1 /*- 2 * Copyright (c) 2000 Michael Smith 3 * Copyright (c) 2001 Scott Long 4 * Copyright (c) 2000 BSDi 5 * Copyright (c) 2001 Adaptec, Inc. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 20 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 27 * SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters. 35 */ 36 #define AAC_DRIVER_VERSION 0x02000000 37 #define AAC_DRIVERNAME "aac" 38 39 #include "opt_aac.h" 40 41 /* #include <stddef.h> */ 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/malloc.h> 45 #include <sys/kernel.h> 46 #include <sys/kthread.h> 47 #include <sys/sysctl.h> 48 #include <sys/poll.h> 49 #include <sys/ioccom.h> 50 51 #include <sys/bus.h> 52 #include <sys/conf.h> 53 #include <sys/signalvar.h> 54 #include <sys/time.h> 55 #include <sys/eventhandler.h> 56 #include <sys/rman.h> 57 58 #include <machine/bus.h> 59 #include <sys/bus_dma.h> 60 #include <machine/resource.h> 61 62 #include <dev/pci/pcireg.h> 63 #include <dev/pci/pcivar.h> 64 65 #include <dev/aac/aacreg.h> 66 #include <sys/aac_ioctl.h> 67 #include <dev/aac/aacvar.h> 68 #include <dev/aac/aac_tables.h> 69 70 static void aac_startup(void *arg); 71 static void aac_add_container(struct aac_softc *sc, 72 struct aac_mntinforesp *mir, int f); 73 static void aac_get_bus_info(struct aac_softc *sc); 74 75 /* Command Processing */ 76 static void aac_timeout(struct aac_softc *sc); 77 static void aac_complete(void *context, int pending); 78 static int aac_bio_command(struct aac_softc *sc, struct aac_command **cmp); 79 static void aac_bio_complete(struct aac_command *cm); 80 static int aac_wait_command(struct aac_command *cm); 81 static void aac_command_thread(struct aac_softc *sc); 82 83 /* Command Buffer Management */ 84 static void aac_map_command_sg(void *arg, bus_dma_segment_t *segs, 85 int nseg, int error); 86 static void aac_map_command_helper(void *arg, bus_dma_segment_t *segs, 87 int nseg, int error); 88 static int aac_alloc_commands(struct aac_softc *sc); 89 static void aac_free_commands(struct aac_softc *sc); 90 static void aac_unmap_command(struct aac_command *cm); 91 92 /* Hardware Interface */ 93 static void aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, 94 int error); 95 static int aac_check_firmware(struct aac_softc *sc); 96 static int aac_init(struct aac_softc *sc); 97 static int aac_sync_command(struct aac_softc *sc, u_int32_t command, 98 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, 99 u_int32_t arg3, u_int32_t *sp); 100 static int aac_enqueue_fib(struct aac_softc *sc, int queue, 101 struct aac_command *cm); 102 static int aac_dequeue_fib(struct aac_softc *sc, int queue, 103 u_int32_t *fib_size, struct aac_fib **fib_addr); 104 static int aac_enqueue_response(struct aac_softc *sc, int queue, 105 struct aac_fib *fib); 106 107 /* Falcon/PPC interface */ 108 static int aac_fa_get_fwstatus(struct aac_softc *sc); 109 static void aac_fa_qnotify(struct aac_softc *sc, int qbit); 110 static int aac_fa_get_istatus(struct aac_softc *sc); 111 static void aac_fa_clear_istatus(struct aac_softc *sc, int mask); 112 static void aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 113 u_int32_t arg0, u_int32_t arg1, 114 u_int32_t arg2, u_int32_t arg3); 115 static int aac_fa_get_mailbox(struct aac_softc *sc, int mb); 116 static void aac_fa_set_interrupts(struct aac_softc *sc, int enable); 117 118 struct aac_interface aac_fa_interface = { 119 aac_fa_get_fwstatus, 120 aac_fa_qnotify, 121 aac_fa_get_istatus, 122 aac_fa_clear_istatus, 123 aac_fa_set_mailbox, 124 aac_fa_get_mailbox, 125 aac_fa_set_interrupts, 126 NULL, NULL, NULL 127 }; 128 129 /* StrongARM interface */ 130 static int aac_sa_get_fwstatus(struct aac_softc *sc); 131 static void aac_sa_qnotify(struct aac_softc *sc, int qbit); 132 static int aac_sa_get_istatus(struct aac_softc *sc); 133 static void aac_sa_clear_istatus(struct aac_softc *sc, int mask); 134 static void aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 135 u_int32_t arg0, u_int32_t arg1, 136 u_int32_t arg2, u_int32_t arg3); 137 static int aac_sa_get_mailbox(struct aac_softc *sc, int mb); 138 static void aac_sa_set_interrupts(struct aac_softc *sc, int enable); 139 140 struct aac_interface aac_sa_interface = { 141 aac_sa_get_fwstatus, 142 aac_sa_qnotify, 143 aac_sa_get_istatus, 144 aac_sa_clear_istatus, 145 aac_sa_set_mailbox, 146 aac_sa_get_mailbox, 147 aac_sa_set_interrupts, 148 NULL, NULL, NULL 149 }; 150 151 /* i960Rx interface */ 152 static int aac_rx_get_fwstatus(struct aac_softc *sc); 153 static void aac_rx_qnotify(struct aac_softc *sc, int qbit); 154 static int aac_rx_get_istatus(struct aac_softc *sc); 155 static void aac_rx_clear_istatus(struct aac_softc *sc, int mask); 156 static void aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 157 u_int32_t arg0, u_int32_t arg1, 158 u_int32_t arg2, u_int32_t arg3); 159 static int aac_rx_get_mailbox(struct aac_softc *sc, int mb); 160 static void aac_rx_set_interrupts(struct aac_softc *sc, int enable); 161 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm); 162 static int aac_rx_get_outb_queue(struct aac_softc *sc); 163 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index); 164 165 struct aac_interface aac_rx_interface = { 166 aac_rx_get_fwstatus, 167 aac_rx_qnotify, 168 aac_rx_get_istatus, 169 aac_rx_clear_istatus, 170 aac_rx_set_mailbox, 171 aac_rx_get_mailbox, 172 aac_rx_set_interrupts, 173 aac_rx_send_command, 174 aac_rx_get_outb_queue, 175 aac_rx_set_outb_queue 176 }; 177 178 /* Rocket/MIPS interface */ 179 static int aac_rkt_get_fwstatus(struct aac_softc *sc); 180 static void aac_rkt_qnotify(struct aac_softc *sc, int qbit); 181 static int aac_rkt_get_istatus(struct aac_softc *sc); 182 static void aac_rkt_clear_istatus(struct aac_softc *sc, int mask); 183 static void aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, 184 u_int32_t arg0, u_int32_t arg1, 185 u_int32_t arg2, u_int32_t arg3); 186 static int aac_rkt_get_mailbox(struct aac_softc *sc, int mb); 187 static void aac_rkt_set_interrupts(struct aac_softc *sc, int enable); 188 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm); 189 static int aac_rkt_get_outb_queue(struct aac_softc *sc); 190 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index); 191 192 struct aac_interface aac_rkt_interface = { 193 aac_rkt_get_fwstatus, 194 aac_rkt_qnotify, 195 aac_rkt_get_istatus, 196 aac_rkt_clear_istatus, 197 aac_rkt_set_mailbox, 198 aac_rkt_get_mailbox, 199 aac_rkt_set_interrupts, 200 aac_rkt_send_command, 201 aac_rkt_get_outb_queue, 202 aac_rkt_set_outb_queue 203 }; 204 205 /* Debugging and Diagnostics */ 206 static void aac_describe_controller(struct aac_softc *sc); 207 static char *aac_describe_code(struct aac_code_lookup *table, 208 u_int32_t code); 209 210 /* Management Interface */ 211 static d_open_t aac_open; 212 static d_close_t aac_close; 213 static d_ioctl_t aac_ioctl; 214 static d_poll_t aac_poll; 215 static int aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib); 216 static void aac_handle_aif(struct aac_softc *sc, 217 struct aac_fib *fib); 218 static int aac_rev_check(struct aac_softc *sc, caddr_t udata); 219 static int aac_getnext_aif(struct aac_softc *sc, caddr_t arg); 220 static int aac_return_aif(struct aac_softc *sc, caddr_t uptr); 221 static int aac_query_disk(struct aac_softc *sc, caddr_t uptr); 222 static int aac_get_pci_info(struct aac_softc *sc, caddr_t uptr); 223 static void aac_ioctl_event(struct aac_softc *sc, 224 struct aac_event *event, void *arg); 225 226 static struct cdevsw aac_cdevsw = { 227 .d_version = D_VERSION, 228 .d_flags = D_NEEDGIANT, 229 .d_open = aac_open, 230 .d_close = aac_close, 231 .d_ioctl = aac_ioctl, 232 .d_poll = aac_poll, 233 .d_name = "aac", 234 }; 235 236 MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver"); 237 238 /* sysctl node */ 239 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters"); 240 241 /* 242 * Device Interface 243 */ 244 245 /* 246 * Initialise the controller and softc 247 */ 248 int 249 aac_attach(struct aac_softc *sc) 250 { 251 int error, unit; 252 253 debug_called(1); 254 255 /* 256 * Initialise per-controller queues. 257 */ 258 aac_initq_free(sc); 259 aac_initq_ready(sc); 260 aac_initq_busy(sc); 261 aac_initq_bio(sc); 262 263 /* 264 * Initialise command-completion task. 265 */ 266 TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc); 267 268 /* mark controller as suspended until we get ourselves organised */ 269 sc->aac_state |= AAC_STATE_SUSPEND; 270 271 /* 272 * Check that the firmware on the card is supported. 273 */ 274 if ((error = aac_check_firmware(sc)) != 0) 275 return(error); 276 277 /* 278 * Initialize locks 279 */ 280 mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF); 281 mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF); 282 mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF); 283 TAILQ_INIT(&sc->aac_container_tqh); 284 TAILQ_INIT(&sc->aac_ev_cmfree); 285 286 /* Initialize the local AIF queue pointers */ 287 sc->aac_aifq_head = sc->aac_aifq_tail = AAC_AIFQ_LENGTH; 288 289 /* 290 * Initialise the adapter. 291 */ 292 if ((error = aac_init(sc)) != 0) 293 return(error); 294 295 /* 296 * Allocate and connect our interrupt. 297 */ 298 sc->aac_irq_rid = 0; 299 if ((sc->aac_irq = bus_alloc_resource_any(sc->aac_dev, SYS_RES_IRQ, 300 &sc->aac_irq_rid, 301 RF_SHAREABLE | 302 RF_ACTIVE)) == NULL) { 303 device_printf(sc->aac_dev, "can't allocate interrupt\n"); 304 return (EINVAL); 305 } 306 if (sc->flags & AAC_FLAGS_NEW_COMM) { 307 if (bus_setup_intr(sc->aac_dev, sc->aac_irq, 308 INTR_MPSAFE|INTR_TYPE_BIO, NULL, 309 aac_new_intr, sc, &sc->aac_intr)) { 310 device_printf(sc->aac_dev, "can't set up interrupt\n"); 311 return (EINVAL); 312 } 313 } else { 314 if (bus_setup_intr(sc->aac_dev, sc->aac_irq, 315 INTR_TYPE_BIO, aac_fast_intr, NULL, 316 sc, &sc->aac_intr)) { 317 device_printf(sc->aac_dev, 318 "can't set up FAST interrupt\n"); 319 if (bus_setup_intr(sc->aac_dev, sc->aac_irq, 320 INTR_MPSAFE|INTR_TYPE_BIO, 321 NULL, (driver_intr_t *)aac_fast_intr, 322 sc, &sc->aac_intr)) { 323 device_printf(sc->aac_dev, 324 "can't set up MPSAFE interrupt\n"); 325 return (EINVAL); 326 } 327 } 328 } 329 330 /* 331 * Print a little information about the controller. 332 */ 333 aac_describe_controller(sc); 334 335 /* 336 * Register to probe our containers later. 337 */ 338 sc->aac_ich.ich_func = aac_startup; 339 sc->aac_ich.ich_arg = sc; 340 if (config_intrhook_establish(&sc->aac_ich) != 0) { 341 device_printf(sc->aac_dev, 342 "can't establish configuration hook\n"); 343 return(ENXIO); 344 } 345 346 /* 347 * Make the control device. 348 */ 349 unit = device_get_unit(sc->aac_dev); 350 sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR, 351 0640, "aac%d", unit); 352 (void)make_dev_alias(sc->aac_dev_t, "afa%d", unit); 353 (void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit); 354 sc->aac_dev_t->si_drv1 = sc; 355 356 /* Create the AIF thread */ 357 if (kproc_create((void(*)(void *))aac_command_thread, sc, 358 &sc->aifthread, 0, 0, "aac%daif", unit)) 359 panic("Could not create AIF thread\n"); 360 361 /* Register the shutdown method to only be called post-dump */ 362 if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown, 363 sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL) 364 device_printf(sc->aac_dev, 365 "shutdown event registration failed\n"); 366 367 /* Register with CAM for the non-DASD devices */ 368 if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) { 369 TAILQ_INIT(&sc->aac_sim_tqh); 370 aac_get_bus_info(sc); 371 } 372 373 return(0); 374 } 375 376 void 377 aac_add_event(struct aac_softc *sc, struct aac_event *event) 378 { 379 380 switch (event->ev_type & AAC_EVENT_MASK) { 381 case AAC_EVENT_CMFREE: 382 TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links); 383 break; 384 default: 385 device_printf(sc->aac_dev, "aac_add event: unknown event %d\n", 386 event->ev_type); 387 break; 388 } 389 390 return; 391 } 392 393 /* 394 * Probe for containers, create disks. 395 */ 396 static void 397 aac_startup(void *arg) 398 { 399 struct aac_softc *sc; 400 struct aac_fib *fib; 401 struct aac_mntinfo *mi; 402 struct aac_mntinforesp *mir = NULL; 403 int count = 0, i = 0; 404 405 debug_called(1); 406 407 sc = (struct aac_softc *)arg; 408 409 /* disconnect ourselves from the intrhook chain */ 410 config_intrhook_disestablish(&sc->aac_ich); 411 412 mtx_lock(&sc->aac_io_lock); 413 aac_alloc_sync_fib(sc, &fib); 414 mi = (struct aac_mntinfo *)&fib->data[0]; 415 416 /* loop over possible containers */ 417 do { 418 /* request information on this container */ 419 bzero(mi, sizeof(struct aac_mntinfo)); 420 mi->Command = VM_NameServe; 421 mi->MntType = FT_FILESYS; 422 mi->MntCount = i; 423 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 424 sizeof(struct aac_mntinfo))) { 425 printf("error probing container %d", i); 426 continue; 427 } 428 429 mir = (struct aac_mntinforesp *)&fib->data[0]; 430 /* XXX Need to check if count changed */ 431 count = mir->MntRespCount; 432 aac_add_container(sc, mir, 0); 433 i++; 434 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 435 436 aac_release_sync_fib(sc); 437 mtx_unlock(&sc->aac_io_lock); 438 439 /* poke the bus to actually attach the child devices */ 440 if (bus_generic_attach(sc->aac_dev)) 441 device_printf(sc->aac_dev, "bus_generic_attach failed\n"); 442 443 /* mark the controller up */ 444 sc->aac_state &= ~AAC_STATE_SUSPEND; 445 446 /* enable interrupts now */ 447 AAC_UNMASK_INTERRUPTS(sc); 448 } 449 450 /* 451 * Create a device to respresent a new container 452 */ 453 static void 454 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f) 455 { 456 struct aac_container *co; 457 device_t child; 458 459 /* 460 * Check container volume type for validity. Note that many of 461 * the possible types may never show up. 462 */ 463 if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) { 464 co = (struct aac_container *)malloc(sizeof *co, M_AACBUF, 465 M_NOWAIT | M_ZERO); 466 if (co == NULL) 467 panic("Out of memory?!\n"); 468 debug(1, "id %x name '%.16s' size %u type %d", 469 mir->MntTable[0].ObjectId, 470 mir->MntTable[0].FileSystemName, 471 mir->MntTable[0].Capacity, mir->MntTable[0].VolType); 472 473 if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL) 474 device_printf(sc->aac_dev, "device_add_child failed\n"); 475 else 476 device_set_ivars(child, co); 477 device_set_desc(child, aac_describe_code(aac_container_types, 478 mir->MntTable[0].VolType)); 479 co->co_disk = child; 480 co->co_found = f; 481 bcopy(&mir->MntTable[0], &co->co_mntobj, 482 sizeof(struct aac_mntobj)); 483 mtx_lock(&sc->aac_container_lock); 484 TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link); 485 mtx_unlock(&sc->aac_container_lock); 486 } 487 } 488 489 /* 490 * Free all of the resources associated with (sc) 491 * 492 * Should not be called if the controller is active. 493 */ 494 void 495 aac_free(struct aac_softc *sc) 496 { 497 498 debug_called(1); 499 500 /* remove the control device */ 501 if (sc->aac_dev_t != NULL) 502 destroy_dev(sc->aac_dev_t); 503 504 /* throw away any FIB buffers, discard the FIB DMA tag */ 505 aac_free_commands(sc); 506 if (sc->aac_fib_dmat) 507 bus_dma_tag_destroy(sc->aac_fib_dmat); 508 509 free(sc->aac_commands, M_AACBUF); 510 511 /* destroy the common area */ 512 if (sc->aac_common) { 513 bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap); 514 bus_dmamem_free(sc->aac_common_dmat, sc->aac_common, 515 sc->aac_common_dmamap); 516 } 517 if (sc->aac_common_dmat) 518 bus_dma_tag_destroy(sc->aac_common_dmat); 519 520 /* disconnect the interrupt handler */ 521 if (sc->aac_intr) 522 bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr); 523 if (sc->aac_irq != NULL) 524 bus_release_resource(sc->aac_dev, SYS_RES_IRQ, sc->aac_irq_rid, 525 sc->aac_irq); 526 527 /* destroy data-transfer DMA tag */ 528 if (sc->aac_buffer_dmat) 529 bus_dma_tag_destroy(sc->aac_buffer_dmat); 530 531 /* destroy the parent DMA tag */ 532 if (sc->aac_parent_dmat) 533 bus_dma_tag_destroy(sc->aac_parent_dmat); 534 535 /* release the register window mapping */ 536 if (sc->aac_regs_resource != NULL) 537 bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, 538 sc->aac_regs_rid, sc->aac_regs_resource); 539 } 540 541 /* 542 * Disconnect from the controller completely, in preparation for unload. 543 */ 544 int 545 aac_detach(device_t dev) 546 { 547 struct aac_softc *sc; 548 struct aac_container *co; 549 struct aac_sim *sim; 550 int error; 551 552 debug_called(1); 553 554 sc = device_get_softc(dev); 555 556 if (sc->aac_state & AAC_STATE_OPEN) 557 return(EBUSY); 558 559 /* Remove the child containers */ 560 while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) { 561 error = device_delete_child(dev, co->co_disk); 562 if (error) 563 return (error); 564 TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link); 565 free(co, M_AACBUF); 566 } 567 568 /* Remove the CAM SIMs */ 569 while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) { 570 TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link); 571 error = device_delete_child(dev, sim->sim_dev); 572 if (error) 573 return (error); 574 free(sim, M_AACBUF); 575 } 576 577 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) { 578 sc->aifflags |= AAC_AIFFLAGS_EXIT; 579 wakeup(sc->aifthread); 580 tsleep(sc->aac_dev, PUSER | PCATCH, "aacdch", 30 * hz); 581 } 582 583 if (sc->aifflags & AAC_AIFFLAGS_RUNNING) 584 panic("Cannot shutdown AIF thread\n"); 585 586 if ((error = aac_shutdown(dev))) 587 return(error); 588 589 EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh); 590 591 aac_free(sc); 592 593 mtx_destroy(&sc->aac_aifq_lock); 594 mtx_destroy(&sc->aac_io_lock); 595 mtx_destroy(&sc->aac_container_lock); 596 597 return(0); 598 } 599 600 /* 601 * Bring the controller down to a dormant state and detach all child devices. 602 * 603 * This function is called before detach or system shutdown. 604 * 605 * Note that we can assume that the bioq on the controller is empty, as we won't 606 * allow shutdown if any device is open. 607 */ 608 int 609 aac_shutdown(device_t dev) 610 { 611 struct aac_softc *sc; 612 struct aac_fib *fib; 613 struct aac_close_command *cc; 614 615 debug_called(1); 616 617 sc = device_get_softc(dev); 618 619 sc->aac_state |= AAC_STATE_SUSPEND; 620 621 /* 622 * Send a Container shutdown followed by a HostShutdown FIB to the 623 * controller to convince it that we don't want to talk to it anymore. 624 * We've been closed and all I/O completed already 625 */ 626 device_printf(sc->aac_dev, "shutting down controller..."); 627 628 mtx_lock(&sc->aac_io_lock); 629 aac_alloc_sync_fib(sc, &fib); 630 cc = (struct aac_close_command *)&fib->data[0]; 631 632 bzero(cc, sizeof(struct aac_close_command)); 633 cc->Command = VM_CloseAll; 634 cc->ContainerId = 0xffffffff; 635 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 636 sizeof(struct aac_close_command))) 637 printf("FAILED.\n"); 638 else 639 printf("done\n"); 640 #if 0 641 else { 642 fib->data[0] = 0; 643 /* 644 * XXX Issuing this command to the controller makes it shut down 645 * but also keeps it from coming back up without a reset of the 646 * PCI bus. This is not desirable if you are just unloading the 647 * driver module with the intent to reload it later. 648 */ 649 if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN, 650 fib, 1)) { 651 printf("FAILED.\n"); 652 } else { 653 printf("done.\n"); 654 } 655 } 656 #endif 657 658 AAC_MASK_INTERRUPTS(sc); 659 aac_release_sync_fib(sc); 660 mtx_unlock(&sc->aac_io_lock); 661 662 return(0); 663 } 664 665 /* 666 * Bring the controller to a quiescent state, ready for system suspend. 667 */ 668 int 669 aac_suspend(device_t dev) 670 { 671 struct aac_softc *sc; 672 673 debug_called(1); 674 675 sc = device_get_softc(dev); 676 677 sc->aac_state |= AAC_STATE_SUSPEND; 678 679 AAC_MASK_INTERRUPTS(sc); 680 return(0); 681 } 682 683 /* 684 * Bring the controller back to a state ready for operation. 685 */ 686 int 687 aac_resume(device_t dev) 688 { 689 struct aac_softc *sc; 690 691 debug_called(1); 692 693 sc = device_get_softc(dev); 694 695 sc->aac_state &= ~AAC_STATE_SUSPEND; 696 AAC_UNMASK_INTERRUPTS(sc); 697 return(0); 698 } 699 700 /* 701 * Interrupt handler for NEW_COMM interface. 702 */ 703 void 704 aac_new_intr(void *arg) 705 { 706 struct aac_softc *sc; 707 u_int32_t index, fast; 708 struct aac_command *cm; 709 struct aac_fib *fib; 710 int i; 711 712 debug_called(2); 713 714 sc = (struct aac_softc *)arg; 715 716 mtx_lock(&sc->aac_io_lock); 717 while (1) { 718 index = AAC_GET_OUTB_QUEUE(sc); 719 if (index == 0xffffffff) 720 index = AAC_GET_OUTB_QUEUE(sc); 721 if (index == 0xffffffff) 722 break; 723 if (index & 2) { 724 if (index == 0xfffffffe) { 725 /* XXX This means that the controller wants 726 * more work. Ignore it for now. 727 */ 728 continue; 729 } 730 /* AIF */ 731 fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF, 732 M_NOWAIT | M_ZERO); 733 if (fib == NULL) { 734 /* If we're really this short on memory, 735 * hopefully breaking out of the handler will 736 * allow something to get freed. This 737 * actually sucks a whole lot. 738 */ 739 break; 740 } 741 index &= ~2; 742 for (i = 0; i < sizeof(struct aac_fib)/4; ++i) 743 ((u_int32_t *)fib)[i] = AAC_GETREG4(sc, index + i*4); 744 aac_handle_aif(sc, fib); 745 free(fib, M_AACBUF); 746 747 /* 748 * AIF memory is owned by the adapter, so let it 749 * know that we are done with it. 750 */ 751 AAC_SET_OUTB_QUEUE(sc, index); 752 AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY); 753 } else { 754 fast = index & 1; 755 cm = sc->aac_commands + (index >> 2); 756 fib = cm->cm_fib; 757 if (fast) { 758 fib->Header.XferState |= AAC_FIBSTATE_DONEADAP; 759 *((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL; 760 } 761 aac_remove_busy(cm); 762 aac_unmap_command(cm); 763 cm->cm_flags |= AAC_CMD_COMPLETED; 764 765 /* is there a completion handler? */ 766 if (cm->cm_complete != NULL) { 767 cm->cm_complete(cm); 768 } else { 769 /* assume that someone is sleeping on this 770 * command 771 */ 772 wakeup(cm); 773 } 774 sc->flags &= ~AAC_QUEUE_FRZN; 775 } 776 } 777 /* see if we can start some more I/O */ 778 if ((sc->flags & AAC_QUEUE_FRZN) == 0) 779 aac_startio(sc); 780 781 mtx_unlock(&sc->aac_io_lock); 782 } 783 784 int 785 aac_fast_intr(void *arg) 786 { 787 struct aac_softc *sc; 788 u_int16_t reason; 789 790 debug_called(2); 791 792 sc = (struct aac_softc *)arg; 793 794 /* 795 * Read the status register directly. This is faster than taking the 796 * driver lock and reading the queues directly. It also saves having 797 * to turn parts of the driver lock into a spin mutex, which would be 798 * ugly. 799 */ 800 reason = AAC_GET_ISTATUS(sc); 801 AAC_CLEAR_ISTATUS(sc, reason); 802 803 /* handle completion processing */ 804 if (reason & AAC_DB_RESPONSE_READY) 805 taskqueue_enqueue_fast(taskqueue_fast, &sc->aac_task_complete); 806 807 /* controller wants to talk to us */ 808 if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) { 809 /* 810 * XXX Make sure that we don't get fooled by strange messages 811 * that start with a NULL. 812 */ 813 if ((reason & AAC_DB_PRINTF) && 814 (sc->aac_common->ac_printf[0] == 0)) 815 sc->aac_common->ac_printf[0] = 32; 816 817 /* 818 * This might miss doing the actual wakeup. However, the 819 * msleep that this is waking up has a timeout, so it will 820 * wake up eventually. AIFs and printfs are low enough 821 * priority that they can handle hanging out for a few seconds 822 * if needed. 823 */ 824 wakeup(sc->aifthread); 825 } 826 return (FILTER_HANDLED); 827 } 828 829 /* 830 * Command Processing 831 */ 832 833 /* 834 * Start as much queued I/O as possible on the controller 835 */ 836 void 837 aac_startio(struct aac_softc *sc) 838 { 839 struct aac_command *cm; 840 int error; 841 842 debug_called(2); 843 844 for (;;) { 845 /* 846 * This flag might be set if the card is out of resources. 847 * Checking it here prevents an infinite loop of deferrals. 848 */ 849 if (sc->flags & AAC_QUEUE_FRZN) 850 break; 851 852 /* 853 * Try to get a command that's been put off for lack of 854 * resources 855 */ 856 cm = aac_dequeue_ready(sc); 857 858 /* 859 * Try to build a command off the bio queue (ignore error 860 * return) 861 */ 862 if (cm == NULL) 863 aac_bio_command(sc, &cm); 864 865 /* nothing to do? */ 866 if (cm == NULL) 867 break; 868 869 /* don't map more than once */ 870 if (cm->cm_flags & AAC_CMD_MAPPED) 871 panic("aac: command %p already mapped", cm); 872 873 /* 874 * Set up the command to go to the controller. If there are no 875 * data buffers associated with the command then it can bypass 876 * busdma. 877 */ 878 if (cm->cm_datalen != 0) { 879 error = bus_dmamap_load(sc->aac_buffer_dmat, 880 cm->cm_datamap, cm->cm_data, 881 cm->cm_datalen, 882 aac_map_command_sg, cm, 0); 883 if (error == EINPROGRESS) { 884 debug(1, "freezing queue\n"); 885 sc->flags |= AAC_QUEUE_FRZN; 886 error = 0; 887 } else if (error != 0) 888 panic("aac_startio: unexpected error %d from " 889 "busdma\n", error); 890 } else 891 aac_map_command_sg(cm, NULL, 0, 0); 892 } 893 } 894 895 /* 896 * Handle notification of one or more FIBs coming from the controller. 897 */ 898 static void 899 aac_command_thread(struct aac_softc *sc) 900 { 901 struct aac_fib *fib; 902 u_int32_t fib_size; 903 int size, retval; 904 905 debug_called(2); 906 907 mtx_lock(&sc->aac_io_lock); 908 sc->aifflags = AAC_AIFFLAGS_RUNNING; 909 910 while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) { 911 912 retval = 0; 913 if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0) 914 retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO, 915 "aifthd", AAC_PERIODIC_INTERVAL * hz); 916 917 /* 918 * First see if any FIBs need to be allocated. This needs 919 * to be called without the driver lock because contigmalloc 920 * will grab Giant, and would result in an LOR. 921 */ 922 if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) { 923 mtx_unlock(&sc->aac_io_lock); 924 aac_alloc_commands(sc); 925 mtx_lock(&sc->aac_io_lock); 926 sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS; 927 aac_startio(sc); 928 } 929 930 /* 931 * While we're here, check to see if any commands are stuck. 932 * This is pretty low-priority, so it's ok if it doesn't 933 * always fire. 934 */ 935 if (retval == EWOULDBLOCK) 936 aac_timeout(sc); 937 938 /* Check the hardware printf message buffer */ 939 if (sc->aac_common->ac_printf[0] != 0) 940 aac_print_printf(sc); 941 942 /* Also check to see if the adapter has a command for us. */ 943 if (sc->flags & AAC_FLAGS_NEW_COMM) 944 continue; 945 for (;;) { 946 if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE, 947 &fib_size, &fib)) 948 break; 949 950 AAC_PRINT_FIB(sc, fib); 951 952 switch (fib->Header.Command) { 953 case AifRequest: 954 aac_handle_aif(sc, fib); 955 break; 956 default: 957 device_printf(sc->aac_dev, "unknown command " 958 "from controller\n"); 959 break; 960 } 961 962 if ((fib->Header.XferState == 0) || 963 (fib->Header.StructType != AAC_FIBTYPE_TFIB)) { 964 break; 965 } 966 967 /* Return the AIF to the controller. */ 968 if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) { 969 fib->Header.XferState |= AAC_FIBSTATE_DONEHOST; 970 *(AAC_FSAStatus*)fib->data = ST_OK; 971 972 /* XXX Compute the Size field? */ 973 size = fib->Header.Size; 974 if (size > sizeof(struct aac_fib)) { 975 size = sizeof(struct aac_fib); 976 fib->Header.Size = size; 977 } 978 /* 979 * Since we did not generate this command, it 980 * cannot go through the normal 981 * enqueue->startio chain. 982 */ 983 aac_enqueue_response(sc, 984 AAC_ADAP_NORM_RESP_QUEUE, 985 fib); 986 } 987 } 988 } 989 sc->aifflags &= ~AAC_AIFFLAGS_RUNNING; 990 mtx_unlock(&sc->aac_io_lock); 991 wakeup(sc->aac_dev); 992 993 kproc_exit(0); 994 } 995 996 /* 997 * Process completed commands. 998 */ 999 static void 1000 aac_complete(void *context, int pending) 1001 { 1002 struct aac_softc *sc; 1003 struct aac_command *cm; 1004 struct aac_fib *fib; 1005 u_int32_t fib_size; 1006 1007 debug_called(2); 1008 1009 sc = (struct aac_softc *)context; 1010 1011 mtx_lock(&sc->aac_io_lock); 1012 1013 /* pull completed commands off the queue */ 1014 for (;;) { 1015 /* look for completed FIBs on our queue */ 1016 if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size, 1017 &fib)) 1018 break; /* nothing to do */ 1019 1020 /* get the command, unmap and hand off for processing */ 1021 cm = sc->aac_commands + fib->Header.SenderData; 1022 if (cm == NULL) { 1023 AAC_PRINT_FIB(sc, fib); 1024 break; 1025 } 1026 aac_remove_busy(cm); 1027 1028 aac_unmap_command(cm); 1029 cm->cm_flags |= AAC_CMD_COMPLETED; 1030 1031 /* is there a completion handler? */ 1032 if (cm->cm_complete != NULL) { 1033 cm->cm_complete(cm); 1034 } else { 1035 /* assume that someone is sleeping on this command */ 1036 wakeup(cm); 1037 } 1038 } 1039 1040 /* see if we can start some more I/O */ 1041 sc->flags &= ~AAC_QUEUE_FRZN; 1042 aac_startio(sc); 1043 1044 mtx_unlock(&sc->aac_io_lock); 1045 } 1046 1047 /* 1048 * Handle a bio submitted from a disk device. 1049 */ 1050 void 1051 aac_submit_bio(struct bio *bp) 1052 { 1053 struct aac_disk *ad; 1054 struct aac_softc *sc; 1055 1056 debug_called(2); 1057 1058 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 1059 sc = ad->ad_controller; 1060 1061 /* queue the BIO and try to get some work done */ 1062 aac_enqueue_bio(sc, bp); 1063 aac_startio(sc); 1064 } 1065 1066 /* 1067 * Get a bio and build a command to go with it. 1068 */ 1069 static int 1070 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp) 1071 { 1072 struct aac_command *cm; 1073 struct aac_fib *fib; 1074 struct aac_disk *ad; 1075 struct bio *bp; 1076 1077 debug_called(2); 1078 1079 /* get the resources we will need */ 1080 cm = NULL; 1081 bp = NULL; 1082 if (aac_alloc_command(sc, &cm)) /* get a command */ 1083 goto fail; 1084 if ((bp = aac_dequeue_bio(sc)) == NULL) 1085 goto fail; 1086 1087 /* fill out the command */ 1088 cm->cm_data = (void *)bp->bio_data; 1089 cm->cm_datalen = bp->bio_bcount; 1090 cm->cm_complete = aac_bio_complete; 1091 cm->cm_private = bp; 1092 cm->cm_timestamp = time_uptime; 1093 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1094 1095 /* build the FIB */ 1096 fib = cm->cm_fib; 1097 fib->Header.Size = sizeof(struct aac_fib_header); 1098 fib->Header.XferState = 1099 AAC_FIBSTATE_HOSTOWNED | 1100 AAC_FIBSTATE_INITIALISED | 1101 AAC_FIBSTATE_EMPTY | 1102 AAC_FIBSTATE_FROMHOST | 1103 AAC_FIBSTATE_REXPECTED | 1104 AAC_FIBSTATE_NORM | 1105 AAC_FIBSTATE_ASYNC | 1106 AAC_FIBSTATE_FAST_RESPONSE; 1107 1108 /* build the read/write request */ 1109 ad = (struct aac_disk *)bp->bio_disk->d_drv1; 1110 1111 if (sc->flags & AAC_FLAGS_RAW_IO) { 1112 struct aac_raw_io *raw; 1113 raw = (struct aac_raw_io *)&fib->data[0]; 1114 fib->Header.Command = RawIo; 1115 raw->BlockNumber = (u_int64_t)bp->bio_pblkno; 1116 raw->ByteCount = bp->bio_bcount; 1117 raw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1118 raw->BpTotal = 0; 1119 raw->BpComplete = 0; 1120 fib->Header.Size += sizeof(struct aac_raw_io); 1121 cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw; 1122 if (bp->bio_cmd == BIO_READ) { 1123 raw->Flags = 1; 1124 cm->cm_flags |= AAC_CMD_DATAIN; 1125 } else { 1126 raw->Flags = 0; 1127 cm->cm_flags |= AAC_CMD_DATAOUT; 1128 } 1129 } else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1130 fib->Header.Command = ContainerCommand; 1131 if (bp->bio_cmd == BIO_READ) { 1132 struct aac_blockread *br; 1133 br = (struct aac_blockread *)&fib->data[0]; 1134 br->Command = VM_CtBlockRead; 1135 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1136 br->BlockNumber = bp->bio_pblkno; 1137 br->ByteCount = bp->bio_bcount; 1138 fib->Header.Size += sizeof(struct aac_blockread); 1139 cm->cm_sgtable = &br->SgMap; 1140 cm->cm_flags |= AAC_CMD_DATAIN; 1141 } else { 1142 struct aac_blockwrite *bw; 1143 bw = (struct aac_blockwrite *)&fib->data[0]; 1144 bw->Command = VM_CtBlockWrite; 1145 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1146 bw->BlockNumber = bp->bio_pblkno; 1147 bw->ByteCount = bp->bio_bcount; 1148 bw->Stable = CUNSTABLE; 1149 fib->Header.Size += sizeof(struct aac_blockwrite); 1150 cm->cm_flags |= AAC_CMD_DATAOUT; 1151 cm->cm_sgtable = &bw->SgMap; 1152 } 1153 } else { 1154 fib->Header.Command = ContainerCommand64; 1155 if (bp->bio_cmd == BIO_READ) { 1156 struct aac_blockread64 *br; 1157 br = (struct aac_blockread64 *)&fib->data[0]; 1158 br->Command = VM_CtHostRead64; 1159 br->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1160 br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 1161 br->BlockNumber = bp->bio_pblkno; 1162 br->Pad = 0; 1163 br->Flags = 0; 1164 fib->Header.Size += sizeof(struct aac_blockread64); 1165 cm->cm_flags |= AAC_CMD_DATAOUT; 1166 cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64; 1167 } else { 1168 struct aac_blockwrite64 *bw; 1169 bw = (struct aac_blockwrite64 *)&fib->data[0]; 1170 bw->Command = VM_CtHostWrite64; 1171 bw->ContainerId = ad->ad_container->co_mntobj.ObjectId; 1172 bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE; 1173 bw->BlockNumber = bp->bio_pblkno; 1174 bw->Pad = 0; 1175 bw->Flags = 0; 1176 fib->Header.Size += sizeof(struct aac_blockwrite64); 1177 cm->cm_flags |= AAC_CMD_DATAIN; 1178 cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64; 1179 } 1180 } 1181 1182 *cmp = cm; 1183 return(0); 1184 1185 fail: 1186 if (bp != NULL) 1187 aac_enqueue_bio(sc, bp); 1188 if (cm != NULL) 1189 aac_release_command(cm); 1190 return(ENOMEM); 1191 } 1192 1193 /* 1194 * Handle a bio-instigated command that has been completed. 1195 */ 1196 static void 1197 aac_bio_complete(struct aac_command *cm) 1198 { 1199 struct aac_blockread_response *brr; 1200 struct aac_blockwrite_response *bwr; 1201 struct bio *bp; 1202 AAC_FSAStatus status; 1203 1204 /* fetch relevant status and then release the command */ 1205 bp = (struct bio *)cm->cm_private; 1206 if (bp->bio_cmd == BIO_READ) { 1207 brr = (struct aac_blockread_response *)&cm->cm_fib->data[0]; 1208 status = brr->Status; 1209 } else { 1210 bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0]; 1211 status = bwr->Status; 1212 } 1213 aac_release_command(cm); 1214 1215 /* fix up the bio based on status */ 1216 if (status == ST_OK) { 1217 bp->bio_resid = 0; 1218 } else { 1219 bp->bio_error = EIO; 1220 bp->bio_flags |= BIO_ERROR; 1221 /* pass an error string out to the disk layer */ 1222 bp->bio_driver1 = aac_describe_code(aac_command_status_table, 1223 status); 1224 } 1225 aac_biodone(bp); 1226 } 1227 1228 /* 1229 * Submit a command to the controller, return when it completes. 1230 * XXX This is very dangerous! If the card has gone out to lunch, we could 1231 * be stuck here forever. At the same time, signals are not caught 1232 * because there is a risk that a signal could wakeup the sleep before 1233 * the card has a chance to complete the command. Since there is no way 1234 * to cancel a command that is in progress, we can't protect against the 1235 * card completing a command late and spamming the command and data 1236 * memory. So, we are held hostage until the command completes. 1237 */ 1238 static int 1239 aac_wait_command(struct aac_command *cm) 1240 { 1241 struct aac_softc *sc; 1242 int error; 1243 1244 debug_called(2); 1245 1246 sc = cm->cm_sc; 1247 1248 /* Put the command on the ready queue and get things going */ 1249 cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE; 1250 aac_enqueue_ready(cm); 1251 aac_startio(sc); 1252 error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0); 1253 return(error); 1254 } 1255 1256 /* 1257 *Command Buffer Management 1258 */ 1259 1260 /* 1261 * Allocate a command. 1262 */ 1263 int 1264 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp) 1265 { 1266 struct aac_command *cm; 1267 1268 debug_called(3); 1269 1270 if ((cm = aac_dequeue_free(sc)) == NULL) { 1271 if (sc->total_fibs < sc->aac_max_fibs) { 1272 sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS; 1273 wakeup(sc->aifthread); 1274 } 1275 return (EBUSY); 1276 } 1277 1278 *cmp = cm; 1279 return(0); 1280 } 1281 1282 /* 1283 * Release a command back to the freelist. 1284 */ 1285 void 1286 aac_release_command(struct aac_command *cm) 1287 { 1288 struct aac_event *event; 1289 struct aac_softc *sc; 1290 1291 debug_called(3); 1292 1293 /* (re)initialise the command/FIB */ 1294 cm->cm_sgtable = NULL; 1295 cm->cm_flags = 0; 1296 cm->cm_complete = NULL; 1297 cm->cm_private = NULL; 1298 cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY; 1299 cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB; 1300 cm->cm_fib->Header.Flags = 0; 1301 cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size; 1302 1303 /* 1304 * These are duplicated in aac_start to cover the case where an 1305 * intermediate stage may have destroyed them. They're left 1306 * initialised here for debugging purposes only. 1307 */ 1308 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1309 cm->cm_fib->Header.SenderData = 0; 1310 1311 aac_enqueue_free(cm); 1312 1313 sc = cm->cm_sc; 1314 event = TAILQ_FIRST(&sc->aac_ev_cmfree); 1315 if (event != NULL) { 1316 TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links); 1317 event->ev_callback(sc, event, event->ev_arg); 1318 } 1319 } 1320 1321 /* 1322 * Map helper for command/FIB allocation. 1323 */ 1324 static void 1325 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1326 { 1327 uint64_t *fibphys; 1328 1329 fibphys = (uint64_t *)arg; 1330 1331 debug_called(3); 1332 1333 *fibphys = segs[0].ds_addr; 1334 } 1335 1336 /* 1337 * Allocate and initialise commands/FIBs for this adapter. 1338 */ 1339 static int 1340 aac_alloc_commands(struct aac_softc *sc) 1341 { 1342 struct aac_command *cm; 1343 struct aac_fibmap *fm; 1344 uint64_t fibphys; 1345 int i, error; 1346 1347 debug_called(2); 1348 1349 if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs) 1350 return (ENOMEM); 1351 1352 fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO); 1353 if (fm == NULL) 1354 return (ENOMEM); 1355 1356 /* allocate the FIBs in DMAable memory and load them */ 1357 if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs, 1358 BUS_DMA_NOWAIT, &fm->aac_fibmap)) { 1359 device_printf(sc->aac_dev, 1360 "Not enough contiguous memory available.\n"); 1361 free(fm, M_AACBUF); 1362 return (ENOMEM); 1363 } 1364 1365 /* Ignore errors since this doesn't bounce */ 1366 (void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs, 1367 sc->aac_max_fibs_alloc * sc->aac_max_fib_size, 1368 aac_map_command_helper, &fibphys, 0); 1369 1370 /* initialise constant fields in the command structure */ 1371 bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size); 1372 for (i = 0; i < sc->aac_max_fibs_alloc; i++) { 1373 cm = sc->aac_commands + sc->total_fibs; 1374 fm->aac_commands = cm; 1375 cm->cm_sc = sc; 1376 cm->cm_fib = (struct aac_fib *) 1377 ((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size); 1378 cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size; 1379 cm->cm_index = sc->total_fibs; 1380 1381 if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0, 1382 &cm->cm_datamap)) != 0) 1383 break; 1384 mtx_lock(&sc->aac_io_lock); 1385 aac_release_command(cm); 1386 sc->total_fibs++; 1387 mtx_unlock(&sc->aac_io_lock); 1388 } 1389 1390 if (i > 0) { 1391 mtx_lock(&sc->aac_io_lock); 1392 TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link); 1393 debug(1, "total_fibs= %d\n", sc->total_fibs); 1394 mtx_unlock(&sc->aac_io_lock); 1395 return (0); 1396 } 1397 1398 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1399 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1400 free(fm, M_AACBUF); 1401 return (ENOMEM); 1402 } 1403 1404 /* 1405 * Free FIBs owned by this adapter. 1406 */ 1407 static void 1408 aac_free_commands(struct aac_softc *sc) 1409 { 1410 struct aac_fibmap *fm; 1411 struct aac_command *cm; 1412 int i; 1413 1414 debug_called(1); 1415 1416 while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) { 1417 1418 TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link); 1419 /* 1420 * We check against total_fibs to handle partially 1421 * allocated blocks. 1422 */ 1423 for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) { 1424 cm = fm->aac_commands + i; 1425 bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap); 1426 } 1427 bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap); 1428 bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap); 1429 free(fm, M_AACBUF); 1430 } 1431 } 1432 1433 /* 1434 * Command-mapping helper function - populate this command's s/g table. 1435 */ 1436 static void 1437 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1438 { 1439 struct aac_softc *sc; 1440 struct aac_command *cm; 1441 struct aac_fib *fib; 1442 int i; 1443 1444 debug_called(3); 1445 1446 cm = (struct aac_command *)arg; 1447 sc = cm->cm_sc; 1448 fib = cm->cm_fib; 1449 1450 /* copy into the FIB */ 1451 if (cm->cm_sgtable != NULL) { 1452 if (fib->Header.Command == RawIo) { 1453 struct aac_sg_tableraw *sg; 1454 sg = (struct aac_sg_tableraw *)cm->cm_sgtable; 1455 sg->SgCount = nseg; 1456 for (i = 0; i < nseg; i++) { 1457 sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr; 1458 sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len; 1459 sg->SgEntryRaw[i].Next = 0; 1460 sg->SgEntryRaw[i].Prev = 0; 1461 sg->SgEntryRaw[i].Flags = 0; 1462 } 1463 /* update the FIB size for the s/g count */ 1464 fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw); 1465 } else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) { 1466 struct aac_sg_table *sg; 1467 sg = cm->cm_sgtable; 1468 sg->SgCount = nseg; 1469 for (i = 0; i < nseg; i++) { 1470 sg->SgEntry[i].SgAddress = segs[i].ds_addr; 1471 sg->SgEntry[i].SgByteCount = segs[i].ds_len; 1472 } 1473 /* update the FIB size for the s/g count */ 1474 fib->Header.Size += nseg*sizeof(struct aac_sg_entry); 1475 } else { 1476 struct aac_sg_table64 *sg; 1477 sg = (struct aac_sg_table64 *)cm->cm_sgtable; 1478 sg->SgCount = nseg; 1479 for (i = 0; i < nseg; i++) { 1480 sg->SgEntry64[i].SgAddress = segs[i].ds_addr; 1481 sg->SgEntry64[i].SgByteCount = segs[i].ds_len; 1482 } 1483 /* update the FIB size for the s/g count */ 1484 fib->Header.Size += nseg*sizeof(struct aac_sg_entry64); 1485 } 1486 } 1487 1488 /* Fix up the address values in the FIB. Use the command array index 1489 * instead of a pointer since these fields are only 32 bits. Shift 1490 * the SenderFibAddress over to make room for the fast response bit 1491 * and for the AIF bit 1492 */ 1493 cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2); 1494 cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys; 1495 1496 /* save a pointer to the command for speedy reverse-lookup */ 1497 cm->cm_fib->Header.SenderData = cm->cm_index; 1498 1499 if (cm->cm_flags & AAC_CMD_DATAIN) 1500 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1501 BUS_DMASYNC_PREREAD); 1502 if (cm->cm_flags & AAC_CMD_DATAOUT) 1503 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1504 BUS_DMASYNC_PREWRITE); 1505 cm->cm_flags |= AAC_CMD_MAPPED; 1506 1507 if (sc->flags & AAC_FLAGS_NEW_COMM) { 1508 int count = 10000000L; 1509 while (AAC_SEND_COMMAND(sc, cm) != 0) { 1510 if (--count == 0) { 1511 aac_unmap_command(cm); 1512 sc->flags |= AAC_QUEUE_FRZN; 1513 aac_requeue_ready(cm); 1514 } 1515 DELAY(5); /* wait 5 usec. */ 1516 } 1517 } else { 1518 /* Put the FIB on the outbound queue */ 1519 if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) { 1520 aac_unmap_command(cm); 1521 sc->flags |= AAC_QUEUE_FRZN; 1522 aac_requeue_ready(cm); 1523 } 1524 } 1525 1526 return; 1527 } 1528 1529 /* 1530 * Unmap a command from controller-visible space. 1531 */ 1532 static void 1533 aac_unmap_command(struct aac_command *cm) 1534 { 1535 struct aac_softc *sc; 1536 1537 debug_called(2); 1538 1539 sc = cm->cm_sc; 1540 1541 if (!(cm->cm_flags & AAC_CMD_MAPPED)) 1542 return; 1543 1544 if (cm->cm_datalen != 0) { 1545 if (cm->cm_flags & AAC_CMD_DATAIN) 1546 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1547 BUS_DMASYNC_POSTREAD); 1548 if (cm->cm_flags & AAC_CMD_DATAOUT) 1549 bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap, 1550 BUS_DMASYNC_POSTWRITE); 1551 1552 bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap); 1553 } 1554 cm->cm_flags &= ~AAC_CMD_MAPPED; 1555 } 1556 1557 /* 1558 * Hardware Interface 1559 */ 1560 1561 /* 1562 * Initialise the adapter. 1563 */ 1564 static void 1565 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error) 1566 { 1567 struct aac_softc *sc; 1568 1569 debug_called(1); 1570 1571 sc = (struct aac_softc *)arg; 1572 1573 sc->aac_common_busaddr = segs[0].ds_addr; 1574 } 1575 1576 static int 1577 aac_check_firmware(struct aac_softc *sc) 1578 { 1579 u_int32_t major, minor, options = 0, atu_size = 0; 1580 int status; 1581 1582 debug_called(1); 1583 1584 /* 1585 * Retrieve the firmware version numbers. Dell PERC2/QC cards with 1586 * firmware version 1.x are not compatible with this driver. 1587 */ 1588 if (sc->flags & AAC_FLAGS_PERC2QC) { 1589 if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0, 1590 NULL)) { 1591 device_printf(sc->aac_dev, 1592 "Error reading firmware version\n"); 1593 return (EIO); 1594 } 1595 1596 /* These numbers are stored as ASCII! */ 1597 major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30; 1598 minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30; 1599 if (major == 1) { 1600 device_printf(sc->aac_dev, 1601 "Firmware version %d.%d is not supported.\n", 1602 major, minor); 1603 return (EINVAL); 1604 } 1605 } 1606 1607 /* 1608 * Retrieve the capabilities/supported options word so we know what 1609 * work-arounds to enable. Some firmware revs don't support this 1610 * command. 1611 */ 1612 if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) { 1613 if (status != AAC_SRB_STS_INVALID_REQUEST) { 1614 device_printf(sc->aac_dev, 1615 "RequestAdapterInfo failed\n"); 1616 return (EIO); 1617 } 1618 } else { 1619 options = AAC_GET_MAILBOX(sc, 1); 1620 atu_size = AAC_GET_MAILBOX(sc, 2); 1621 sc->supported_options = options; 1622 1623 if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 && 1624 (sc->flags & AAC_FLAGS_NO4GB) == 0) 1625 sc->flags |= AAC_FLAGS_4GB_WINDOW; 1626 if (options & AAC_SUPPORTED_NONDASD) 1627 sc->flags |= AAC_FLAGS_ENABLE_CAM; 1628 if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0 1629 && (sizeof(bus_addr_t) > 4)) { 1630 device_printf(sc->aac_dev, 1631 "Enabling 64-bit address support\n"); 1632 sc->flags |= AAC_FLAGS_SG_64BIT; 1633 } 1634 if ((options & AAC_SUPPORTED_NEW_COMM) 1635 && sc->aac_if.aif_send_command) 1636 sc->flags |= AAC_FLAGS_NEW_COMM; 1637 if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE) 1638 sc->flags |= AAC_FLAGS_ARRAY_64BIT; 1639 } 1640 1641 /* Check for broken hardware that does a lower number of commands */ 1642 sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512); 1643 1644 /* Remap mem. resource, if required */ 1645 if ((sc->flags & AAC_FLAGS_NEW_COMM) && 1646 atu_size > rman_get_size(sc->aac_regs_resource)) { 1647 bus_release_resource( 1648 sc->aac_dev, SYS_RES_MEMORY, 1649 sc->aac_regs_rid, sc->aac_regs_resource); 1650 sc->aac_regs_resource = bus_alloc_resource( 1651 sc->aac_dev, SYS_RES_MEMORY, &sc->aac_regs_rid, 1652 0ul, ~0ul, atu_size, RF_ACTIVE); 1653 if (sc->aac_regs_resource == NULL) { 1654 sc->aac_regs_resource = bus_alloc_resource_any( 1655 sc->aac_dev, SYS_RES_MEMORY, 1656 &sc->aac_regs_rid, RF_ACTIVE); 1657 if (sc->aac_regs_resource == NULL) { 1658 device_printf(sc->aac_dev, 1659 "couldn't allocate register window\n"); 1660 return (ENXIO); 1661 } 1662 sc->flags &= ~AAC_FLAGS_NEW_COMM; 1663 } 1664 sc->aac_btag = rman_get_bustag(sc->aac_regs_resource); 1665 sc->aac_bhandle = rman_get_bushandle(sc->aac_regs_resource); 1666 } 1667 1668 /* Read preferred settings */ 1669 sc->aac_max_fib_size = sizeof(struct aac_fib); 1670 sc->aac_max_sectors = 128; /* 64KB */ 1671 if (sc->flags & AAC_FLAGS_SG_64BIT) 1672 sc->aac_sg_tablesize = (AAC_FIB_DATASIZE 1673 - sizeof(struct aac_blockwrite64)) 1674 / sizeof(struct aac_sg_entry64); 1675 else 1676 sc->aac_sg_tablesize = (AAC_FIB_DATASIZE 1677 - sizeof(struct aac_blockwrite)) 1678 / sizeof(struct aac_sg_entry); 1679 1680 if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) { 1681 options = AAC_GET_MAILBOX(sc, 1); 1682 sc->aac_max_fib_size = (options & 0xFFFF); 1683 sc->aac_max_sectors = (options >> 16) << 1; 1684 options = AAC_GET_MAILBOX(sc, 2); 1685 sc->aac_sg_tablesize = (options >> 16); 1686 options = AAC_GET_MAILBOX(sc, 3); 1687 sc->aac_max_fibs = (options & 0xFFFF); 1688 } 1689 if (sc->aac_max_fib_size > PAGE_SIZE) 1690 sc->aac_max_fib_size = PAGE_SIZE; 1691 sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size; 1692 1693 return (0); 1694 } 1695 1696 static int 1697 aac_init(struct aac_softc *sc) 1698 { 1699 struct aac_adapter_init *ip; 1700 time_t then; 1701 u_int32_t code, qoffset; 1702 int error; 1703 1704 debug_called(1); 1705 1706 /* 1707 * First wait for the adapter to come ready. 1708 */ 1709 then = time_uptime; 1710 do { 1711 code = AAC_GET_FWSTATUS(sc); 1712 if (code & AAC_SELF_TEST_FAILED) { 1713 device_printf(sc->aac_dev, "FATAL: selftest failed\n"); 1714 return(ENXIO); 1715 } 1716 if (code & AAC_KERNEL_PANIC) { 1717 device_printf(sc->aac_dev, 1718 "FATAL: controller kernel panic\n"); 1719 return(ENXIO); 1720 } 1721 if (time_uptime > (then + AAC_BOOT_TIMEOUT)) { 1722 device_printf(sc->aac_dev, 1723 "FATAL: controller not coming ready, " 1724 "status %x\n", code); 1725 return(ENXIO); 1726 } 1727 } while (!(code & AAC_UP_AND_RUNNING)); 1728 1729 error = ENOMEM; 1730 /* 1731 * Create DMA tag for mapping buffers into controller-addressable space. 1732 */ 1733 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1734 1, 0, /* algnmnt, boundary */ 1735 (sc->flags & AAC_FLAGS_SG_64BIT) ? 1736 BUS_SPACE_MAXADDR : 1737 BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ 1738 BUS_SPACE_MAXADDR, /* highaddr */ 1739 NULL, NULL, /* filter, filterarg */ 1740 MAXBSIZE, /* maxsize */ 1741 sc->aac_sg_tablesize, /* nsegments */ 1742 MAXBSIZE, /* maxsegsize */ 1743 BUS_DMA_ALLOCNOW, /* flags */ 1744 busdma_lock_mutex, /* lockfunc */ 1745 &sc->aac_io_lock, /* lockfuncarg */ 1746 &sc->aac_buffer_dmat)) { 1747 device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n"); 1748 goto out; 1749 } 1750 1751 /* 1752 * Create DMA tag for mapping FIBs into controller-addressable space.. 1753 */ 1754 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1755 1, 0, /* algnmnt, boundary */ 1756 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1757 BUS_SPACE_MAXADDR_32BIT : 1758 0x7fffffff, /* lowaddr */ 1759 BUS_SPACE_MAXADDR, /* highaddr */ 1760 NULL, NULL, /* filter, filterarg */ 1761 sc->aac_max_fibs_alloc * 1762 sc->aac_max_fib_size, /* maxsize */ 1763 1, /* nsegments */ 1764 sc->aac_max_fibs_alloc * 1765 sc->aac_max_fib_size, /* maxsegsize */ 1766 0, /* flags */ 1767 NULL, NULL, /* No locking needed */ 1768 &sc->aac_fib_dmat)) { 1769 device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");; 1770 goto out; 1771 } 1772 1773 /* 1774 * Create DMA tag for the common structure and allocate it. 1775 */ 1776 if (bus_dma_tag_create(sc->aac_parent_dmat, /* parent */ 1777 1, 0, /* algnmnt, boundary */ 1778 (sc->flags & AAC_FLAGS_4GB_WINDOW) ? 1779 BUS_SPACE_MAXADDR_32BIT : 1780 0x7fffffff, /* lowaddr */ 1781 BUS_SPACE_MAXADDR, /* highaddr */ 1782 NULL, NULL, /* filter, filterarg */ 1783 8192 + sizeof(struct aac_common), /* maxsize */ 1784 1, /* nsegments */ 1785 BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 1786 0, /* flags */ 1787 NULL, NULL, /* No locking needed */ 1788 &sc->aac_common_dmat)) { 1789 device_printf(sc->aac_dev, 1790 "can't allocate common structure DMA tag\n"); 1791 goto out; 1792 } 1793 if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common, 1794 BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) { 1795 device_printf(sc->aac_dev, "can't allocate common structure\n"); 1796 goto out; 1797 } 1798 1799 /* 1800 * Work around a bug in the 2120 and 2200 that cannot DMA commands 1801 * below address 8192 in physical memory. 1802 * XXX If the padding is not needed, can it be put to use instead 1803 * of ignored? 1804 */ 1805 (void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap, 1806 sc->aac_common, 8192 + sizeof(*sc->aac_common), 1807 aac_common_map, sc, 0); 1808 1809 if (sc->aac_common_busaddr < 8192) { 1810 sc->aac_common = (struct aac_common *) 1811 ((uint8_t *)sc->aac_common + 8192); 1812 sc->aac_common_busaddr += 8192; 1813 } 1814 bzero(sc->aac_common, sizeof(*sc->aac_common)); 1815 1816 /* Allocate some FIBs and associated command structs */ 1817 TAILQ_INIT(&sc->aac_fibmap_tqh); 1818 sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command), 1819 M_AACBUF, M_WAITOK|M_ZERO); 1820 while (sc->total_fibs < AAC_PREALLOCATE_FIBS) { 1821 if (aac_alloc_commands(sc) != 0) 1822 break; 1823 } 1824 if (sc->total_fibs == 0) 1825 goto out; 1826 1827 /* 1828 * Fill in the init structure. This tells the adapter about the 1829 * physical location of various important shared data structures. 1830 */ 1831 ip = &sc->aac_common->ac_init; 1832 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION; 1833 if (sc->aac_max_fib_size > sizeof(struct aac_fib)) { 1834 ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4; 1835 sc->flags |= AAC_FLAGS_RAW_IO; 1836 } 1837 ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION; 1838 1839 ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr + 1840 offsetof(struct aac_common, ac_fibs); 1841 ip->AdapterFibsVirtualAddress = 0; 1842 ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib); 1843 ip->AdapterFibAlign = sizeof(struct aac_fib); 1844 1845 ip->PrintfBufferAddress = sc->aac_common_busaddr + 1846 offsetof(struct aac_common, ac_printf); 1847 ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE; 1848 1849 /* 1850 * The adapter assumes that pages are 4K in size, except on some 1851 * broken firmware versions that do the page->byte conversion twice, 1852 * therefore 'assuming' that this value is in 16MB units (2^24). 1853 * Round up since the granularity is so high. 1854 */ 1855 ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE; 1856 if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) { 1857 ip->HostPhysMemPages = 1858 (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE; 1859 } 1860 ip->HostElapsedSeconds = time_uptime; /* reset later if invalid */ 1861 1862 ip->InitFlags = 0; 1863 if (sc->flags & AAC_FLAGS_NEW_COMM) { 1864 ip->InitFlags = INITFLAGS_NEW_COMM_SUPPORTED; 1865 device_printf(sc->aac_dev, "New comm. interface enabled\n"); 1866 } 1867 1868 ip->MaxIoCommands = sc->aac_max_fibs; 1869 ip->MaxIoSize = sc->aac_max_sectors << 9; 1870 ip->MaxFibSize = sc->aac_max_fib_size; 1871 1872 /* 1873 * Initialise FIB queues. Note that it appears that the layout of the 1874 * indexes and the segmentation of the entries may be mandated by the 1875 * adapter, which is only told about the base of the queue index fields. 1876 * 1877 * The initial values of the indices are assumed to inform the adapter 1878 * of the sizes of the respective queues, and theoretically it could 1879 * work out the entire layout of the queue structures from this. We 1880 * take the easy route and just lay this area out like everyone else 1881 * does. 1882 * 1883 * The Linux driver uses a much more complex scheme whereby several 1884 * header records are kept for each queue. We use a couple of generic 1885 * list manipulation functions which 'know' the size of each list by 1886 * virtue of a table. 1887 */ 1888 qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN; 1889 qoffset &= ~(AAC_QUEUE_ALIGN - 1); 1890 sc->aac_queues = 1891 (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset); 1892 ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset; 1893 1894 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1895 AAC_HOST_NORM_CMD_ENTRIES; 1896 sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1897 AAC_HOST_NORM_CMD_ENTRIES; 1898 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1899 AAC_HOST_HIGH_CMD_ENTRIES; 1900 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1901 AAC_HOST_HIGH_CMD_ENTRIES; 1902 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1903 AAC_ADAP_NORM_CMD_ENTRIES; 1904 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1905 AAC_ADAP_NORM_CMD_ENTRIES; 1906 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] = 1907 AAC_ADAP_HIGH_CMD_ENTRIES; 1908 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] = 1909 AAC_ADAP_HIGH_CMD_ENTRIES; 1910 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1911 AAC_HOST_NORM_RESP_ENTRIES; 1912 sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1913 AAC_HOST_NORM_RESP_ENTRIES; 1914 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1915 AAC_HOST_HIGH_RESP_ENTRIES; 1916 sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1917 AAC_HOST_HIGH_RESP_ENTRIES; 1918 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1919 AAC_ADAP_NORM_RESP_ENTRIES; 1920 sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1921 AAC_ADAP_NORM_RESP_ENTRIES; 1922 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]= 1923 AAC_ADAP_HIGH_RESP_ENTRIES; 1924 sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]= 1925 AAC_ADAP_HIGH_RESP_ENTRIES; 1926 sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] = 1927 &sc->aac_queues->qt_HostNormCmdQueue[0]; 1928 sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] = 1929 &sc->aac_queues->qt_HostHighCmdQueue[0]; 1930 sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] = 1931 &sc->aac_queues->qt_AdapNormCmdQueue[0]; 1932 sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] = 1933 &sc->aac_queues->qt_AdapHighCmdQueue[0]; 1934 sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] = 1935 &sc->aac_queues->qt_HostNormRespQueue[0]; 1936 sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] = 1937 &sc->aac_queues->qt_HostHighRespQueue[0]; 1938 sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] = 1939 &sc->aac_queues->qt_AdapNormRespQueue[0]; 1940 sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] = 1941 &sc->aac_queues->qt_AdapHighRespQueue[0]; 1942 1943 /* 1944 * Do controller-type-specific initialisation 1945 */ 1946 switch (sc->aac_hwif) { 1947 case AAC_HWIF_I960RX: 1948 AAC_SETREG4(sc, AAC_RX_ODBR, ~0); 1949 break; 1950 case AAC_HWIF_RKT: 1951 AAC_SETREG4(sc, AAC_RKT_ODBR, ~0); 1952 break; 1953 default: 1954 break; 1955 } 1956 1957 /* 1958 * Give the init structure to the controller. 1959 */ 1960 if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT, 1961 sc->aac_common_busaddr + 1962 offsetof(struct aac_common, ac_init), 0, 0, 0, 1963 NULL)) { 1964 device_printf(sc->aac_dev, 1965 "error establishing init structure\n"); 1966 error = EIO; 1967 goto out; 1968 } 1969 1970 error = 0; 1971 out: 1972 return(error); 1973 } 1974 1975 /* 1976 * Send a synchronous command to the controller and wait for a result. 1977 * Indicate if the controller completed the command with an error status. 1978 */ 1979 static int 1980 aac_sync_command(struct aac_softc *sc, u_int32_t command, 1981 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3, 1982 u_int32_t *sp) 1983 { 1984 time_t then; 1985 u_int32_t status; 1986 1987 debug_called(3); 1988 1989 /* populate the mailbox */ 1990 AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3); 1991 1992 /* ensure the sync command doorbell flag is cleared */ 1993 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 1994 1995 /* then set it to signal the adapter */ 1996 AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND); 1997 1998 /* spin waiting for the command to complete */ 1999 then = time_uptime; 2000 do { 2001 if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) { 2002 debug(1, "timed out"); 2003 return(EIO); 2004 } 2005 } while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND)); 2006 2007 /* clear the completion flag */ 2008 AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND); 2009 2010 /* get the command status */ 2011 status = AAC_GET_MAILBOX(sc, 0); 2012 if (sp != NULL) 2013 *sp = status; 2014 2015 if (status != AAC_SRB_STS_SUCCESS) 2016 return (-1); 2017 return(0); 2018 } 2019 2020 int 2021 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate, 2022 struct aac_fib *fib, u_int16_t datasize) 2023 { 2024 debug_called(3); 2025 mtx_assert(&sc->aac_io_lock, MA_OWNED); 2026 2027 if (datasize > AAC_FIB_DATASIZE) 2028 return(EINVAL); 2029 2030 /* 2031 * Set up the sync FIB 2032 */ 2033 fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED | 2034 AAC_FIBSTATE_INITIALISED | 2035 AAC_FIBSTATE_EMPTY; 2036 fib->Header.XferState |= xferstate; 2037 fib->Header.Command = command; 2038 fib->Header.StructType = AAC_FIBTYPE_TFIB; 2039 fib->Header.Size = sizeof(struct aac_fib) + datasize; 2040 fib->Header.SenderSize = sizeof(struct aac_fib); 2041 fib->Header.SenderFibAddress = 0; /* Not needed */ 2042 fib->Header.ReceiverFibAddress = sc->aac_common_busaddr + 2043 offsetof(struct aac_common, 2044 ac_sync_fib); 2045 2046 /* 2047 * Give the FIB to the controller, wait for a response. 2048 */ 2049 if (aac_sync_command(sc, AAC_MONKER_SYNCFIB, 2050 fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) { 2051 debug(2, "IO error"); 2052 return(EIO); 2053 } 2054 2055 return (0); 2056 } 2057 2058 /* 2059 * Adapter-space FIB queue manipulation 2060 * 2061 * Note that the queue implementation here is a little funky; neither the PI or 2062 * CI will ever be zero. This behaviour is a controller feature. 2063 */ 2064 static struct { 2065 int size; 2066 int notify; 2067 } aac_qinfo[] = { 2068 {AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL}, 2069 {AAC_HOST_HIGH_CMD_ENTRIES, 0}, 2070 {AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY}, 2071 {AAC_ADAP_HIGH_CMD_ENTRIES, 0}, 2072 {AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL}, 2073 {AAC_HOST_HIGH_RESP_ENTRIES, 0}, 2074 {AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY}, 2075 {AAC_ADAP_HIGH_RESP_ENTRIES, 0} 2076 }; 2077 2078 /* 2079 * Atomically insert an entry into the nominated queue, returns 0 on success or 2080 * EBUSY if the queue is full. 2081 * 2082 * Note: it would be more efficient to defer notifying the controller in 2083 * the case where we may be inserting several entries in rapid succession, 2084 * but implementing this usefully may be difficult (it would involve a 2085 * separate queue/notify interface). 2086 */ 2087 static int 2088 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm) 2089 { 2090 u_int32_t pi, ci; 2091 int error; 2092 u_int32_t fib_size; 2093 u_int32_t fib_addr; 2094 2095 debug_called(3); 2096 2097 fib_size = cm->cm_fib->Header.Size; 2098 fib_addr = cm->cm_fib->Header.ReceiverFibAddress; 2099 2100 /* get the producer/consumer indices */ 2101 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2102 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2103 2104 /* wrap the queue? */ 2105 if (pi >= aac_qinfo[queue].size) 2106 pi = 0; 2107 2108 /* check for queue full */ 2109 if ((pi + 1) == ci) { 2110 error = EBUSY; 2111 goto out; 2112 } 2113 2114 /* 2115 * To avoid a race with its completion interrupt, place this command on 2116 * the busy queue prior to advertising it to the controller. 2117 */ 2118 aac_enqueue_busy(cm); 2119 2120 /* populate queue entry */ 2121 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 2122 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 2123 2124 /* update producer index */ 2125 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 2126 2127 /* notify the adapter if we know how */ 2128 if (aac_qinfo[queue].notify != 0) 2129 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2130 2131 error = 0; 2132 2133 out: 2134 return(error); 2135 } 2136 2137 /* 2138 * Atomically remove one entry from the nominated queue, returns 0 on 2139 * success or ENOENT if the queue is empty. 2140 */ 2141 static int 2142 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size, 2143 struct aac_fib **fib_addr) 2144 { 2145 u_int32_t pi, ci; 2146 u_int32_t fib_index; 2147 int error; 2148 int notify; 2149 2150 debug_called(3); 2151 2152 /* get the producer/consumer indices */ 2153 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2154 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2155 2156 /* check for queue empty */ 2157 if (ci == pi) { 2158 error = ENOENT; 2159 goto out; 2160 } 2161 2162 /* wrap the pi so the following test works */ 2163 if (pi >= aac_qinfo[queue].size) 2164 pi = 0; 2165 2166 notify = 0; 2167 if (ci == pi + 1) 2168 notify++; 2169 2170 /* wrap the queue? */ 2171 if (ci >= aac_qinfo[queue].size) 2172 ci = 0; 2173 2174 /* fetch the entry */ 2175 *fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size; 2176 2177 switch (queue) { 2178 case AAC_HOST_NORM_CMD_QUEUE: 2179 case AAC_HOST_HIGH_CMD_QUEUE: 2180 /* 2181 * The aq_fib_addr is only 32 bits wide so it can't be counted 2182 * on to hold an address. For AIF's, the adapter assumes 2183 * that it's giving us an address into the array of AIF fibs. 2184 * Therefore, we have to convert it to an index. 2185 */ 2186 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr / 2187 sizeof(struct aac_fib); 2188 *fib_addr = &sc->aac_common->ac_fibs[fib_index]; 2189 break; 2190 2191 case AAC_HOST_NORM_RESP_QUEUE: 2192 case AAC_HOST_HIGH_RESP_QUEUE: 2193 { 2194 struct aac_command *cm; 2195 2196 /* 2197 * As above, an index is used instead of an actual address. 2198 * Gotta shift the index to account for the fast response 2199 * bit. No other correction is needed since this value was 2200 * originally provided by the driver via the SenderFibAddress 2201 * field. 2202 */ 2203 fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr; 2204 cm = sc->aac_commands + (fib_index >> 2); 2205 *fib_addr = cm->cm_fib; 2206 2207 /* 2208 * Is this a fast response? If it is, update the fib fields in 2209 * local memory since the whole fib isn't DMA'd back up. 2210 */ 2211 if (fib_index & 0x01) { 2212 (*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP; 2213 *((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL; 2214 } 2215 break; 2216 } 2217 default: 2218 panic("Invalid queue in aac_dequeue_fib()"); 2219 break; 2220 } 2221 2222 /* update consumer index */ 2223 sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1; 2224 2225 /* if we have made the queue un-full, notify the adapter */ 2226 if (notify && (aac_qinfo[queue].notify != 0)) 2227 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2228 error = 0; 2229 2230 out: 2231 return(error); 2232 } 2233 2234 /* 2235 * Put our response to an Adapter Initialed Fib on the response queue 2236 */ 2237 static int 2238 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib) 2239 { 2240 u_int32_t pi, ci; 2241 int error; 2242 u_int32_t fib_size; 2243 u_int32_t fib_addr; 2244 2245 debug_called(1); 2246 2247 /* Tell the adapter where the FIB is */ 2248 fib_size = fib->Header.Size; 2249 fib_addr = fib->Header.SenderFibAddress; 2250 fib->Header.ReceiverFibAddress = fib_addr; 2251 2252 /* get the producer/consumer indices */ 2253 pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX]; 2254 ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX]; 2255 2256 /* wrap the queue? */ 2257 if (pi >= aac_qinfo[queue].size) 2258 pi = 0; 2259 2260 /* check for queue full */ 2261 if ((pi + 1) == ci) { 2262 error = EBUSY; 2263 goto out; 2264 } 2265 2266 /* populate queue entry */ 2267 (sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size; 2268 (sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr; 2269 2270 /* update producer index */ 2271 sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1; 2272 2273 /* notify the adapter if we know how */ 2274 if (aac_qinfo[queue].notify != 0) 2275 AAC_QNOTIFY(sc, aac_qinfo[queue].notify); 2276 2277 error = 0; 2278 2279 out: 2280 return(error); 2281 } 2282 2283 /* 2284 * Check for commands that have been outstanding for a suspiciously long time, 2285 * and complain about them. 2286 */ 2287 static void 2288 aac_timeout(struct aac_softc *sc) 2289 { 2290 struct aac_command *cm; 2291 time_t deadline; 2292 int timedout, code; 2293 2294 /* 2295 * Traverse the busy command list, bitch about late commands once 2296 * only. 2297 */ 2298 timedout = 0; 2299 deadline = time_uptime - AAC_CMD_TIMEOUT; 2300 TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) { 2301 if ((cm->cm_timestamp < deadline) 2302 /* && !(cm->cm_flags & AAC_CMD_TIMEDOUT) */) { 2303 cm->cm_flags |= AAC_CMD_TIMEDOUT; 2304 device_printf(sc->aac_dev, 2305 "COMMAND %p TIMEOUT AFTER %d SECONDS\n", 2306 cm, (int)(time_uptime-cm->cm_timestamp)); 2307 AAC_PRINT_FIB(sc, cm->cm_fib); 2308 timedout++; 2309 } 2310 } 2311 2312 if (timedout) { 2313 code = AAC_GET_FWSTATUS(sc); 2314 if (code != AAC_UP_AND_RUNNING) { 2315 device_printf(sc->aac_dev, "WARNING! Controller is no " 2316 "longer running! code= 0x%x\n", code); 2317 } 2318 } 2319 return; 2320 } 2321 2322 /* 2323 * Interface Function Vectors 2324 */ 2325 2326 /* 2327 * Read the current firmware status word. 2328 */ 2329 static int 2330 aac_sa_get_fwstatus(struct aac_softc *sc) 2331 { 2332 debug_called(3); 2333 2334 return(AAC_GETREG4(sc, AAC_SA_FWSTATUS)); 2335 } 2336 2337 static int 2338 aac_rx_get_fwstatus(struct aac_softc *sc) 2339 { 2340 debug_called(3); 2341 2342 return(AAC_GETREG4(sc, AAC_RX_FWSTATUS)); 2343 } 2344 2345 static int 2346 aac_fa_get_fwstatus(struct aac_softc *sc) 2347 { 2348 int val; 2349 2350 debug_called(3); 2351 2352 val = AAC_GETREG4(sc, AAC_FA_FWSTATUS); 2353 return (val); 2354 } 2355 2356 static int 2357 aac_rkt_get_fwstatus(struct aac_softc *sc) 2358 { 2359 debug_called(3); 2360 2361 return(AAC_GETREG4(sc, AAC_RKT_FWSTATUS)); 2362 } 2363 2364 /* 2365 * Notify the controller of a change in a given queue 2366 */ 2367 2368 static void 2369 aac_sa_qnotify(struct aac_softc *sc, int qbit) 2370 { 2371 debug_called(3); 2372 2373 AAC_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit); 2374 } 2375 2376 static void 2377 aac_rx_qnotify(struct aac_softc *sc, int qbit) 2378 { 2379 debug_called(3); 2380 2381 AAC_SETREG4(sc, AAC_RX_IDBR, qbit); 2382 } 2383 2384 static void 2385 aac_fa_qnotify(struct aac_softc *sc, int qbit) 2386 { 2387 debug_called(3); 2388 2389 AAC_SETREG2(sc, AAC_FA_DOORBELL1, qbit); 2390 AAC_FA_HACK(sc); 2391 } 2392 2393 static void 2394 aac_rkt_qnotify(struct aac_softc *sc, int qbit) 2395 { 2396 debug_called(3); 2397 2398 AAC_SETREG4(sc, AAC_RKT_IDBR, qbit); 2399 } 2400 2401 /* 2402 * Get the interrupt reason bits 2403 */ 2404 static int 2405 aac_sa_get_istatus(struct aac_softc *sc) 2406 { 2407 debug_called(3); 2408 2409 return(AAC_GETREG2(sc, AAC_SA_DOORBELL0)); 2410 } 2411 2412 static int 2413 aac_rx_get_istatus(struct aac_softc *sc) 2414 { 2415 debug_called(3); 2416 2417 return(AAC_GETREG4(sc, AAC_RX_ODBR)); 2418 } 2419 2420 static int 2421 aac_fa_get_istatus(struct aac_softc *sc) 2422 { 2423 int val; 2424 2425 debug_called(3); 2426 2427 val = AAC_GETREG2(sc, AAC_FA_DOORBELL0); 2428 return (val); 2429 } 2430 2431 static int 2432 aac_rkt_get_istatus(struct aac_softc *sc) 2433 { 2434 debug_called(3); 2435 2436 return(AAC_GETREG4(sc, AAC_RKT_ODBR)); 2437 } 2438 2439 /* 2440 * Clear some interrupt reason bits 2441 */ 2442 static void 2443 aac_sa_clear_istatus(struct aac_softc *sc, int mask) 2444 { 2445 debug_called(3); 2446 2447 AAC_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask); 2448 } 2449 2450 static void 2451 aac_rx_clear_istatus(struct aac_softc *sc, int mask) 2452 { 2453 debug_called(3); 2454 2455 AAC_SETREG4(sc, AAC_RX_ODBR, mask); 2456 } 2457 2458 static void 2459 aac_fa_clear_istatus(struct aac_softc *sc, int mask) 2460 { 2461 debug_called(3); 2462 2463 AAC_SETREG2(sc, AAC_FA_DOORBELL0_CLEAR, mask); 2464 AAC_FA_HACK(sc); 2465 } 2466 2467 static void 2468 aac_rkt_clear_istatus(struct aac_softc *sc, int mask) 2469 { 2470 debug_called(3); 2471 2472 AAC_SETREG4(sc, AAC_RKT_ODBR, mask); 2473 } 2474 2475 /* 2476 * Populate the mailbox and set the command word 2477 */ 2478 static void 2479 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2480 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2481 { 2482 debug_called(4); 2483 2484 AAC_SETREG4(sc, AAC_SA_MAILBOX, command); 2485 AAC_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0); 2486 AAC_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1); 2487 AAC_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2); 2488 AAC_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3); 2489 } 2490 2491 static void 2492 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command, 2493 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2494 { 2495 debug_called(4); 2496 2497 AAC_SETREG4(sc, AAC_RX_MAILBOX, command); 2498 AAC_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0); 2499 AAC_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1); 2500 AAC_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2); 2501 AAC_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3); 2502 } 2503 2504 static void 2505 aac_fa_set_mailbox(struct aac_softc *sc, u_int32_t command, 2506 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2507 { 2508 debug_called(4); 2509 2510 AAC_SETREG4(sc, AAC_FA_MAILBOX, command); 2511 AAC_FA_HACK(sc); 2512 AAC_SETREG4(sc, AAC_FA_MAILBOX + 4, arg0); 2513 AAC_FA_HACK(sc); 2514 AAC_SETREG4(sc, AAC_FA_MAILBOX + 8, arg1); 2515 AAC_FA_HACK(sc); 2516 AAC_SETREG4(sc, AAC_FA_MAILBOX + 12, arg2); 2517 AAC_FA_HACK(sc); 2518 AAC_SETREG4(sc, AAC_FA_MAILBOX + 16, arg3); 2519 AAC_FA_HACK(sc); 2520 } 2521 2522 static void 2523 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0, 2524 u_int32_t arg1, u_int32_t arg2, u_int32_t arg3) 2525 { 2526 debug_called(4); 2527 2528 AAC_SETREG4(sc, AAC_RKT_MAILBOX, command); 2529 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0); 2530 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1); 2531 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2); 2532 AAC_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3); 2533 } 2534 2535 /* 2536 * Fetch the immediate command status word 2537 */ 2538 static int 2539 aac_sa_get_mailbox(struct aac_softc *sc, int mb) 2540 { 2541 debug_called(4); 2542 2543 return(AAC_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4))); 2544 } 2545 2546 static int 2547 aac_rx_get_mailbox(struct aac_softc *sc, int mb) 2548 { 2549 debug_called(4); 2550 2551 return(AAC_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4))); 2552 } 2553 2554 static int 2555 aac_fa_get_mailbox(struct aac_softc *sc, int mb) 2556 { 2557 int val; 2558 2559 debug_called(4); 2560 2561 val = AAC_GETREG4(sc, AAC_FA_MAILBOX + (mb * 4)); 2562 return (val); 2563 } 2564 2565 static int 2566 aac_rkt_get_mailbox(struct aac_softc *sc, int mb) 2567 { 2568 debug_called(4); 2569 2570 return(AAC_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4))); 2571 } 2572 2573 /* 2574 * Set/clear interrupt masks 2575 */ 2576 static void 2577 aac_sa_set_interrupts(struct aac_softc *sc, int enable) 2578 { 2579 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2580 2581 if (enable) { 2582 AAC_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2583 } else { 2584 AAC_SETREG2((sc), AAC_SA_MASK0_SET, ~0); 2585 } 2586 } 2587 2588 static void 2589 aac_rx_set_interrupts(struct aac_softc *sc, int enable) 2590 { 2591 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2592 2593 if (enable) { 2594 if (sc->flags & AAC_FLAGS_NEW_COMM) 2595 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM); 2596 else 2597 AAC_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS); 2598 } else { 2599 AAC_SETREG4(sc, AAC_RX_OIMR, ~0); 2600 } 2601 } 2602 2603 static void 2604 aac_fa_set_interrupts(struct aac_softc *sc, int enable) 2605 { 2606 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2607 2608 if (enable) { 2609 AAC_SETREG2((sc), AAC_FA_MASK0_CLEAR, AAC_DB_INTERRUPTS); 2610 AAC_FA_HACK(sc); 2611 } else { 2612 AAC_SETREG2((sc), AAC_FA_MASK0, ~0); 2613 AAC_FA_HACK(sc); 2614 } 2615 } 2616 2617 static void 2618 aac_rkt_set_interrupts(struct aac_softc *sc, int enable) 2619 { 2620 debug(2, "%sable interrupts", enable ? "en" : "dis"); 2621 2622 if (enable) { 2623 if (sc->flags & AAC_FLAGS_NEW_COMM) 2624 AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM); 2625 else 2626 AAC_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS); 2627 } else { 2628 AAC_SETREG4(sc, AAC_RKT_OIMR, ~0); 2629 } 2630 } 2631 2632 /* 2633 * New comm. interface: Send command functions 2634 */ 2635 static int 2636 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm) 2637 { 2638 u_int32_t index, device; 2639 2640 debug(2, "send command (new comm.)"); 2641 2642 index = AAC_GETREG4(sc, AAC_RX_IQUE); 2643 if (index == 0xffffffffL) 2644 index = AAC_GETREG4(sc, AAC_RX_IQUE); 2645 if (index == 0xffffffffL) 2646 return index; 2647 aac_enqueue_busy(cm); 2648 device = index; 2649 AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL)); 2650 device += 4; 2651 AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32)); 2652 device += 4; 2653 AAC_SETREG4(sc, device, cm->cm_fib->Header.Size); 2654 AAC_SETREG4(sc, AAC_RX_IQUE, index); 2655 return 0; 2656 } 2657 2658 static int 2659 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm) 2660 { 2661 u_int32_t index, device; 2662 2663 debug(2, "send command (new comm.)"); 2664 2665 index = AAC_GETREG4(sc, AAC_RKT_IQUE); 2666 if (index == 0xffffffffL) 2667 index = AAC_GETREG4(sc, AAC_RKT_IQUE); 2668 if (index == 0xffffffffL) 2669 return index; 2670 aac_enqueue_busy(cm); 2671 device = index; 2672 AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL)); 2673 device += 4; 2674 AAC_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32)); 2675 device += 4; 2676 AAC_SETREG4(sc, device, cm->cm_fib->Header.Size); 2677 AAC_SETREG4(sc, AAC_RKT_IQUE, index); 2678 return 0; 2679 } 2680 2681 /* 2682 * New comm. interface: get, set outbound queue index 2683 */ 2684 static int 2685 aac_rx_get_outb_queue(struct aac_softc *sc) 2686 { 2687 debug_called(3); 2688 2689 return(AAC_GETREG4(sc, AAC_RX_OQUE)); 2690 } 2691 2692 static int 2693 aac_rkt_get_outb_queue(struct aac_softc *sc) 2694 { 2695 debug_called(3); 2696 2697 return(AAC_GETREG4(sc, AAC_RKT_OQUE)); 2698 } 2699 2700 static void 2701 aac_rx_set_outb_queue(struct aac_softc *sc, int index) 2702 { 2703 debug_called(3); 2704 2705 AAC_SETREG4(sc, AAC_RX_OQUE, index); 2706 } 2707 2708 static void 2709 aac_rkt_set_outb_queue(struct aac_softc *sc, int index) 2710 { 2711 debug_called(3); 2712 2713 AAC_SETREG4(sc, AAC_RKT_OQUE, index); 2714 } 2715 2716 /* 2717 * Debugging and Diagnostics 2718 */ 2719 2720 /* 2721 * Print some information about the controller. 2722 */ 2723 static void 2724 aac_describe_controller(struct aac_softc *sc) 2725 { 2726 struct aac_fib *fib; 2727 struct aac_adapter_info *info; 2728 2729 debug_called(2); 2730 2731 mtx_lock(&sc->aac_io_lock); 2732 aac_alloc_sync_fib(sc, &fib); 2733 2734 fib->data[0] = 0; 2735 if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) { 2736 device_printf(sc->aac_dev, "RequestAdapterInfo failed\n"); 2737 aac_release_sync_fib(sc); 2738 mtx_unlock(&sc->aac_io_lock); 2739 return; 2740 } 2741 2742 /* save the kernel revision structure for later use */ 2743 info = (struct aac_adapter_info *)&fib->data[0]; 2744 sc->aac_revision = info->KernelRevision; 2745 2746 device_printf(sc->aac_dev, "Adaptec Raid Controller %d.%d.%d-%d\n", 2747 AAC_DRIVER_VERSION >> 24, 2748 (AAC_DRIVER_VERSION >> 16) & 0xFF, 2749 AAC_DRIVER_VERSION & 0xFF, 2750 AAC_DRIVER_BUILD); 2751 2752 if (bootverbose) { 2753 device_printf(sc->aac_dev, "%s %dMHz, %dMB memory " 2754 "(%dMB cache, %dMB execution), %s\n", 2755 aac_describe_code(aac_cpu_variant, info->CpuVariant), 2756 info->ClockSpeed, info->TotalMem / (1024 * 1024), 2757 info->BufferMem / (1024 * 1024), 2758 info->ExecutionMem / (1024 * 1024), 2759 aac_describe_code(aac_battery_platform, 2760 info->batteryPlatform)); 2761 2762 device_printf(sc->aac_dev, 2763 "Kernel %d.%d-%d, Build %d, S/N %6X\n", 2764 info->KernelRevision.external.comp.major, 2765 info->KernelRevision.external.comp.minor, 2766 info->KernelRevision.external.comp.dash, 2767 info->KernelRevision.buildNumber, 2768 (u_int32_t)(info->SerialNumber & 0xffffff)); 2769 2770 device_printf(sc->aac_dev, "Supported Options=%b\n", 2771 sc->supported_options, 2772 "\20" 2773 "\1SNAPSHOT" 2774 "\2CLUSTERS" 2775 "\3WCACHE" 2776 "\4DATA64" 2777 "\5HOSTTIME" 2778 "\6RAID50" 2779 "\7WINDOW4GB" 2780 "\10SCSIUPGD" 2781 "\11SOFTERR" 2782 "\12NORECOND" 2783 "\13SGMAP64" 2784 "\14ALARM" 2785 "\15NONDASD" 2786 "\16SCSIMGT" 2787 "\17RAIDSCSI" 2788 "\21ADPTINFO" 2789 "\22NEWCOMM" 2790 "\23ARRAY64BIT" 2791 "\24HEATSENSOR"); 2792 } 2793 aac_release_sync_fib(sc); 2794 mtx_unlock(&sc->aac_io_lock); 2795 } 2796 2797 /* 2798 * Look up a text description of a numeric error code and return a pointer to 2799 * same. 2800 */ 2801 static char * 2802 aac_describe_code(struct aac_code_lookup *table, u_int32_t code) 2803 { 2804 int i; 2805 2806 for (i = 0; table[i].string != NULL; i++) 2807 if (table[i].code == code) 2808 return(table[i].string); 2809 return(table[i + 1].string); 2810 } 2811 2812 /* 2813 * Management Interface 2814 */ 2815 2816 static int 2817 aac_open(struct cdev *dev, int flags, int fmt, d_thread_t *td) 2818 { 2819 struct aac_softc *sc; 2820 2821 debug_called(2); 2822 2823 sc = dev->si_drv1; 2824 2825 /* Check to make sure the device isn't already open */ 2826 if (sc->aac_state & AAC_STATE_OPEN) { 2827 return EBUSY; 2828 } 2829 sc->aac_state |= AAC_STATE_OPEN; 2830 2831 return 0; 2832 } 2833 2834 static int 2835 aac_close(struct cdev *dev, int flags, int fmt, d_thread_t *td) 2836 { 2837 struct aac_softc *sc; 2838 2839 debug_called(2); 2840 2841 sc = dev->si_drv1; 2842 2843 /* Mark this unit as no longer open */ 2844 sc->aac_state &= ~AAC_STATE_OPEN; 2845 2846 return 0; 2847 } 2848 2849 static int 2850 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, d_thread_t *td) 2851 { 2852 union aac_statrequest *as; 2853 struct aac_softc *sc; 2854 int error = 0; 2855 uint32_t cookie; 2856 2857 debug_called(2); 2858 2859 as = (union aac_statrequest *)arg; 2860 sc = dev->si_drv1; 2861 2862 switch (cmd) { 2863 case AACIO_STATS: 2864 switch (as->as_item) { 2865 case AACQ_FREE: 2866 case AACQ_BIO: 2867 case AACQ_READY: 2868 case AACQ_BUSY: 2869 bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat, 2870 sizeof(struct aac_qstat)); 2871 break; 2872 default: 2873 error = ENOENT; 2874 break; 2875 } 2876 break; 2877 2878 case FSACTL_SENDFIB: 2879 arg = *(caddr_t*)arg; 2880 case FSACTL_LNX_SENDFIB: 2881 debug(1, "FSACTL_SENDFIB"); 2882 error = aac_ioctl_sendfib(sc, arg); 2883 break; 2884 case FSACTL_AIF_THREAD: 2885 case FSACTL_LNX_AIF_THREAD: 2886 debug(1, "FSACTL_AIF_THREAD"); 2887 error = EINVAL; 2888 break; 2889 case FSACTL_OPEN_GET_ADAPTER_FIB: 2890 arg = *(caddr_t*)arg; 2891 case FSACTL_LNX_OPEN_GET_ADAPTER_FIB: 2892 debug(1, "FSACTL_OPEN_GET_ADAPTER_FIB"); 2893 /* 2894 * Pass the caller out an AdapterFibContext. 2895 * 2896 * Note that because we only support one opener, we 2897 * basically ignore this. Set the caller's context to a magic 2898 * number just in case. 2899 * 2900 * The Linux code hands the driver a pointer into kernel space, 2901 * and then trusts it when the caller hands it back. Aiee! 2902 * Here, we give it the proc pointer of the per-adapter aif 2903 * thread. It's only used as a sanity check in other calls. 2904 */ 2905 cookie = (uint32_t)(uintptr_t)sc->aifthread; 2906 error = copyout(&cookie, arg, sizeof(cookie)); 2907 break; 2908 case FSACTL_GET_NEXT_ADAPTER_FIB: 2909 arg = *(caddr_t*)arg; 2910 case FSACTL_LNX_GET_NEXT_ADAPTER_FIB: 2911 debug(1, "FSACTL_GET_NEXT_ADAPTER_FIB"); 2912 error = aac_getnext_aif(sc, arg); 2913 break; 2914 case FSACTL_CLOSE_GET_ADAPTER_FIB: 2915 case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB: 2916 debug(1, "FSACTL_CLOSE_GET_ADAPTER_FIB"); 2917 /* don't do anything here */ 2918 break; 2919 case FSACTL_MINIPORT_REV_CHECK: 2920 arg = *(caddr_t*)arg; 2921 case FSACTL_LNX_MINIPORT_REV_CHECK: 2922 debug(1, "FSACTL_MINIPORT_REV_CHECK"); 2923 error = aac_rev_check(sc, arg); 2924 break; 2925 case FSACTL_QUERY_DISK: 2926 arg = *(caddr_t*)arg; 2927 case FSACTL_LNX_QUERY_DISK: 2928 debug(1, "FSACTL_QUERY_DISK"); 2929 error = aac_query_disk(sc, arg); 2930 break; 2931 case FSACTL_DELETE_DISK: 2932 case FSACTL_LNX_DELETE_DISK: 2933 /* 2934 * We don't trust the underland to tell us when to delete a 2935 * container, rather we rely on an AIF coming from the 2936 * controller 2937 */ 2938 error = 0; 2939 break; 2940 case FSACTL_GET_PCI_INFO: 2941 arg = *(caddr_t*)arg; 2942 case FSACTL_LNX_GET_PCI_INFO: 2943 debug(1, "FSACTL_GET_PCI_INFO"); 2944 error = aac_get_pci_info(sc, arg); 2945 break; 2946 default: 2947 debug(1, "unsupported cmd 0x%lx\n", cmd); 2948 error = EINVAL; 2949 break; 2950 } 2951 return(error); 2952 } 2953 2954 static int 2955 aac_poll(struct cdev *dev, int poll_events, d_thread_t *td) 2956 { 2957 struct aac_softc *sc; 2958 int revents; 2959 2960 sc = dev->si_drv1; 2961 revents = 0; 2962 2963 mtx_lock(&sc->aac_aifq_lock); 2964 if ((poll_events & (POLLRDNORM | POLLIN)) != 0) { 2965 if (sc->aac_aifq_tail != sc->aac_aifq_head) 2966 revents |= poll_events & (POLLIN | POLLRDNORM); 2967 } 2968 mtx_unlock(&sc->aac_aifq_lock); 2969 2970 if (revents == 0) { 2971 if (poll_events & (POLLIN | POLLRDNORM)) 2972 selrecord(td, &sc->rcv_select); 2973 } 2974 2975 return (revents); 2976 } 2977 2978 static void 2979 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg) 2980 { 2981 2982 switch (event->ev_type) { 2983 case AAC_EVENT_CMFREE: 2984 mtx_lock(&sc->aac_io_lock); 2985 if (aac_alloc_command(sc, (struct aac_command **)arg)) { 2986 aac_add_event(sc, event); 2987 mtx_unlock(&sc->aac_io_lock); 2988 return; 2989 } 2990 free(event, M_AACBUF); 2991 wakeup(arg); 2992 mtx_unlock(&sc->aac_io_lock); 2993 break; 2994 default: 2995 break; 2996 } 2997 } 2998 2999 /* 3000 * Send a FIB supplied from userspace 3001 */ 3002 static int 3003 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib) 3004 { 3005 struct aac_command *cm; 3006 int size, error; 3007 3008 debug_called(2); 3009 3010 cm = NULL; 3011 3012 /* 3013 * Get a command 3014 */ 3015 mtx_lock(&sc->aac_io_lock); 3016 if (aac_alloc_command(sc, &cm)) { 3017 struct aac_event *event; 3018 3019 event = malloc(sizeof(struct aac_event), M_AACBUF, 3020 M_NOWAIT | M_ZERO); 3021 if (event == NULL) { 3022 error = EBUSY; 3023 goto out; 3024 } 3025 event->ev_type = AAC_EVENT_CMFREE; 3026 event->ev_callback = aac_ioctl_event; 3027 event->ev_arg = &cm; 3028 aac_add_event(sc, event); 3029 msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0); 3030 } 3031 mtx_unlock(&sc->aac_io_lock); 3032 3033 /* 3034 * Fetch the FIB header, then re-copy to get data as well. 3035 */ 3036 if ((error = copyin(ufib, cm->cm_fib, 3037 sizeof(struct aac_fib_header))) != 0) 3038 goto out; 3039 size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header); 3040 if (size > sizeof(struct aac_fib)) { 3041 device_printf(sc->aac_dev, "incoming FIB oversized (%d > %zd)\n", 3042 size, sizeof(struct aac_fib)); 3043 size = sizeof(struct aac_fib); 3044 } 3045 if ((error = copyin(ufib, cm->cm_fib, size)) != 0) 3046 goto out; 3047 cm->cm_fib->Header.Size = size; 3048 cm->cm_timestamp = time_uptime; 3049 3050 /* 3051 * Pass the FIB to the controller, wait for it to complete. 3052 */ 3053 mtx_lock(&sc->aac_io_lock); 3054 if ((error = aac_wait_command(cm)) != 0) { 3055 device_printf(sc->aac_dev, 3056 "aac_wait_command return %d\n", error); 3057 goto out; 3058 } 3059 mtx_unlock(&sc->aac_io_lock); 3060 3061 /* 3062 * Copy the FIB and data back out to the caller. 3063 */ 3064 size = cm->cm_fib->Header.Size; 3065 if (size > sizeof(struct aac_fib)) { 3066 device_printf(sc->aac_dev, "outbound FIB oversized (%d > %zd)\n", 3067 size, sizeof(struct aac_fib)); 3068 size = sizeof(struct aac_fib); 3069 } 3070 error = copyout(cm->cm_fib, ufib, size); 3071 mtx_lock(&sc->aac_io_lock); 3072 3073 out: 3074 if (cm != NULL) { 3075 aac_release_command(cm); 3076 } 3077 3078 mtx_unlock(&sc->aac_io_lock); 3079 return(error); 3080 } 3081 3082 /* 3083 * Handle an AIF sent to us by the controller; queue it for later reference. 3084 * If the queue fills up, then drop the older entries. 3085 */ 3086 static void 3087 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib) 3088 { 3089 struct aac_aif_command *aif; 3090 struct aac_container *co, *co_next; 3091 struct aac_mntinfo *mi; 3092 struct aac_mntinforesp *mir = NULL; 3093 u_int16_t rsize; 3094 int next, found; 3095 int count = 0, added = 0, i = 0; 3096 3097 debug_called(2); 3098 3099 aif = (struct aac_aif_command*)&fib->data[0]; 3100 aac_print_aif(sc, aif); 3101 3102 /* Is it an event that we should care about? */ 3103 switch (aif->command) { 3104 case AifCmdEventNotify: 3105 switch (aif->data.EN.type) { 3106 case AifEnAddContainer: 3107 case AifEnDeleteContainer: 3108 /* 3109 * A container was added or deleted, but the message 3110 * doesn't tell us anything else! Re-enumerate the 3111 * containers and sort things out. 3112 */ 3113 aac_alloc_sync_fib(sc, &fib); 3114 mi = (struct aac_mntinfo *)&fib->data[0]; 3115 do { 3116 /* 3117 * Ask the controller for its containers one at 3118 * a time. 3119 * XXX What if the controller's list changes 3120 * midway through this enumaration? 3121 * XXX This should be done async. 3122 */ 3123 bzero(mi, sizeof(struct aac_mntinfo)); 3124 mi->Command = VM_NameServe; 3125 mi->MntType = FT_FILESYS; 3126 mi->MntCount = i; 3127 rsize = sizeof(mir); 3128 if (aac_sync_fib(sc, ContainerCommand, 0, fib, 3129 sizeof(struct aac_mntinfo))) { 3130 printf("Error probing container %d\n", 3131 i); 3132 continue; 3133 } 3134 mir = (struct aac_mntinforesp *)&fib->data[0]; 3135 /* XXX Need to check if count changed */ 3136 count = mir->MntRespCount; 3137 /* 3138 * Check the container against our list. 3139 * co->co_found was already set to 0 in a 3140 * previous run. 3141 */ 3142 if ((mir->Status == ST_OK) && 3143 (mir->MntTable[0].VolType != CT_NONE)) { 3144 found = 0; 3145 TAILQ_FOREACH(co, 3146 &sc->aac_container_tqh, 3147 co_link) { 3148 if (co->co_mntobj.ObjectId == 3149 mir->MntTable[0].ObjectId) { 3150 co->co_found = 1; 3151 found = 1; 3152 break; 3153 } 3154 } 3155 /* 3156 * If the container matched, continue 3157 * in the list. 3158 */ 3159 if (found) { 3160 i++; 3161 continue; 3162 } 3163 3164 /* 3165 * This is a new container. Do all the 3166 * appropriate things to set it up. 3167 */ 3168 aac_add_container(sc, mir, 1); 3169 added = 1; 3170 } 3171 i++; 3172 } while ((i < count) && (i < AAC_MAX_CONTAINERS)); 3173 aac_release_sync_fib(sc); 3174 3175 /* 3176 * Go through our list of containers and see which ones 3177 * were not marked 'found'. Since the controller didn't 3178 * list them they must have been deleted. Do the 3179 * appropriate steps to destroy the device. Also reset 3180 * the co->co_found field. 3181 */ 3182 co = TAILQ_FIRST(&sc->aac_container_tqh); 3183 while (co != NULL) { 3184 if (co->co_found == 0) { 3185 mtx_unlock(&sc->aac_io_lock); 3186 mtx_lock(&Giant); 3187 device_delete_child(sc->aac_dev, 3188 co->co_disk); 3189 mtx_unlock(&Giant); 3190 mtx_lock(&sc->aac_io_lock); 3191 co_next = TAILQ_NEXT(co, co_link); 3192 mtx_lock(&sc->aac_container_lock); 3193 TAILQ_REMOVE(&sc->aac_container_tqh, co, 3194 co_link); 3195 mtx_unlock(&sc->aac_container_lock); 3196 free(co, M_AACBUF); 3197 co = co_next; 3198 } else { 3199 co->co_found = 0; 3200 co = TAILQ_NEXT(co, co_link); 3201 } 3202 } 3203 3204 /* Attach the newly created containers */ 3205 if (added) { 3206 mtx_unlock(&sc->aac_io_lock); 3207 mtx_lock(&Giant); 3208 bus_generic_attach(sc->aac_dev); 3209 mtx_unlock(&Giant); 3210 mtx_lock(&sc->aac_io_lock); 3211 } 3212 3213 break; 3214 3215 default: 3216 break; 3217 } 3218 3219 default: 3220 break; 3221 } 3222 3223 /* Copy the AIF data to the AIF queue for ioctl retrieval */ 3224 mtx_lock(&sc->aac_aifq_lock); 3225 next = (sc->aac_aifq_head + 1) % AAC_AIFQ_LENGTH; 3226 if (next != sc->aac_aifq_tail) { 3227 bcopy(aif, &sc->aac_aifq[next], sizeof(struct aac_aif_command)); 3228 sc->aac_aifq_head = next; 3229 3230 /* On the off chance that someone is sleeping for an aif... */ 3231 if (sc->aac_state & AAC_STATE_AIF_SLEEPER) 3232 wakeup(sc->aac_aifq); 3233 /* Wakeup any poll()ers */ 3234 selwakeuppri(&sc->rcv_select, PRIBIO); 3235 } 3236 mtx_unlock(&sc->aac_aifq_lock); 3237 3238 return; 3239 } 3240 3241 /* 3242 * Return the Revision of the driver to userspace and check to see if the 3243 * userspace app is possibly compatible. This is extremely bogus since 3244 * our driver doesn't follow Adaptec's versioning system. Cheat by just 3245 * returning what the card reported. 3246 */ 3247 static int 3248 aac_rev_check(struct aac_softc *sc, caddr_t udata) 3249 { 3250 struct aac_rev_check rev_check; 3251 struct aac_rev_check_resp rev_check_resp; 3252 int error = 0; 3253 3254 debug_called(2); 3255 3256 /* 3257 * Copyin the revision struct from userspace 3258 */ 3259 if ((error = copyin(udata, (caddr_t)&rev_check, 3260 sizeof(struct aac_rev_check))) != 0) { 3261 return error; 3262 } 3263 3264 debug(2, "Userland revision= %d\n", 3265 rev_check.callingRevision.buildNumber); 3266 3267 /* 3268 * Doctor up the response struct. 3269 */ 3270 rev_check_resp.possiblyCompatible = 1; 3271 rev_check_resp.adapterSWRevision.external.ul = 3272 sc->aac_revision.external.ul; 3273 rev_check_resp.adapterSWRevision.buildNumber = 3274 sc->aac_revision.buildNumber; 3275 3276 return(copyout((caddr_t)&rev_check_resp, udata, 3277 sizeof(struct aac_rev_check_resp))); 3278 } 3279 3280 /* 3281 * Pass the caller the next AIF in their queue 3282 */ 3283 static int 3284 aac_getnext_aif(struct aac_softc *sc, caddr_t arg) 3285 { 3286 struct get_adapter_fib_ioctl agf; 3287 int error; 3288 3289 debug_called(2); 3290 3291 if ((error = copyin(arg, &agf, sizeof(agf))) == 0) { 3292 3293 /* 3294 * Check the magic number that we gave the caller. 3295 */ 3296 if (agf.AdapterFibContext != (int)(uintptr_t)sc->aifthread) { 3297 error = EFAULT; 3298 } else { 3299 error = aac_return_aif(sc, agf.AifFib); 3300 if ((error == EAGAIN) && (agf.Wait)) { 3301 sc->aac_state |= AAC_STATE_AIF_SLEEPER; 3302 while (error == EAGAIN) { 3303 error = tsleep(sc->aac_aifq, PRIBIO | 3304 PCATCH, "aacaif", 0); 3305 if (error == 0) 3306 error = aac_return_aif(sc, 3307 agf.AifFib); 3308 } 3309 sc->aac_state &= ~AAC_STATE_AIF_SLEEPER; 3310 } 3311 } 3312 } 3313 return(error); 3314 } 3315 3316 /* 3317 * Hand the next AIF off the top of the queue out to userspace. 3318 */ 3319 static int 3320 aac_return_aif(struct aac_softc *sc, caddr_t uptr) 3321 { 3322 int next, error; 3323 3324 debug_called(2); 3325 3326 mtx_lock(&sc->aac_aifq_lock); 3327 if (sc->aac_aifq_tail == sc->aac_aifq_head) { 3328 mtx_unlock(&sc->aac_aifq_lock); 3329 return (EAGAIN); 3330 } 3331 3332 next = (sc->aac_aifq_tail + 1) % AAC_AIFQ_LENGTH; 3333 error = copyout(&sc->aac_aifq[next], uptr, 3334 sizeof(struct aac_aif_command)); 3335 if (error) 3336 device_printf(sc->aac_dev, 3337 "aac_return_aif: copyout returned %d\n", error); 3338 else 3339 sc->aac_aifq_tail = next; 3340 3341 mtx_unlock(&sc->aac_aifq_lock); 3342 return(error); 3343 } 3344 3345 static int 3346 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr) 3347 { 3348 struct aac_pci_info { 3349 u_int32_t bus; 3350 u_int32_t slot; 3351 } pciinf; 3352 int error; 3353 3354 debug_called(2); 3355 3356 pciinf.bus = pci_get_bus(sc->aac_dev); 3357 pciinf.slot = pci_get_slot(sc->aac_dev); 3358 3359 error = copyout((caddr_t)&pciinf, uptr, 3360 sizeof(struct aac_pci_info)); 3361 3362 return (error); 3363 } 3364 3365 /* 3366 * Give the userland some information about the container. The AAC arch 3367 * expects the driver to be a SCSI passthrough type driver, so it expects 3368 * the containers to have b:t:l numbers. Fake it. 3369 */ 3370 static int 3371 aac_query_disk(struct aac_softc *sc, caddr_t uptr) 3372 { 3373 struct aac_query_disk query_disk; 3374 struct aac_container *co; 3375 struct aac_disk *disk; 3376 int error, id; 3377 3378 debug_called(2); 3379 3380 disk = NULL; 3381 3382 error = copyin(uptr, (caddr_t)&query_disk, 3383 sizeof(struct aac_query_disk)); 3384 if (error) 3385 return (error); 3386 3387 id = query_disk.ContainerNumber; 3388 if (id == -1) 3389 return (EINVAL); 3390 3391 mtx_lock(&sc->aac_container_lock); 3392 TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) { 3393 if (co->co_mntobj.ObjectId == id) 3394 break; 3395 } 3396 3397 if (co == NULL) { 3398 query_disk.Valid = 0; 3399 query_disk.Locked = 0; 3400 query_disk.Deleted = 1; /* XXX is this right? */ 3401 } else { 3402 disk = device_get_softc(co->co_disk); 3403 query_disk.Valid = 1; 3404 query_disk.Locked = 3405 (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0; 3406 query_disk.Deleted = 0; 3407 query_disk.Bus = device_get_unit(sc->aac_dev); 3408 query_disk.Target = disk->unit; 3409 query_disk.Lun = 0; 3410 query_disk.UnMapped = 0; 3411 sprintf(&query_disk.diskDeviceName[0], "%s%d", 3412 disk->ad_disk->d_name, disk->ad_disk->d_unit); 3413 } 3414 mtx_unlock(&sc->aac_container_lock); 3415 3416 error = copyout((caddr_t)&query_disk, uptr, 3417 sizeof(struct aac_query_disk)); 3418 3419 return (error); 3420 } 3421 3422 static void 3423 aac_get_bus_info(struct aac_softc *sc) 3424 { 3425 struct aac_fib *fib; 3426 struct aac_ctcfg *c_cmd; 3427 struct aac_ctcfg_resp *c_resp; 3428 struct aac_vmioctl *vmi; 3429 struct aac_vmi_businf_resp *vmi_resp; 3430 struct aac_getbusinf businfo; 3431 struct aac_sim *caminf; 3432 device_t child; 3433 int i, found, error; 3434 3435 mtx_lock(&sc->aac_io_lock); 3436 aac_alloc_sync_fib(sc, &fib); 3437 c_cmd = (struct aac_ctcfg *)&fib->data[0]; 3438 bzero(c_cmd, sizeof(struct aac_ctcfg)); 3439 3440 c_cmd->Command = VM_ContainerConfig; 3441 c_cmd->cmd = CT_GET_SCSI_METHOD; 3442 c_cmd->param = 0; 3443 3444 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 3445 sizeof(struct aac_ctcfg)); 3446 if (error) { 3447 device_printf(sc->aac_dev, "Error %d sending " 3448 "VM_ContainerConfig command\n", error); 3449 aac_release_sync_fib(sc); 3450 mtx_unlock(&sc->aac_io_lock); 3451 return; 3452 } 3453 3454 c_resp = (struct aac_ctcfg_resp *)&fib->data[0]; 3455 if (c_resp->Status != ST_OK) { 3456 device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n", 3457 c_resp->Status); 3458 aac_release_sync_fib(sc); 3459 mtx_unlock(&sc->aac_io_lock); 3460 return; 3461 } 3462 3463 sc->scsi_method_id = c_resp->param; 3464 3465 vmi = (struct aac_vmioctl *)&fib->data[0]; 3466 bzero(vmi, sizeof(struct aac_vmioctl)); 3467 3468 vmi->Command = VM_Ioctl; 3469 vmi->ObjType = FT_DRIVE; 3470 vmi->MethId = sc->scsi_method_id; 3471 vmi->ObjId = 0; 3472 vmi->IoctlCmd = GetBusInfo; 3473 3474 error = aac_sync_fib(sc, ContainerCommand, 0, fib, 3475 sizeof(struct aac_vmioctl)); 3476 if (error) { 3477 device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n", 3478 error); 3479 aac_release_sync_fib(sc); 3480 mtx_unlock(&sc->aac_io_lock); 3481 return; 3482 } 3483 3484 vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0]; 3485 if (vmi_resp->Status != ST_OK) { 3486 device_printf(sc->aac_dev, "VM_Ioctl returned %d\n", 3487 vmi_resp->Status); 3488 aac_release_sync_fib(sc); 3489 mtx_unlock(&sc->aac_io_lock); 3490 return; 3491 } 3492 3493 bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf)); 3494 aac_release_sync_fib(sc); 3495 mtx_unlock(&sc->aac_io_lock); 3496 3497 found = 0; 3498 for (i = 0; i < businfo.BusCount; i++) { 3499 if (businfo.BusValid[i] != AAC_BUS_VALID) 3500 continue; 3501 3502 caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim), 3503 M_AACBUF, M_NOWAIT | M_ZERO); 3504 if (caminf == NULL) { 3505 device_printf(sc->aac_dev, 3506 "No memory to add passthrough bus %d\n", i); 3507 break; 3508 }; 3509 3510 child = device_add_child(sc->aac_dev, "aacp", -1); 3511 if (child == NULL) { 3512 device_printf(sc->aac_dev, 3513 "device_add_child failed for passthrough bus %d\n", 3514 i); 3515 free(caminf, M_AACBUF); 3516 break; 3517 } 3518 3519 caminf->TargetsPerBus = businfo.TargetsPerBus; 3520 caminf->BusNumber = i; 3521 caminf->InitiatorBusId = businfo.InitiatorBusId[i]; 3522 caminf->aac_sc = sc; 3523 caminf->sim_dev = child; 3524 3525 device_set_ivars(child, caminf); 3526 device_set_desc(child, "SCSI Passthrough Bus"); 3527 TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link); 3528 3529 found = 1; 3530 } 3531 3532 if (found) 3533 bus_generic_attach(sc->aac_dev); 3534 3535 return; 3536 } 3537