xref: /freebsd/sys/dev/aac/aac.c (revision 30d239bc4c510432e65a84fa1c14ed67a3ab1c92)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 #define AAC_DRIVER_VERSION		0x02000000
37 #define AAC_DRIVERNAME			"aac"
38 
39 #include "opt_aac.h"
40 
41 /* #include <stddef.h> */
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/malloc.h>
45 #include <sys/kernel.h>
46 #include <sys/kthread.h>
47 #include <sys/sysctl.h>
48 #include <sys/poll.h>
49 #include <sys/ioccom.h>
50 
51 #include <sys/bus.h>
52 #include <sys/conf.h>
53 #include <sys/signalvar.h>
54 #include <sys/time.h>
55 #include <sys/eventhandler.h>
56 #include <sys/rman.h>
57 
58 #include <machine/bus.h>
59 #include <sys/bus_dma.h>
60 #include <machine/resource.h>
61 
62 #include <dev/pci/pcireg.h>
63 #include <dev/pci/pcivar.h>
64 
65 #include <dev/aac/aacreg.h>
66 #include <sys/aac_ioctl.h>
67 #include <dev/aac/aacvar.h>
68 #include <dev/aac/aac_tables.h>
69 
70 static void	aac_startup(void *arg);
71 static void	aac_add_container(struct aac_softc *sc,
72 				  struct aac_mntinforesp *mir, int f);
73 static void	aac_get_bus_info(struct aac_softc *sc);
74 
75 /* Command Processing */
76 static void	aac_timeout(struct aac_softc *sc);
77 static void	aac_complete(void *context, int pending);
78 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void	aac_bio_complete(struct aac_command *cm);
80 static int	aac_wait_command(struct aac_command *cm);
81 static void	aac_command_thread(struct aac_softc *sc);
82 
83 /* Command Buffer Management */
84 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
85 				   int nseg, int error);
86 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
87 				       int nseg, int error);
88 static int	aac_alloc_commands(struct aac_softc *sc);
89 static void	aac_free_commands(struct aac_softc *sc);
90 static void	aac_unmap_command(struct aac_command *cm);
91 
92 /* Hardware Interface */
93 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
94 			       int error);
95 static int	aac_check_firmware(struct aac_softc *sc);
96 static int	aac_init(struct aac_softc *sc);
97 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
98 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
99 				 u_int32_t arg3, u_int32_t *sp);
100 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
101 				struct aac_command *cm);
102 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
103 				u_int32_t *fib_size, struct aac_fib **fib_addr);
104 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
105 				     struct aac_fib *fib);
106 
107 /* Falcon/PPC interface */
108 static int	aac_fa_get_fwstatus(struct aac_softc *sc);
109 static void	aac_fa_qnotify(struct aac_softc *sc, int qbit);
110 static int	aac_fa_get_istatus(struct aac_softc *sc);
111 static void	aac_fa_clear_istatus(struct aac_softc *sc, int mask);
112 static void	aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
113 				   u_int32_t arg0, u_int32_t arg1,
114 				   u_int32_t arg2, u_int32_t arg3);
115 static int	aac_fa_get_mailbox(struct aac_softc *sc, int mb);
116 static void	aac_fa_set_interrupts(struct aac_softc *sc, int enable);
117 
118 struct aac_interface aac_fa_interface = {
119 	aac_fa_get_fwstatus,
120 	aac_fa_qnotify,
121 	aac_fa_get_istatus,
122 	aac_fa_clear_istatus,
123 	aac_fa_set_mailbox,
124 	aac_fa_get_mailbox,
125 	aac_fa_set_interrupts,
126 	NULL, NULL, NULL
127 };
128 
129 /* StrongARM interface */
130 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
131 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
132 static int	aac_sa_get_istatus(struct aac_softc *sc);
133 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
134 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
135 				   u_int32_t arg0, u_int32_t arg1,
136 				   u_int32_t arg2, u_int32_t arg3);
137 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
138 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
139 
140 struct aac_interface aac_sa_interface = {
141 	aac_sa_get_fwstatus,
142 	aac_sa_qnotify,
143 	aac_sa_get_istatus,
144 	aac_sa_clear_istatus,
145 	aac_sa_set_mailbox,
146 	aac_sa_get_mailbox,
147 	aac_sa_set_interrupts,
148 	NULL, NULL, NULL
149 };
150 
151 /* i960Rx interface */
152 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
153 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
154 static int	aac_rx_get_istatus(struct aac_softc *sc);
155 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
156 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
157 				   u_int32_t arg0, u_int32_t arg1,
158 				   u_int32_t arg2, u_int32_t arg3);
159 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
160 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
161 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm);
162 static int aac_rx_get_outb_queue(struct aac_softc *sc);
163 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index);
164 
165 struct aac_interface aac_rx_interface = {
166 	aac_rx_get_fwstatus,
167 	aac_rx_qnotify,
168 	aac_rx_get_istatus,
169 	aac_rx_clear_istatus,
170 	aac_rx_set_mailbox,
171 	aac_rx_get_mailbox,
172 	aac_rx_set_interrupts,
173 	aac_rx_send_command,
174 	aac_rx_get_outb_queue,
175 	aac_rx_set_outb_queue
176 };
177 
178 /* Rocket/MIPS interface */
179 static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
180 static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
181 static int	aac_rkt_get_istatus(struct aac_softc *sc);
182 static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
183 static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
184 				    u_int32_t arg0, u_int32_t arg1,
185 				    u_int32_t arg2, u_int32_t arg3);
186 static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
187 static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
188 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm);
189 static int aac_rkt_get_outb_queue(struct aac_softc *sc);
190 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index);
191 
192 struct aac_interface aac_rkt_interface = {
193 	aac_rkt_get_fwstatus,
194 	aac_rkt_qnotify,
195 	aac_rkt_get_istatus,
196 	aac_rkt_clear_istatus,
197 	aac_rkt_set_mailbox,
198 	aac_rkt_get_mailbox,
199 	aac_rkt_set_interrupts,
200 	aac_rkt_send_command,
201 	aac_rkt_get_outb_queue,
202 	aac_rkt_set_outb_queue
203 };
204 
205 /* Debugging and Diagnostics */
206 static void	aac_describe_controller(struct aac_softc *sc);
207 static char	*aac_describe_code(struct aac_code_lookup *table,
208 				   u_int32_t code);
209 
210 /* Management Interface */
211 static d_open_t		aac_open;
212 static d_close_t	aac_close;
213 static d_ioctl_t	aac_ioctl;
214 static d_poll_t		aac_poll;
215 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
216 static void		aac_handle_aif(struct aac_softc *sc,
217 					   struct aac_fib *fib);
218 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
219 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
220 static int		aac_return_aif(struct aac_softc *sc, caddr_t uptr);
221 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
222 static int		aac_get_pci_info(struct aac_softc *sc, caddr_t uptr);
223 static void		aac_ioctl_event(struct aac_softc *sc,
224 				        struct aac_event *event, void *arg);
225 
226 static struct cdevsw aac_cdevsw = {
227 	.d_version =	D_VERSION,
228 	.d_flags =	D_NEEDGIANT,
229 	.d_open =	aac_open,
230 	.d_close =	aac_close,
231 	.d_ioctl =	aac_ioctl,
232 	.d_poll =	aac_poll,
233 	.d_name =	"aac",
234 };
235 
236 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
237 
238 /* sysctl node */
239 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
240 
241 /*
242  * Device Interface
243  */
244 
245 /*
246  * Initialise the controller and softc
247  */
248 int
249 aac_attach(struct aac_softc *sc)
250 {
251 	int error, unit;
252 
253 	debug_called(1);
254 
255 	/*
256 	 * Initialise per-controller queues.
257 	 */
258 	aac_initq_free(sc);
259 	aac_initq_ready(sc);
260 	aac_initq_busy(sc);
261 	aac_initq_bio(sc);
262 
263 	/*
264 	 * Initialise command-completion task.
265 	 */
266 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
267 
268 	/* mark controller as suspended until we get ourselves organised */
269 	sc->aac_state |= AAC_STATE_SUSPEND;
270 
271 	/*
272 	 * Check that the firmware on the card is supported.
273 	 */
274 	if ((error = aac_check_firmware(sc)) != 0)
275 		return(error);
276 
277 	/*
278 	 * Initialize locks
279 	 */
280 	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
281 	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
282 	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
283 	TAILQ_INIT(&sc->aac_container_tqh);
284 	TAILQ_INIT(&sc->aac_ev_cmfree);
285 
286 	/* Initialize the local AIF queue pointers */
287 	sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH;
288 
289 	/*
290 	 * Initialise the adapter.
291 	 */
292 	if ((error = aac_init(sc)) != 0)
293 		return(error);
294 
295 	/*
296 	 * Allocate and connect our interrupt.
297 	 */
298 	sc->aac_irq_rid = 0;
299 	if ((sc->aac_irq = bus_alloc_resource_any(sc->aac_dev, SYS_RES_IRQ,
300 			   			  &sc->aac_irq_rid,
301 			   			  RF_SHAREABLE |
302 						  RF_ACTIVE)) == NULL) {
303 		device_printf(sc->aac_dev, "can't allocate interrupt\n");
304 		return (EINVAL);
305 	}
306 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
307 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
308 				   INTR_MPSAFE|INTR_TYPE_BIO, NULL,
309 				   aac_new_intr, sc, &sc->aac_intr)) {
310 			device_printf(sc->aac_dev, "can't set up interrupt\n");
311 			return (EINVAL);
312 		}
313 	} else {
314 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
315 				   INTR_TYPE_BIO, aac_fast_intr, NULL,
316 				   sc, &sc->aac_intr)) {
317 			device_printf(sc->aac_dev,
318 				      "can't set up FAST interrupt\n");
319 			if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
320 					   INTR_MPSAFE|INTR_TYPE_BIO,
321 					   NULL, (driver_intr_t *)aac_fast_intr,
322 					   sc, &sc->aac_intr)) {
323 				device_printf(sc->aac_dev,
324 					     "can't set up MPSAFE interrupt\n");
325 				return (EINVAL);
326 			}
327 		}
328 	}
329 
330 	/*
331 	 * Print a little information about the controller.
332 	 */
333 	aac_describe_controller(sc);
334 
335 	/*
336 	 * Register to probe our containers later.
337 	 */
338 	sc->aac_ich.ich_func = aac_startup;
339 	sc->aac_ich.ich_arg = sc;
340 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
341 		device_printf(sc->aac_dev,
342 			      "can't establish configuration hook\n");
343 		return(ENXIO);
344 	}
345 
346 	/*
347 	 * Make the control device.
348 	 */
349 	unit = device_get_unit(sc->aac_dev);
350 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
351 				 0640, "aac%d", unit);
352 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
353 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
354 	sc->aac_dev_t->si_drv1 = sc;
355 
356 	/* Create the AIF thread */
357 	if (kproc_create((void(*)(void *))aac_command_thread, sc,
358 		   &sc->aifthread, 0, 0, "aac%daif", unit))
359 		panic("Could not create AIF thread\n");
360 
361 	/* Register the shutdown method to only be called post-dump */
362 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
363 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
364 		device_printf(sc->aac_dev,
365 			      "shutdown event registration failed\n");
366 
367 	/* Register with CAM for the non-DASD devices */
368 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
369 		TAILQ_INIT(&sc->aac_sim_tqh);
370 		aac_get_bus_info(sc);
371 	}
372 
373 	return(0);
374 }
375 
376 void
377 aac_add_event(struct aac_softc *sc, struct aac_event *event)
378 {
379 
380 	switch (event->ev_type & AAC_EVENT_MASK) {
381 	case AAC_EVENT_CMFREE:
382 		TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links);
383 		break;
384 	default:
385 		device_printf(sc->aac_dev, "aac_add event: unknown event %d\n",
386 		    event->ev_type);
387 		break;
388 	}
389 
390 	return;
391 }
392 
393 /*
394  * Probe for containers, create disks.
395  */
396 static void
397 aac_startup(void *arg)
398 {
399 	struct aac_softc *sc;
400 	struct aac_fib *fib;
401 	struct aac_mntinfo *mi;
402 	struct aac_mntinforesp *mir = NULL;
403 	int count = 0, i = 0;
404 
405 	debug_called(1);
406 
407 	sc = (struct aac_softc *)arg;
408 
409 	/* disconnect ourselves from the intrhook chain */
410 	config_intrhook_disestablish(&sc->aac_ich);
411 
412 	mtx_lock(&sc->aac_io_lock);
413 	aac_alloc_sync_fib(sc, &fib);
414 	mi = (struct aac_mntinfo *)&fib->data[0];
415 
416 	/* loop over possible containers */
417 	do {
418 		/* request information on this container */
419 		bzero(mi, sizeof(struct aac_mntinfo));
420 		mi->Command = VM_NameServe;
421 		mi->MntType = FT_FILESYS;
422 		mi->MntCount = i;
423 		if (aac_sync_fib(sc, ContainerCommand, 0, fib,
424 				 sizeof(struct aac_mntinfo))) {
425 			printf("error probing container %d", i);
426 			continue;
427 		}
428 
429 		mir = (struct aac_mntinforesp *)&fib->data[0];
430 		/* XXX Need to check if count changed */
431 		count = mir->MntRespCount;
432 		aac_add_container(sc, mir, 0);
433 		i++;
434 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
435 
436 	aac_release_sync_fib(sc);
437 	mtx_unlock(&sc->aac_io_lock);
438 
439 	/* poke the bus to actually attach the child devices */
440 	if (bus_generic_attach(sc->aac_dev))
441 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
442 
443 	/* mark the controller up */
444 	sc->aac_state &= ~AAC_STATE_SUSPEND;
445 
446 	/* enable interrupts now */
447 	AAC_UNMASK_INTERRUPTS(sc);
448 }
449 
450 /*
451  * Create a device to respresent a new container
452  */
453 static void
454 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
455 {
456 	struct aac_container *co;
457 	device_t child;
458 
459 	/*
460 	 * Check container volume type for validity.  Note that many of
461 	 * the possible types may never show up.
462 	 */
463 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
464 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
465 		       M_NOWAIT | M_ZERO);
466 		if (co == NULL)
467 			panic("Out of memory?!\n");
468 		debug(1, "id %x  name '%.16s'  size %u  type %d",
469 		      mir->MntTable[0].ObjectId,
470 		      mir->MntTable[0].FileSystemName,
471 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
472 
473 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
474 			device_printf(sc->aac_dev, "device_add_child failed\n");
475 		else
476 			device_set_ivars(child, co);
477 		device_set_desc(child, aac_describe_code(aac_container_types,
478 				mir->MntTable[0].VolType));
479 		co->co_disk = child;
480 		co->co_found = f;
481 		bcopy(&mir->MntTable[0], &co->co_mntobj,
482 		      sizeof(struct aac_mntobj));
483 		mtx_lock(&sc->aac_container_lock);
484 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
485 		mtx_unlock(&sc->aac_container_lock);
486 	}
487 }
488 
489 /*
490  * Free all of the resources associated with (sc)
491  *
492  * Should not be called if the controller is active.
493  */
494 void
495 aac_free(struct aac_softc *sc)
496 {
497 
498 	debug_called(1);
499 
500 	/* remove the control device */
501 	if (sc->aac_dev_t != NULL)
502 		destroy_dev(sc->aac_dev_t);
503 
504 	/* throw away any FIB buffers, discard the FIB DMA tag */
505 	aac_free_commands(sc);
506 	if (sc->aac_fib_dmat)
507 		bus_dma_tag_destroy(sc->aac_fib_dmat);
508 
509 	free(sc->aac_commands, M_AACBUF);
510 
511 	/* destroy the common area */
512 	if (sc->aac_common) {
513 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
514 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
515 				sc->aac_common_dmamap);
516 	}
517 	if (sc->aac_common_dmat)
518 		bus_dma_tag_destroy(sc->aac_common_dmat);
519 
520 	/* disconnect the interrupt handler */
521 	if (sc->aac_intr)
522 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
523 	if (sc->aac_irq != NULL)
524 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid,
525 				     sc->aac_irq);
526 
527 	/* destroy data-transfer DMA tag */
528 	if (sc->aac_buffer_dmat)
529 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
530 
531 	/* destroy the parent DMA tag */
532 	if (sc->aac_parent_dmat)
533 		bus_dma_tag_destroy(sc->aac_parent_dmat);
534 
535 	/* release the register window mapping */
536 	if (sc->aac_regs_resource != NULL)
537 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
538 				     sc->aac_regs_rid, sc->aac_regs_resource);
539 }
540 
541 /*
542  * Disconnect from the controller completely, in preparation for unload.
543  */
544 int
545 aac_detach(device_t dev)
546 {
547 	struct aac_softc *sc;
548 	struct aac_container *co;
549 	struct aac_sim	*sim;
550 	int error;
551 
552 	debug_called(1);
553 
554 	sc = device_get_softc(dev);
555 
556 	if (sc->aac_state & AAC_STATE_OPEN)
557 		return(EBUSY);
558 
559 	/* Remove the child containers */
560 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
561 		error = device_delete_child(dev, co->co_disk);
562 		if (error)
563 			return (error);
564 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
565 		free(co, M_AACBUF);
566 	}
567 
568 	/* Remove the CAM SIMs */
569 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
570 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
571 		error = device_delete_child(dev, sim->sim_dev);
572 		if (error)
573 			return (error);
574 		free(sim, M_AACBUF);
575 	}
576 
577 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
578 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
579 		wakeup(sc->aifthread);
580 		tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz);
581 	}
582 
583 	if (sc->aifflags & AAC_AIFFLAGS_RUNNING)
584 		panic("Cannot shutdown AIF thread\n");
585 
586 	if ((error = aac_shutdown(dev)))
587 		return(error);
588 
589 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
590 
591 	aac_free(sc);
592 
593 	mtx_destroy(&sc->aac_aifq_lock);
594 	mtx_destroy(&sc->aac_io_lock);
595 	mtx_destroy(&sc->aac_container_lock);
596 
597 	return(0);
598 }
599 
600 /*
601  * Bring the controller down to a dormant state and detach all child devices.
602  *
603  * This function is called before detach or system shutdown.
604  *
605  * Note that we can assume that the bioq on the controller is empty, as we won't
606  * allow shutdown if any device is open.
607  */
608 int
609 aac_shutdown(device_t dev)
610 {
611 	struct aac_softc *sc;
612 	struct aac_fib *fib;
613 	struct aac_close_command *cc;
614 
615 	debug_called(1);
616 
617 	sc = device_get_softc(dev);
618 
619 	sc->aac_state |= AAC_STATE_SUSPEND;
620 
621 	/*
622 	 * Send a Container shutdown followed by a HostShutdown FIB to the
623 	 * controller to convince it that we don't want to talk to it anymore.
624 	 * We've been closed and all I/O completed already
625 	 */
626 	device_printf(sc->aac_dev, "shutting down controller...");
627 
628 	mtx_lock(&sc->aac_io_lock);
629 	aac_alloc_sync_fib(sc, &fib);
630 	cc = (struct aac_close_command *)&fib->data[0];
631 
632 	bzero(cc, sizeof(struct aac_close_command));
633 	cc->Command = VM_CloseAll;
634 	cc->ContainerId = 0xffffffff;
635 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
636 	    sizeof(struct aac_close_command)))
637 		printf("FAILED.\n");
638 	else
639 		printf("done\n");
640 #if 0
641 	else {
642 		fib->data[0] = 0;
643 		/*
644 		 * XXX Issuing this command to the controller makes it shut down
645 		 * but also keeps it from coming back up without a reset of the
646 		 * PCI bus.  This is not desirable if you are just unloading the
647 		 * driver module with the intent to reload it later.
648 		 */
649 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
650 		    fib, 1)) {
651 			printf("FAILED.\n");
652 		} else {
653 			printf("done.\n");
654 		}
655 	}
656 #endif
657 
658 	AAC_MASK_INTERRUPTS(sc);
659 	aac_release_sync_fib(sc);
660 	mtx_unlock(&sc->aac_io_lock);
661 
662 	return(0);
663 }
664 
665 /*
666  * Bring the controller to a quiescent state, ready for system suspend.
667  */
668 int
669 aac_suspend(device_t dev)
670 {
671 	struct aac_softc *sc;
672 
673 	debug_called(1);
674 
675 	sc = device_get_softc(dev);
676 
677 	sc->aac_state |= AAC_STATE_SUSPEND;
678 
679 	AAC_MASK_INTERRUPTS(sc);
680 	return(0);
681 }
682 
683 /*
684  * Bring the controller back to a state ready for operation.
685  */
686 int
687 aac_resume(device_t dev)
688 {
689 	struct aac_softc *sc;
690 
691 	debug_called(1);
692 
693 	sc = device_get_softc(dev);
694 
695 	sc->aac_state &= ~AAC_STATE_SUSPEND;
696 	AAC_UNMASK_INTERRUPTS(sc);
697 	return(0);
698 }
699 
700 /*
701  * Interrupt handler for NEW_COMM interface.
702  */
703 void
704 aac_new_intr(void *arg)
705 {
706 	struct aac_softc *sc;
707 	u_int32_t index, fast;
708 	struct aac_command *cm;
709 	struct aac_fib *fib;
710 	int i;
711 
712 	debug_called(2);
713 
714 	sc = (struct aac_softc *)arg;
715 
716 	mtx_lock(&sc->aac_io_lock);
717 	while (1) {
718 		index = AAC_GET_OUTB_QUEUE(sc);
719 		if (index == 0xffffffff)
720 			index = AAC_GET_OUTB_QUEUE(sc);
721 		if (index == 0xffffffff)
722 			break;
723 		if (index & 2) {
724 			if (index == 0xfffffffe) {
725 				/* XXX This means that the controller wants
726 				 * more work.  Ignore it for now.
727 				 */
728 				continue;
729 			}
730 			/* AIF */
731 			fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF,
732 				   M_NOWAIT | M_ZERO);
733 			if (fib == NULL) {
734 				/* If we're really this short on memory,
735 				 * hopefully breaking out of the handler will
736 				 * allow something to get freed.  This
737 				 * actually sucks a whole lot.
738 				 */
739 				break;
740 			}
741 			index &= ~2;
742 			for (i = 0; i < sizeof(struct aac_fib)/4; ++i)
743 				((u_int32_t *)fib)[i] = AAC_GETREG4(sc, index + i*4);
744 			aac_handle_aif(sc, fib);
745 			free(fib, M_AACBUF);
746 
747 			/*
748 			 * AIF memory is owned by the adapter, so let it
749 			 * know that we are done with it.
750 			 */
751 			AAC_SET_OUTB_QUEUE(sc, index);
752 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
753 		} else {
754 			fast = index & 1;
755 			cm = sc->aac_commands + (index >> 2);
756 			fib = cm->cm_fib;
757 			if (fast) {
758 				fib->Header.XferState |= AAC_FIBSTATE_DONEADAP;
759 				*((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL;
760 			}
761 			aac_remove_busy(cm);
762  			aac_unmap_command(cm);
763 			cm->cm_flags |= AAC_CMD_COMPLETED;
764 
765 			/* is there a completion handler? */
766 			if (cm->cm_complete != NULL) {
767 				cm->cm_complete(cm);
768 			} else {
769 				/* assume that someone is sleeping on this
770 				 * command
771 				 */
772 				wakeup(cm);
773 			}
774 			sc->flags &= ~AAC_QUEUE_FRZN;
775 		}
776 	}
777 	/* see if we can start some more I/O */
778 	if ((sc->flags & AAC_QUEUE_FRZN) == 0)
779 		aac_startio(sc);
780 
781 	mtx_unlock(&sc->aac_io_lock);
782 }
783 
784 int
785 aac_fast_intr(void *arg)
786 {
787 	struct aac_softc *sc;
788 	u_int16_t reason;
789 
790 	debug_called(2);
791 
792 	sc = (struct aac_softc *)arg;
793 
794 	/*
795 	 * Read the status register directly.  This is faster than taking the
796 	 * driver lock and reading the queues directly.  It also saves having
797 	 * to turn parts of the driver lock into a spin mutex, which would be
798 	 * ugly.
799 	 */
800 	reason = AAC_GET_ISTATUS(sc);
801 	AAC_CLEAR_ISTATUS(sc, reason);
802 
803 	/* handle completion processing */
804 	if (reason & AAC_DB_RESPONSE_READY)
805 		taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete);
806 
807 	/* controller wants to talk to us */
808 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
809 		/*
810 		 * XXX Make sure that we don't get fooled by strange messages
811 		 * that start with a NULL.
812 		 */
813 		if ((reason & AAC_DB_PRINTF) &&
814 			(sc->aac_common->ac_printf[0] == 0))
815 			sc->aac_common->ac_printf[0] = 32;
816 
817 		/*
818 		 * This might miss doing the actual wakeup.  However, the
819 		 * msleep that this is waking up has a timeout, so it will
820 		 * wake up eventually.  AIFs and printfs are low enough
821 		 * priority that they can handle hanging out for a few seconds
822 		 * if needed.
823 		 */
824 		wakeup(sc->aifthread);
825 	}
826 	return (FILTER_HANDLED);
827 }
828 
829 /*
830  * Command Processing
831  */
832 
833 /*
834  * Start as much queued I/O as possible on the controller
835  */
836 void
837 aac_startio(struct aac_softc *sc)
838 {
839 	struct aac_command *cm;
840 	int error;
841 
842 	debug_called(2);
843 
844 	for (;;) {
845 		/*
846 		 * This flag might be set if the card is out of resources.
847 		 * Checking it here prevents an infinite loop of deferrals.
848 		 */
849 		if (sc->flags & AAC_QUEUE_FRZN)
850 			break;
851 
852 		/*
853 		 * Try to get a command that's been put off for lack of
854 		 * resources
855 		 */
856 		cm = aac_dequeue_ready(sc);
857 
858 		/*
859 		 * Try to build a command off the bio queue (ignore error
860 		 * return)
861 		 */
862 		if (cm == NULL)
863 			aac_bio_command(sc, &cm);
864 
865 		/* nothing to do? */
866 		if (cm == NULL)
867 			break;
868 
869 		/* don't map more than once */
870 		if (cm->cm_flags & AAC_CMD_MAPPED)
871 			panic("aac: command %p already mapped", cm);
872 
873 		/*
874 		 * Set up the command to go to the controller.  If there are no
875 		 * data buffers associated with the command then it can bypass
876 		 * busdma.
877 		 */
878 		if (cm->cm_datalen != 0) {
879 			error = bus_dmamap_load(sc->aac_buffer_dmat,
880 						cm->cm_datamap, cm->cm_data,
881 						cm->cm_datalen,
882 						aac_map_command_sg, cm, 0);
883 			if (error == EINPROGRESS) {
884 				debug(1, "freezing queue\n");
885 				sc->flags |= AAC_QUEUE_FRZN;
886 				error = 0;
887 			} else if (error != 0)
888 				panic("aac_startio: unexpected error %d from "
889 				      "busdma\n", error);
890 		} else
891 			aac_map_command_sg(cm, NULL, 0, 0);
892 	}
893 }
894 
895 /*
896  * Handle notification of one or more FIBs coming from the controller.
897  */
898 static void
899 aac_command_thread(struct aac_softc *sc)
900 {
901 	struct aac_fib *fib;
902 	u_int32_t fib_size;
903 	int size, retval;
904 
905 	debug_called(2);
906 
907 	mtx_lock(&sc->aac_io_lock);
908 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
909 
910 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
911 
912 		retval = 0;
913 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
914 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
915 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
916 
917 		/*
918 		 * First see if any FIBs need to be allocated.  This needs
919 		 * to be called without the driver lock because contigmalloc
920 		 * will grab Giant, and would result in an LOR.
921 		 */
922 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
923 			mtx_unlock(&sc->aac_io_lock);
924 			aac_alloc_commands(sc);
925 			mtx_lock(&sc->aac_io_lock);
926 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
927 			aac_startio(sc);
928 		}
929 
930 		/*
931 		 * While we're here, check to see if any commands are stuck.
932 		 * This is pretty low-priority, so it's ok if it doesn't
933 		 * always fire.
934 		 */
935 		if (retval == EWOULDBLOCK)
936 			aac_timeout(sc);
937 
938 		/* Check the hardware printf message buffer */
939 		if (sc->aac_common->ac_printf[0] != 0)
940 			aac_print_printf(sc);
941 
942 		/* Also check to see if the adapter has a command for us. */
943 		if (sc->flags & AAC_FLAGS_NEW_COMM)
944 			continue;
945 		for (;;) {
946 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
947 					   &fib_size, &fib))
948 				break;
949 
950 			AAC_PRINT_FIB(sc, fib);
951 
952 			switch (fib->Header.Command) {
953 			case AifRequest:
954 				aac_handle_aif(sc, fib);
955 				break;
956 			default:
957 				device_printf(sc->aac_dev, "unknown command "
958 					      "from controller\n");
959 				break;
960 			}
961 
962 			if ((fib->Header.XferState == 0) ||
963 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
964 				break;
965 			}
966 
967 			/* Return the AIF to the controller. */
968 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
969 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
970 				*(AAC_FSAStatus*)fib->data = ST_OK;
971 
972 				/* XXX Compute the Size field? */
973 				size = fib->Header.Size;
974 				if (size > sizeof(struct aac_fib)) {
975 					size = sizeof(struct aac_fib);
976 					fib->Header.Size = size;
977 				}
978 				/*
979 				 * Since we did not generate this command, it
980 				 * cannot go through the normal
981 				 * enqueue->startio chain.
982 				 */
983 				aac_enqueue_response(sc,
984 						 AAC_ADAP_NORM_RESP_QUEUE,
985 						 fib);
986 			}
987 		}
988 	}
989 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
990 	mtx_unlock(&sc->aac_io_lock);
991 	wakeup(sc->aac_dev);
992 
993 	kproc_exit(0);
994 }
995 
996 /*
997  * Process completed commands.
998  */
999 static void
1000 aac_complete(void *context, int pending)
1001 {
1002 	struct aac_softc *sc;
1003 	struct aac_command *cm;
1004 	struct aac_fib *fib;
1005 	u_int32_t fib_size;
1006 
1007 	debug_called(2);
1008 
1009 	sc = (struct aac_softc *)context;
1010 
1011 	mtx_lock(&sc->aac_io_lock);
1012 
1013 	/* pull completed commands off the queue */
1014 	for (;;) {
1015 		/* look for completed FIBs on our queue */
1016 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
1017 							&fib))
1018 			break;	/* nothing to do */
1019 
1020 		/* get the command, unmap and hand off for processing */
1021 		cm = sc->aac_commands + fib->Header.SenderData;
1022 		if (cm == NULL) {
1023 			AAC_PRINT_FIB(sc, fib);
1024 			break;
1025 		}
1026 		aac_remove_busy(cm);
1027 
1028  		aac_unmap_command(cm);
1029 		cm->cm_flags |= AAC_CMD_COMPLETED;
1030 
1031 		/* is there a completion handler? */
1032 		if (cm->cm_complete != NULL) {
1033 			cm->cm_complete(cm);
1034 		} else {
1035 			/* assume that someone is sleeping on this command */
1036 			wakeup(cm);
1037 		}
1038 	}
1039 
1040 	/* see if we can start some more I/O */
1041 	sc->flags &= ~AAC_QUEUE_FRZN;
1042 	aac_startio(sc);
1043 
1044 	mtx_unlock(&sc->aac_io_lock);
1045 }
1046 
1047 /*
1048  * Handle a bio submitted from a disk device.
1049  */
1050 void
1051 aac_submit_bio(struct bio *bp)
1052 {
1053 	struct aac_disk *ad;
1054 	struct aac_softc *sc;
1055 
1056 	debug_called(2);
1057 
1058 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1059 	sc = ad->ad_controller;
1060 
1061 	/* queue the BIO and try to get some work done */
1062 	aac_enqueue_bio(sc, bp);
1063 	aac_startio(sc);
1064 }
1065 
1066 /*
1067  * Get a bio and build a command to go with it.
1068  */
1069 static int
1070 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
1071 {
1072 	struct aac_command *cm;
1073 	struct aac_fib *fib;
1074 	struct aac_disk *ad;
1075 	struct bio *bp;
1076 
1077 	debug_called(2);
1078 
1079 	/* get the resources we will need */
1080 	cm = NULL;
1081 	bp = NULL;
1082 	if (aac_alloc_command(sc, &cm))	/* get a command */
1083 		goto fail;
1084 	if ((bp = aac_dequeue_bio(sc)) == NULL)
1085 		goto fail;
1086 
1087 	/* fill out the command */
1088 	cm->cm_data = (void *)bp->bio_data;
1089 	cm->cm_datalen = bp->bio_bcount;
1090 	cm->cm_complete = aac_bio_complete;
1091 	cm->cm_private = bp;
1092 	cm->cm_timestamp = time_uptime;
1093 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1094 
1095 	/* build the FIB */
1096 	fib = cm->cm_fib;
1097 	fib->Header.Size = sizeof(struct aac_fib_header);
1098 	fib->Header.XferState =
1099 		AAC_FIBSTATE_HOSTOWNED   |
1100 		AAC_FIBSTATE_INITIALISED |
1101 		AAC_FIBSTATE_EMPTY	 |
1102 		AAC_FIBSTATE_FROMHOST	 |
1103 		AAC_FIBSTATE_REXPECTED   |
1104 		AAC_FIBSTATE_NORM	 |
1105 		AAC_FIBSTATE_ASYNC	 |
1106 		AAC_FIBSTATE_FAST_RESPONSE;
1107 
1108 	/* build the read/write request */
1109 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1110 
1111 	if (sc->flags & AAC_FLAGS_RAW_IO) {
1112 		struct aac_raw_io *raw;
1113 		raw = (struct aac_raw_io *)&fib->data[0];
1114 		fib->Header.Command = RawIo;
1115 		raw->BlockNumber = (u_int64_t)bp->bio_pblkno;
1116 		raw->ByteCount = bp->bio_bcount;
1117 		raw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1118 		raw->BpTotal = 0;
1119 		raw->BpComplete = 0;
1120 		fib->Header.Size += sizeof(struct aac_raw_io);
1121 		cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw;
1122 		if (bp->bio_cmd == BIO_READ) {
1123 			raw->Flags = 1;
1124 			cm->cm_flags |= AAC_CMD_DATAIN;
1125 		} else {
1126 			raw->Flags = 0;
1127 			cm->cm_flags |= AAC_CMD_DATAOUT;
1128 		}
1129 	} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1130 		fib->Header.Command = ContainerCommand;
1131 		if (bp->bio_cmd == BIO_READ) {
1132 			struct aac_blockread *br;
1133 			br = (struct aac_blockread *)&fib->data[0];
1134 			br->Command = VM_CtBlockRead;
1135 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1136 			br->BlockNumber = bp->bio_pblkno;
1137 			br->ByteCount = bp->bio_bcount;
1138 			fib->Header.Size += sizeof(struct aac_blockread);
1139 			cm->cm_sgtable = &br->SgMap;
1140 			cm->cm_flags |= AAC_CMD_DATAIN;
1141 		} else {
1142 			struct aac_blockwrite *bw;
1143 			bw = (struct aac_blockwrite *)&fib->data[0];
1144 			bw->Command = VM_CtBlockWrite;
1145 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1146 			bw->BlockNumber = bp->bio_pblkno;
1147 			bw->ByteCount = bp->bio_bcount;
1148 			bw->Stable = CUNSTABLE;
1149 			fib->Header.Size += sizeof(struct aac_blockwrite);
1150 			cm->cm_flags |= AAC_CMD_DATAOUT;
1151 			cm->cm_sgtable = &bw->SgMap;
1152 		}
1153 	} else {
1154 		fib->Header.Command = ContainerCommand64;
1155 		if (bp->bio_cmd == BIO_READ) {
1156 			struct aac_blockread64 *br;
1157 			br = (struct aac_blockread64 *)&fib->data[0];
1158 			br->Command = VM_CtHostRead64;
1159 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1160 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1161 			br->BlockNumber = bp->bio_pblkno;
1162 			br->Pad = 0;
1163 			br->Flags = 0;
1164 			fib->Header.Size += sizeof(struct aac_blockread64);
1165 			cm->cm_flags |= AAC_CMD_DATAOUT;
1166 			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
1167 		} else {
1168 			struct aac_blockwrite64 *bw;
1169 			bw = (struct aac_blockwrite64 *)&fib->data[0];
1170 			bw->Command = VM_CtHostWrite64;
1171 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1172 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1173 			bw->BlockNumber = bp->bio_pblkno;
1174 			bw->Pad = 0;
1175 			bw->Flags = 0;
1176 			fib->Header.Size += sizeof(struct aac_blockwrite64);
1177 			cm->cm_flags |= AAC_CMD_DATAIN;
1178 			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
1179 		}
1180 	}
1181 
1182 	*cmp = cm;
1183 	return(0);
1184 
1185 fail:
1186 	if (bp != NULL)
1187 		aac_enqueue_bio(sc, bp);
1188 	if (cm != NULL)
1189 		aac_release_command(cm);
1190 	return(ENOMEM);
1191 }
1192 
1193 /*
1194  * Handle a bio-instigated command that has been completed.
1195  */
1196 static void
1197 aac_bio_complete(struct aac_command *cm)
1198 {
1199 	struct aac_blockread_response *brr;
1200 	struct aac_blockwrite_response *bwr;
1201 	struct bio *bp;
1202 	AAC_FSAStatus status;
1203 
1204 	/* fetch relevant status and then release the command */
1205 	bp = (struct bio *)cm->cm_private;
1206 	if (bp->bio_cmd == BIO_READ) {
1207 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1208 		status = brr->Status;
1209 	} else {
1210 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1211 		status = bwr->Status;
1212 	}
1213 	aac_release_command(cm);
1214 
1215 	/* fix up the bio based on status */
1216 	if (status == ST_OK) {
1217 		bp->bio_resid = 0;
1218 	} else {
1219 		bp->bio_error = EIO;
1220 		bp->bio_flags |= BIO_ERROR;
1221 		/* pass an error string out to the disk layer */
1222 		bp->bio_driver1 = aac_describe_code(aac_command_status_table,
1223 						    status);
1224 	}
1225 	aac_biodone(bp);
1226 }
1227 
1228 /*
1229  * Submit a command to the controller, return when it completes.
1230  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1231  *     be stuck here forever.  At the same time, signals are not caught
1232  *     because there is a risk that a signal could wakeup the sleep before
1233  *     the card has a chance to complete the command.  Since there is no way
1234  *     to cancel a command that is in progress, we can't protect against the
1235  *     card completing a command late and spamming the command and data
1236  *     memory.  So, we are held hostage until the command completes.
1237  */
1238 static int
1239 aac_wait_command(struct aac_command *cm)
1240 {
1241 	struct aac_softc *sc;
1242 	int error;
1243 
1244 	debug_called(2);
1245 
1246 	sc = cm->cm_sc;
1247 
1248 	/* Put the command on the ready queue and get things going */
1249 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1250 	aac_enqueue_ready(cm);
1251 	aac_startio(sc);
1252 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1253 	return(error);
1254 }
1255 
1256 /*
1257  *Command Buffer Management
1258  */
1259 
1260 /*
1261  * Allocate a command.
1262  */
1263 int
1264 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1265 {
1266 	struct aac_command *cm;
1267 
1268 	debug_called(3);
1269 
1270 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1271 		if (sc->total_fibs < sc->aac_max_fibs) {
1272 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1273 			wakeup(sc->aifthread);
1274 		}
1275 		return (EBUSY);
1276 	}
1277 
1278 	*cmp = cm;
1279 	return(0);
1280 }
1281 
1282 /*
1283  * Release a command back to the freelist.
1284  */
1285 void
1286 aac_release_command(struct aac_command *cm)
1287 {
1288 	struct aac_event *event;
1289 	struct aac_softc *sc;
1290 
1291 	debug_called(3);
1292 
1293 	/* (re)initialise the command/FIB */
1294 	cm->cm_sgtable = NULL;
1295 	cm->cm_flags = 0;
1296 	cm->cm_complete = NULL;
1297 	cm->cm_private = NULL;
1298 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1299 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1300 	cm->cm_fib->Header.Flags = 0;
1301 	cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size;
1302 
1303 	/*
1304 	 * These are duplicated in aac_start to cover the case where an
1305 	 * intermediate stage may have destroyed them.  They're left
1306 	 * initialised here for debugging purposes only.
1307 	 */
1308 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1309 	cm->cm_fib->Header.SenderData = 0;
1310 
1311 	aac_enqueue_free(cm);
1312 
1313 	sc = cm->cm_sc;
1314 	event = TAILQ_FIRST(&sc->aac_ev_cmfree);
1315 	if (event != NULL) {
1316 		TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links);
1317 		event->ev_callback(sc, event, event->ev_arg);
1318 	}
1319 }
1320 
1321 /*
1322  * Map helper for command/FIB allocation.
1323  */
1324 static void
1325 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1326 {
1327 	uint64_t	*fibphys;
1328 
1329 	fibphys = (uint64_t *)arg;
1330 
1331 	debug_called(3);
1332 
1333 	*fibphys = segs[0].ds_addr;
1334 }
1335 
1336 /*
1337  * Allocate and initialise commands/FIBs for this adapter.
1338  */
1339 static int
1340 aac_alloc_commands(struct aac_softc *sc)
1341 {
1342 	struct aac_command *cm;
1343 	struct aac_fibmap *fm;
1344 	uint64_t fibphys;
1345 	int i, error;
1346 
1347 	debug_called(2);
1348 
1349 	if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs)
1350 		return (ENOMEM);
1351 
1352 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1353 	if (fm == NULL)
1354 		return (ENOMEM);
1355 
1356 	/* allocate the FIBs in DMAable memory and load them */
1357 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1358 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1359 		device_printf(sc->aac_dev,
1360 			      "Not enough contiguous memory available.\n");
1361 		free(fm, M_AACBUF);
1362 		return (ENOMEM);
1363 	}
1364 
1365 	/* Ignore errors since this doesn't bounce */
1366 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1367 			      sc->aac_max_fibs_alloc * sc->aac_max_fib_size,
1368 			      aac_map_command_helper, &fibphys, 0);
1369 
1370 	/* initialise constant fields in the command structure */
1371 	bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size);
1372 	for (i = 0; i < sc->aac_max_fibs_alloc; i++) {
1373 		cm = sc->aac_commands + sc->total_fibs;
1374 		fm->aac_commands = cm;
1375 		cm->cm_sc = sc;
1376 		cm->cm_fib = (struct aac_fib *)
1377 			((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size);
1378 		cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size;
1379 		cm->cm_index = sc->total_fibs;
1380 
1381 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1382 					       &cm->cm_datamap)) != 0)
1383 			break;
1384 		mtx_lock(&sc->aac_io_lock);
1385 		aac_release_command(cm);
1386 		sc->total_fibs++;
1387 		mtx_unlock(&sc->aac_io_lock);
1388 	}
1389 
1390 	if (i > 0) {
1391 		mtx_lock(&sc->aac_io_lock);
1392 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1393 		debug(1, "total_fibs= %d\n", sc->total_fibs);
1394 		mtx_unlock(&sc->aac_io_lock);
1395 		return (0);
1396 	}
1397 
1398 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1399 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1400 	free(fm, M_AACBUF);
1401 	return (ENOMEM);
1402 }
1403 
1404 /*
1405  * Free FIBs owned by this adapter.
1406  */
1407 static void
1408 aac_free_commands(struct aac_softc *sc)
1409 {
1410 	struct aac_fibmap *fm;
1411 	struct aac_command *cm;
1412 	int i;
1413 
1414 	debug_called(1);
1415 
1416 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1417 
1418 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1419 		/*
1420 		 * We check against total_fibs to handle partially
1421 		 * allocated blocks.
1422 		 */
1423 		for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) {
1424 			cm = fm->aac_commands + i;
1425 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1426 		}
1427 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1428 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1429 		free(fm, M_AACBUF);
1430 	}
1431 }
1432 
1433 /*
1434  * Command-mapping helper function - populate this command's s/g table.
1435  */
1436 static void
1437 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1438 {
1439 	struct aac_softc *sc;
1440 	struct aac_command *cm;
1441 	struct aac_fib *fib;
1442 	int i;
1443 
1444 	debug_called(3);
1445 
1446 	cm = (struct aac_command *)arg;
1447 	sc = cm->cm_sc;
1448 	fib = cm->cm_fib;
1449 
1450 	/* copy into the FIB */
1451 	if (cm->cm_sgtable != NULL) {
1452 		if (fib->Header.Command == RawIo) {
1453 			struct aac_sg_tableraw *sg;
1454 			sg = (struct aac_sg_tableraw *)cm->cm_sgtable;
1455 			sg->SgCount = nseg;
1456 			for (i = 0; i < nseg; i++) {
1457 				sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr;
1458 				sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len;
1459 				sg->SgEntryRaw[i].Next = 0;
1460 				sg->SgEntryRaw[i].Prev = 0;
1461 				sg->SgEntryRaw[i].Flags = 0;
1462 			}
1463 			/* update the FIB size for the s/g count */
1464 			fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw);
1465 		} else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1466 			struct aac_sg_table *sg;
1467 			sg = cm->cm_sgtable;
1468 			sg->SgCount = nseg;
1469 			for (i = 0; i < nseg; i++) {
1470 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1471 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1472 			}
1473 			/* update the FIB size for the s/g count */
1474 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry);
1475 		} else {
1476 			struct aac_sg_table64 *sg;
1477 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1478 			sg->SgCount = nseg;
1479 			for (i = 0; i < nseg; i++) {
1480 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1481 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1482 			}
1483 			/* update the FIB size for the s/g count */
1484 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1485 		}
1486 	}
1487 
1488 	/* Fix up the address values in the FIB.  Use the command array index
1489 	 * instead of a pointer since these fields are only 32 bits.  Shift
1490 	 * the SenderFibAddress over to make room for the fast response bit
1491 	 * and for the AIF bit
1492 	 */
1493 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2);
1494 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1495 
1496 	/* save a pointer to the command for speedy reverse-lookup */
1497 	cm->cm_fib->Header.SenderData = cm->cm_index;
1498 
1499 	if (cm->cm_flags & AAC_CMD_DATAIN)
1500 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1501 				BUS_DMASYNC_PREREAD);
1502 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1503 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1504 				BUS_DMASYNC_PREWRITE);
1505 	cm->cm_flags |= AAC_CMD_MAPPED;
1506 
1507 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1508 		int count = 10000000L;
1509 		while (AAC_SEND_COMMAND(sc, cm) != 0) {
1510 			if (--count == 0) {
1511 				aac_unmap_command(cm);
1512 				sc->flags |= AAC_QUEUE_FRZN;
1513 				aac_requeue_ready(cm);
1514 			}
1515 			DELAY(5);			/* wait 5 usec. */
1516 		}
1517 	} else {
1518 		/* Put the FIB on the outbound queue */
1519 		if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1520 			aac_unmap_command(cm);
1521 			sc->flags |= AAC_QUEUE_FRZN;
1522 			aac_requeue_ready(cm);
1523 		}
1524 	}
1525 
1526 	return;
1527 }
1528 
1529 /*
1530  * Unmap a command from controller-visible space.
1531  */
1532 static void
1533 aac_unmap_command(struct aac_command *cm)
1534 {
1535 	struct aac_softc *sc;
1536 
1537 	debug_called(2);
1538 
1539 	sc = cm->cm_sc;
1540 
1541 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1542 		return;
1543 
1544 	if (cm->cm_datalen != 0) {
1545 		if (cm->cm_flags & AAC_CMD_DATAIN)
1546 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1547 					BUS_DMASYNC_POSTREAD);
1548 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1549 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1550 					BUS_DMASYNC_POSTWRITE);
1551 
1552 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1553 	}
1554 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1555 }
1556 
1557 /*
1558  * Hardware Interface
1559  */
1560 
1561 /*
1562  * Initialise the adapter.
1563  */
1564 static void
1565 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1566 {
1567 	struct aac_softc *sc;
1568 
1569 	debug_called(1);
1570 
1571 	sc = (struct aac_softc *)arg;
1572 
1573 	sc->aac_common_busaddr = segs[0].ds_addr;
1574 }
1575 
1576 static int
1577 aac_check_firmware(struct aac_softc *sc)
1578 {
1579 	u_int32_t major, minor, options = 0, atu_size = 0;
1580 	int status;
1581 
1582 	debug_called(1);
1583 
1584 	/*
1585 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1586 	 * firmware version 1.x are not compatible with this driver.
1587 	 */
1588 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1589 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1590 				     NULL)) {
1591 			device_printf(sc->aac_dev,
1592 				      "Error reading firmware version\n");
1593 			return (EIO);
1594 		}
1595 
1596 		/* These numbers are stored as ASCII! */
1597 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1598 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1599 		if (major == 1) {
1600 			device_printf(sc->aac_dev,
1601 			    "Firmware version %d.%d is not supported.\n",
1602 			    major, minor);
1603 			return (EINVAL);
1604 		}
1605 	}
1606 
1607 	/*
1608 	 * Retrieve the capabilities/supported options word so we know what
1609 	 * work-arounds to enable.  Some firmware revs don't support this
1610 	 * command.
1611 	 */
1612 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
1613 		if (status != AAC_SRB_STS_INVALID_REQUEST) {
1614 			device_printf(sc->aac_dev,
1615 			     "RequestAdapterInfo failed\n");
1616 			return (EIO);
1617 		}
1618 	} else {
1619 		options = AAC_GET_MAILBOX(sc, 1);
1620 		atu_size = AAC_GET_MAILBOX(sc, 2);
1621 		sc->supported_options = options;
1622 
1623 		if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1624 		    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1625 			sc->flags |= AAC_FLAGS_4GB_WINDOW;
1626 		if (options & AAC_SUPPORTED_NONDASD)
1627 			sc->flags |= AAC_FLAGS_ENABLE_CAM;
1628 		if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1629 		     && (sizeof(bus_addr_t) > 4)) {
1630 			device_printf(sc->aac_dev,
1631 			    "Enabling 64-bit address support\n");
1632 			sc->flags |= AAC_FLAGS_SG_64BIT;
1633 		}
1634 		if ((options & AAC_SUPPORTED_NEW_COMM)
1635 		 && sc->aac_if.aif_send_command)
1636 			sc->flags |= AAC_FLAGS_NEW_COMM;
1637 		if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE)
1638 			sc->flags |= AAC_FLAGS_ARRAY_64BIT;
1639 	}
1640 
1641 	/* Check for broken hardware that does a lower number of commands */
1642 	sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512);
1643 
1644 	/* Remap mem. resource, if required */
1645 	if ((sc->flags & AAC_FLAGS_NEW_COMM) &&
1646 		atu_size > rman_get_size(sc->aac_regs_resource)) {
1647 		bus_release_resource(
1648 			sc->aac_dev, SYS_RES_MEMORY,
1649 			sc->aac_regs_rid, sc->aac_regs_resource);
1650 		sc->aac_regs_resource = bus_alloc_resource(
1651 			sc->aac_dev, SYS_RES_MEMORY, &sc->aac_regs_rid,
1652 			0ul, ~0ul, atu_size, RF_ACTIVE);
1653 		if (sc->aac_regs_resource == NULL) {
1654 			sc->aac_regs_resource = bus_alloc_resource_any(
1655 				sc->aac_dev, SYS_RES_MEMORY,
1656 				&sc->aac_regs_rid, RF_ACTIVE);
1657 			if (sc->aac_regs_resource == NULL) {
1658 				device_printf(sc->aac_dev,
1659 				    "couldn't allocate register window\n");
1660 				return (ENXIO);
1661 			}
1662 			sc->flags &= ~AAC_FLAGS_NEW_COMM;
1663 		}
1664 		sc->aac_btag = rman_get_bustag(sc->aac_regs_resource);
1665 		sc->aac_bhandle = rman_get_bushandle(sc->aac_regs_resource);
1666 	}
1667 
1668 	/* Read preferred settings */
1669 	sc->aac_max_fib_size = sizeof(struct aac_fib);
1670 	sc->aac_max_sectors = 128;				/* 64KB */
1671 	if (sc->flags & AAC_FLAGS_SG_64BIT)
1672 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1673 		 - sizeof(struct aac_blockwrite64))
1674 		 / sizeof(struct aac_sg_entry64);
1675 	else
1676 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1677 		 - sizeof(struct aac_blockwrite))
1678 		 / sizeof(struct aac_sg_entry);
1679 
1680 	if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
1681 		options = AAC_GET_MAILBOX(sc, 1);
1682 		sc->aac_max_fib_size = (options & 0xFFFF);
1683 		sc->aac_max_sectors = (options >> 16) << 1;
1684 		options = AAC_GET_MAILBOX(sc, 2);
1685 		sc->aac_sg_tablesize = (options >> 16);
1686 		options = AAC_GET_MAILBOX(sc, 3);
1687 		sc->aac_max_fibs = (options & 0xFFFF);
1688 	}
1689 	if (sc->aac_max_fib_size > PAGE_SIZE)
1690 		sc->aac_max_fib_size = PAGE_SIZE;
1691 	sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size;
1692 
1693 	return (0);
1694 }
1695 
1696 static int
1697 aac_init(struct aac_softc *sc)
1698 {
1699 	struct aac_adapter_init	*ip;
1700 	time_t then;
1701 	u_int32_t code, qoffset;
1702 	int error;
1703 
1704 	debug_called(1);
1705 
1706 	/*
1707 	 * First wait for the adapter to come ready.
1708 	 */
1709 	then = time_uptime;
1710 	do {
1711 		code = AAC_GET_FWSTATUS(sc);
1712 		if (code & AAC_SELF_TEST_FAILED) {
1713 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1714 			return(ENXIO);
1715 		}
1716 		if (code & AAC_KERNEL_PANIC) {
1717 			device_printf(sc->aac_dev,
1718 				      "FATAL: controller kernel panic\n");
1719 			return(ENXIO);
1720 		}
1721 		if (time_uptime > (then + AAC_BOOT_TIMEOUT)) {
1722 			device_printf(sc->aac_dev,
1723 				      "FATAL: controller not coming ready, "
1724 					   "status %x\n", code);
1725 			return(ENXIO);
1726 		}
1727 	} while (!(code & AAC_UP_AND_RUNNING));
1728 
1729 	error = ENOMEM;
1730 	/*
1731 	 * Create DMA tag for mapping buffers into controller-addressable space.
1732 	 */
1733 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1734 			       1, 0, 			/* algnmnt, boundary */
1735 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
1736 			       BUS_SPACE_MAXADDR :
1737 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1738 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1739 			       NULL, NULL, 		/* filter, filterarg */
1740 			       MAXBSIZE,		/* maxsize */
1741 			       sc->aac_sg_tablesize,	/* nsegments */
1742 			       MAXBSIZE,		/* maxsegsize */
1743 			       BUS_DMA_ALLOCNOW,	/* flags */
1744 			       busdma_lock_mutex,	/* lockfunc */
1745 			       &sc->aac_io_lock,	/* lockfuncarg */
1746 			       &sc->aac_buffer_dmat)) {
1747 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
1748 		goto out;
1749 	}
1750 
1751 	/*
1752 	 * Create DMA tag for mapping FIBs into controller-addressable space..
1753 	 */
1754 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
1755 			       1, 0, 			/* algnmnt, boundary */
1756 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1757 			       BUS_SPACE_MAXADDR_32BIT :
1758 			       0x7fffffff,		/* lowaddr */
1759 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1760 			       NULL, NULL, 		/* filter, filterarg */
1761 			       sc->aac_max_fibs_alloc *
1762 			       sc->aac_max_fib_size,  /* maxsize */
1763 			       1,			/* nsegments */
1764 			       sc->aac_max_fibs_alloc *
1765 			       sc->aac_max_fib_size,	/* maxsegsize */
1766 			       0,			/* flags */
1767 			       NULL, NULL,		/* No locking needed */
1768 			       &sc->aac_fib_dmat)) {
1769 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");;
1770 		goto out;
1771 	}
1772 
1773 	/*
1774 	 * Create DMA tag for the common structure and allocate it.
1775 	 */
1776 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
1777 			       1, 0,			/* algnmnt, boundary */
1778 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
1779 			       BUS_SPACE_MAXADDR_32BIT :
1780 			       0x7fffffff,		/* lowaddr */
1781 			       BUS_SPACE_MAXADDR, 	/* highaddr */
1782 			       NULL, NULL, 		/* filter, filterarg */
1783 			       8192 + sizeof(struct aac_common), /* maxsize */
1784 			       1,			/* nsegments */
1785 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1786 			       0,			/* flags */
1787 			       NULL, NULL,		/* No locking needed */
1788 			       &sc->aac_common_dmat)) {
1789 		device_printf(sc->aac_dev,
1790 			      "can't allocate common structure DMA tag\n");
1791 		goto out;
1792 	}
1793 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
1794 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
1795 		device_printf(sc->aac_dev, "can't allocate common structure\n");
1796 		goto out;
1797 	}
1798 
1799 	/*
1800 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
1801 	 * below address 8192 in physical memory.
1802 	 * XXX If the padding is not needed, can it be put to use instead
1803 	 * of ignored?
1804 	 */
1805 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
1806 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
1807 			aac_common_map, sc, 0);
1808 
1809 	if (sc->aac_common_busaddr < 8192) {
1810 		sc->aac_common = (struct aac_common *)
1811 		    ((uint8_t *)sc->aac_common + 8192);
1812 		sc->aac_common_busaddr += 8192;
1813 	}
1814 	bzero(sc->aac_common, sizeof(*sc->aac_common));
1815 
1816 	/* Allocate some FIBs and associated command structs */
1817 	TAILQ_INIT(&sc->aac_fibmap_tqh);
1818 	sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command),
1819 				  M_AACBUF, M_WAITOK|M_ZERO);
1820 	while (sc->total_fibs < AAC_PREALLOCATE_FIBS) {
1821 		if (aac_alloc_commands(sc) != 0)
1822 			break;
1823 	}
1824 	if (sc->total_fibs == 0)
1825 		goto out;
1826 
1827 	/*
1828 	 * Fill in the init structure.  This tells the adapter about the
1829 	 * physical location of various important shared data structures.
1830 	 */
1831 	ip = &sc->aac_common->ac_init;
1832 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1833 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1834 		ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4;
1835 		sc->flags |= AAC_FLAGS_RAW_IO;
1836 	}
1837 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1838 
1839 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1840 					 offsetof(struct aac_common, ac_fibs);
1841 	ip->AdapterFibsVirtualAddress = 0;
1842 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1843 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1844 
1845 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1846 				  offsetof(struct aac_common, ac_printf);
1847 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1848 
1849 	/*
1850 	 * The adapter assumes that pages are 4K in size, except on some
1851  	 * broken firmware versions that do the page->byte conversion twice,
1852 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1853 	 * Round up since the granularity is so high.
1854 	 */
1855 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1856 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1857 		ip->HostPhysMemPages =
1858 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1859 	}
1860 	ip->HostElapsedSeconds = time_uptime;	/* reset later if invalid */
1861 
1862 	ip->InitFlags = 0;
1863 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1864 		ip->InitFlags = INITFLAGS_NEW_COMM_SUPPORTED;
1865 		device_printf(sc->aac_dev, "New comm. interface enabled\n");
1866 	}
1867 
1868 	ip->MaxIoCommands = sc->aac_max_fibs;
1869 	ip->MaxIoSize = sc->aac_max_sectors << 9;
1870 	ip->MaxFibSize = sc->aac_max_fib_size;
1871 
1872 	/*
1873 	 * Initialise FIB queues.  Note that it appears that the layout of the
1874 	 * indexes and the segmentation of the entries may be mandated by the
1875 	 * adapter, which is only told about the base of the queue index fields.
1876 	 *
1877 	 * The initial values of the indices are assumed to inform the adapter
1878 	 * of the sizes of the respective queues, and theoretically it could
1879 	 * work out the entire layout of the queue structures from this.  We
1880 	 * take the easy route and just lay this area out like everyone else
1881 	 * does.
1882 	 *
1883 	 * The Linux driver uses a much more complex scheme whereby several
1884 	 * header records are kept for each queue.  We use a couple of generic
1885 	 * list manipulation functions which 'know' the size of each list by
1886 	 * virtue of a table.
1887 	 */
1888 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1889 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1890 	sc->aac_queues =
1891 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1892 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1893 
1894 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1895 		AAC_HOST_NORM_CMD_ENTRIES;
1896 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1897 		AAC_HOST_NORM_CMD_ENTRIES;
1898 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1899 		AAC_HOST_HIGH_CMD_ENTRIES;
1900 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1901 		AAC_HOST_HIGH_CMD_ENTRIES;
1902 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1903 		AAC_ADAP_NORM_CMD_ENTRIES;
1904 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1905 		AAC_ADAP_NORM_CMD_ENTRIES;
1906 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1907 		AAC_ADAP_HIGH_CMD_ENTRIES;
1908 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1909 		AAC_ADAP_HIGH_CMD_ENTRIES;
1910 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1911 		AAC_HOST_NORM_RESP_ENTRIES;
1912 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1913 		AAC_HOST_NORM_RESP_ENTRIES;
1914 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1915 		AAC_HOST_HIGH_RESP_ENTRIES;
1916 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1917 		AAC_HOST_HIGH_RESP_ENTRIES;
1918 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1919 		AAC_ADAP_NORM_RESP_ENTRIES;
1920 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1921 		AAC_ADAP_NORM_RESP_ENTRIES;
1922 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1923 		AAC_ADAP_HIGH_RESP_ENTRIES;
1924 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1925 		AAC_ADAP_HIGH_RESP_ENTRIES;
1926 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1927 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1928 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1929 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1930 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1931 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1932 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1933 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1934 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1935 		&sc->aac_queues->qt_HostNormRespQueue[0];
1936 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1937 		&sc->aac_queues->qt_HostHighRespQueue[0];
1938 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1939 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1940 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1941 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1942 
1943 	/*
1944 	 * Do controller-type-specific initialisation
1945 	 */
1946 	switch (sc->aac_hwif) {
1947 	case AAC_HWIF_I960RX:
1948 		AAC_SETREG4(sc, AAC_RX_ODBR, ~0);
1949 		break;
1950 	case AAC_HWIF_RKT:
1951 		AAC_SETREG4(sc, AAC_RKT_ODBR, ~0);
1952 		break;
1953 	default:
1954 		break;
1955 	}
1956 
1957 	/*
1958 	 * Give the init structure to the controller.
1959 	 */
1960 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1961 			     sc->aac_common_busaddr +
1962 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1963 			     NULL)) {
1964 		device_printf(sc->aac_dev,
1965 			      "error establishing init structure\n");
1966 		error = EIO;
1967 		goto out;
1968 	}
1969 
1970 	error = 0;
1971 out:
1972 	return(error);
1973 }
1974 
1975 /*
1976  * Send a synchronous command to the controller and wait for a result.
1977  * Indicate if the controller completed the command with an error status.
1978  */
1979 static int
1980 aac_sync_command(struct aac_softc *sc, u_int32_t command,
1981 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
1982 		 u_int32_t *sp)
1983 {
1984 	time_t then;
1985 	u_int32_t status;
1986 
1987 	debug_called(3);
1988 
1989 	/* populate the mailbox */
1990 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
1991 
1992 	/* ensure the sync command doorbell flag is cleared */
1993 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
1994 
1995 	/* then set it to signal the adapter */
1996 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
1997 
1998 	/* spin waiting for the command to complete */
1999 	then = time_uptime;
2000 	do {
2001 		if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) {
2002 			debug(1, "timed out");
2003 			return(EIO);
2004 		}
2005 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
2006 
2007 	/* clear the completion flag */
2008 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2009 
2010 	/* get the command status */
2011 	status = AAC_GET_MAILBOX(sc, 0);
2012 	if (sp != NULL)
2013 		*sp = status;
2014 
2015 	if (status != AAC_SRB_STS_SUCCESS)
2016 		return (-1);
2017 	return(0);
2018 }
2019 
2020 int
2021 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
2022 		 struct aac_fib *fib, u_int16_t datasize)
2023 {
2024 	debug_called(3);
2025 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
2026 
2027 	if (datasize > AAC_FIB_DATASIZE)
2028 		return(EINVAL);
2029 
2030 	/*
2031 	 * Set up the sync FIB
2032 	 */
2033 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
2034 				AAC_FIBSTATE_INITIALISED |
2035 				AAC_FIBSTATE_EMPTY;
2036 	fib->Header.XferState |= xferstate;
2037 	fib->Header.Command = command;
2038 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
2039 	fib->Header.Size = sizeof(struct aac_fib) + datasize;
2040 	fib->Header.SenderSize = sizeof(struct aac_fib);
2041 	fib->Header.SenderFibAddress = 0;	/* Not needed */
2042 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
2043 					 offsetof(struct aac_common,
2044 						  ac_sync_fib);
2045 
2046 	/*
2047 	 * Give the FIB to the controller, wait for a response.
2048 	 */
2049 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
2050 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
2051 		debug(2, "IO error");
2052 		return(EIO);
2053 	}
2054 
2055 	return (0);
2056 }
2057 
2058 /*
2059  * Adapter-space FIB queue manipulation
2060  *
2061  * Note that the queue implementation here is a little funky; neither the PI or
2062  * CI will ever be zero.  This behaviour is a controller feature.
2063  */
2064 static struct {
2065 	int		size;
2066 	int		notify;
2067 } aac_qinfo[] = {
2068 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
2069 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
2070 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
2071 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
2072 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
2073 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
2074 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
2075 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
2076 };
2077 
2078 /*
2079  * Atomically insert an entry into the nominated queue, returns 0 on success or
2080  * EBUSY if the queue is full.
2081  *
2082  * Note: it would be more efficient to defer notifying the controller in
2083  *	 the case where we may be inserting several entries in rapid succession,
2084  *	 but implementing this usefully may be difficult (it would involve a
2085  *	 separate queue/notify interface).
2086  */
2087 static int
2088 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
2089 {
2090 	u_int32_t pi, ci;
2091 	int error;
2092 	u_int32_t fib_size;
2093 	u_int32_t fib_addr;
2094 
2095 	debug_called(3);
2096 
2097 	fib_size = cm->cm_fib->Header.Size;
2098 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
2099 
2100 	/* get the producer/consumer indices */
2101 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2102 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2103 
2104 	/* wrap the queue? */
2105 	if (pi >= aac_qinfo[queue].size)
2106 		pi = 0;
2107 
2108 	/* check for queue full */
2109 	if ((pi + 1) == ci) {
2110 		error = EBUSY;
2111 		goto out;
2112 	}
2113 
2114 	/*
2115 	 * To avoid a race with its completion interrupt, place this command on
2116 	 * the busy queue prior to advertising it to the controller.
2117 	 */
2118 	aac_enqueue_busy(cm);
2119 
2120 	/* populate queue entry */
2121 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2122 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2123 
2124 	/* update producer index */
2125 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2126 
2127 	/* notify the adapter if we know how */
2128 	if (aac_qinfo[queue].notify != 0)
2129 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2130 
2131 	error = 0;
2132 
2133 out:
2134 	return(error);
2135 }
2136 
2137 /*
2138  * Atomically remove one entry from the nominated queue, returns 0 on
2139  * success or ENOENT if the queue is empty.
2140  */
2141 static int
2142 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
2143 		struct aac_fib **fib_addr)
2144 {
2145 	u_int32_t pi, ci;
2146 	u_int32_t fib_index;
2147 	int error;
2148 	int notify;
2149 
2150 	debug_called(3);
2151 
2152 	/* get the producer/consumer indices */
2153 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2154 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2155 
2156 	/* check for queue empty */
2157 	if (ci == pi) {
2158 		error = ENOENT;
2159 		goto out;
2160 	}
2161 
2162 	/* wrap the pi so the following test works */
2163 	if (pi >= aac_qinfo[queue].size)
2164 		pi = 0;
2165 
2166 	notify = 0;
2167 	if (ci == pi + 1)
2168 		notify++;
2169 
2170 	/* wrap the queue? */
2171 	if (ci >= aac_qinfo[queue].size)
2172 		ci = 0;
2173 
2174 	/* fetch the entry */
2175 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
2176 
2177 	switch (queue) {
2178 	case AAC_HOST_NORM_CMD_QUEUE:
2179 	case AAC_HOST_HIGH_CMD_QUEUE:
2180 		/*
2181 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
2182 		 * on to hold an address.  For AIF's, the adapter assumes
2183 		 * that it's giving us an address into the array of AIF fibs.
2184 		 * Therefore, we have to convert it to an index.
2185 		 */
2186 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
2187 			sizeof(struct aac_fib);
2188 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
2189 		break;
2190 
2191 	case AAC_HOST_NORM_RESP_QUEUE:
2192 	case AAC_HOST_HIGH_RESP_QUEUE:
2193 	{
2194 		struct aac_command *cm;
2195 
2196 		/*
2197 		 * As above, an index is used instead of an actual address.
2198 		 * Gotta shift the index to account for the fast response
2199 		 * bit.  No other correction is needed since this value was
2200 		 * originally provided by the driver via the SenderFibAddress
2201 		 * field.
2202 		 */
2203 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
2204 		cm = sc->aac_commands + (fib_index >> 2);
2205 		*fib_addr = cm->cm_fib;
2206 
2207 		/*
2208 		 * Is this a fast response? If it is, update the fib fields in
2209 		 * local memory since the whole fib isn't DMA'd back up.
2210 		 */
2211 		if (fib_index & 0x01) {
2212 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
2213 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
2214 		}
2215 		break;
2216 	}
2217 	default:
2218 		panic("Invalid queue in aac_dequeue_fib()");
2219 		break;
2220 	}
2221 
2222 	/* update consumer index */
2223 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
2224 
2225 	/* if we have made the queue un-full, notify the adapter */
2226 	if (notify && (aac_qinfo[queue].notify != 0))
2227 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2228 	error = 0;
2229 
2230 out:
2231 	return(error);
2232 }
2233 
2234 /*
2235  * Put our response to an Adapter Initialed Fib on the response queue
2236  */
2237 static int
2238 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
2239 {
2240 	u_int32_t pi, ci;
2241 	int error;
2242 	u_int32_t fib_size;
2243 	u_int32_t fib_addr;
2244 
2245 	debug_called(1);
2246 
2247 	/* Tell the adapter where the FIB is */
2248 	fib_size = fib->Header.Size;
2249 	fib_addr = fib->Header.SenderFibAddress;
2250 	fib->Header.ReceiverFibAddress = fib_addr;
2251 
2252 	/* get the producer/consumer indices */
2253 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2254 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2255 
2256 	/* wrap the queue? */
2257 	if (pi >= aac_qinfo[queue].size)
2258 		pi = 0;
2259 
2260 	/* check for queue full */
2261 	if ((pi + 1) == ci) {
2262 		error = EBUSY;
2263 		goto out;
2264 	}
2265 
2266 	/* populate queue entry */
2267 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2268 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2269 
2270 	/* update producer index */
2271 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2272 
2273 	/* notify the adapter if we know how */
2274 	if (aac_qinfo[queue].notify != 0)
2275 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2276 
2277 	error = 0;
2278 
2279 out:
2280 	return(error);
2281 }
2282 
2283 /*
2284  * Check for commands that have been outstanding for a suspiciously long time,
2285  * and complain about them.
2286  */
2287 static void
2288 aac_timeout(struct aac_softc *sc)
2289 {
2290 	struct aac_command *cm;
2291 	time_t deadline;
2292 	int timedout, code;
2293 
2294 	/*
2295 	 * Traverse the busy command list, bitch about late commands once
2296 	 * only.
2297 	 */
2298 	timedout = 0;
2299 	deadline = time_uptime - AAC_CMD_TIMEOUT;
2300 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2301 		if ((cm->cm_timestamp  < deadline)
2302 			/* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) {
2303 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2304 			device_printf(sc->aac_dev,
2305 				      "COMMAND %p TIMEOUT AFTER %d SECONDS\n",
2306 				      cm, (int)(time_uptime-cm->cm_timestamp));
2307 			AAC_PRINT_FIB(sc, cm->cm_fib);
2308 			timedout++;
2309 		}
2310 	}
2311 
2312 	if (timedout) {
2313 		code = AAC_GET_FWSTATUS(sc);
2314 		if (code != AAC_UP_AND_RUNNING) {
2315 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2316 				      "longer running! code= 0x%x\n", code);
2317 		}
2318 	}
2319 	return;
2320 }
2321 
2322 /*
2323  * Interface Function Vectors
2324  */
2325 
2326 /*
2327  * Read the current firmware status word.
2328  */
2329 static int
2330 aac_sa_get_fwstatus(struct aac_softc *sc)
2331 {
2332 	debug_called(3);
2333 
2334 	return(AAC_GETREG4(sc, AAC_SA_FWSTATUS));
2335 }
2336 
2337 static int
2338 aac_rx_get_fwstatus(struct aac_softc *sc)
2339 {
2340 	debug_called(3);
2341 
2342 	return(AAC_GETREG4(sc, AAC_RX_FWSTATUS));
2343 }
2344 
2345 static int
2346 aac_fa_get_fwstatus(struct aac_softc *sc)
2347 {
2348 	int val;
2349 
2350 	debug_called(3);
2351 
2352 	val = AAC_GETREG4(sc, AAC_FA_FWSTATUS);
2353 	return (val);
2354 }
2355 
2356 static int
2357 aac_rkt_get_fwstatus(struct aac_softc *sc)
2358 {
2359 	debug_called(3);
2360 
2361 	return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS));
2362 }
2363 
2364 /*
2365  * Notify the controller of a change in a given queue
2366  */
2367 
2368 static void
2369 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2370 {
2371 	debug_called(3);
2372 
2373 	AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2374 }
2375 
2376 static void
2377 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2378 {
2379 	debug_called(3);
2380 
2381 	AAC_SETREG4(sc, AAC_RX_IDBR, qbit);
2382 }
2383 
2384 static void
2385 aac_fa_qnotify(struct aac_softc *sc, int qbit)
2386 {
2387 	debug_called(3);
2388 
2389 	AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit);
2390 	AAC_FA_HACK(sc);
2391 }
2392 
2393 static void
2394 aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2395 {
2396 	debug_called(3);
2397 
2398 	AAC_SETREG4(sc, AAC_RKT_IDBR, qbit);
2399 }
2400 
2401 /*
2402  * Get the interrupt reason bits
2403  */
2404 static int
2405 aac_sa_get_istatus(struct aac_softc *sc)
2406 {
2407 	debug_called(3);
2408 
2409 	return(AAC_GETREG2(sc, AAC_SA_DOORBELL0));
2410 }
2411 
2412 static int
2413 aac_rx_get_istatus(struct aac_softc *sc)
2414 {
2415 	debug_called(3);
2416 
2417 	return(AAC_GETREG4(sc, AAC_RX_ODBR));
2418 }
2419 
2420 static int
2421 aac_fa_get_istatus(struct aac_softc *sc)
2422 {
2423 	int val;
2424 
2425 	debug_called(3);
2426 
2427 	val = AAC_GETREG2(sc, AAC_FA_DOORBELL0);
2428 	return (val);
2429 }
2430 
2431 static int
2432 aac_rkt_get_istatus(struct aac_softc *sc)
2433 {
2434 	debug_called(3);
2435 
2436 	return(AAC_GETREG4(sc, AAC_RKT_ODBR));
2437 }
2438 
2439 /*
2440  * Clear some interrupt reason bits
2441  */
2442 static void
2443 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2444 {
2445 	debug_called(3);
2446 
2447 	AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2448 }
2449 
2450 static void
2451 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2452 {
2453 	debug_called(3);
2454 
2455 	AAC_SETREG4(sc, AAC_RX_ODBR, mask);
2456 }
2457 
2458 static void
2459 aac_fa_clear_istatus(struct aac_softc *sc, int mask)
2460 {
2461 	debug_called(3);
2462 
2463 	AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask);
2464 	AAC_FA_HACK(sc);
2465 }
2466 
2467 static void
2468 aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2469 {
2470 	debug_called(3);
2471 
2472 	AAC_SETREG4(sc, AAC_RKT_ODBR, mask);
2473 }
2474 
2475 /*
2476  * Populate the mailbox and set the command word
2477  */
2478 static void
2479 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2480 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2481 {
2482 	debug_called(4);
2483 
2484 	AAC_SETREG4(sc, AAC_SA_MAILBOX, command);
2485 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2486 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2487 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2488 	AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2489 }
2490 
2491 static void
2492 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2493 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2494 {
2495 	debug_called(4);
2496 
2497 	AAC_SETREG4(sc, AAC_RX_MAILBOX, command);
2498 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2499 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2500 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2501 	AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2502 }
2503 
2504 static void
2505 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2506 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2507 {
2508 	debug_called(4);
2509 
2510 	AAC_SETREG4(sc, AAC_FA_MAILBOX, command);
2511 	AAC_FA_HACK(sc);
2512 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0);
2513 	AAC_FA_HACK(sc);
2514 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1);
2515 	AAC_FA_HACK(sc);
2516 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2);
2517 	AAC_FA_HACK(sc);
2518 	AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3);
2519 	AAC_FA_HACK(sc);
2520 }
2521 
2522 static void
2523 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2524 		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2525 {
2526 	debug_called(4);
2527 
2528 	AAC_SETREG4(sc, AAC_RKT_MAILBOX, command);
2529 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2530 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2531 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2532 	AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2533 }
2534 
2535 /*
2536  * Fetch the immediate command status word
2537  */
2538 static int
2539 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2540 {
2541 	debug_called(4);
2542 
2543 	return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2544 }
2545 
2546 static int
2547 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2548 {
2549 	debug_called(4);
2550 
2551 	return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2552 }
2553 
2554 static int
2555 aac_fa_get_mailbox(struct aac_softc *sc, int mb)
2556 {
2557 	int val;
2558 
2559 	debug_called(4);
2560 
2561 	val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4));
2562 	return (val);
2563 }
2564 
2565 static int
2566 aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2567 {
2568 	debug_called(4);
2569 
2570 	return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2571 }
2572 
2573 /*
2574  * Set/clear interrupt masks
2575  */
2576 static void
2577 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2578 {
2579 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2580 
2581 	if (enable) {
2582 		AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2583 	} else {
2584 		AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2585 	}
2586 }
2587 
2588 static void
2589 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2590 {
2591 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2592 
2593 	if (enable) {
2594 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2595 			AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM);
2596 		else
2597 			AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2598 	} else {
2599 		AAC_SETREG4(sc, AAC_RX_OIMR, ~0);
2600 	}
2601 }
2602 
2603 static void
2604 aac_fa_set_interrupts(struct aac_softc *sc, int enable)
2605 {
2606 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2607 
2608 	if (enable) {
2609 		AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2610 		AAC_FA_HACK(sc);
2611 	} else {
2612 		AAC_SETREG2((sc), AAC_FA_MASK0, ~0);
2613 		AAC_FA_HACK(sc);
2614 	}
2615 }
2616 
2617 static void
2618 aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2619 {
2620 	debug(2, "%sable interrupts", enable ? "en" : "dis");
2621 
2622 	if (enable) {
2623 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2624 			AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM);
2625 		else
2626 			AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2627 	} else {
2628 		AAC_SETREG4(sc, AAC_RKT_OIMR, ~0);
2629 	}
2630 }
2631 
2632 /*
2633  * New comm. interface: Send command functions
2634  */
2635 static int
2636 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm)
2637 {
2638 	u_int32_t index, device;
2639 
2640 	debug(2, "send command (new comm.)");
2641 
2642 	index = AAC_GETREG4(sc, AAC_RX_IQUE);
2643 	if (index == 0xffffffffL)
2644 		index = AAC_GETREG4(sc, AAC_RX_IQUE);
2645 	if (index == 0xffffffffL)
2646 		return index;
2647 	aac_enqueue_busy(cm);
2648 	device = index;
2649 	AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2650 	device += 4;
2651 	AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2652 	device += 4;
2653 	AAC_SETREG4(sc, device, cm->cm_fib->Header.Size);
2654 	AAC_SETREG4(sc, AAC_RX_IQUE, index);
2655 	return 0;
2656 }
2657 
2658 static int
2659 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm)
2660 {
2661 	u_int32_t index, device;
2662 
2663 	debug(2, "send command (new comm.)");
2664 
2665 	index = AAC_GETREG4(sc, AAC_RKT_IQUE);
2666 	if (index == 0xffffffffL)
2667 		index = AAC_GETREG4(sc, AAC_RKT_IQUE);
2668 	if (index == 0xffffffffL)
2669 		return index;
2670 	aac_enqueue_busy(cm);
2671 	device = index;
2672 	AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2673 	device += 4;
2674 	AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2675 	device += 4;
2676 	AAC_SETREG4(sc, device, cm->cm_fib->Header.Size);
2677 	AAC_SETREG4(sc, AAC_RKT_IQUE, index);
2678 	return 0;
2679 }
2680 
2681 /*
2682  * New comm. interface: get, set outbound queue index
2683  */
2684 static int
2685 aac_rx_get_outb_queue(struct aac_softc *sc)
2686 {
2687 	debug_called(3);
2688 
2689 	return(AAC_GETREG4(sc, AAC_RX_OQUE));
2690 }
2691 
2692 static int
2693 aac_rkt_get_outb_queue(struct aac_softc *sc)
2694 {
2695 	debug_called(3);
2696 
2697 	return(AAC_GETREG4(sc, AAC_RKT_OQUE));
2698 }
2699 
2700 static void
2701 aac_rx_set_outb_queue(struct aac_softc *sc, int index)
2702 {
2703 	debug_called(3);
2704 
2705 	AAC_SETREG4(sc, AAC_RX_OQUE, index);
2706 }
2707 
2708 static void
2709 aac_rkt_set_outb_queue(struct aac_softc *sc, int index)
2710 {
2711 	debug_called(3);
2712 
2713 	AAC_SETREG4(sc, AAC_RKT_OQUE, index);
2714 }
2715 
2716 /*
2717  * Debugging and Diagnostics
2718  */
2719 
2720 /*
2721  * Print some information about the controller.
2722  */
2723 static void
2724 aac_describe_controller(struct aac_softc *sc)
2725 {
2726 	struct aac_fib *fib;
2727 	struct aac_adapter_info	*info;
2728 
2729 	debug_called(2);
2730 
2731 	mtx_lock(&sc->aac_io_lock);
2732 	aac_alloc_sync_fib(sc, &fib);
2733 
2734 	fib->data[0] = 0;
2735 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2736 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2737 		aac_release_sync_fib(sc);
2738 		mtx_unlock(&sc->aac_io_lock);
2739 		return;
2740 	}
2741 
2742 	/* save the kernel revision structure for later use */
2743 	info = (struct aac_adapter_info *)&fib->data[0];
2744 	sc->aac_revision = info->KernelRevision;
2745 
2746 	device_printf(sc->aac_dev, "Adaptec Raid Controller %d.%d.%d-%d\n",
2747 		AAC_DRIVER_VERSION >> 24,
2748 		(AAC_DRIVER_VERSION >> 16) & 0xFF,
2749 		AAC_DRIVER_VERSION & 0xFF,
2750 		AAC_DRIVER_BUILD);
2751 
2752 	if (bootverbose) {
2753 		device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
2754 		    "(%dMB cache, %dMB execution), %s\n",
2755 		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2756 		    info->ClockSpeed, info->TotalMem / (1024 * 1024),
2757 		    info->BufferMem / (1024 * 1024),
2758 		    info->ExecutionMem / (1024 * 1024),
2759 		    aac_describe_code(aac_battery_platform,
2760 		    info->batteryPlatform));
2761 
2762 		device_printf(sc->aac_dev,
2763 		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2764 		    info->KernelRevision.external.comp.major,
2765 		    info->KernelRevision.external.comp.minor,
2766 		    info->KernelRevision.external.comp.dash,
2767 		    info->KernelRevision.buildNumber,
2768 		    (u_int32_t)(info->SerialNumber & 0xffffff));
2769 
2770 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2771 			      sc->supported_options,
2772 			      "\20"
2773 			      "\1SNAPSHOT"
2774 			      "\2CLUSTERS"
2775 			      "\3WCACHE"
2776 			      "\4DATA64"
2777 			      "\5HOSTTIME"
2778 			      "\6RAID50"
2779 			      "\7WINDOW4GB"
2780 			      "\10SCSIUPGD"
2781 			      "\11SOFTERR"
2782 			      "\12NORECOND"
2783 			      "\13SGMAP64"
2784 			      "\14ALARM"
2785 			      "\15NONDASD"
2786 			      "\16SCSIMGT"
2787 			      "\17RAIDSCSI"
2788 			      "\21ADPTINFO"
2789 			      "\22NEWCOMM"
2790 			      "\23ARRAY64BIT"
2791 			      "\24HEATSENSOR");
2792 	}
2793 	aac_release_sync_fib(sc);
2794 	mtx_unlock(&sc->aac_io_lock);
2795 }
2796 
2797 /*
2798  * Look up a text description of a numeric error code and return a pointer to
2799  * same.
2800  */
2801 static char *
2802 aac_describe_code(struct aac_code_lookup *table, u_int32_t code)
2803 {
2804 	int i;
2805 
2806 	for (i = 0; table[i].string != NULL; i++)
2807 		if (table[i].code == code)
2808 			return(table[i].string);
2809 	return(table[i + 1].string);
2810 }
2811 
2812 /*
2813  * Management Interface
2814  */
2815 
2816 static int
2817 aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2818 {
2819 	struct aac_softc *sc;
2820 
2821 	debug_called(2);
2822 
2823 	sc = dev->si_drv1;
2824 
2825 	/* Check to make sure the device isn't already open */
2826 	if (sc->aac_state & AAC_STATE_OPEN) {
2827 		return EBUSY;
2828 	}
2829 	sc->aac_state |= AAC_STATE_OPEN;
2830 
2831 	return 0;
2832 }
2833 
2834 static int
2835 aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td)
2836 {
2837 	struct aac_softc *sc;
2838 
2839 	debug_called(2);
2840 
2841 	sc = dev->si_drv1;
2842 
2843 	/* Mark this unit as no longer open  */
2844 	sc->aac_state &= ~AAC_STATE_OPEN;
2845 
2846 	return 0;
2847 }
2848 
2849 static int
2850 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td)
2851 {
2852 	union aac_statrequest *as;
2853 	struct aac_softc *sc;
2854 	int error = 0;
2855 	uint32_t cookie;
2856 
2857 	debug_called(2);
2858 
2859 	as = (union aac_statrequest *)arg;
2860 	sc = dev->si_drv1;
2861 
2862 	switch (cmd) {
2863 	case AACIO_STATS:
2864 		switch (as->as_item) {
2865 		case AACQ_FREE:
2866 		case AACQ_BIO:
2867 		case AACQ_READY:
2868 		case AACQ_BUSY:
2869 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2870 			      sizeof(struct aac_qstat));
2871 			break;
2872 		default:
2873 			error = ENOENT;
2874 			break;
2875 		}
2876 	break;
2877 
2878 	case FSACTL_SENDFIB:
2879 		arg = *(caddr_t*)arg;
2880 	case FSACTL_LNX_SENDFIB:
2881 		debug(1, "FSACTL_SENDFIB");
2882 		error = aac_ioctl_sendfib(sc, arg);
2883 		break;
2884 	case FSACTL_AIF_THREAD:
2885 	case FSACTL_LNX_AIF_THREAD:
2886 		debug(1, "FSACTL_AIF_THREAD");
2887 		error = EINVAL;
2888 		break;
2889 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2890 		arg = *(caddr_t*)arg;
2891 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2892 		debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB");
2893 		/*
2894 		 * Pass the caller out an AdapterFibContext.
2895 		 *
2896 		 * Note that because we only support one opener, we
2897 		 * basically ignore this.  Set the caller's context to a magic
2898 		 * number just in case.
2899 		 *
2900 		 * The Linux code hands the driver a pointer into kernel space,
2901 		 * and then trusts it when the caller hands it back.  Aiee!
2902 		 * Here, we give it the proc pointer of the per-adapter aif
2903 		 * thread. It's only used as a sanity check in other calls.
2904 		 */
2905 		cookie = (uint32_t)(uintptr_t)sc->aifthread;
2906 		error = copyout(&cookie, arg, sizeof(cookie));
2907 		break;
2908 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2909 		arg = *(caddr_t*)arg;
2910 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2911 		debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB");
2912 		error = aac_getnext_aif(sc, arg);
2913 		break;
2914 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2915 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2916 		debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2917 		/* don't do anything here */
2918 		break;
2919 	case FSACTL_MINIPORT_REV_CHECK:
2920 		arg = *(caddr_t*)arg;
2921 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2922 		debug(1, "FSACTL_MINIPORT_REV_CHECK");
2923 		error = aac_rev_check(sc, arg);
2924 		break;
2925 	case FSACTL_QUERY_DISK:
2926 		arg = *(caddr_t*)arg;
2927 	case FSACTL_LNX_QUERY_DISK:
2928 		debug(1, "FSACTL_QUERY_DISK");
2929 		error = aac_query_disk(sc, arg);
2930 		break;
2931 	case FSACTL_DELETE_DISK:
2932 	case FSACTL_LNX_DELETE_DISK:
2933 		/*
2934 		 * We don't trust the underland to tell us when to delete a
2935 		 * container, rather we rely on an AIF coming from the
2936 		 * controller
2937 		 */
2938 		error = 0;
2939 		break;
2940 	case FSACTL_GET_PCI_INFO:
2941 		arg = *(caddr_t*)arg;
2942 	case FSACTL_LNX_GET_PCI_INFO:
2943 		debug(1, "FSACTL_GET_PCI_INFO");
2944 		error = aac_get_pci_info(sc, arg);
2945 		break;
2946 	default:
2947 		debug(1, "unsupported cmd 0x%lx\n", cmd);
2948 		error = EINVAL;
2949 		break;
2950 	}
2951 	return(error);
2952 }
2953 
2954 static int
2955 aac_poll(struct cdev *dev, int poll_events, d_thread_t *td)
2956 {
2957 	struct aac_softc *sc;
2958 	int revents;
2959 
2960 	sc = dev->si_drv1;
2961 	revents = 0;
2962 
2963 	mtx_lock(&sc->aac_aifq_lock);
2964 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2965 		if (sc->aac_aifq_tail != sc->aac_aifq_head)
2966 			revents |= poll_events & (POLLIN | POLLRDNORM);
2967 	}
2968 	mtx_unlock(&sc->aac_aifq_lock);
2969 
2970 	if (revents == 0) {
2971 		if (poll_events & (POLLIN | POLLRDNORM))
2972 			selrecord(td, &sc->rcv_select);
2973 	}
2974 
2975 	return (revents);
2976 }
2977 
2978 static void
2979 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg)
2980 {
2981 
2982 	switch (event->ev_type) {
2983 	case AAC_EVENT_CMFREE:
2984 		mtx_lock(&sc->aac_io_lock);
2985 		if (aac_alloc_command(sc, (struct aac_command **)arg)) {
2986 			aac_add_event(sc, event);
2987 			mtx_unlock(&sc->aac_io_lock);
2988 			return;
2989 		}
2990 		free(event, M_AACBUF);
2991 		wakeup(arg);
2992 		mtx_unlock(&sc->aac_io_lock);
2993 		break;
2994 	default:
2995 		break;
2996 	}
2997 }
2998 
2999 /*
3000  * Send a FIB supplied from userspace
3001  */
3002 static int
3003 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
3004 {
3005 	struct aac_command *cm;
3006 	int size, error;
3007 
3008 	debug_called(2);
3009 
3010 	cm = NULL;
3011 
3012 	/*
3013 	 * Get a command
3014 	 */
3015 	mtx_lock(&sc->aac_io_lock);
3016 	if (aac_alloc_command(sc, &cm)) {
3017 		struct aac_event *event;
3018 
3019 		event = malloc(sizeof(struct aac_event), M_AACBUF,
3020 		    M_NOWAIT | M_ZERO);
3021 		if (event == NULL) {
3022 			error = EBUSY;
3023 			goto out;
3024 		}
3025 		event->ev_type = AAC_EVENT_CMFREE;
3026 		event->ev_callback = aac_ioctl_event;
3027 		event->ev_arg = &cm;
3028 		aac_add_event(sc, event);
3029 		msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0);
3030 	}
3031 	mtx_unlock(&sc->aac_io_lock);
3032 
3033 	/*
3034 	 * Fetch the FIB header, then re-copy to get data as well.
3035 	 */
3036 	if ((error = copyin(ufib, cm->cm_fib,
3037 			    sizeof(struct aac_fib_header))) != 0)
3038 		goto out;
3039 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
3040 	if (size > sizeof(struct aac_fib)) {
3041 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n",
3042 			      size, sizeof(struct aac_fib));
3043 		size = sizeof(struct aac_fib);
3044 	}
3045 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
3046 		goto out;
3047 	cm->cm_fib->Header.Size = size;
3048 	cm->cm_timestamp = time_uptime;
3049 
3050 	/*
3051 	 * Pass the FIB to the controller, wait for it to complete.
3052 	 */
3053 	mtx_lock(&sc->aac_io_lock);
3054 	if ((error = aac_wait_command(cm)) != 0) {
3055 		device_printf(sc->aac_dev,
3056 			      "aac_wait_command return %d\n", error);
3057 		goto out;
3058 	}
3059 	mtx_unlock(&sc->aac_io_lock);
3060 
3061 	/*
3062 	 * Copy the FIB and data back out to the caller.
3063 	 */
3064 	size = cm->cm_fib->Header.Size;
3065 	if (size > sizeof(struct aac_fib)) {
3066 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n",
3067 			      size, sizeof(struct aac_fib));
3068 		size = sizeof(struct aac_fib);
3069 	}
3070 	error = copyout(cm->cm_fib, ufib, size);
3071 	mtx_lock(&sc->aac_io_lock);
3072 
3073 out:
3074 	if (cm != NULL) {
3075 		aac_release_command(cm);
3076 	}
3077 
3078 	mtx_unlock(&sc->aac_io_lock);
3079 	return(error);
3080 }
3081 
3082 /*
3083  * Handle an AIF sent to us by the controller; queue it for later reference.
3084  * If the queue fills up, then drop the older entries.
3085  */
3086 static void
3087 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
3088 {
3089 	struct aac_aif_command *aif;
3090 	struct aac_container *co, *co_next;
3091 	struct aac_mntinfo *mi;
3092 	struct aac_mntinforesp *mir = NULL;
3093 	u_int16_t rsize;
3094 	int next, found;
3095 	int count = 0, added = 0, i = 0;
3096 
3097 	debug_called(2);
3098 
3099 	aif = (struct aac_aif_command*)&fib->data[0];
3100 	aac_print_aif(sc, aif);
3101 
3102 	/* Is it an event that we should care about? */
3103 	switch (aif->command) {
3104 	case AifCmdEventNotify:
3105 		switch (aif->data.EN.type) {
3106 		case AifEnAddContainer:
3107 		case AifEnDeleteContainer:
3108 			/*
3109 			 * A container was added or deleted, but the message
3110 			 * doesn't tell us anything else!  Re-enumerate the
3111 			 * containers and sort things out.
3112 			 */
3113 			aac_alloc_sync_fib(sc, &fib);
3114 			mi = (struct aac_mntinfo *)&fib->data[0];
3115 			do {
3116 				/*
3117 				 * Ask the controller for its containers one at
3118 				 * a time.
3119 				 * XXX What if the controller's list changes
3120 				 * midway through this enumaration?
3121 				 * XXX This should be done async.
3122 				 */
3123 				bzero(mi, sizeof(struct aac_mntinfo));
3124 				mi->Command = VM_NameServe;
3125 				mi->MntType = FT_FILESYS;
3126 				mi->MntCount = i;
3127 				rsize = sizeof(mir);
3128 				if (aac_sync_fib(sc, ContainerCommand, 0, fib,
3129 						 sizeof(struct aac_mntinfo))) {
3130 					printf("Error probing container %d\n",
3131 					      i);
3132 					continue;
3133 				}
3134 				mir = (struct aac_mntinforesp *)&fib->data[0];
3135 				/* XXX Need to check if count changed */
3136 				count = mir->MntRespCount;
3137 				/*
3138 				 * Check the container against our list.
3139 				 * co->co_found was already set to 0 in a
3140 				 * previous run.
3141 				 */
3142 				if ((mir->Status == ST_OK) &&
3143 				    (mir->MntTable[0].VolType != CT_NONE)) {
3144 					found = 0;
3145 					TAILQ_FOREACH(co,
3146 						      &sc->aac_container_tqh,
3147 						      co_link) {
3148 						if (co->co_mntobj.ObjectId ==
3149 						    mir->MntTable[0].ObjectId) {
3150 							co->co_found = 1;
3151 							found = 1;
3152 							break;
3153 						}
3154 					}
3155 					/*
3156 					 * If the container matched, continue
3157 					 * in the list.
3158 					 */
3159 					if (found) {
3160 						i++;
3161 						continue;
3162 					}
3163 
3164 					/*
3165 					 * This is a new container.  Do all the
3166 					 * appropriate things to set it up.
3167 					 */
3168 					aac_add_container(sc, mir, 1);
3169 					added = 1;
3170 				}
3171 				i++;
3172 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
3173 			aac_release_sync_fib(sc);
3174 
3175 			/*
3176 			 * Go through our list of containers and see which ones
3177 			 * were not marked 'found'.  Since the controller didn't
3178 			 * list them they must have been deleted.  Do the
3179 			 * appropriate steps to destroy the device.  Also reset
3180 			 * the co->co_found field.
3181 			 */
3182 			co = TAILQ_FIRST(&sc->aac_container_tqh);
3183 			while (co != NULL) {
3184 				if (co->co_found == 0) {
3185 					mtx_unlock(&sc->aac_io_lock);
3186 					mtx_lock(&Giant);
3187 					device_delete_child(sc->aac_dev,
3188 							    co->co_disk);
3189 					mtx_unlock(&Giant);
3190 					mtx_lock(&sc->aac_io_lock);
3191 					co_next = TAILQ_NEXT(co, co_link);
3192 					mtx_lock(&sc->aac_container_lock);
3193 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
3194 						     co_link);
3195 					mtx_unlock(&sc->aac_container_lock);
3196 					free(co, M_AACBUF);
3197 					co = co_next;
3198 				} else {
3199 					co->co_found = 0;
3200 					co = TAILQ_NEXT(co, co_link);
3201 				}
3202 			}
3203 
3204 			/* Attach the newly created containers */
3205 			if (added) {
3206 				mtx_unlock(&sc->aac_io_lock);
3207 				mtx_lock(&Giant);
3208 				bus_generic_attach(sc->aac_dev);
3209 				mtx_unlock(&Giant);
3210 				mtx_lock(&sc->aac_io_lock);
3211 			}
3212 
3213 			break;
3214 
3215 		default:
3216 			break;
3217 		}
3218 
3219 	default:
3220 		break;
3221 	}
3222 
3223 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
3224 	mtx_lock(&sc->aac_aifq_lock);
3225 	next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH;
3226 	if (next != sc->aac_aifq_tail) {
3227 		bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command));
3228 		sc->aac_aifq_head = next;
3229 
3230 		/* On the off chance that someone is sleeping for an aif... */
3231 		if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
3232 			wakeup(sc->aac_aifq);
3233 		/* Wakeup any poll()ers */
3234 		selwakeuppri(&sc->rcv_select, PRIBIO);
3235 	}
3236 	mtx_unlock(&sc->aac_aifq_lock);
3237 
3238 	return;
3239 }
3240 
3241 /*
3242  * Return the Revision of the driver to userspace and check to see if the
3243  * userspace app is possibly compatible.  This is extremely bogus since
3244  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
3245  * returning what the card reported.
3246  */
3247 static int
3248 aac_rev_check(struct aac_softc *sc, caddr_t udata)
3249 {
3250 	struct aac_rev_check rev_check;
3251 	struct aac_rev_check_resp rev_check_resp;
3252 	int error = 0;
3253 
3254 	debug_called(2);
3255 
3256 	/*
3257 	 * Copyin the revision struct from userspace
3258 	 */
3259 	if ((error = copyin(udata, (caddr_t)&rev_check,
3260 			sizeof(struct aac_rev_check))) != 0) {
3261 		return error;
3262 	}
3263 
3264 	debug(2, "Userland revision= %d\n",
3265 	      rev_check.callingRevision.buildNumber);
3266 
3267 	/*
3268 	 * Doctor up the response struct.
3269 	 */
3270 	rev_check_resp.possiblyCompatible = 1;
3271 	rev_check_resp.adapterSWRevision.external.ul =
3272 	    sc->aac_revision.external.ul;
3273 	rev_check_resp.adapterSWRevision.buildNumber =
3274 	    sc->aac_revision.buildNumber;
3275 
3276 	return(copyout((caddr_t)&rev_check_resp, udata,
3277 			sizeof(struct aac_rev_check_resp)));
3278 }
3279 
3280 /*
3281  * Pass the caller the next AIF in their queue
3282  */
3283 static int
3284 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
3285 {
3286 	struct get_adapter_fib_ioctl agf;
3287 	int error;
3288 
3289 	debug_called(2);
3290 
3291 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
3292 
3293 		/*
3294 		 * Check the magic number that we gave the caller.
3295 		 */
3296 		if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) {
3297 			error = EFAULT;
3298 		} else {
3299 			error = aac_return_aif(sc, agf.AifFib);
3300 			if ((error == EAGAIN) && (agf.Wait)) {
3301 				sc->aac_state |= AAC_STATE_AIF_SLEEPER;
3302 				while (error == EAGAIN) {
3303 					error = tsleep(sc->aac_aifq, PRIBIO |
3304 						       PCATCH, "aacaif", 0);
3305 					if (error == 0)
3306 						error = aac_return_aif(sc,
3307 						    agf.AifFib);
3308 				}
3309 				sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
3310 			}
3311 		}
3312 	}
3313 	return(error);
3314 }
3315 
3316 /*
3317  * Hand the next AIF off the top of the queue out to userspace.
3318  */
3319 static int
3320 aac_return_aif(struct aac_softc *sc, caddr_t uptr)
3321 {
3322 	int next, error;
3323 
3324 	debug_called(2);
3325 
3326 	mtx_lock(&sc->aac_aifq_lock);
3327 	if (sc->aac_aifq_tail == sc->aac_aifq_head) {
3328 		mtx_unlock(&sc->aac_aifq_lock);
3329 		return (EAGAIN);
3330 	}
3331 
3332 	next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH;
3333 	error = copyout(&sc->aac_aifq[next], uptr,
3334 			sizeof(struct aac_aif_command));
3335 	if (error)
3336 		device_printf(sc->aac_dev,
3337 		    "aac_return_aif: copyout returned %d\n", error);
3338 	else
3339 		sc->aac_aifq_tail = next;
3340 
3341 	mtx_unlock(&sc->aac_aifq_lock);
3342 	return(error);
3343 }
3344 
3345 static int
3346 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr)
3347 {
3348 	struct aac_pci_info {
3349 		u_int32_t bus;
3350 		u_int32_t slot;
3351 	} pciinf;
3352 	int error;
3353 
3354 	debug_called(2);
3355 
3356 	pciinf.bus = pci_get_bus(sc->aac_dev);
3357 	pciinf.slot = pci_get_slot(sc->aac_dev);
3358 
3359 	error = copyout((caddr_t)&pciinf, uptr,
3360 			sizeof(struct aac_pci_info));
3361 
3362 	return (error);
3363 }
3364 
3365 /*
3366  * Give the userland some information about the container.  The AAC arch
3367  * expects the driver to be a SCSI passthrough type driver, so it expects
3368  * the containers to have b:t:l numbers.  Fake it.
3369  */
3370 static int
3371 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
3372 {
3373 	struct aac_query_disk query_disk;
3374 	struct aac_container *co;
3375 	struct aac_disk	*disk;
3376 	int error, id;
3377 
3378 	debug_called(2);
3379 
3380 	disk = NULL;
3381 
3382 	error = copyin(uptr, (caddr_t)&query_disk,
3383 		       sizeof(struct aac_query_disk));
3384 	if (error)
3385 		return (error);
3386 
3387 	id = query_disk.ContainerNumber;
3388 	if (id == -1)
3389 		return (EINVAL);
3390 
3391 	mtx_lock(&sc->aac_container_lock);
3392 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
3393 		if (co->co_mntobj.ObjectId == id)
3394 			break;
3395 		}
3396 
3397 	if (co == NULL) {
3398 			query_disk.Valid = 0;
3399 			query_disk.Locked = 0;
3400 			query_disk.Deleted = 1;		/* XXX is this right? */
3401 	} else {
3402 		disk = device_get_softc(co->co_disk);
3403 		query_disk.Valid = 1;
3404 		query_disk.Locked =
3405 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
3406 		query_disk.Deleted = 0;
3407 		query_disk.Bus = device_get_unit(sc->aac_dev);
3408 		query_disk.Target = disk->unit;
3409 		query_disk.Lun = 0;
3410 		query_disk.UnMapped = 0;
3411 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
3412 		        disk->ad_disk->d_name, disk->ad_disk->d_unit);
3413 	}
3414 	mtx_unlock(&sc->aac_container_lock);
3415 
3416 	error = copyout((caddr_t)&query_disk, uptr,
3417 			sizeof(struct aac_query_disk));
3418 
3419 	return (error);
3420 }
3421 
3422 static void
3423 aac_get_bus_info(struct aac_softc *sc)
3424 {
3425 	struct aac_fib *fib;
3426 	struct aac_ctcfg *c_cmd;
3427 	struct aac_ctcfg_resp *c_resp;
3428 	struct aac_vmioctl *vmi;
3429 	struct aac_vmi_businf_resp *vmi_resp;
3430 	struct aac_getbusinf businfo;
3431 	struct aac_sim *caminf;
3432 	device_t child;
3433 	int i, found, error;
3434 
3435 	mtx_lock(&sc->aac_io_lock);
3436 	aac_alloc_sync_fib(sc, &fib);
3437 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
3438 	bzero(c_cmd, sizeof(struct aac_ctcfg));
3439 
3440 	c_cmd->Command = VM_ContainerConfig;
3441 	c_cmd->cmd = CT_GET_SCSI_METHOD;
3442 	c_cmd->param = 0;
3443 
3444 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3445 	    sizeof(struct aac_ctcfg));
3446 	if (error) {
3447 		device_printf(sc->aac_dev, "Error %d sending "
3448 		    "VM_ContainerConfig command\n", error);
3449 		aac_release_sync_fib(sc);
3450 		mtx_unlock(&sc->aac_io_lock);
3451 		return;
3452 	}
3453 
3454 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
3455 	if (c_resp->Status != ST_OK) {
3456 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
3457 		    c_resp->Status);
3458 		aac_release_sync_fib(sc);
3459 		mtx_unlock(&sc->aac_io_lock);
3460 		return;
3461 	}
3462 
3463 	sc->scsi_method_id = c_resp->param;
3464 
3465 	vmi = (struct aac_vmioctl *)&fib->data[0];
3466 	bzero(vmi, sizeof(struct aac_vmioctl));
3467 
3468 	vmi->Command = VM_Ioctl;
3469 	vmi->ObjType = FT_DRIVE;
3470 	vmi->MethId = sc->scsi_method_id;
3471 	vmi->ObjId = 0;
3472 	vmi->IoctlCmd = GetBusInfo;
3473 
3474 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3475 	    sizeof(struct aac_vmioctl));
3476 	if (error) {
3477 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3478 		    error);
3479 		aac_release_sync_fib(sc);
3480 		mtx_unlock(&sc->aac_io_lock);
3481 		return;
3482 	}
3483 
3484 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3485 	if (vmi_resp->Status != ST_OK) {
3486 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3487 		    vmi_resp->Status);
3488 		aac_release_sync_fib(sc);
3489 		mtx_unlock(&sc->aac_io_lock);
3490 		return;
3491 	}
3492 
3493 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3494 	aac_release_sync_fib(sc);
3495 	mtx_unlock(&sc->aac_io_lock);
3496 
3497 	found = 0;
3498 	for (i = 0; i < businfo.BusCount; i++) {
3499 		if (businfo.BusValid[i] != AAC_BUS_VALID)
3500 			continue;
3501 
3502 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3503 		    M_AACBUF, M_NOWAIT | M_ZERO);
3504 		if (caminf == NULL) {
3505 			device_printf(sc->aac_dev,
3506 			    "No memory to add passthrough bus %d\n", i);
3507 			break;
3508 		};
3509 
3510 		child = device_add_child(sc->aac_dev, "aacp", -1);
3511 		if (child == NULL) {
3512 			device_printf(sc->aac_dev,
3513 			    "device_add_child failed for passthrough bus %d\n",
3514 			    i);
3515 			free(caminf, M_AACBUF);
3516 			break;
3517 		}
3518 
3519 		caminf->TargetsPerBus = businfo.TargetsPerBus;
3520 		caminf->BusNumber = i;
3521 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3522 		caminf->aac_sc = sc;
3523 		caminf->sim_dev = child;
3524 
3525 		device_set_ivars(child, caminf);
3526 		device_set_desc(child, "SCSI Passthrough Bus");
3527 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3528 
3529 		found = 1;
3530 	}
3531 
3532 	if (found)
3533 		bus_generic_attach(sc->aac_dev);
3534 
3535 	return;
3536 }
3537