sc->aac_sg_tablesize,	/* nsegments */
512 			       MAXBSIZE,		/* maxsegsize */
513 			       BUS_DMA_ALLOCNOW,	/* flags */
514 			       busdma_lock_mutex,	/* lockfunc */
515 			       &sc->aac_io_lock,	/* lockfuncarg */
516 			       &sc->aac_buffer_dmat)) {
517 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
518 		return (ENOMEM);
519 	}
520 
521 	/*
522 	 * Create DMA tag for mapping FIBs into controller-addressable space..
523 	 */
524 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
525 			       1, 0, 			/* algnmnt, boundary */
526 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
527 			       BUS_SPACE_MAXADDR_32BIT :
528 			       0x7fffffff,		/* lowaddr */
529 			       BUS_SPACE_MAXADDR, 	/* highaddr */
530 			       NULL, NULL, 		/* filter, filterarg */
531 			       sc->aac_max_fibs_alloc *
532 			       sc->aac_max_fib_size,  /* maxsize */
533 			       1,			/* nsegments */
534 			       sc->aac_max_fibs_alloc *
535 			       sc->aac_max_fib_size,	/* maxsize */
536 			       0,			/* flags */
537 			       NULL, NULL,		/* No locking needed */
538 			       &sc->aac_fib_dmat)) {
539 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
540 		return (ENOMEM);
541 	}
542 
543 	/*
544 	 * Create DMA tag for the common structure and allocate it.
545 	 */
546 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
547 			       1, 0,			/* algnmnt, boundary */
548 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
549 			       BUS_SPACE_MAXADDR_32BIT :
550 			       0x7fffffff,		/* lowaddr */
551 			       BUS_SPACE_MAXADDR, 	/* highaddr */
552 			       NULL, NULL, 		/* filter, filterarg */
553 			       8192 + sizeof(struct aac_common), /* maxsize */
554 			       1,			/* nsegments */
555 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
556 			       0,			/* flags */
557 			       NULL, NULL,		/* No locking needed */
558 			       &sc->aac_common_dmat)) {
559 		device_printf(sc->aac_dev,
560 			      "can't allocate common structure DMA tag\n");
561 		return (ENOMEM);
562 	}
563 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
564 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
565 		device_printf(sc->aac_dev, "can't allocate common structure\n");
566 		return (ENOMEM);
567 	}
568 
569 	/*
570 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
571 	 * below address 8192 in physical memory.
572 	 * XXX If the padding is not needed, can it be put to use instead
573 	 * of ignored?
574 	 */
575 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
576 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
577 			aac_common_map, sc, 0);
578 
579 	if (sc->aac_common_busaddr < 8192) {
580 		sc->aac_common = (struct aac_common *)
581 		    ((uint8_t *)sc->aac_common + 8192);
582 		sc->aac_common_busaddr += 8192;
583 	}
584 	bzero(sc->aac_common, sizeof(*sc->aac_common));
585 
586 	/* Allocate some FIBs and associated command structs */
587 	TAILQ_INIT(&sc->aac_fibmap_tqh);
588 	sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command),
589 				  M_AACBUF, M_WAITOK|M_ZERO);
590 	while (sc->total_fibs < sc->aac_max_fibs) {
591 		if (aac_alloc_commands(sc) != 0)
592 			break;
593 	}
594 	if (sc->total_fibs == 0)
595 		return (ENOMEM);
596 
597 	return (0);
598 }
599 
600 /*
601  * Free all of the resources associated with (sc)
602  *
603  * Should not be called if the controller is active.
604  */
605 void
606 aac_free(struct aac_softc *sc)
607 {
608 
609 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
610 
611 	/* remove the control device */
612 	if (sc->aac_dev_t != NULL)
613 		destroy_dev(sc->aac_dev_t);
614 
615 	/* throw away any FIB buffers, discard the FIB DMA tag */
616 	aac_free_commands(sc);
617 	if (sc->aac_fib_dmat)
618 		bus_dma_tag_destroy(sc->aac_fib_dmat);
619 
620 	free(sc->aac_commands, M_AACBUF);
621 
622 	/* destroy the common area */
623 	if (sc->aac_common) {
624 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
625 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
626 				sc->aac_common_dmamap);
627 	}
628 	if (sc->aac_common_dmat)
629 		bus_dma_tag_destroy(sc->aac_common_dmat);
630 
631 	/* disconnect the interrupt handler */
632 	if (sc->aac_intr)
633 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
634 	if (sc->aac_irq != NULL) {
635 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ,
636 		    rman_get_rid(sc->aac_irq), sc->aac_irq);
637 		pci_release_msi(sc->aac_dev);
638 	}
639 
640 	/* destroy data-transfer DMA tag */
641 	if (sc->aac_buffer_dmat)
642 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
643 
644 	/* destroy the parent DMA tag */
645 	if (sc->aac_parent_dmat)
646 		bus_dma_tag_destroy(sc->aac_parent_dmat);
647 
648 	/* release the register window mapping */
649 	if (sc->aac_regs_res0 != NULL)
650 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
651 		    rman_get_rid(sc->aac_regs_res0), sc->aac_regs_res0);
652 	if (sc->aac_hwif == AAC_HWIF_NARK && sc->aac_regs_res1 != NULL)
653 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
654 		    rman_get_rid(sc->aac_regs_res1), sc->aac_regs_res1);
655 }
656 
657 /*
658  * Disconnect from the controller completely, in preparation for unload.
659  */
660 int
661 aac_detach(device_t dev)
662 {
663 	struct aac_softc *sc;
664 	struct aac_container *co;
665 	struct aac_sim	*sim;
666 	int error;
667 
668 	sc = device_get_softc(dev);
669 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
670 
671 	callout_drain(&sc->aac_daemontime);
672 
673 	mtx_lock(&sc->aac_io_lock);
674 	while (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
675 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
676 		wakeup(sc->aifthread);
677 		msleep(sc->aac_dev, &sc->aac_io_lock, PUSER, "aacdch", 0);
678 	}
679 	mtx_unlock(&sc->aac_io_lock);
680 	KASSERT((sc->aifflags & AAC_AIFFLAGS_RUNNING) == 0,
681 	    ("%s: invalid detach state", __func__));
682 
683 	/* Remove the child containers */
684 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
685 		error = device_delete_child(dev, co->co_disk);
686 		if (error)
687 			return (error);
688 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
689 		free(co, M_AACBUF);
690 	}
691 
692 	/* Remove the CAM SIMs */
693 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
694 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
695 		error = device_delete_child(dev, sim->sim_dev);
696 		if (error)
697 			return (error);
698 		free(sim, M_AACBUF);
699 	}
700 
701 	if ((error = aac_shutdown(dev)))
702 		return(error);
703 
704 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
705 
706 	aac_free(sc);
707 
708 	mtx_destroy(&sc->aac_aifq_lock);
709 	mtx_destroy(&sc->aac_io_lock);
710 	mtx_destroy(&sc->aac_container_lock);
711 
712 	return(0);
713 }
714 
715 /*
716  * Bring the controller down to a dormant state and detach all child devices.
717  *
718  * This function is called before detach or system shutdown.
719  *
720  * Note that we can assume that the bioq on the controller is empty, as we won't
721  * allow shutdown if any device is open.
722  */
723 int
724 aac_shutdown(device_t dev)
725 {
726 	struct aac_softc *sc;
727 	struct aac_fib *fib;
728 	struct aac_close_command *cc;
729 
730 	sc = device_get_softc(dev);
731 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
732 
733 	sc->aac_state |= AAC_STATE_SUSPEND;
734 
735 	/*
736 	 * Send a Container shutdown followed by a HostShutdown FIB to the
737 	 * controller to convince it that we don't want to talk to it anymore.
738 	 * We've been closed and all I/O completed already
739 	 */
740 	device_printf(sc->aac_dev, "shutting down controller...");
741 
742 	mtx_lock(&sc->aac_io_lock);
743 	aac_alloc_sync_fib(sc, &fib);
744 	cc = (struct aac_close_command *)&fib->data[0];
745 
746 	bzero(cc, sizeof(struct aac_close_command));
747 	cc->Command = VM_CloseAll;
748 	cc->ContainerId = 0xffffffff;
749 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
750 	    sizeof(struct aac_close_command)))
751 		printf("FAILED.\n");
752 	else
753 		printf("done\n");
754 #if 0
755 	else {
756 		fib->data[0] = 0;
757 		/*
758 		 * XXX Issuing this command to the controller makes it shut down
759 		 * but also keeps it from coming back up without a reset of the
760 		 * PCI bus.  This is not desirable if you are just unloading the
761 		 * driver module with the intent to reload it later.
762 		 */
763 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
764 		    fib, 1)) {
765 			printf("FAILED.\n");
766 		} else {
767 			printf("done.\n");
768 		}
769 	}
770 #endif
771 
772 	AAC_MASK_INTERRUPTS(sc);
773 	aac_release_sync_fib(sc);
774 	mtx_unlock(&sc->aac_io_lock);
775 
776 	return(0);
777 }
778 
779 /*
780  * Bring the controller to a quiescent state, ready for system suspend.
781  */
782 int
783 aac_suspend(device_t dev)
784 {
785 	struct aac_softc *sc;
786 
787 	sc = device_get_softc(dev);
788 
789 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
790 	sc->aac_state |= AAC_STATE_SUSPEND;
791 
792 	AAC_MASK_INTERRUPTS(sc);
793 	return(0);
794 }
795 
796 /*
797  * Bring the controller back to a state ready for operation.
798  */
799 int
800 aac_resume(device_t dev)
801 {
802 	struct aac_softc *sc;
803 
804 	sc = device_get_softc(dev);
805 
806 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
807 	sc->aac_state &= ~AAC_STATE_SUSPEND;
808 	AAC_UNMASK_INTERRUPTS(sc);
809 	return(0);
810 }
811 
812 /*
813  * Interrupt handler for NEW_COMM interface.
814  */
815 void
816 aac_new_intr(void *arg)
817 {
818 	struct aac_softc *sc;
819 	u_int32_t index, fast;
820 	struct aac_command *cm;
821 	struct aac_fib *fib;
822 	int i;
823 
824 	sc = (struct aac_softc *)arg;
825 
826 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
827 	mtx_lock(&sc->aac_io_lock);
828 	while (1) {
829 		index = AAC_GET_OUTB_QUEUE(sc);
830 		if (index == 0xffffffff)
831 			index = AAC_GET_OUTB_QUEUE(sc);
832 		if (index == 0xffffffff)
833 			break;
834 		if (index & 2) {
835 			if (index == 0xfffffffe) {
836 				/* XXX This means that the controller wants
837 				 * more work.  Ignore it for now.
838 				 */
839 				continue;
840 			}
841 			/* AIF */
842 			fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF,
843 				   M_NOWAIT | M_ZERO);
844 			if (fib == NULL) {
845 				/* If we're really this short on memory,
846 				 * hopefully breaking out of the handler will
847 				 * allow something to get freed.  This
848 				 * actually sucks a whole lot.
849 				 */
850 				break;
851 			}
852 			index &= ~2;
853 			for (i = 0; i < sizeof(struct aac_fib)/4; ++i)
854 				((u_int32_t *)fib)[i] = AAC_MEM1_GETREG4(sc, index + i*4);
855 			aac_handle_aif(sc, fib);
856 			free(fib, M_AACBUF);
857 
858 			/*
859 			 * AIF memory is owned by the adapter, so let it
860 			 * know that we are done with it.
861 			 */
862 			AAC_SET_OUTB_QUEUE(sc, index);
863 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
864 		} else {
865 			fast = index & 1;
866 			cm = sc->aac_commands + (index >> 2);
867 			fib = cm->cm_fib;
868 			if (fast) {
869 				fib->Header.XferState |= AAC_FIBSTATE_DONEADAP;
870 				*((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL;
871 			}
872 			aac_remove_busy(cm);
873  			aac_unmap_command(cm);
874 			cm->cm_flags |= AAC_CMD_COMPLETED;
875 
876 			/* is there a completion handler? */
877 			if (cm->cm_complete != NULL) {
878 				cm->cm_complete(cm);
879 			} else {
880 				/* assume that someone is sleeping on this
881 				 * command
882 				 */
883 				wakeup(cm);
884 			}
885 			sc->flags &= ~AAC_QUEUE_FRZN;
886 		}
887 	}
888 	/* see if we can start some more I/O */
889 	if ((sc->flags & AAC_QUEUE_FRZN) == 0)
890 		aac_startio(sc);
891 
892 	mtx_unlock(&sc->aac_io_lock);
893 }
894 
895 /*
896  * Interrupt filter for !NEW_COMM interface.
897  */
898 int
899 aac_filter(void *arg)
900 {
901 	struct aac_softc *sc;
902 	u_int16_t reason;
903 
904 	sc = (struct aac_softc *)arg;
905 
906 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
907 	/*
908 	 * Read the status register directly.  This is faster than taking the
909 	 * driver lock and reading the queues directly.  It also saves having
910 	 * to turn parts of the driver lock into a spin mutex, which would be
911 	 * ugly.
912 	 */
913 	reason = AAC_GET_ISTATUS(sc);
914 	AAC_CLEAR_ISTATUS(sc, reason);
915 
916 	/* handle completion processing */
917 	if (reason & AAC_DB_RESPONSE_READY)
918 		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
919 
920 	/* controller wants to talk to us */
921 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
922 		/*
923 		 * XXX Make sure that we don't get fooled by strange messages
924 		 * that start with a NULL.
925 		 */
926 		if ((reason & AAC_DB_PRINTF) &&
927 			(sc->aac_common->ac_printf[0] == 0))
928 			sc->aac_common->ac_printf[0] = 32;
929 
930 		/*
931 		 * This might miss doing the actual wakeup.  However, the
932 		 * msleep that this is waking up has a timeout, so it will
933 		 * wake up eventually.  AIFs and printfs are low enough
934 		 * priority that they can handle hanging out for a few seconds
935 		 * if needed.
936 		 */
937 		wakeup(sc->aifthread);
938 	}
939 	return (FILTER_HANDLED);
940 }
941 
942 /*
943  * Command Processing
944  */
945 
946 /*
947  * Start as much queued I/O as possible on the controller
948  */
949 void
950 aac_startio(struct aac_softc *sc)
951 {
952 	struct aac_command *cm;
953 	int error;
954 
955 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
956 
957 	for (;;) {
958 		/*
959 		 * This flag might be set if the card is out of resources.
960 		 * Checking it here prevents an infinite loop of deferrals.
961 		 */
962 		if (sc->flags & AAC_QUEUE_FRZN)
963 			break;
964 
965 		/*
966 		 * Try to get a command that's been put off for lack of
967 		 * resources
968 		 */
969 		cm = aac_dequeue_ready(sc);
970 
971 		/*
972 		 * Try to build a command off the bio queue (ignore error
973 		 * return)
974 		 */
975 		if (cm == NULL)
976 			aac_bio_command(sc, &cm);
977 
978 		/* nothing to do? */
979 		if (cm == NULL)
980 			break;
981 
982 		/* don't map more than once */
983 		if (cm->cm_flags & AAC_CMD_MAPPED)
984 			panic("aac: command %p already mapped", cm);
985 
986 		/*
987 		 * Set up the command to go to the controller.  If there are no
988 		 * data buffers associated with the command then it can bypass
989 		 * busdma.
990 		 */
991 		if (cm->cm_datalen != 0) {
992 			if (cm->cm_flags & AAC_REQ_BIO)
993 				error = bus_dmamap_load_bio(
994 				    sc->aac_buffer_dmat, cm->cm_datamap,
995 				    (struct bio *)cm->cm_private,
996 				    aac_map_command_sg, cm, 0);
997 			else
998 				error = bus_dmamap_load(sc->aac_buffer_dmat,
999 				    cm->cm_datamap, cm->cm_data,
1000 				    cm->cm_datalen, aac_map_command_sg, cm, 0);
1001 			if (error == EINPROGRESS) {
1002 				fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "freezing queue\n");
1003 				sc->flags |= AAC_QUEUE_FRZN;
1004 			} else if (error != 0)
1005 				panic("aac_startio: unexpected error %d from "
1006 				      "busdma", error);
1007 		} else
1008 			aac_map_command_sg(cm, NULL, 0, 0);
1009 	}
1010 }
1011 
1012 /*
1013  * Handle notification of one or more FIBs coming from the controller.
1014  */
1015 static void
1016 aac_command_thread(struct aac_softc *sc)
1017 {
1018 	struct aac_fib *fib;
1019 	u_int32_t fib_size;
1020 	int size, retval;
1021 
1022 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1023 
1024 	mtx_lock(&sc->aac_io_lock);
1025 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
1026 
1027 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
1028 
1029 		retval = 0;
1030 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
1031 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
1032 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
1033 
1034 		/*
1035 		 * First see if any FIBs need to be allocated.  This needs
1036 		 * to be called without the driver lock because contigmalloc
1037 		 * can sleep.
1038 		 */
1039 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
1040 			mtx_unlock(&sc->aac_io_lock);
1041 			aac_alloc_commands(sc);
1042 			mtx_lock(&sc->aac_io_lock);
1043 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
1044 			aac_startio(sc);
1045 		}
1046 
1047 		/*
1048 		 * While we're here, check to see if any commands are stuck.
1049 		 * This is pretty low-priority, so it's ok if it doesn't
1050 		 * always fire.
1051 		 */
1052 		if (retval == EWOULDBLOCK)
1053 			aac_timeout(sc);
1054 
1055 		/* Check the hardware printf message buffer */
1056 		if (sc->aac_common->ac_printf[0] != 0)
1057 			aac_print_printf(sc);
1058 
1059 		/* Also check to see if the adapter has a command for us. */
1060 		if (sc->flags & AAC_FLAGS_NEW_COMM)
1061 			continue;
1062 		for (;;) {
1063 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
1064 					   &fib_size, &fib))
1065 				break;
1066 
1067 			AAC_PRINT_FIB(sc, fib);
1068 
1069 			switch (fib->Header.Command) {
1070 			case AifRequest:
1071 				aac_handle_aif(sc, fib);
1072 				break;
1073 			default:
1074 				device_printf(sc->aac_dev, "unknown command "
1075 					      "from controller\n");
1076 				break;
1077 			}
1078 
1079 			if ((fib->Header.XferState == 0) ||
1080 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
1081 				break;
1082 			}
1083 
1084 			/* Return the AIF to the controller. */
1085 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
1086 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
1087 				*(AAC_FSAStatus*)fib->data = ST_OK;
1088 
1089 				/* XXX Compute the Size field? */
1090 				size = fib->Header.Size;
1091 				if (size > sizeof(struct aac_fib)) {
1092 					size = sizeof(struct aac_fib);
1093 					fib->Header.Size = size;
1094 				}
1095 				/*
1096 				 * Since we did not generate this command, it
1097 				 * cannot go through the normal
1098 				 * enqueue->startio chain.
1099 				 */
1100 				aac_enqueue_response(sc,
1101 						 AAC_ADAP_NORM_RESP_QUEUE,
1102 						 fib);
1103 			}
1104 		}
1105 	}
1106 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
1107 	mtx_unlock(&sc->aac_io_lock);
1108 	wakeup(sc->aac_dev);
1109 
1110 	kproc_exit(0);
1111 }
1112 
1113 /*
1114  * Process completed commands.
1115  */
1116 static void
1117 aac_complete(void *context, int pending)
1118 {
1119 	struct aac_softc *sc;
1120 	struct aac_command *cm;
1121 	struct aac_fib *fib;
1122 	u_int32_t fib_size;
1123 
1124 	sc = (struct aac_softc *)context;
1125 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1126 
1127 	mtx_lock(&sc->aac_io_lock);
1128 
1129 	/* pull completed commands off the queue */
1130 	for (;;) {
1131 		/* look for completed FIBs on our queue */
1132 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
1133 							&fib))
1134 			break;	/* nothing to do */
1135 
1136 		/* get the command, unmap and hand off for processing */
1137 		cm = sc->aac_commands + fib->Header.SenderData;
1138 		if (cm == NULL) {
1139 			AAC_PRINT_FIB(sc, fib);
1140 			break;
1141 		}
1142 		if ((cm->cm_flags & AAC_CMD_TIMEDOUT) != 0)
1143 			device_printf(sc->aac_dev,
1144 			    "COMMAND %p COMPLETED AFTER %d SECONDS\n",
1145 			    cm, (int)(time_uptime-cm->cm_timestamp));
1146 
1147 		aac_remove_busy(cm);
1148 
1149  		aac_unmap_command(cm);
1150 		cm->cm_flags |= AAC_CMD_COMPLETED;
1151 
1152 		/* is there a completion handler? */
1153 		if (cm->cm_complete != NULL) {
1154 			cm->cm_complete(cm);
1155 		} else {
1156 			/* assume that someone is sleeping on this command */
1157 			wakeup(cm);
1158 		}
1159 	}
1160 
1161 	/* see if we can start some more I/O */
1162 	sc->flags &= ~AAC_QUEUE_FRZN;
1163 	aac_startio(sc);
1164 
1165 	mtx_unlock(&sc->aac_io_lock);
1166 }
1167 
1168 /*
1169  * Handle a bio submitted from a disk device.
1170  */
1171 void
1172 aac_submit_bio(struct bio *bp)
1173 {
1174 	struct aac_disk *ad;
1175 	struct aac_softc *sc;
1176 
1177 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1178 	sc = ad->ad_controller;
1179 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1180 
1181 	/* queue the BIO and try to get some work done */
1182 	aac_enqueue_bio(sc, bp);
1183 	aac_startio(sc);
1184 }
1185 
1186 /*
1187  * Get a bio and build a command to go with it.
1188  */
1189 static int
1190 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
1191 {
1192 	struct aac_command *cm;
1193 	struct aac_fib *fib;
1194 	struct aac_disk *ad;
1195 	struct bio *bp;
1196 
1197 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1198 
1199 	/* get the resources we will need */
1200 	cm = NULL;
1201 	bp = NULL;
1202 	if (aac_alloc_command(sc, &cm))	/* get a command */
1203 		goto fail;
1204 	if ((bp = aac_dequeue_bio(sc)) == NULL)
1205 		goto fail;
1206 
1207 	/* fill out the command */
1208 	cm->cm_datalen = bp->bio_bcount;
1209 	cm->cm_complete = aac_bio_complete;
1210 	cm->cm_flags = AAC_REQ_BIO;
1211 	cm->cm_private = bp;
1212 	cm->cm_timestamp = time_uptime;
1213 
1214 	/* build the FIB */
1215 	fib = cm->cm_fib;
1216 	fib->Header.Size = sizeof(struct aac_fib_header);
1217 	fib->Header.XferState =
1218 		AAC_FIBSTATE_HOSTOWNED   |
1219 		AAC_FIBSTATE_INITIALISED |
1220 		AAC_FIBSTATE_EMPTY	 |
1221 		AAC_FIBSTATE_FROMHOST	 |
1222 		AAC_FIBSTATE_REXPECTED   |
1223 		AAC_FIBSTATE_NORM	 |
1224 		AAC_FIBSTATE_ASYNC	 |
1225 		AAC_FIBSTATE_FAST_RESPONSE;
1226 
1227 	/* build the read/write request */
1228 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1229 
1230 	if (sc->flags & AAC_FLAGS_RAW_IO) {
1231 		struct aac_raw_io *raw;
1232 		raw = (struct aac_raw_io *)&fib->data[0];
1233 		fib->Header.Command = RawIo;
1234 		raw->BlockNumber = (u_int64_t)bp->bio_pblkno;
1235 		raw->ByteCount = bp->bio_bcount;
1236 		raw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1237 		raw->BpTotal = 0;
1238 		raw->BpComplete = 0;
1239 		fib->Header.Size += sizeof(struct aac_raw_io);
1240 		cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw;
1241 		if (bp->bio_cmd == BIO_READ) {
1242 			raw->Flags = 1;
1243 			cm->cm_flags |= AAC_CMD_DATAIN;
1244 		} else {
1245 			raw->Flags = 0;
1246 			cm->cm_flags |= AAC_CMD_DATAOUT;
1247 		}
1248 	} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1249 		fib->Header.Command = ContainerCommand;
1250 		if (bp->bio_cmd == BIO_READ) {
1251 			struct aac_blockread *br;
1252 			br = (struct aac_blockread *)&fib->data[0];
1253 			br->Command = VM_CtBlockRead;
1254 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1255 			br->BlockNumber = bp->bio_pblkno;
1256 			br->ByteCount = bp->bio_bcount;
1257 			fib->Header.Size += sizeof(struct aac_blockread);
1258 			cm->cm_sgtable = &br->SgMap;
1259 			cm->cm_flags |= AAC_CMD_DATAIN;
1260 		} else {
1261 			struct aac_blockwrite *bw;
1262 			bw = (struct aac_blockwrite *)&fib->data[0];
1263 			bw->Command = VM_CtBlockWrite;
1264 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1265 			bw->BlockNumber = bp->bio_pblkno;
1266 			bw->ByteCount = bp->bio_bcount;
1267 			bw->Stable = CUNSTABLE;
1268 			fib->Header.Size += sizeof(struct aac_blockwrite);
1269 			cm->cm_flags |= AAC_CMD_DATAOUT;
1270 			cm->cm_sgtable = &bw->SgMap;
1271 		}
1272 	} else {
1273 		fib->Header.Command = ContainerCommand64;
1274 		if (bp->bio_cmd == BIO_READ) {
1275 			struct aac_blockread64 *br;
1276 			br = (struct aac_blockread64 *)&fib->data[0];
1277 			br->Command = VM_CtHostRead64;
1278 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1279 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1280 			br->BlockNumber = bp->bio_pblkno;
1281 			br->Pad = 0;
1282 			br->Flags = 0;
1283 			fib->Header.Size += sizeof(struct aac_blockread64);
1284 			cm->cm_flags |= AAC_CMD_DATAIN;
1285 			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
1286 		} else {
1287 			struct aac_blockwrite64 *bw;
1288 			bw = (struct aac_blockwrite64 *)&fib->data[0];
1289 			bw->Command = VM_CtHostWrite64;
1290 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1291 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1292 			bw->BlockNumber = bp->bio_pblkno;
1293 			bw->Pad = 0;
1294 			bw->Flags = 0;
1295 			fib->Header.Size += sizeof(struct aac_blockwrite64);
1296 			cm->cm_flags |= AAC_CMD_DATAOUT;
1297 			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
1298 		}
1299 	}
1300 
1301 	*cmp = cm;
1302 	return(0);
1303 
1304 fail:
1305 	if (bp != NULL)
1306 		aac_enqueue_bio(sc, bp);
1307 	if (cm != NULL)
1308 		aac_release_command(cm);
1309 	return(ENOMEM);
1310 }
1311 
1312 /*
1313  * Handle a bio-instigated command that has been completed.
1314  */
1315 static void
1316 aac_bio_complete(struct aac_command *cm)
1317 {
1318 	struct aac_blockread_response *brr;
1319 	struct aac_blockwrite_response *bwr;
1320 	struct bio *bp;
1321 	AAC_FSAStatus status;
1322 
1323 	/* fetch relevant status and then release the command */
1324 	bp = (struct bio *)cm->cm_private;
1325 	if (bp->bio_cmd == BIO_READ) {
1326 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1327 		status = brr->Status;
1328 	} else {
1329 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1330 		status = bwr->Status;
1331 	}
1332 	aac_release_command(cm);
1333 
1334 	/* fix up the bio based on status */
1335 	if (status == ST_OK) {
1336 		bp->bio_resid = 0;
1337 	} else {
1338 		bp->bio_error = EIO;
1339 		bp->bio_flags |= BIO_ERROR;
1340 	}
1341 	aac_biodone(bp);
1342 }
1343 
1344 /*
1345  * Submit a command to the controller, return when it completes.
1346  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1347  *     be stuck here forever.  At the same time, signals are not caught
1348  *     because there is a risk that a signal could wakeup the sleep before
1349  *     the card has a chance to complete the command.  Since there is no way
1350  *     to cancel a command that is in progress, we can't protect against the
1351  *     card completing a command late and spamming the command and data
1352  *     memory.  So, we are held hostage until the command completes.
1353  */
1354 static int
1355 aac_wait_command(struct aac_command *cm)
1356 {
1357 	struct aac_softc *sc;
1358 	int error;
1359 
1360 	sc = cm->cm_sc;
1361 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1362 
1363 	/* Put the command on the ready queue and get things going */
1364 	aac_enqueue_ready(cm);
1365 	aac_startio(sc);
1366 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1367 	return(error);
1368 }
1369 
1370 /*
1371  *Command Buffer Management
1372  */
1373 
1374 /*
1375  * Allocate a command.
1376  */
1377 int
1378 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1379 {
1380 	struct aac_command *cm;
1381 
1382 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1383 
1384 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1385 		if (sc->total_fibs < sc->aac_max_fibs) {
1386 			mtx_lock(&sc->aac_io_lock);
1387 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1388 			mtx_unlock(&sc->aac_io_lock);
1389 			wakeup(sc->aifthread);
1390 		}
1391 		return (EBUSY);
1392 	}
1393 
1394 	*cmp = cm;
1395 	return(0);
1396 }
1397 
1398 /*
1399  * Release a command back to the freelist.
1400  */
1401 void
1402 aac_release_command(struct aac_command *cm)
1403 {
1404 	struct aac_event *event;
1405 	struct aac_softc *sc;
1406 
1407 	sc = cm->cm_sc;
1408 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1409 
1410 	/* (re)initialize the command/FIB */
1411 	cm->cm_sgtable = NULL;
1412 	cm->cm_flags = 0;
1413 	cm->cm_complete = NULL;
1414 	cm->cm_private = NULL;
1415 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1416 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1417 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1418 	cm->cm_fib->Header.Flags = 0;
1419 	cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size;
1420 
1421 	/*
1422 	 * These are duplicated in aac_start to cover the case where an
1423 	 * intermediate stage may have destroyed them.  They're left
1424 	 * initialized here for debugging purposes only.
1425 	 */
1426 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1427 	cm->cm_fib->Header.SenderData = 0;
1428 
1429 	aac_enqueue_free(cm);
1430 
1431 	if ((event = TAILQ_FIRST(&sc->aac_ev_cmfree)) != NULL) {
1432 		TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links);
1433 		event->ev_callback(sc, event, event->ev_arg);
1434 	}
1435 }
1436 
1437 /*
1438  * Map helper for command/FIB allocation.
1439  */
1440 static void
1441 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1442 {
1443 	uint64_t	*fibphys;
1444 
1445 	fibphys = (uint64_t *)arg;
1446 
1447 	*fibphys = segs[0].ds_addr;
1448 }
1449 
1450 /*
1451  * Allocate and initialize commands/FIBs for this adapter.
1452  */
1453 static int
1454 aac_alloc_commands(struct aac_softc *sc)
1455 {
1456 	struct aac_command *cm;
1457 	struct aac_fibmap *fm;
1458 	uint64_t fibphys;
1459 	int i, error;
1460 
1461 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1462 
1463 	if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs)
1464 		return (ENOMEM);
1465 
1466 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1467 	if (fm == NULL)
1468 		return (ENOMEM);
1469 
1470 	/* allocate the FIBs in DMAable memory and load them */
1471 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1472 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1473 		device_printf(sc->aac_dev,
1474 			      "Not enough contiguous memory available.\n");
1475 		free(fm, M_AACBUF);
1476 		return (ENOMEM);
1477 	}
1478 
1479 	/* Ignore errors since this doesn't bounce */
1480 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1481 			      sc->aac_max_fibs_alloc * sc->aac_max_fib_size,
1482 			      aac_map_command_helper, &fibphys, 0);
1483 
1484 	/* initialize constant fields in the command structure */
1485 	bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size);
1486 	for (i = 0; i < sc->aac_max_fibs_alloc; i++) {
1487 		cm = sc->aac_commands + sc->total_fibs;
1488 		fm->aac_commands = cm;
1489 		cm->cm_sc = sc;
1490 		cm->cm_fib = (struct aac_fib *)
1491 			((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size);
1492 		cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size;
1493 		cm->cm_index = sc->total_fibs;
1494 
1495 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1496 					       &cm->cm_datamap)) != 0)
1497 			break;
1498 		mtx_lock(&sc->aac_io_lock);
1499 		aac_release_command(cm);
1500 		sc->total_fibs++;
1501 		mtx_unlock(&sc->aac_io_lock);
1502 	}
1503 
1504 	if (i > 0) {
1505 		mtx_lock(&sc->aac_io_lock);
1506 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1507 		fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "total_fibs= %d\n", sc->total_fibs);
1508 		mtx_unlock(&sc->aac_io_lock);
1509 		return (0);
1510 	}
1511 
1512 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1513 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1514 	free(fm, M_AACBUF);
1515 	return (ENOMEM);
1516 }
1517 
1518 /*
1519  * Free FIBs owned by this adapter.
1520  */
1521 static void
1522 aac_free_commands(struct aac_softc *sc)
1523 {
1524 	struct aac_fibmap *fm;
1525 	struct aac_command *cm;
1526 	int i;
1527 
1528 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1529 
1530 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1531 
1532 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1533 		/*
1534 		 * We check against total_fibs to handle partially
1535 		 * allocated blocks.
1536 		 */
1537 		for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) {
1538 			cm = fm->aac_commands + i;
1539 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1540 		}
1541 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1542 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1543 		free(fm, M_AACBUF);
1544 	}
1545 }
1546 
1547 /*
1548  * Command-mapping helper function - populate this command's s/g table.
1549  */
1550 static void
1551 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1552 {
1553 	struct aac_softc *sc;
1554 	struct aac_command *cm;
1555 	struct aac_fib *fib;
1556 	int i;
1557 
1558 	cm = (struct aac_command *)arg;
1559 	sc = cm->cm_sc;
1560 	fib = cm->cm_fib;
1561 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1562 
1563 	/* copy into the FIB */
1564 	if (cm->cm_sgtable != NULL) {
1565 		if (fib->Header.Command == RawIo) {
1566 			struct aac_sg_tableraw *sg;
1567 			sg = (struct aac_sg_tableraw *)cm->cm_sgtable;
1568 			sg->SgCount = nseg;
1569 			for (i = 0; i < nseg; i++) {
1570 				sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr;
1571 				sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len;
1572 				sg->SgEntryRaw[i].Next = 0;
1573 				sg->SgEntryRaw[i].Prev = 0;
1574 				sg->SgEntryRaw[i].Flags = 0;
1575 			}
1576 			/* update the FIB size for the s/g count */
1577 			fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw);
1578 		} else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1579 			struct aac_sg_table *sg;
1580 			sg = cm->cm_sgtable;
1581 			sg->SgCount = nseg;
1582 			for (i = 0; i < nseg; i++) {
1583 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1584 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1585 			}
1586 			/* update the FIB size for the s/g count */
1587 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry);
1588 		} else {
1589 			struct aac_sg_table64 *sg;
1590 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1591 			sg->SgCount = nseg;
1592 			for (i = 0; i < nseg; i++) {
1593 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1594 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1595 			}
1596 			/* update the FIB size for the s/g count */
1597 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1598 		}
1599 	}
1600 
1601 	/* Fix up the address values in the FIB.  Use the command array index
1602 	 * instead of a pointer since these fields are only 32 bits.  Shift
1603 	 * the SenderFibAddress over to make room for the fast response bit
1604 	 * and for the AIF bit
1605 	 */
1606 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2);
1607 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1608 
1609 	/* save a pointer to the command for speedy reverse-lookup */
1610 	cm->cm_fib->Header.SenderData = cm->cm_index;
1611 
1612 	if (cm->cm_flags & AAC_CMD_DATAIN)
1613 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1614 				BUS_DMASYNC_PREREAD);
1615 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1616 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1617 				BUS_DMASYNC_PREWRITE);
1618 	cm->cm_flags |= AAC_CMD_MAPPED;
1619 
1620 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1621 		int count = 10000000L;
1622 		while (AAC_SEND_COMMAND(sc, cm) != 0) {
1623 			if (--count == 0) {
1624 				aac_unmap_command(cm);
1625 				sc->flags |= AAC_QUEUE_FRZN;
1626 				aac_requeue_ready(cm);
1627 			}
1628 			DELAY(5);			/* wait 5 usec. */
1629 		}
1630 	} else {
1631 		/* Put the FIB on the outbound queue */
1632 		if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1633 			aac_unmap_command(cm);
1634 			sc->flags |= AAC_QUEUE_FRZN;
1635 			aac_requeue_ready(cm);
1636 		}
1637 	}
1638 }
1639 
1640 /*
1641  * Unmap a command from controller-visible space.
1642  */
1643 static void
1644 aac_unmap_command(struct aac_command *cm)
1645 {
1646 	struct aac_softc *sc;
1647 
1648 	sc = cm->cm_sc;
1649 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1650 
1651 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1652 		return;
1653 
1654 	if (cm->cm_datalen != 0) {
1655 		if (cm->cm_flags & AAC_CMD_DATAIN)
1656 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1657 					BUS_DMASYNC_POSTREAD);
1658 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1659 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1660 					BUS_DMASYNC_POSTWRITE);
1661 
1662 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1663 	}
1664 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1665 }
1666 
1667 /*
1668  * Hardware Interface
1669  */
1670 
1671 /*
1672  * Initialize the adapter.
1673  */
1674 static void
1675 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1676 {
1677 	struct aac_softc *sc;
1678 
1679 	sc = (struct aac_softc *)arg;
1680 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1681 
1682 	sc->aac_common_busaddr = segs[0].ds_addr;
1683 }
1684 
1685 static int
1686 aac_check_firmware(struct aac_softc *sc)
1687 {
1688 	u_int32_t code, major, minor, options = 0, atu_size = 0;
1689 	int rid, status;
1690 	time_t then;
1691 
1692 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1693 	/*
1694 	 * Wait for the adapter to come ready.
1695 	 */
1696 	then = time_uptime;
1697 	do {
1698 		code = AAC_GET_FWSTATUS(sc);
1699 		if (code & AAC_SELF_TEST_FAILED) {
1700 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1701 			return(ENXIO);
1702 		}
1703 		if (code & AAC_KERNEL_PANIC) {
1704 			device_printf(sc->aac_dev,
1705 				      "FATAL: controller kernel panic");
1706 			return(ENXIO);
1707 		}
1708 		if (time_uptime > (then + AAC_BOOT_TIMEOUT)) {
1709 			device_printf(sc->aac_dev,
1710 				      "FATAL: controller not coming ready, "
1711 					   "status %x\n", code);
1712 			return(ENXIO);
1713 		}
1714 	} while (!(code & AAC_UP_AND_RUNNING));
1715 
1716 	/*
1717 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1718 	 * firmware version 1.x are not compatible with this driver.
1719 	 */
1720 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1721 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1722 				     NULL)) {
1723 			device_printf(sc->aac_dev,
1724 				      "Error reading firmware version\n");
1725 			return (EIO);
1726 		}
1727 
1728 		/* These numbers are stored as ASCII! */
1729 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1730 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1731 		if (major == 1) {
1732 			device_printf(sc->aac_dev,
1733 			    "Firmware version %d.%d is not supported.\n",
1734 			    major, minor);
1735 			return (EINVAL);
1736 		}
1737 	}
1738 
1739 	/*
1740 	 * Retrieve the capabilities/supported options word so we know what
1741 	 * work-arounds to enable.  Some firmware revs don't support this
1742 	 * command.
1743 	 */
1744 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
1745 		if (status != AAC_SRB_STS_INVALID_REQUEST) {
1746 			device_printf(sc->aac_dev,
1747 			     "RequestAdapterInfo failed\n");
1748 			return (EIO);
1749 		}
1750 	} else {
1751 		options = AAC_GET_MAILBOX(sc, 1);
1752 		atu_size = AAC_GET_MAILBOX(sc, 2);
1753 		sc->supported_options = options;
1754 
1755 		if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1756 		    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1757 			sc->flags |= AAC_FLAGS_4GB_WINDOW;
1758 		if (options & AAC_SUPPORTED_NONDASD)
1759 			sc->flags |= AAC_FLAGS_ENABLE_CAM;
1760 		if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1761 		     && (sizeof(bus_addr_t) > 4)) {
1762 			device_printf(sc->aac_dev,
1763 			    "Enabling 64-bit address support\n");
1764 			sc->flags |= AAC_FLAGS_SG_64BIT;
1765 		}
1766 		if ((options & AAC_SUPPORTED_NEW_COMM)
1767 		 && sc->aac_if->aif_send_command)
1768 			sc->flags |= AAC_FLAGS_NEW_COMM;
1769 		if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE)
1770 			sc->flags |= AAC_FLAGS_ARRAY_64BIT;
1771 	}
1772 
1773 	/* Check for broken hardware that does a lower number of commands */
1774 	sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512);
1775 
1776 	/* Remap mem. resource, if required */
1777 	if ((sc->flags & AAC_FLAGS_NEW_COMM) &&
1778 	    atu_size > rman_get_size(sc->aac_regs_res1)) {
1779 		rid = rman_get_rid(sc->aac_regs_res1);
1780 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, rid,
1781 		    sc->aac_regs_res1);
1782 		sc->aac_regs_res1 = bus_alloc_resource(sc->aac_dev,
1783 		    SYS_RES_MEMORY, &rid, 0ul, ~0ul, atu_size, RF_ACTIVE);
1784 		if (sc->aac_regs_res1 == NULL) {
1785 			sc->aac_regs_res1 = bus_alloc_resource_any(
1786 			    sc->aac_dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
1787 			if (sc->aac_regs_res1 == NULL) {
1788 				device_printf(sc->aac_dev,
1789 				    "couldn't allocate register window\n");
1790 				return (ENXIO);
1791 			}
1792 			sc->flags &= ~AAC_FLAGS_NEW_COMM;
1793 		}
1794 		sc->aac_btag1 = rman_get_bustag(sc->aac_regs_res1);
1795 		sc->aac_bhandle1 = rman_get_bushandle(sc->aac_regs_res1);
1796 
1797 		if (sc->aac_hwif == AAC_HWIF_NARK) {
1798 			sc->aac_regs_res0 = sc->aac_regs_res1;
1799 			sc->aac_btag0 = sc->aac_btag1;
1800 			sc->aac_bhandle0 = sc->aac_bhandle1;
1801 		}
1802 	}
1803 
1804 	/* Read preferred settings */
1805 	sc->aac_max_fib_size = sizeof(struct aac_fib);
1806 	sc->aac_max_sectors = 128;				/* 64KB */
1807 	if (sc->flags & AAC_FLAGS_SG_64BIT)
1808 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1809 		 - sizeof(struct aac_blockwrite64))
1810 		 / sizeof(struct aac_sg_entry64);
1811 	else
1812 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1813 		 - sizeof(struct aac_blockwrite))
1814 		 / sizeof(struct aac_sg_entry);
1815 
1816 	if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
1817 		options = AAC_GET_MAILBOX(sc, 1);
1818 		sc->aac_max_fib_size = (options & 0xFFFF);
1819 		sc->aac_max_sectors = (options >> 16) << 1;
1820 		options = AAC_GET_MAILBOX(sc, 2);
1821 		sc->aac_sg_tablesize = (options >> 16);
1822 		options = AAC_GET_MAILBOX(sc, 3);
1823 		sc->aac_max_fibs = (options & 0xFFFF);
1824 	}
1825 	if (sc->aac_max_fib_size > PAGE_SIZE)
1826 		sc->aac_max_fib_size = PAGE_SIZE;
1827 	sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size;
1828 
1829 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1830 		sc->flags |= AAC_FLAGS_RAW_IO;
1831 		device_printf(sc->aac_dev, "Enable Raw I/O\n");
1832 	}
1833 	if ((sc->flags & AAC_FLAGS_RAW_IO) &&
1834 	    (sc->flags & AAC_FLAGS_ARRAY_64BIT)) {
1835 		sc->flags |= AAC_FLAGS_LBA_64BIT;
1836 		device_printf(sc->aac_dev, "Enable 64-bit array\n");
1837 	}
1838 
1839 	return (0);
1840 }
1841 
1842 static int
1843 aac_init(struct aac_softc *sc)
1844 {
1845 	struct aac_adapter_init	*ip;
1846 	u_int32_t qoffset;
1847 	int error;
1848 
1849 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1850 
1851 	/*
1852 	 * Fill in the init structure.  This tells the adapter about the
1853 	 * physical location of various important shared data structures.
1854 	 */
1855 	ip = &sc->aac_common->ac_init;
1856 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1857 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1858 		ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4;
1859 		sc->flags |= AAC_FLAGS_RAW_IO;
1860 	}
1861 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1862 
1863 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1864 					 offsetof(struct aac_common, ac_fibs);
1865 	ip->AdapterFibsVirtualAddress = 0;
1866 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1867 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1868 
1869 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1870 				  offsetof(struct aac_common, ac_printf);
1871 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1872 
1873 	/*
1874 	 * The adapter assumes that pages are 4K in size, except on some
1875  	 * broken firmware versions that do the page->byte conversion twice,
1876 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1877 	 * Round up since the granularity is so high.
1878 	 */
1879 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1880 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1881 		ip->HostPhysMemPages =
1882 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1883 	}
1884 	ip->HostElapsedSeconds = time_uptime;	/* reset later if invalid */
1885 
1886 	ip->InitFlags = 0;
1887 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1888 		ip->InitFlags |= AAC_INITFLAGS_NEW_COMM_SUPPORTED;
1889 		device_printf(sc->aac_dev, "New comm. interface enabled\n");
1890 	}
1891 
1892 	ip->MaxIoCommands = sc->aac_max_fibs;
1893 	ip->MaxIoSize = sc->aac_max_sectors << 9;
1894 	ip->MaxFibSize = sc->aac_max_fib_size;
1895 
1896 	/*
1897 	 * Initialize FIB queues.  Note that it appears that the layout of the
1898 	 * indexes and the segmentation of the entries may be mandated by the
1899 	 * adapter, which is only told about the base of the queue index fields.
1900 	 *
1901 	 * The initial values of the indices are assumed to inform the adapter
1902 	 * of the sizes of the respective queues, and theoretically it could
1903 	 * work out the entire layout of the queue structures from this.  We
1904 	 * take the easy route and just lay this area out like everyone else
1905 	 * does.
1906 	 *
1907 	 * The Linux driver uses a much more complex scheme whereby several
1908 	 * header records are kept for each queue.  We use a couple of generic
1909 	 * list manipulation functions which 'know' the size of each list by
1910 	 * virtue of a table.
1911 	 */
1912 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1913 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1914 	sc->aac_queues =
1915 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1916 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1917 
1918 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1919 		AAC_HOST_NORM_CMD_ENTRIES;
1920 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1921 		AAC_HOST_NORM_CMD_ENTRIES;
1922 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1923 		AAC_HOST_HIGH_CMD_ENTRIES;
1924 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1925 		AAC_HOST_HIGH_CMD_ENTRIES;
1926 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1927 		AAC_ADAP_NORM_CMD_ENTRIES;
1928 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1929 		AAC_ADAP_NORM_CMD_ENTRIES;
1930 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1931 		AAC_ADAP_HIGH_CMD_ENTRIES;
1932 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1933 		AAC_ADAP_HIGH_CMD_ENTRIES;
1934 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1935 		AAC_HOST_NORM_RESP_ENTRIES;
1936 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1937 		AAC_HOST_NORM_RESP_ENTRIES;
1938 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1939 		AAC_HOST_HIGH_RESP_ENTRIES;
1940 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1941 		AAC_HOST_HIGH_RESP_ENTRIES;
1942 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1943 		AAC_ADAP_NORM_RESP_ENTRIES;
1944 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1945 		AAC_ADAP_NORM_RESP_ENTRIES;
1946 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1947 		AAC_ADAP_HIGH_RESP_ENTRIES;
1948 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1949 		AAC_ADAP_HIGH_RESP_ENTRIES;
1950 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1951 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1952 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1953 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1954 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1955 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1956 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1957 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1958 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1959 		&sc->aac_queues->qt_HostNormRespQueue[0];
1960 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1961 		&sc->aac_queues->qt_HostHighRespQueue[0];
1962 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1963 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1964 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1965 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1966 
1967 	/*
1968 	 * Do controller-type-specific initialisation
1969 	 */
1970 	switch (sc->aac_hwif) {
1971 	case AAC_HWIF_I960RX:
1972 		AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, ~0);
1973 		break;
1974 	case AAC_HWIF_RKT:
1975 		AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, ~0);
1976 		break;
1977 	default:
1978 		break;
1979 	}
1980 
1981 	/*
1982 	 * Give the init structure to the controller.
1983 	 */
1984 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1985 			     sc->aac_common_busaddr +
1986 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1987 			     NULL)) {
1988 		device_printf(sc->aac_dev,
1989 			      "error establishing init structure\n");
1990 		error = EIO;
1991 		goto out;
1992 	}
1993 
1994 	error = 0;
1995 out:
1996 	return(error);
1997 }
1998 
1999 static int
2000 aac_setup_intr(struct aac_softc *sc)
2001 {
2002 
2003 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
2004 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2005 				   INTR_MPSAFE|INTR_TYPE_BIO, NULL,
2006 				   aac_new_intr, sc, &sc->aac_intr)) {
2007 			device_printf(sc->aac_dev, "can't set up interrupt\n");
2008 			return (EINVAL);
2009 		}
2010 	} else {
2011 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2012 				   INTR_TYPE_BIO, aac_filter, NULL,
2013 				   sc, &sc->aac_intr)) {
2014 			device_printf(sc->aac_dev,
2015 				      "can't set up interrupt filter\n");
2016 			return (EINVAL);
2017 		}
2018 	}
2019 	return (0);
2020 }
2021 
2022 /*
2023  * Send a synchronous command to the controller and wait for a result.
2024  * Indicate if the controller completed the command with an error status.
2025  */
2026 static int
2027 aac_sync_command(struct aac_softc *sc, u_int32_t command,
2028 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
2029 		 u_int32_t *sp)
2030 {
2031 	time_t then;
2032 	u_int32_t status;
2033 
2034 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2035 
2036 	/* populate the mailbox */
2037 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
2038 
2039 	/* ensure the sync command doorbell flag is cleared */
2040 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2041 
2042 	/* then set it to signal the adapter */
2043 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
2044 
2045 	/* spin waiting for the command to complete */
2046 	then = time_uptime;
2047 	do {
2048 		if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) {
2049 			fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "timed out");
2050 			return(EIO);
2051 		}
2052 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
2053 
2054 	/* clear the completion flag */
2055 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2056 
2057 	/* get the command status */
2058 	status = AAC_GET_MAILBOX(sc, 0);
2059 	if (sp != NULL)
2060 		*sp = status;
2061 
2062 	if (status != AAC_SRB_STS_SUCCESS)
2063 		return (-1);
2064 	return(0);
2065 }
2066 
2067 int
2068 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
2069 		 struct aac_fib *fib, u_int16_t datasize)
2070 {
2071 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2072 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
2073 
2074 	if (datasize > AAC_FIB_DATASIZE)
2075 		return(EINVAL);
2076 
2077 	/*
2078 	 * Set up the sync FIB
2079 	 */
2080 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
2081 				AAC_FIBSTATE_INITIALISED |
2082 				AAC_FIBSTATE_EMPTY;
2083 	fib->Header.XferState |= xferstate;
2084 	fib->Header.Command = command;
2085 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
2086 	fib->Header.Size = sizeof(struct aac_fib_header) + datasize;
2087 	fib->Header.SenderSize = sizeof(struct aac_fib);
2088 	fib->Header.SenderFibAddress = 0;	/* Not needed */
2089 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
2090 					 offsetof(struct aac_common,
2091 						  ac_sync_fib);
2092 
2093 	/*
2094 	 * Give the FIB to the controller, wait for a response.
2095 	 */
2096 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
2097 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
2098 		fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "IO error");
2099 		return(EIO);
2100 	}
2101 
2102 	return (0);
2103 }
2104 
2105 /*
2106  * Adapter-space FIB queue manipulation
2107  *
2108  * Note that the queue implementation here is a little funky; neither the PI or
2109  * CI will ever be zero.  This behaviour is a controller feature.
2110  */
2111 static const struct {
2112 	int		size;
2113 	int		notify;
2114 } aac_qinfo[] = {
2115 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
2116 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
2117 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
2118 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
2119 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
2120 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
2121 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
2122 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
2123 };
2124 
2125 /*
2126  * Atomically insert an entry into the nominated queue, returns 0 on success or
2127  * EBUSY if the queue is full.
2128  *
2129  * Note: it would be more efficient to defer notifying the controller in
2130  *	 the case where we may be inserting several entries in rapid succession,
2131  *	 but implementing this usefully may be difficult (it would involve a
2132  *	 separate queue/notify interface).
2133  */
2134 static int
2135 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
2136 {
2137 	u_int32_t pi, ci;
2138 	int error;
2139 	u_int32_t fib_size;
2140 	u_int32_t fib_addr;
2141 
2142 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2143 
2144 	fib_size = cm->cm_fib->Header.Size;
2145 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
2146 
2147 	/* get the producer/consumer indices */
2148 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2149 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2150 
2151 	/* wrap the queue? */
2152 	if (pi >= aac_qinfo[queue].size)
2153 		pi = 0;
2154 
2155 	/* check for queue full */
2156 	if ((pi + 1) == ci) {
2157 		error = EBUSY;
2158 		goto out;
2159 	}
2160 
2161 	/*
2162 	 * To avoid a race with its completion interrupt, place this command on
2163 	 * the busy queue prior to advertising it to the controller.
2164 	 */
2165 	aac_enqueue_busy(cm);
2166 
2167 	/* populate queue entry */
2168 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2169 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2170 
2171 	/* update producer index */
2172 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2173 
2174 	/* notify the adapter if we know how */
2175 	if (aac_qinfo[queue].notify != 0)
2176 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2177 
2178 	error = 0;
2179 
2180 out:
2181 	return(error);
2182 }
2183 
2184 /*
2185  * Atomically remove one entry from the nominated queue, returns 0 on
2186  * success or ENOENT if the queue is empty.
2187  */
2188 static int
2189 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
2190 		struct aac_fib **fib_addr)
2191 {
2192 	u_int32_t pi, ci;
2193 	u_int32_t fib_index;
2194 	int error;
2195 	int notify;
2196 
2197 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2198 
2199 	/* get the producer/consumer indices */
2200 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2201 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2202 
2203 	/* check for queue empty */
2204 	if (ci == pi) {
2205 		error = ENOENT;
2206 		goto out;
2207 	}
2208 
2209 	/* wrap the pi so the following test works */
2210 	if (pi >= aac_qinfo[queue].size)
2211 		pi = 0;
2212 
2213 	notify = 0;
2214 	if (ci == pi + 1)
2215 		notify++;
2216 
2217 	/* wrap the queue? */
2218 	if (ci >= aac_qinfo[queue].size)
2219 		ci = 0;
2220 
2221 	/* fetch the entry */
2222 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
2223 
2224 	switch (queue) {
2225 	case AAC_HOST_NORM_CMD_QUEUE:
2226 	case AAC_HOST_HIGH_CMD_QUEUE:
2227 		/*
2228 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
2229 		 * on to hold an address.  For AIF's, the adapter assumes
2230 		 * that it's giving us an address into the array of AIF fibs.
2231 		 * Therefore, we have to convert it to an index.
2232 		 */
2233 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
2234 			sizeof(struct aac_fib);
2235 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
2236 		break;
2237 
2238 	case AAC_HOST_NORM_RESP_QUEUE:
2239 	case AAC_HOST_HIGH_RESP_QUEUE:
2240 	{
2241 		struct aac_command *cm;
2242 
2243 		/*
2244 		 * As above, an index is used instead of an actual address.
2245 		 * Gotta shift the index to account for the fast response
2246 		 * bit.  No other correction is needed since this value was
2247 		 * originally provided by the driver via the SenderFibAddress
2248 		 * field.
2249 		 */
2250 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
2251 		cm = sc->aac_commands + (fib_index >> 2);
2252 		*fib_addr = cm->cm_fib;
2253 
2254 		/*
2255 		 * Is this a fast response? If it is, update the fib fields in
2256 		 * local memory since the whole fib isn't DMA'd back up.
2257 		 */
2258 		if (fib_index & 0x01) {
2259 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
2260 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
2261 		}
2262 		break;
2263 	}
2264 	default:
2265 		panic("Invalid queue in aac_dequeue_fib()");
2266 		break;
2267 	}
2268 
2269 	/* update consumer index */
2270 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
2271 
2272 	/* if we have made the queue un-full, notify the adapter */
2273 	if (notify && (aac_qinfo[queue].notify != 0))
2274 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2275 	error = 0;
2276 
2277 out:
2278 	return(error);
2279 }
2280 
2281 /*
2282  * Put our response to an Adapter Initialed Fib on the response queue
2283  */
2284 static int
2285 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
2286 {
2287 	u_int32_t pi, ci;
2288 	int error;
2289 	u_int32_t fib_size;
2290 	u_int32_t fib_addr;
2291 
2292 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2293 
2294 	/* Tell the adapter where the FIB is */
2295 	fib_size = fib->Header.Size;
2296 	fib_addr = fib->Header.SenderFibAddress;
2297 	fib->Header.ReceiverFibAddress = fib_addr;
2298 
2299 	/* get the producer/consumer indices */
2300 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2301 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2302 
2303 	/* wrap the queue? */
2304 	if (pi >= aac_qinfo[queue].size)
2305 		pi = 0;
2306 
2307 	/* check for queue full */
2308 	if ((pi + 1) == ci) {
2309 		error = EBUSY;
2310 		goto out;
2311 	}
2312 
2313 	/* populate queue entry */
2314 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2315 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2316 
2317 	/* update producer index */
2318 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2319 
2320 	/* notify the adapter if we know how */
2321 	if (aac_qinfo[queue].notify != 0)
2322 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2323 
2324 	error = 0;
2325 
2326 out:
2327 	return(error);
2328 }
2329 
2330 /*
2331  * Check for commands that have been outstanding for a suspiciously long time,
2332  * and complain about them.
2333  */
2334 static void
2335 aac_timeout(struct aac_softc *sc)
2336 {
2337 	struct aac_command *cm;
2338 	time_t deadline;
2339 	int timedout, code;
2340 
2341 	/*
2342 	 * Traverse the busy command list, bitch about late commands once
2343 	 * only.
2344 	 */
2345 	timedout = 0;
2346 	deadline = time_uptime - AAC_CMD_TIMEOUT;
2347 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2348 		if ((cm->cm_timestamp  < deadline)
2349 		    && !(cm->cm_flags & AAC_CMD_TIMEDOUT)) {
2350 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2351 			device_printf(sc->aac_dev,
2352 			    "COMMAND %p (TYPE %d) TIMEOUT AFTER %d SECONDS\n",
2353 			    cm, cm->cm_fib->Header.Command,
2354 			    (int)(time_uptime-cm->cm_timestamp));
2355 			AAC_PRINT_FIB(sc, cm->cm_fib);
2356 			timedout++;
2357 		}
2358 	}
2359 
2360 	if (timedout) {
2361 		code = AAC_GET_FWSTATUS(sc);
2362 		if (code != AAC_UP_AND_RUNNING) {
2363 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2364 				      "longer running! code= 0x%x\n", code);
2365 		}
2366 	}
2367 }
2368 
2369 /*
2370  * Interface Function Vectors
2371  */
2372 
2373 /*
2374  * Read the current firmware status word.
2375  */
2376 static int
2377 aac_sa_get_fwstatus(struct aac_softc *sc)
2378 {
2379 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2380 
2381 	return(AAC_MEM0_GETREG4(sc, AAC_SA_FWSTATUS));
2382 }
2383 
2384 static int
2385 aac_rx_get_fwstatus(struct aac_softc *sc)
2386 {
2387 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2388 
2389 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2390 	    AAC_RX_OMR0 : AAC_RX_FWSTATUS));
2391 }
2392 
2393 static int
2394 aac_rkt_get_fwstatus(struct aac_softc *sc)
2395 {
2396 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2397 
2398 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2399 	    AAC_RKT_OMR0 : AAC_RKT_FWSTATUS));
2400 }
2401 
2402 /*
2403  * Notify the controller of a change in a given queue
2404  */
2405 
2406 static void
2407 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2408 {
2409 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2410 
2411 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2412 }
2413 
2414 static void
2415 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2416 {
2417 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2418 
2419 	AAC_MEM0_SETREG4(sc, AAC_RX_IDBR, qbit);
2420 }
2421 
2422 static void
2423 aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2424 {
2425 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2426 
2427 	AAC_MEM0_SETREG4(sc, AAC_RKT_IDBR, qbit);
2428 }
2429 
2430 /*
2431  * Get the interrupt reason bits
2432  */
2433 static int
2434 aac_sa_get_istatus(struct aac_softc *sc)
2435 {
2436 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2437 
2438 	return(AAC_MEM0_GETREG2(sc, AAC_SA_DOORBELL0));
2439 }
2440 
2441 static int
2442 aac_rx_get_istatus(struct aac_softc *sc)
2443 {
2444 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2445 
2446 	return(AAC_MEM0_GETREG4(sc, AAC_RX_ODBR));
2447 }
2448 
2449 static int
2450 aac_rkt_get_istatus(struct aac_softc *sc)
2451 {
2452 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2453 
2454 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_ODBR));
2455 }
2456 
2457 /*
2458  * Clear some interrupt reason bits
2459  */
2460 static void
2461 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2462 {
2463 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2464 
2465 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2466 }
2467 
2468 static void
2469 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2470 {
2471 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2472 
2473 	AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, mask);
2474 }
2475 
2476 static void
2477 aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2478 {
2479 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2480 
2481 	AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, mask);
2482 }
2483 
2484 /*
2485  * Populate the mailbox and set the command word
2486  */
2487 static void
2488 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2489 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2490 {
2491 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2492 
2493 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX, command);
2494 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2495 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2496 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2497 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2498 }
2499 
2500 static void
2501 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2502 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2503 {
2504 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2505 
2506 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX, command);
2507 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2508 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2509 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2510 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2511 }
2512 
2513 static void
2514 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2515 		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2516 {
2517 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2518 
2519 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX, command);
2520 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2521 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2522 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2523 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2524 }
2525 
2526 /*
2527  * Fetch the immediate command status word
2528  */
2529 static int
2530 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2531 {
2532 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2533 
2534 	return(AAC_MEM1_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2535 }
2536 
2537 static int
2538 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2539 {
2540 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2541 
2542 	return(AAC_MEM1_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2543 }
2544 
2545 static int
2546 aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2547 {
2548 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2549 
2550 	return(AAC_MEM1_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2551 }
2552 
2553 /*
2554  * Set/clear interrupt masks
2555  */
2556 static void
2557 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2558 {
2559 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2560 
2561 	if (enable) {
2562 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2563 	} else {
2564 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2565 	}
2566 }
2567 
2568 static void
2569 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2570 {
2571 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2572 
2573 	if (enable) {
2574 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2575 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM);
2576 		else
2577 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2578 	} else {
2579 		AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~0);
2580 	}
2581 }
2582 
2583 static void
2584 aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2585 {
2586 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2587 
2588 	if (enable) {
2589 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2590 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM);
2591 		else
2592 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2593 	} else {
2594 		AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~0);
2595 	}
2596 }
2597 
2598 /*
2599  * New comm. interface: Send command functions
2600  */
2601 static int
2602 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm)
2603 {
2604 	u_int32_t index, device;
2605 
2606 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2607 
2608 	index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2609 	if (index == 0xffffffffL)
2610 		index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2611 	if (index == 0xffffffffL)
2612 		return index;
2613 	aac_enqueue_busy(cm);
2614 	device = index;
2615 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2616 	device += 4;
2617 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2618 	device += 4;
2619 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2620 	AAC_MEM0_SETREG4(sc, AAC_RX_IQUE, index);
2621 	return 0;
2622 }
2623 
2624 static int
2625 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm)
2626 {
2627 	u_int32_t index, device;
2628 
2629 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2630 
2631 	index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2632 	if (index == 0xffffffffL)
2633 		index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2634 	if (index == 0xffffffffL)
2635 		return index;
2636 	aac_enqueue_busy(cm);
2637 	device = index;
2638 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2639 	device += 4;
2640 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2641 	device += 4;
2642 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2643 	AAC_MEM0_SETREG4(sc, AAC_RKT_IQUE, index);
2644 	return 0;
2645 }
2646 
2647 /*
2648  * New comm. interface: get, set outbound queue index
2649  */
2650 static int
2651 aac_rx_get_outb_queue(struct aac_softc *sc)
2652 {
2653 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2654 
2655 	return(AAC_MEM0_GETREG4(sc, AAC_RX_OQUE));
2656 }
2657 
2658 static int
2659 aac_rkt_get_outb_queue(struct aac_softc *sc)
2660 {
2661 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2662 
2663 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_OQUE));
2664 }
2665 
2666 static void
2667 aac_rx_set_outb_queue(struct aac_softc *sc, int index)
2668 {
2669 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2670 
2671 	AAC_MEM0_SETREG4(sc, AAC_RX_OQUE, index);
2672 }
2673 
2674 static void
2675 aac_rkt_set_outb_queue(struct aac_softc *sc, int index)
2676 {
2677 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2678 
2679 	AAC_MEM0_SETREG4(sc, AAC_RKT_OQUE, index);
2680 }
2681 
2682 /*
2683  * Debugging and Diagnostics
2684  */
2685 
2686 /*
2687  * Print some information about the controller.
2688  */
2689 static void
2690 aac_describe_controller(struct aac_softc *sc)
2691 {
2692 	struct aac_fib *fib;
2693 	struct aac_adapter_info	*info;
2694 	char *adapter_type = "Adaptec RAID controller";
2695 
2696 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2697 
2698 	mtx_lock(&sc->aac_io_lock);
2699 	aac_alloc_sync_fib(sc, &fib);
2700 
2701 	fib->data[0] = 0;
2702 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2703 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2704 		aac_release_sync_fib(sc);
2705 		mtx_unlock(&sc->aac_io_lock);
2706 		return;
2707 	}
2708 
2709 	/* save the kernel revision structure for later use */
2710 	info = (struct aac_adapter_info *)&fib->data[0];
2711 	sc->aac_revision = info->KernelRevision;
2712 
2713 	if (bootverbose) {
2714 		device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
2715 		    "(%dMB cache, %dMB execution), %s\n",
2716 		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2717 		    info->ClockSpeed, info->TotalMem / (1024 * 1024),
2718 		    info->BufferMem / (1024 * 1024),
2719 		    info->ExecutionMem / (1024 * 1024),
2720 		    aac_describe_code(aac_battery_platform,
2721 		    info->batteryPlatform));
2722 
2723 		device_printf(sc->aac_dev,
2724 		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2725 		    info->KernelRevision.external.comp.major,
2726 		    info->KernelRevision.external.comp.minor,
2727 		    info->KernelRevision.external.comp.dash,
2728 		    info->KernelRevision.buildNumber,
2729 		    (u_int32_t)(info->SerialNumber & 0xffffff));
2730 
2731 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2732 			      sc->supported_options,
2733 			      "\20"
2734 			      "\1SNAPSHOT"
2735 			      "\2CLUSTERS"
2736 			      "\3WCACHE"
2737 			      "\4DATA64"
2738 			      "\5HOSTTIME"
2739 			      "\6RAID50"
2740 			      "\7WINDOW4GB"
2741 			      "\10SCSIUPGD"
2742 			      "\11SOFTERR"
2743 			      "\12NORECOND"
2744 			      "\13SGMAP64"
2745 			      "\14ALARM"
2746 			      "\15NONDASD"
2747 			      "\16SCSIMGT"
2748 			      "\17RAIDSCSI"
2749 			      "\21ADPTINFO"
2750 			      "\22NEWCOMM"
2751 			      "\23ARRAY64BIT"
2752 			      "\24HEATSENSOR");
2753 	}
2754 
2755 	if (sc->supported_options & AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO) {
2756 		fib->data[0] = 0;
2757 		if (aac_sync_fib(sc, RequestSupplementAdapterInfo, 0, fib, 1))
2758 			device_printf(sc->aac_dev,
2759 			    "RequestSupplementAdapterInfo failed\n");
2760 		else
2761 			adapter_type = ((struct aac_supplement_adapter_info *)
2762 			    &fib->data[0])->AdapterTypeText;
2763 	}
2764 	device_printf(sc->aac_dev, "%s, aac driver %d.%d.%d-%d\n",
2765 		adapter_type,
2766 		AAC_DRIVER_MAJOR_VERSION, AAC_DRIVER_MINOR_VERSION,
2767 		AAC_DRIVER_BUGFIX_LEVEL, AAC_DRIVER_BUILD);
2768 
2769 	aac_release_sync_fib(sc);
2770 	mtx_unlock(&sc->aac_io_lock);
2771 }
2772 
2773 /*
2774  * Look up a text description of a numeric error code and return a pointer to
2775  * same.
2776  */
2777 static const char *
2778 aac_describe_code(const struct aac_code_lookup *table, u_int32_t code)
2779 {
2780 	int i;
2781 
2782 	for (i = 0; table[i].string != NULL; i++)
2783 		if (table[i].code == code)
2784 			return(table[i].string);
2785 	return(table[i + 1].string);
2786 }
2787 
2788 /*
2789  * Management Interface
2790  */
2791 
2792 static int
2793 aac_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2794 {
2795 	struct aac_softc *sc;
2796 
2797 	sc = dev->si_drv1;
2798 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2799 	device_busy(sc->aac_dev);
2800 	devfs_set_cdevpriv(sc, aac_cdevpriv_dtor);
2801 
2802 	return 0;
2803 }
2804 
2805 static int
2806 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
2807 {
2808 	union aac_statrequest *as;
2809 	struct aac_softc *sc;
2810 	int error = 0;
2811 
2812 	as = (union aac_statrequest *)arg;
2813 	sc = dev->si_drv1;
2814 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2815 
2816 	switch (cmd) {
2817 	case AACIO_STATS:
2818 		switch (as->as_item) {
2819 		case AACQ_FREE:
2820 		case AACQ_BIO:
2821 		case AACQ_READY:
2822 		case AACQ_BUSY:
2823 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2824 			      sizeof(struct aac_qstat));
2825 			break;
2826 		default:
2827 			error = ENOENT;
2828 			break;
2829 		}
2830 	break;
2831 
2832 	case FSACTL_SENDFIB:
2833 	case FSACTL_SEND_LARGE_FIB:
2834 		arg = *(caddr_t*)arg;
2835 	case FSACTL_LNX_SENDFIB:
2836 	case FSACTL_LNX_SEND_LARGE_FIB:
2837 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SENDFIB");
2838 		error = aac_ioctl_sendfib(sc, arg);
2839 		break;
2840 	case FSACTL_SEND_RAW_SRB:
2841 		arg = *(caddr_t*)arg;
2842 	case FSACTL_LNX_SEND_RAW_SRB:
2843 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SEND_RAW_SRB");
2844 		error = aac_ioctl_send_raw_srb(sc, arg);
2845 		break;
2846 	case FSACTL_AIF_THREAD:
2847 	case FSACTL_LNX_AIF_THREAD:
2848 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_AIF_THREAD");
2849 		error = EINVAL;
2850 		break;
2851 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2852 		arg = *(caddr_t*)arg;
2853 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2854 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_OPEN_GET_ADAPTER_FIB");
2855 		error = aac_open_aif(sc, arg);
2856 		break;
2857 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2858 		arg = *(caddr_t*)arg;
2859 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2860 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_NEXT_ADAPTER_FIB");
2861 		error = aac_getnext_aif(sc, arg);
2862 		break;
2863 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2864 		arg = *(caddr_t*)arg;
2865 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2866 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2867 		error = aac_close_aif(sc, arg);
2868 		break;
2869 	case FSACTL_MINIPORT_REV_CHECK:
2870 		arg = *(caddr_t*)arg;
2871 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2872 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_MINIPORT_REV_CHECK");
2873 		error = aac_rev_check(sc, arg);
2874 		break;
2875 	case FSACTL_QUERY_DISK:
2876 		arg = *(caddr_t*)arg;
2877 	case FSACTL_LNX_QUERY_DISK:
2878 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_QUERY_DISK");
2879 		error = aac_query_disk(sc, arg);
2880 		break;
2881 	case FSACTL_DELETE_DISK:
2882 	case FSACTL_LNX_DELETE_DISK:
2883 		/*
2884 		 * We don't trust the underland to tell us when to delete a
2885 		 * container, rather we rely on an AIF coming from the
2886 		 * controller
2887 		 */
2888 		error = 0;
2889 		break;
2890 	case FSACTL_GET_PCI_INFO:
2891 		arg = *(caddr_t*)arg;
2892 	case FSACTL_LNX_GET_PCI_INFO:
2893 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_PCI_INFO");
2894 		error = aac_get_pci_info(sc, arg);
2895 		break;
2896 	case FSACTL_GET_FEATURES:
2897 		arg = *(caddr_t*)arg;
2898 	case FSACTL_LNX_GET_FEATURES:
2899 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_FEATURES");
2900 		error = aac_supported_features(sc, arg);
2901 		break;
2902 	default:
2903 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "unsupported cmd 0x%lx\n", cmd);
2904 		error = EINVAL;
2905 		break;
2906 	}
2907 	return(error);
2908 }
2909 
2910 static int
2911 aac_poll(struct cdev *dev, int poll_events, struct thread *td)
2912 {
2913 	struct aac_softc *sc;
2914 	struct aac_fib_context *ctx;
2915 	int revents;
2916 
2917 	sc = dev->si_drv1;
2918 	revents = 0;
2919 
2920 	mtx_lock(&sc->aac_aifq_lock);
2921 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2922 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
2923 			if (ctx->ctx_idx != sc->aifq_idx || ctx->ctx_wrap) {
2924 				revents |= poll_events & (POLLIN | POLLRDNORM);
2925 				break;
2926 			}
2927 		}
2928 	}
2929 	mtx_unlock(&sc->aac_aifq_lock);
2930 
2931 	if (revents == 0) {
2932 		if (poll_events & (POLLIN | POLLRDNORM))
2933 			selrecord(td, &sc->rcv_select);
2934 	}
2935 
2936 	return (revents);
2937 }
2938 
2939 static void
2940 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg)
2941 {
2942 
2943 	switch (event->ev_type) {
2944 	case AAC_EVENT_CMFREE:
2945 		mtx_assert(&sc->aac_io_lock, MA_OWNED);
2946 		if (aac_alloc_command(sc, (struct aac_command **)arg)) {
2947 			aac_add_event(sc, event);
2948 			return;
2949 		}
2950 		free(event, M_AACBUF);
2951 		wakeup(arg);
2952 		break;
2953 	default:
2954 		break;
2955 	}
2956 }
2957 
2958 /*
2959  * Send a FIB supplied from userspace
2960  */
2961 static int
2962 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2963 {
2964 	struct aac_command *cm;
2965 	int size, error;
2966 
2967 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2968 
2969 	cm = NULL;
2970 
2971 	/*
2972 	 * Get a command
2973 	 */
2974 	mtx_lock(&sc->aac_io_lock);
2975 	if (aac_alloc_command(sc, &cm)) {
2976 		struct aac_event *event;
2977 
2978 		event = malloc(sizeof(struct aac_event), M_AACBUF,
2979 		    M_NOWAIT | M_ZERO);
2980 		if (event == NULL) {
2981 			error = EBUSY;
2982 			mtx_unlock(&sc->aac_io_lock);
2983 			goto out;
2984 		}
2985 		event->ev_type = AAC_EVENT_CMFREE;
2986 		event->ev_callback = aac_ioctl_event;
2987 		event->ev_arg = &cm;
2988 		aac_add_event(sc, event);
2989 		msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0);
2990 	}
2991 	mtx_unlock(&sc->aac_io_lock);
2992 
2993 	/*
2994 	 * Fetch the FIB header, then re-copy to get data as well.
2995 	 */
2996 	if ((error = copyin(ufib, cm->cm_fib,
2997 			    sizeof(struct aac_fib_header))) != 0)
2998 		goto out;
2999 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
3000 	if (size > sc->aac_max_fib_size) {
3001 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
3002 			      size, sc->aac_max_fib_size);
3003 		size = sc->aac_max_fib_size;
3004 	}
3005 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
3006 		goto out;
3007 	cm->cm_fib->Header.Size = size;
3008 	cm->cm_timestamp = time_uptime;
3009 
3010 	/*
3011 	 * Pass the FIB to the controller, wait for it to complete.
3012 	 */
3013 	mtx_lock(&sc->aac_io_lock);
3014 	error = aac_wait_command(cm);
3015 	mtx_unlock(&sc->aac_io_lock);
3016 	if (error != 0) {
3017 		device_printf(sc->aac_dev,
3018 			      "aac_wait_command return %d\n", error);
3019 		goto out;
3020 	}
3021 
3022 	/*
3023 	 * Copy the FIB and data back out to the caller.
3024 	 */
3025 	size = cm->cm_fib->Header.Size;
3026 	if (size > sc->aac_max_fib_size) {
3027 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
3028 			      size, sc->aac_max_fib_size);
3029 		size = sc->aac_max_fib_size;
3030 	}
3031 	error = copyout(cm->cm_fib, ufib, size);
3032 
3033 out:
3034 	if (cm != NULL) {
3035 		mtx_lock(&sc->aac_io_lock);
3036 		aac_release_command(cm);
3037 		mtx_unlock(&sc->aac_io_lock);
3038 	}
3039 	return(error);
3040 }
3041 
3042 /*
3043  * Send a passthrough FIB supplied from userspace
3044  */
3045 static int
3046 aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg)
3047 {
3048 	struct aac_command *cm;
3049 	struct aac_event *event;
3050 	struct aac_fib *fib;
3051 	struct aac_srb *srbcmd, *user_srb;
3052 	struct aac_sg_entry *sge;
3053 	struct aac_sg_entry64 *sge64;
3054 	void *srb_sg_address, *ureply;
3055 	uint32_t fibsize, srb_sg_bytecount;
3056 	int error, transfer_data;
3057 
3058 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3059 
3060 	cm = NULL;
3061 	transfer_data = 0;
3062 	fibsize = 0;
3063 	user_srb = (struct aac_srb *)arg;
3064 
3065 	mtx_lock(&sc->aac_io_lock);
3066 	if (aac_alloc_command(sc, &cm)) {
3067 		 event = malloc(sizeof(struct aac_event), M_AACBUF,
3068 		    M_NOWAIT | M_ZERO);
3069 		if (event == NULL) {
3070 			error = EBUSY;
3071 			mtx_unlock(&sc->aac_io_lock);
3072 			goto out;
3073 		}
3074 		event->ev_type = AAC_EVENT_CMFREE;
3075 		event->ev_callback = aac_ioctl_event;
3076 		event->ev_arg = &cm;
3077 		aac_add_event(sc, event);
3078 		msleep(cm, &sc->aac_io_lock, 0, "aacraw", 0);
3079 	}
3080 	mtx_unlock(&sc->aac_io_lock);
3081 
3082 	cm->cm_data = NULL;
3083 	fib = cm->cm_fib;
3084 	srbcmd = (struct aac_srb *)fib->data;
3085 	error = copyin(&user_srb->data_len, &fibsize, sizeof(uint32_t));
3086 	if (error != 0)
3087 		goto out;
3088 	if (fibsize > (sc->aac_max_fib_size - sizeof(struct aac_fib_header))) {
3089 		error = EINVAL;
3090 		goto out;
3091 	}
3092 	error = copyin(user_srb, srbcmd, fibsize);
3093 	if (error != 0)
3094 		goto out;
3095 	srbcmd->function = 0;
3096 	srbcmd->retry_limit = 0;
3097 	if (srbcmd->sg_map.SgCount > 1) {
3098 		error = EINVAL;
3099 		goto out;
3100 	}
3101 
3102 	/* Retrieve correct SG entries. */
3103 	if (fibsize == (sizeof(struct aac_srb) +
3104 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry))) {
3105 		sge = srbcmd->sg_map.SgEntry;
3106 		sge64 = NULL;
3107 		srb_sg_bytecount = sge->SgByteCount;
3108 		srb_sg_address = (void *)(uintptr_t)sge->SgAddress;
3109 	}
3110 #ifdef __amd64__
3111 	else if (fibsize == (sizeof(struct aac_srb) +
3112 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry64))) {
3113 		sge = NULL;
3114 		sge64 = (struct aac_sg_entry64 *)srbcmd->sg_map.SgEntry;
3115 		srb_sg_bytecount = sge64->SgByteCount;
3116 		srb_sg_address = (void *)sge64->SgAddress;
3117 		if (sge64->SgAddress > 0xffffffffull &&
3118 		    (sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
3119 			error = EINVAL;
3120 			goto out;
3121 		}
3122 	}
3123 #endif
3124 	else {
3125 		error = EINVAL;
3126 		goto out;
3127 	}
3128 	ureply = (char *)arg + fibsize;
3129 	srbcmd->data_len = srb_sg_bytecount;
3130 	if (srbcmd->sg_map.SgCount == 1)
3131 		transfer_data = 1;
3132 
3133 	cm->cm_sgtable = (struct aac_sg_table *)&srbcmd->sg_map;
3134 	if (transfer_data) {
3135 		cm->cm_datalen = srb_sg_bytecount;
3136 		cm->cm_data = malloc(cm->cm_datalen, M_AACBUF, M_NOWAIT);
3137 		if (cm->cm_data == NULL) {
3138 			error = ENOMEM;
3139 			goto out;
3140 		}
3141 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN)
3142 			cm->cm_flags |= AAC_CMD_DATAIN;
3143 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT) {
3144 			cm->cm_flags |= AAC_CMD_DATAOUT;
3145 			error = copyin(srb_sg_address, cm->cm_data,
3146 			    cm->cm_datalen);
3147 			if (error != 0)
3148 				goto out;
3149 		}
3150 	}
3151 
3152 	fib->Header.Size = sizeof(struct aac_fib_header) +
3153 	    sizeof(struct aac_srb);
3154 	fib->Header.XferState =
3155 	    AAC_FIBSTATE_HOSTOWNED   |
3156 	    AAC_FIBSTATE_INITIALISED |
3157 	    AAC_FIBSTATE_EMPTY       |
3158 	    AAC_FIBSTATE_FROMHOST    |
3159 	    AAC_FIBSTATE_REXPECTED   |
3160 	    AAC_FIBSTATE_NORM        |
3161 	    AAC_FIBSTATE_ASYNC       |
3162 	    AAC_FIBSTATE_FAST_RESPONSE;
3163 	fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) != 0 ?
3164 	    ScsiPortCommandU64 : ScsiPortCommand;
3165 
3166 	mtx_lock(&sc->aac_io_lock);
3167 	aac_wait_command(cm);
3168 	mtx_unlock(&sc->aac_io_lock);
3169 
3170 	if (transfer_data && (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN) != 0) {
3171 		error = copyout(cm->cm_data, srb_sg_address, cm->cm_datalen);
3172 		if (error != 0)
3173 			goto out;
3174 	}
3175 	error = copyout(fib->data, ureply, sizeof(struct aac_srb_response));
3176 out:
3177 	if (cm != NULL) {
3178 		if (cm->cm_data != NULL)
3179 			free(cm->cm_data, M_AACBUF);
3180 		mtx_lock(&sc->aac_io_lock);
3181 		aac_release_command(cm);
3182 		mtx_unlock(&sc->aac_io_lock);
3183 	}
3184 	return(error);
3185 }
3186 
3187 /*
3188  * cdevpriv interface private destructor.
3189  */
3190 static void
3191 aac_cdevpriv_dtor(void *arg)
3192 {
3193 	struct aac_softc *sc;
3194 
3195 	sc = arg;
3196 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3197 	mtx_lock(&Giant);
3198 	device_unbusy(sc->aac_dev);
3199 	mtx_unlock(&Giant);
3200 }
3201 
3202 /*
3203  * Handle an AIF sent to us by the controller; queue it for later reference.
3204  * If the queue fills up, then drop the older entries.
3205  */
3206 static void
3207 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
3208 {
3209 	struct aac_aif_command *aif;
3210 	struct aac_container *co, *co_next;
3211 	struct aac_fib_context *ctx;
3212 	struct aac_mntinforesp *mir;
3213 	int next, current, found;
3214 	int count = 0, added = 0, i = 0;
3215 	uint32_t channel;
3216 
3217 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3218 
3219 	aif = (struct aac_aif_command*)&fib->data[0];
3220 	aac_print_aif(sc, aif);
3221 
3222 	/* Is it an event that we should care about? */
3223 	switch (aif->command) {
3224 	case AifCmdEventNotify:
3225 		switch (aif->data.EN.type) {
3226 		case AifEnAddContainer:
3227 		case AifEnDeleteContainer:
3228 			/*
3229 			 * A container was added or deleted, but the message
3230 			 * doesn't tell us anything else!  Re-enumerate the
3231 			 * containers and sort things out.
3232 			 */
3233 			aac_alloc_sync_fib(sc, &fib);
3234 			do {
3235 				/*
3236 				 * Ask the controller for its containers one at
3237 				 * a time.
3238 				 * XXX What if the controller's list changes
3239 				 * midway through this enumaration?
3240 				 * XXX This should be done async.
3241 				 */
3242 				if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
3243 					continue;
3244 				if (i == 0)
3245 					count = mir->MntRespCount;
3246 				/*
3247 				 * Check the container against our list.
3248 				 * co->co_found was already set to 0 in a
3249 				 * previous run.
3250 				 */
3251 				if ((mir->Status == ST_OK) &&
3252 				    (mir->MntTable[0].VolType != CT_NONE)) {
3253 					found = 0;
3254 					TAILQ_FOREACH(co,
3255 						      &sc->aac_container_tqh,
3256 						      co_link) {
3257 						if (co->co_mntobj.ObjectId ==
3258 						    mir->MntTable[0].ObjectId) {
3259 							co->co_found = 1;
3260 							found = 1;
3261 							break;
3262 						}
3263 					}
3264 					/*
3265 					 * If the container matched, continue
3266 					 * in the list.
3267 					 */
3268 					if (found) {
3269 						i++;
3270 						continue;
3271 					}
3272 
3273 					/*
3274 					 * This is a new container.  Do all the
3275 					 * appropriate things to set it up.
3276 					 */
3277 					aac_add_container(sc, mir, 1);
3278 					added = 1;
3279 				}
3280 				i++;
3281 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
3282 			aac_release_sync_fib(sc);
3283 
3284 			/*
3285 			 * Go through our list of containers and see which ones
3286 			 * were not marked 'found'.  Since the controller didn't
3287 			 * list them they must have been deleted.  Do the
3288 			 * appropriate steps to destroy the device.  Also reset
3289 			 * the co->co_found field.
3290 			 */
3291 			co = TAILQ_FIRST(&sc->aac_container_tqh);
3292 			while (co != NULL) {
3293 				if (co->co_found == 0) {
3294 					mtx_unlock(&sc->aac_io_lock);
3295 					mtx_lock(&Giant);
3296 					device_delete_child(sc->aac_dev,
3297 							    co->co_disk);
3298 					mtx_unlock(&Giant);
3299 					mtx_lock(&sc->aac_io_lock);
3300 					co_next = TAILQ_NEXT(co, co_link);
3301 					mtx_lock(&sc->aac_container_lock);
3302 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
3303 						     co_link);
3304 					mtx_unlock(&sc->aac_container_lock);
3305 					free(co, M_AACBUF);
3306 					co = co_next;
3307 				} else {
3308 					co->co_found = 0;
3309 					co = TAILQ_NEXT(co, co_link);
3310 				}
3311 			}
3312 
3313 			/* Attach the newly created containers */
3314 			if (added) {
3315 				mtx_unlock(&sc->aac_io_lock);
3316 				mtx_lock(&Giant);
3317 				bus_generic_attach(sc->aac_dev);
3318 				mtx_unlock(&Giant);
3319 				mtx_lock(&sc->aac_io_lock);
3320 			}
3321 
3322 			break;
3323 
3324 		case AifEnEnclosureManagement:
3325 			switch (aif->data.EN.data.EEE.eventType) {
3326 			case AIF_EM_DRIVE_INSERTION:
3327 			case AIF_EM_DRIVE_REMOVAL:
3328 				channel = aif->data.EN.data.EEE.unitID;
3329 				if (sc->cam_rescan_cb != NULL)
3330 					sc->cam_rescan_cb(sc,
3331 					    (channel >> 24) & 0xF,
3332 					    (channel & 0xFFFF));
3333 				break;
3334 			}
3335 			break;
3336 
3337 		case AifEnAddJBOD:
3338 		case AifEnDeleteJBOD:
3339 			channel = aif->data.EN.data.ECE.container;
3340 			if (sc->cam_rescan_cb != NULL)
3341 				sc->cam_rescan_cb(sc, (channel >> 24) & 0xF,
3342 				    AAC_CAM_TARGET_WILDCARD);
3343 			break;
3344 
3345 		default:
3346 			break;
3347 		}
3348 
3349 	default:
3350 		break;
3351 	}
3352 
3353 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
3354 	mtx_lock(&sc->aac_aifq_lock);
3355 	current = sc->aifq_idx;
3356 	next = (current + 1) % AAC_AIFQ_LENGTH;
3357 	if (next == 0)
3358 		sc->aifq_filled = 1;
3359 	bcopy(fib, &sc->aac_aifq[current], sizeof(struct aac_fib));
3360 	/* modify AIF contexts */
3361 	if (sc->aifq_filled) {
3362 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3363 			if (next == ctx->ctx_idx)
3364 				ctx->ctx_wrap = 1;
3365 			else if (current == ctx->ctx_idx && ctx->ctx_wrap)
3366 				ctx->ctx_idx = next;
3367 		}
3368 	}
3369 	sc->aifq_idx = next;
3370 	/* On the off chance that someone is sleeping for an aif... */
3371 	if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
3372 		wakeup(sc->aac_aifq);
3373 	/* Wakeup any poll()ers */
3374 	selwakeuppri(&sc->rcv_select, PRIBIO);
3375 	mtx_unlock(&sc->aac_aifq_lock);
3376 }
3377 
3378 /*
3379  * Return the Revision of the driver to userspace and check to see if the
3380  * userspace app is possibly compatible.  This is extremely bogus since
3381  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
3382  * returning what the card reported.
3383  */
3384 static int
3385 aac_rev_check(struct aac_softc *sc, caddr_t udata)
3386 {
3387 	struct aac_rev_check rev_check;
3388 	struct aac_rev_check_resp rev_check_resp;
3389 	int error = 0;
3390 
3391 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3392 
3393 	/*
3394 	 * Copyin the revision struct from userspace
3395 	 */
3396 	if ((error = copyin(udata, (caddr_t)&rev_check,
3397 			sizeof(struct aac_rev_check))) != 0) {
3398 		return error;
3399 	}
3400 
3401 	fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "Userland revision= %d\n",
3402 	      rev_check.callingRevision.buildNumber);
3403 
3404 	/*
3405 	 * Doctor up the response struct.
3406 	 */
3407 	rev_check_resp.possiblyCompatible = 1;
3408 	rev_check_resp.adapterSWRevision.external.comp.major =
3409 	    AAC_DRIVER_MAJOR_VERSION;
3410 	rev_check_resp.adapterSWRevision.external.comp.minor =
3411 	    AAC_DRIVER_MINOR_VERSION;
3412 	rev_check_resp.adapterSWRevision.external.comp.type =
3413 	    AAC_DRIVER_TYPE;
3414 	rev_check_resp.adapterSWRevision.external.comp.dash =
3415 	    AAC_DRIVER_BUGFIX_LEVEL;
3416 	rev_check_resp.adapterSWRevision.buildNumber =
3417 	    AAC_DRIVER_BUILD;
3418 
3419 	return(copyout((caddr_t)&rev_check_resp, udata,
3420 			sizeof(struct aac_rev_check_resp)));
3421 }
3422 
3423 /*
3424  * Pass the fib context to the caller
3425  */
3426 static int
3427 aac_open_aif(struct aac_softc *sc, caddr_t arg)
3428 {
3429 	struct aac_fib_context *fibctx, *ctx;
3430 	int error = 0;
3431 
3432 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3433 
3434 	fibctx = malloc(sizeof(struct aac_fib_context), M_AACBUF, M_NOWAIT|M_ZERO);
3435 	if (fibctx == NULL)
3436 		return (ENOMEM);
3437 
3438 	mtx_lock(&sc->aac_aifq_lock);
3439 	/* all elements are already 0, add to queue */
3440 	if (sc->fibctx == NULL)
3441 		sc->fibctx = fibctx;
3442 	else {
3443 		for (ctx = sc->fibctx; ctx->next; ctx = ctx->next)
3444 			;
3445 		ctx->next = fibctx;
3446 		fibctx->prev = ctx;
3447 	}
3448 
3449 	/* evaluate unique value */
3450 	fibctx->unique = (*(u_int32_t *)&fibctx & 0xffffffff);
3451 	ctx = sc->fibctx;
3452 	while (ctx != fibctx) {
3453 		if (ctx->unique == fibctx->unique) {
3454 			fibctx->unique++;
3455 			ctx = sc->fibctx;
3456 		} else {
3457 			ctx = ctx->next;
3458 		}
3459 	}
3460 	mtx_unlock(&sc->aac_aifq_lock);
3461 
3462 	error = copyout(&fibctx->unique, (void *)arg, sizeof(u_int32_t));
3463 	if (error)
3464 		aac_close_aif(sc, (caddr_t)ctx);
3465 	return error;
3466 }
3467 
3468 /*
3469  * Close the caller's fib context
3470  */
3471 static int
3472 aac_close_aif(struct aac_softc *sc, caddr_t arg)
3473 {
3474 	struct aac_fib_context *ctx;
3475 
3476 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3477 
3478 	mtx_lock(&sc->aac_aifq_lock);
3479 	for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3480 		if (ctx->unique == *(uint32_t *)&arg) {
3481 			if (ctx == sc->fibctx)
3482 				sc->fibctx = NULL;
3483 			else {
3484 				ctx->prev->next = ctx->next;
3485 				if (ctx->next)
3486 					ctx->next->prev = ctx->prev;
3487 			}
3488 			break;
3489 		}
3490 	}
3491 	mtx_unlock(&sc->aac_aifq_lock);
3492 	if (ctx)
3493 		free(ctx, M_AACBUF);
3494 
3495 	return 0;
3496 }
3497 
3498 /*
3499  * Pass the caller the next AIF in their queue
3500  */
3501 static int
3502 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
3503 {
3504 	struct get_adapter_fib_ioctl agf;
3505 	struct aac_fib_context *ctx;
3506 	int error;
3507 
3508 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3509 
3510 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
3511 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3512 			if (agf.AdapterFibContext == ctx->unique)
3513 				break;
3514 		}
3515 		if (!ctx)
3516 			return (EFAULT);
3517 
3518 		error = aac_return_aif(sc, ctx, agf.AifFib);
3519 		if (error == EAGAIN && agf.Wait) {
3520 			fwprintf(sc, HBA_FLAGS_DBG_AIF_B, "aac_getnext_aif(): waiting for AIF");
3521 			sc->aac_state |= AAC_STATE_AIF_SLEEPER;
3522 			while (error == EAGAIN) {
3523 				error = tsleep(sc->aac_aifq, PRIBIO |
3524 					       PCATCH, "aacaif", 0);
3525 				if (error == 0)
3526 					error = aac_return_aif(sc, ctx, agf.AifFib);
3527 			}
3528 			sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
3529 		}
3530 	}
3531 	return(error);
3532 }
3533 
3534 /*
3535  * Hand the next AIF off the top of the queue out to userspace.
3536  */
3537 static int
3538 aac_return_aif(struct aac_softc *sc, struct aac_fib_context *ctx, caddr_t uptr)
3539 {
3540 	int current, error;
3541 
3542 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3543 
3544 	mtx_lock(&sc->aac_aifq_lock);
3545 	current = ctx->ctx_idx;
3546 	if (current == sc->aifq_idx && !ctx->ctx_wrap) {
3547 		/* empty */
3548 		mtx_unlock(&sc->aac_aifq_lock);
3549 		return (EAGAIN);
3550 	}
3551 	error =
3552 		copyout(&sc->aac_aifq[current], (void *)uptr, sizeof(struct aac_fib));
3553 	if (error)
3554 		device_printf(sc->aac_dev,
3555 		    "aac_return_aif: copyout returned %d\n", error);
3556 	else {
3557 		ctx->ctx_wrap = 0;
3558 		ctx->ctx_idx = (current + 1) % AAC_AIFQ_LENGTH;
3559 	}
3560 	mtx_unlock(&sc->aac_aifq_lock);
3561 	return(error);
3562 }
3563 
3564 static int
3565 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr)
3566 {
3567 	struct aac_pci_info {
3568 		u_int32_t bus;
3569 		u_int32_t slot;
3570 	} pciinf;
3571 	int error;
3572 
3573 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3574 
3575 	pciinf.bus = pci_get_bus(sc->aac_dev);
3576 	pciinf.slot = pci_get_slot(sc->aac_dev);
3577 
3578 	error = copyout((caddr_t)&pciinf, uptr,
3579 			sizeof(struct aac_pci_info));
3580 
3581 	return (error);
3582 }
3583 
3584 static int
3585 aac_supported_features(struct aac_softc *sc, caddr_t uptr)
3586 {
3587 	struct aac_features f;
3588 	int error;
3589 
3590 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3591 
3592 	if ((error = copyin(uptr, &f, sizeof (f))) != 0)
3593 		return (error);
3594 
3595 	/*
3596 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3597 	 * ALL zero in the featuresState, the driver will return the current
3598 	 * state of all the supported features, the data field will not be
3599 	 * valid.
3600 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3601 	 * a specific bit set in the featuresState, the driver will return the
3602 	 * current state of this specific feature and whatever data that are
3603 	 * associated with the feature in the data field or perform whatever
3604 	 * action needed indicates in the data field.
3605 	 */
3606 	if (f.feat.fValue == 0) {
3607 		f.feat.fBits.largeLBA =
3608 		    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3609 		/* TODO: In the future, add other features state here as well */
3610 	} else {
3611 		if (f.feat.fBits.largeLBA)
3612 			f.feat.fBits.largeLBA =
3613 			    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3614 		/* TODO: Add other features state and data in the future */
3615 	}
3616 
3617 	error = copyout(&f, uptr, sizeof (f));
3618 	return (error);
3619 }
3620 
3621 /*
3622  * Give the userland some information about the container.  The AAC arch
3623  * expects the driver to be a SCSI passthrough type driver, so it expects
3624  * the containers to have b:t:l numbers.  Fake it.
3625  */
3626 static int
3627 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
3628 {
3629 	struct aac_query_disk query_disk;
3630 	struct aac_container *co;
3631 	struct aac_disk	*disk;
3632 	int error, id;
3633 
3634 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3635 
3636 	disk = NULL;
3637 
3638 	error = copyin(uptr, (caddr_t)&query_disk,
3639 		       sizeof(struct aac_query_disk));
3640 	if (error)
3641 		return (error);
3642 
3643 	id = query_disk.ContainerNumber;
3644 	if (id == -1)
3645 		return (EINVAL);
3646 
3647 	mtx_lock(&sc->aac_container_lock);
3648 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
3649 		if (co->co_mntobj.ObjectId == id)
3650 			break;
3651 		}
3652 
3653 	if (co == NULL) {
3654 			query_disk.Valid = 0;
3655 			query_disk.Locked = 0;
3656 			query_disk.Deleted = 1;		/* XXX is this right? */
3657 	} else {
3658 		disk = device_get_softc(co->co_disk);
3659 		query_disk.Valid = 1;
3660 		query_disk.Locked =
3661 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
3662 		query_disk.Deleted = 0;
3663 		query_disk.Bus = device_get_unit(sc->aac_dev);
3664 		query_disk.Target = disk->unit;
3665 		query_disk.Lun = 0;
3666 		query_disk.UnMapped = 0;
3667 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
3668 			disk->ad_disk->d_name, disk->ad_disk->d_unit);
3669 	}
3670 	mtx_unlock(&sc->aac_container_lock);
3671 
3672 	error = copyout((caddr_t)&query_disk, uptr,
3673 			sizeof(struct aac_query_disk));
3674 
3675 	return (error);
3676 }
3677 
3678 static void
3679 aac_get_bus_info(struct aac_softc *sc)
3680 {
3681 	struct aac_fib *fib;
3682 	struct aac_ctcfg *c_cmd;
3683 	struct aac_ctcfg_resp *c_resp;
3684 	struct aac_vmioctl *vmi;
3685 	struct aac_vmi_businf_resp *vmi_resp;
3686 	struct aac_getbusinf businfo;
3687 	struct aac_sim *caminf;
3688 	device_t child;
3689 	int i, found, error;
3690 
3691 	mtx_lock(&sc->aac_io_lock);
3692 	aac_alloc_sync_fib(sc, &fib);
3693 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
3694 	bzero(c_cmd, sizeof(struct aac_ctcfg));
3695 
3696 	c_cmd->Command = VM_ContainerConfig;
3697 	c_cmd->cmd = CT_GET_SCSI_METHOD;
3698 	c_cmd->param = 0;
3699 
3700 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3701 	    sizeof(struct aac_ctcfg));
3702 	if (error) {
3703 		device_printf(sc->aac_dev, "Error %d sending "
3704 		    "VM_ContainerConfig command\n", error);
3705 		aac_release_sync_fib(sc);
3706 		mtx_unlock(&sc->aac_io_lock);
3707 		return;
3708 	}
3709 
3710 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
3711 	if (c_resp->Status != ST_OK) {
3712 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
3713 		    c_resp->Status);
3714 		aac_release_sync_fib(sc);
3715 		mtx_unlock(&sc->aac_io_lock);
3716 		return;
3717 	}
3718 
3719 	sc->scsi_method_id = c_resp->param;
3720 
3721 	vmi = (struct aac_vmioctl *)&fib->data[0];
3722 	bzero(vmi, sizeof(struct aac_vmioctl));
3723 
3724 	vmi->Command = VM_Ioctl;
3725 	vmi->ObjType = FT_DRIVE;
3726 	vmi->MethId = sc->scsi_method_id;
3727 	vmi->ObjId = 0;
3728 	vmi->IoctlCmd = GetBusInfo;
3729 
3730 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3731 	    sizeof(struct aac_vmi_businf_resp));
3732 	if (error) {
3733 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3734 		    error);
3735 		aac_release_sync_fib(sc);
3736 		mtx_unlock(&sc->aac_io_lock);
3737 		return;
3738 	}
3739 
3740 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3741 	if (vmi_resp->Status != ST_OK) {
3742 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3743 		    vmi_resp->Status);
3744 		aac_release_sync_fib(sc);
3745 		mtx_unlock(&sc->aac_io_lock);
3746 		return;
3747 	}
3748 
3749 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3750 	aac_release_sync_fib(sc);
3751 	mtx_unlock(&sc->aac_io_lock);
3752 
3753 	found = 0;
3754 	for (i = 0; i < businfo.BusCount; i++) {
3755 		if (businfo.BusValid[i] != AAC_BUS_VALID)
3756 			continue;
3757 
3758 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3759 		    M_AACBUF, M_NOWAIT | M_ZERO);
3760 		if (caminf == NULL) {
3761 			device_printf(sc->aac_dev,
3762 			    "No memory to add passthrough bus %d\n", i);
3763 			break;
3764 		};
3765 
3766 		child = device_add_child(sc->aac_dev, "aacp", -1);
3767 		if (child == NULL) {
3768 			device_printf(sc->aac_dev,
3769 			    "device_add_child failed for passthrough bus %d\n",
3770 			    i);
3771 			free(caminf, M_AACBUF);
3772 			break;
3773 		}
3774 
3775 		caminf->TargetsPerBus = businfo.TargetsPerBus;
3776 		caminf->BusNumber = i;
3777 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3778 		caminf->aac_sc = sc;
3779 		caminf->sim_dev = child;
3780 
3781 		device_set_ivars(child, caminf);
3782 		device_set_desc(child, "SCSI Passthrough Bus");
3783 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3784 
3785 		found = 1;
3786 	}
3787 
3788 	if (found)
3789 		bus_generic_attach(sc->aac_dev);
3790 }
3791