xref: /freebsd/sys/dev/aac/aac.c (revision 09a53ad8f1318c5daae6cfb19d97f4f6459f0013)
1 /*-
2  * Copyright (c) 2000 Michael Smith
3  * Copyright (c) 2001 Scott Long
4  * Copyright (c) 2000 BSDi
5  * Copyright (c) 2001 Adaptec, Inc.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * Driver for the Adaptec 'FSA' family of PCI/SCSI RAID adapters.
35  */
36 #define AAC_DRIVERNAME			"aac"
37 
38 #include "opt_aac.h"
39 
40 /* #include <stddef.h> */
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/malloc.h>
44 #include <sys/kernel.h>
45 #include <sys/kthread.h>
46 #include <sys/sysctl.h>
47 #include <sys/poll.h>
48 #include <sys/ioccom.h>
49 
50 #include <sys/bus.h>
51 #include <sys/conf.h>
52 #include <sys/signalvar.h>
53 #include <sys/time.h>
54 #include <sys/eventhandler.h>
55 #include <sys/rman.h>
56 
57 #include <machine/bus.h>
58 #include <sys/bus_dma.h>
59 #include <machine/resource.h>
60 
61 #include <dev/pci/pcireg.h>
62 #include <dev/pci/pcivar.h>
63 
64 #include <dev/aac/aacreg.h>
65 #include <sys/aac_ioctl.h>
66 #include <dev/aac/aacvar.h>
67 #include <dev/aac/aac_tables.h>
68 
69 static void	aac_startup(void *arg);
70 static void	aac_add_container(struct aac_softc *sc,
71 				  struct aac_mntinforesp *mir, int f);
72 static void	aac_get_bus_info(struct aac_softc *sc);
73 static void	aac_daemon(void *arg);
74 
75 /* Command Processing */
76 static void	aac_timeout(struct aac_softc *sc);
77 static void	aac_complete(void *context, int pending);
78 static int	aac_bio_command(struct aac_softc *sc, struct aac_command **cmp);
79 static void	aac_bio_complete(struct aac_command *cm);
80 static int	aac_wait_command(struct aac_command *cm);
81 static void	aac_command_thread(struct aac_softc *sc);
82 
83 /* Command Buffer Management */
84 static void	aac_map_command_sg(void *arg, bus_dma_segment_t *segs,
85 				   int nseg, int error);
86 static void	aac_map_command_helper(void *arg, bus_dma_segment_t *segs,
87 				       int nseg, int error);
88 static int	aac_alloc_commands(struct aac_softc *sc);
89 static void	aac_free_commands(struct aac_softc *sc);
90 static void	aac_unmap_command(struct aac_command *cm);
91 
92 /* Hardware Interface */
93 static int	aac_alloc(struct aac_softc *sc);
94 static void	aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg,
95 			       int error);
96 static int	aac_check_firmware(struct aac_softc *sc);
97 static int	aac_init(struct aac_softc *sc);
98 static int	aac_sync_command(struct aac_softc *sc, u_int32_t command,
99 				 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2,
100 				 u_int32_t arg3, u_int32_t *sp);
101 static int	aac_setup_intr(struct aac_softc *sc);
102 static int	aac_enqueue_fib(struct aac_softc *sc, int queue,
103 				struct aac_command *cm);
104 static int	aac_dequeue_fib(struct aac_softc *sc, int queue,
105 				u_int32_t *fib_size, struct aac_fib **fib_addr);
106 static int	aac_enqueue_response(struct aac_softc *sc, int queue,
107 				     struct aac_fib *fib);
108 
109 /* StrongARM interface */
110 static int	aac_sa_get_fwstatus(struct aac_softc *sc);
111 static void	aac_sa_qnotify(struct aac_softc *sc, int qbit);
112 static int	aac_sa_get_istatus(struct aac_softc *sc);
113 static void	aac_sa_clear_istatus(struct aac_softc *sc, int mask);
114 static void	aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
115 				   u_int32_t arg0, u_int32_t arg1,
116 				   u_int32_t arg2, u_int32_t arg3);
117 static int	aac_sa_get_mailbox(struct aac_softc *sc, int mb);
118 static void	aac_sa_set_interrupts(struct aac_softc *sc, int enable);
119 
120 const struct aac_interface aac_sa_interface = {
121 	aac_sa_get_fwstatus,
122 	aac_sa_qnotify,
123 	aac_sa_get_istatus,
124 	aac_sa_clear_istatus,
125 	aac_sa_set_mailbox,
126 	aac_sa_get_mailbox,
127 	aac_sa_set_interrupts,
128 	NULL, NULL, NULL
129 };
130 
131 /* i960Rx interface */
132 static int	aac_rx_get_fwstatus(struct aac_softc *sc);
133 static void	aac_rx_qnotify(struct aac_softc *sc, int qbit);
134 static int	aac_rx_get_istatus(struct aac_softc *sc);
135 static void	aac_rx_clear_istatus(struct aac_softc *sc, int mask);
136 static void	aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
137 				   u_int32_t arg0, u_int32_t arg1,
138 				   u_int32_t arg2, u_int32_t arg3);
139 static int	aac_rx_get_mailbox(struct aac_softc *sc, int mb);
140 static void	aac_rx_set_interrupts(struct aac_softc *sc, int enable);
141 static int aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm);
142 static int aac_rx_get_outb_queue(struct aac_softc *sc);
143 static void aac_rx_set_outb_queue(struct aac_softc *sc, int index);
144 
145 const struct aac_interface aac_rx_interface = {
146 	aac_rx_get_fwstatus,
147 	aac_rx_qnotify,
148 	aac_rx_get_istatus,
149 	aac_rx_clear_istatus,
150 	aac_rx_set_mailbox,
151 	aac_rx_get_mailbox,
152 	aac_rx_set_interrupts,
153 	aac_rx_send_command,
154 	aac_rx_get_outb_queue,
155 	aac_rx_set_outb_queue
156 };
157 
158 /* Rocket/MIPS interface */
159 static int	aac_rkt_get_fwstatus(struct aac_softc *sc);
160 static void	aac_rkt_qnotify(struct aac_softc *sc, int qbit);
161 static int	aac_rkt_get_istatus(struct aac_softc *sc);
162 static void	aac_rkt_clear_istatus(struct aac_softc *sc, int mask);
163 static void	aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command,
164 				    u_int32_t arg0, u_int32_t arg1,
165 				    u_int32_t arg2, u_int32_t arg3);
166 static int	aac_rkt_get_mailbox(struct aac_softc *sc, int mb);
167 static void	aac_rkt_set_interrupts(struct aac_softc *sc, int enable);
168 static int aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm);
169 static int aac_rkt_get_outb_queue(struct aac_softc *sc);
170 static void aac_rkt_set_outb_queue(struct aac_softc *sc, int index);
171 
172 const struct aac_interface aac_rkt_interface = {
173 	aac_rkt_get_fwstatus,
174 	aac_rkt_qnotify,
175 	aac_rkt_get_istatus,
176 	aac_rkt_clear_istatus,
177 	aac_rkt_set_mailbox,
178 	aac_rkt_get_mailbox,
179 	aac_rkt_set_interrupts,
180 	aac_rkt_send_command,
181 	aac_rkt_get_outb_queue,
182 	aac_rkt_set_outb_queue
183 };
184 
185 /* Debugging and Diagnostics */
186 static void		aac_describe_controller(struct aac_softc *sc);
187 static const char	*aac_describe_code(const struct aac_code_lookup *table,
188 				   u_int32_t code);
189 
190 /* Management Interface */
191 static d_open_t		aac_open;
192 static d_ioctl_t	aac_ioctl;
193 static d_poll_t		aac_poll;
194 static void		aac_cdevpriv_dtor(void *arg);
195 static int		aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib);
196 static int		aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg);
197 static void		aac_handle_aif(struct aac_softc *sc,
198 					   struct aac_fib *fib);
199 static int		aac_rev_check(struct aac_softc *sc, caddr_t udata);
200 static int		aac_open_aif(struct aac_softc *sc, caddr_t arg);
201 static int		aac_close_aif(struct aac_softc *sc, caddr_t arg);
202 static int		aac_getnext_aif(struct aac_softc *sc, caddr_t arg);
203 static int		aac_return_aif(struct aac_softc *sc,
204 					struct aac_fib_context *ctx, caddr_t uptr);
205 static int		aac_query_disk(struct aac_softc *sc, caddr_t uptr);
206 static int		aac_get_pci_info(struct aac_softc *sc, caddr_t uptr);
207 static int		aac_supported_features(struct aac_softc *sc, caddr_t uptr);
208 static void		aac_ioctl_event(struct aac_softc *sc,
209 					struct aac_event *event, void *arg);
210 static struct aac_mntinforesp *
211 	aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid);
212 
213 static struct cdevsw aac_cdevsw = {
214 	.d_version =	D_VERSION,
215 	.d_flags =	D_NEEDGIANT,
216 	.d_open =	aac_open,
217 	.d_ioctl =	aac_ioctl,
218 	.d_poll =	aac_poll,
219 	.d_name =	"aac",
220 };
221 
222 static MALLOC_DEFINE(M_AACBUF, "aacbuf", "Buffers for the AAC driver");
223 
224 /* sysctl node */
225 SYSCTL_NODE(_hw, OID_AUTO, aac, CTLFLAG_RD, 0, "AAC driver parameters");
226 
227 /*
228  * Device Interface
229  */
230 
231 /*
232  * Initialize the controller and softc
233  */
234 int
235 aac_attach(struct aac_softc *sc)
236 {
237 	int error, unit;
238 
239 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
240 
241 	/*
242 	 * Initialize per-controller queues.
243 	 */
244 	aac_initq_free(sc);
245 	aac_initq_ready(sc);
246 	aac_initq_busy(sc);
247 	aac_initq_bio(sc);
248 
249 	/*
250 	 * Initialize command-completion task.
251 	 */
252 	TASK_INIT(&sc->aac_task_complete, 0, aac_complete, sc);
253 
254 	/* mark controller as suspended until we get ourselves organised */
255 	sc->aac_state |= AAC_STATE_SUSPEND;
256 
257 	/*
258 	 * Check that the firmware on the card is supported.
259 	 */
260 	if ((error = aac_check_firmware(sc)) != 0)
261 		return(error);
262 
263 	/*
264 	 * Initialize locks
265 	 */
266 	mtx_init(&sc->aac_aifq_lock, "AAC AIF lock", NULL, MTX_DEF);
267 	mtx_init(&sc->aac_io_lock, "AAC I/O lock", NULL, MTX_DEF);
268 	mtx_init(&sc->aac_container_lock, "AAC container lock", NULL, MTX_DEF);
269 	TAILQ_INIT(&sc->aac_container_tqh);
270 	TAILQ_INIT(&sc->aac_ev_cmfree);
271 
272 	/* Initialize the clock daemon callout. */
273 	callout_init_mtx(&sc->aac_daemontime, &sc->aac_io_lock, 0);
274 
275 	/*
276 	 * Initialize the adapter.
277 	 */
278 	if ((error = aac_alloc(sc)) != 0)
279 		return(error);
280 	if ((error = aac_init(sc)) != 0)
281 		return(error);
282 
283 	/*
284 	 * Allocate and connect our interrupt.
285 	 */
286 	if ((error = aac_setup_intr(sc)) != 0)
287 		return(error);
288 
289 	/*
290 	 * Print a little information about the controller.
291 	 */
292 	aac_describe_controller(sc);
293 
294 	/*
295 	 * Add sysctls.
296 	 */
297 	SYSCTL_ADD_INT(device_get_sysctl_ctx(sc->aac_dev),
298 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->aac_dev)),
299 	    OID_AUTO, "firmware_build", CTLFLAG_RD,
300 	    &sc->aac_revision.buildNumber, 0,
301 	    "firmware build number");
302 
303 	/*
304 	 * Register to probe our containers later.
305 	 */
306 	sc->aac_ich.ich_func = aac_startup;
307 	sc->aac_ich.ich_arg = sc;
308 	if (config_intrhook_establish(&sc->aac_ich) != 0) {
309 		device_printf(sc->aac_dev,
310 			      "can't establish configuration hook\n");
311 		return(ENXIO);
312 	}
313 
314 	/*
315 	 * Make the control device.
316 	 */
317 	unit = device_get_unit(sc->aac_dev);
318 	sc->aac_dev_t = make_dev(&aac_cdevsw, unit, UID_ROOT, GID_OPERATOR,
319 				 0640, "aac%d", unit);
320 	(void)make_dev_alias(sc->aac_dev_t, "afa%d", unit);
321 	(void)make_dev_alias(sc->aac_dev_t, "hpn%d", unit);
322 	sc->aac_dev_t->si_drv1 = sc;
323 
324 	/* Create the AIF thread */
325 	if (kproc_create((void(*)(void *))aac_command_thread, sc,
326 		   &sc->aifthread, 0, 0, "aac%daif", unit))
327 		panic("Could not create AIF thread");
328 
329 	/* Register the shutdown method to only be called post-dump */
330 	if ((sc->eh = EVENTHANDLER_REGISTER(shutdown_final, aac_shutdown,
331 	    sc->aac_dev, SHUTDOWN_PRI_DEFAULT)) == NULL)
332 		device_printf(sc->aac_dev,
333 			      "shutdown event registration failed\n");
334 
335 	/* Register with CAM for the non-DASD devices */
336 	if ((sc->flags & AAC_FLAGS_ENABLE_CAM) != 0) {
337 		TAILQ_INIT(&sc->aac_sim_tqh);
338 		aac_get_bus_info(sc);
339 	}
340 
341 	mtx_lock(&sc->aac_io_lock);
342 	callout_reset(&sc->aac_daemontime, 60 * hz, aac_daemon, sc);
343 	mtx_unlock(&sc->aac_io_lock);
344 
345 	return(0);
346 }
347 
348 static void
349 aac_daemon(void *arg)
350 {
351 	struct timeval tv;
352 	struct aac_softc *sc;
353 	struct aac_fib *fib;
354 
355 	sc = arg;
356 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
357 
358 	if (callout_pending(&sc->aac_daemontime) ||
359 	    callout_active(&sc->aac_daemontime) == 0)
360 		return;
361 	getmicrotime(&tv);
362 	aac_alloc_sync_fib(sc, &fib);
363 	*(uint32_t *)fib->data = tv.tv_sec;
364 	aac_sync_fib(sc, SendHostTime, 0, fib, sizeof(uint32_t));
365 	aac_release_sync_fib(sc);
366 	callout_schedule(&sc->aac_daemontime, 30 * 60 * hz);
367 }
368 
369 void
370 aac_add_event(struct aac_softc *sc, struct aac_event *event)
371 {
372 
373 	switch (event->ev_type & AAC_EVENT_MASK) {
374 	case AAC_EVENT_CMFREE:
375 		TAILQ_INSERT_TAIL(&sc->aac_ev_cmfree, event, ev_links);
376 		break;
377 	default:
378 		device_printf(sc->aac_dev, "aac_add event: unknown event %d\n",
379 		    event->ev_type);
380 		break;
381 	}
382 }
383 
384 /*
385  * Request information of container #cid
386  */
387 static struct aac_mntinforesp *
388 aac_get_container_info(struct aac_softc *sc, struct aac_fib *fib, int cid)
389 {
390 	struct aac_mntinfo *mi;
391 
392 	mi = (struct aac_mntinfo *)&fib->data[0];
393 	/* use 64-bit LBA if enabled */
394 	mi->Command = (sc->flags & AAC_FLAGS_LBA_64BIT) ?
395 	    VM_NameServe64 : VM_NameServe;
396 	mi->MntType = FT_FILESYS;
397 	mi->MntCount = cid;
398 
399 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
400 			 sizeof(struct aac_mntinfo))) {
401 		device_printf(sc->aac_dev, "Error probing container %d\n", cid);
402 		return (NULL);
403 	}
404 
405 	return ((struct aac_mntinforesp *)&fib->data[0]);
406 }
407 
408 /*
409  * Probe for containers, create disks.
410  */
411 static void
412 aac_startup(void *arg)
413 {
414 	struct aac_softc *sc;
415 	struct aac_fib *fib;
416 	struct aac_mntinforesp *mir;
417 	int count = 0, i = 0;
418 
419 	sc = (struct aac_softc *)arg;
420 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
421 
422 	/* disconnect ourselves from the intrhook chain */
423 	config_intrhook_disestablish(&sc->aac_ich);
424 
425 	mtx_lock(&sc->aac_io_lock);
426 	aac_alloc_sync_fib(sc, &fib);
427 
428 	/* loop over possible containers */
429 	do {
430 		if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
431 			continue;
432 		if (i == 0)
433 			count = mir->MntRespCount;
434 		aac_add_container(sc, mir, 0);
435 		i++;
436 	} while ((i < count) && (i < AAC_MAX_CONTAINERS));
437 
438 	aac_release_sync_fib(sc);
439 	mtx_unlock(&sc->aac_io_lock);
440 
441 	/* poke the bus to actually attach the child devices */
442 	if (bus_generic_attach(sc->aac_dev))
443 		device_printf(sc->aac_dev, "bus_generic_attach failed\n");
444 
445 	/* mark the controller up */
446 	sc->aac_state &= ~AAC_STATE_SUSPEND;
447 
448 	/* enable interrupts now */
449 	AAC_UNMASK_INTERRUPTS(sc);
450 }
451 
452 /*
453  * Create a device to represent a new container
454  */
455 static void
456 aac_add_container(struct aac_softc *sc, struct aac_mntinforesp *mir, int f)
457 {
458 	struct aac_container *co;
459 	device_t child;
460 
461 	/*
462 	 * Check container volume type for validity.  Note that many of
463 	 * the possible types may never show up.
464 	 */
465 	if ((mir->Status == ST_OK) && (mir->MntTable[0].VolType != CT_NONE)) {
466 		co = (struct aac_container *)malloc(sizeof *co, M_AACBUF,
467 		       M_NOWAIT | M_ZERO);
468 		if (co == NULL)
469 			panic("Out of memory?!");
470 		fwprintf(sc, HBA_FLAGS_DBG_INIT_B, "id %x  name '%.16s'  size %u  type %d",
471 		      mir->MntTable[0].ObjectId,
472 		      mir->MntTable[0].FileSystemName,
473 		      mir->MntTable[0].Capacity, mir->MntTable[0].VolType);
474 
475 		if ((child = device_add_child(sc->aac_dev, "aacd", -1)) == NULL)
476 			device_printf(sc->aac_dev, "device_add_child failed\n");
477 		else
478 			device_set_ivars(child, co);
479 		device_set_desc(child, aac_describe_code(aac_container_types,
480 				mir->MntTable[0].VolType));
481 		co->co_disk = child;
482 		co->co_found = f;
483 		bcopy(&mir->MntTable[0], &co->co_mntobj,
484 		      sizeof(struct aac_mntobj));
485 		mtx_lock(&sc->aac_container_lock);
486 		TAILQ_INSERT_TAIL(&sc->aac_container_tqh, co, co_link);
487 		mtx_unlock(&sc->aac_container_lock);
488 	}
489 }
490 
491 /*
492  * Allocate resources associated with (sc)
493  */
494 static int
495 aac_alloc(struct aac_softc *sc)
496 {
497 
498 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
499 
500 	/*
501 	 * Create DMA tag for mapping buffers into controller-addressable space.
502 	 */
503 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
504 			       1, 0, 			/* algnmnt, boundary */
505 			       (sc->flags & AAC_FLAGS_SG_64BIT) ?
506 			       BUS_SPACE_MAXADDR :
507 			       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
508 			       BUS_SPACE_MAXADDR, 	/* highaddr */
509 			       NULL, NULL, 		/* filter, filterarg */
510 			       sc->aac_max_sectors << 9, /* maxsize */
511 			       sc->aac_sg_tablesize,	/* nsegments */
512 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
513 			       BUS_DMA_ALLOCNOW,	/* flags */
514 			       busdma_lock_mutex,	/* lockfunc */
515 			       &sc->aac_io_lock,	/* lockfuncarg */
516 			       &sc->aac_buffer_dmat)) {
517 		device_printf(sc->aac_dev, "can't allocate buffer DMA tag\n");
518 		return (ENOMEM);
519 	}
520 
521 	/*
522 	 * Create DMA tag for mapping FIBs into controller-addressable space..
523 	 */
524 	if (bus_dma_tag_create(sc->aac_parent_dmat,	/* parent */
525 			       1, 0, 			/* algnmnt, boundary */
526 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
527 			       BUS_SPACE_MAXADDR_32BIT :
528 			       0x7fffffff,		/* lowaddr */
529 			       BUS_SPACE_MAXADDR, 	/* highaddr */
530 			       NULL, NULL, 		/* filter, filterarg */
531 			       sc->aac_max_fibs_alloc *
532 			       sc->aac_max_fib_size,  /* maxsize */
533 			       1,			/* nsegments */
534 			       sc->aac_max_fibs_alloc *
535 			       sc->aac_max_fib_size,	/* maxsize */
536 			       0,			/* flags */
537 			       NULL, NULL,		/* No locking needed */
538 			       &sc->aac_fib_dmat)) {
539 		device_printf(sc->aac_dev, "can't allocate FIB DMA tag\n");
540 		return (ENOMEM);
541 	}
542 
543 	/*
544 	 * Create DMA tag for the common structure and allocate it.
545 	 */
546 	if (bus_dma_tag_create(sc->aac_parent_dmat, 	/* parent */
547 			       1, 0,			/* algnmnt, boundary */
548 			       (sc->flags & AAC_FLAGS_4GB_WINDOW) ?
549 			       BUS_SPACE_MAXADDR_32BIT :
550 			       0x7fffffff,		/* lowaddr */
551 			       BUS_SPACE_MAXADDR, 	/* highaddr */
552 			       NULL, NULL, 		/* filter, filterarg */
553 			       8192 + sizeof(struct aac_common), /* maxsize */
554 			       1,			/* nsegments */
555 			       BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
556 			       0,			/* flags */
557 			       NULL, NULL,		/* No locking needed */
558 			       &sc->aac_common_dmat)) {
559 		device_printf(sc->aac_dev,
560 			      "can't allocate common structure DMA tag\n");
561 		return (ENOMEM);
562 	}
563 	if (bus_dmamem_alloc(sc->aac_common_dmat, (void **)&sc->aac_common,
564 			     BUS_DMA_NOWAIT, &sc->aac_common_dmamap)) {
565 		device_printf(sc->aac_dev, "can't allocate common structure\n");
566 		return (ENOMEM);
567 	}
568 
569 	/*
570 	 * Work around a bug in the 2120 and 2200 that cannot DMA commands
571 	 * below address 8192 in physical memory.
572 	 * XXX If the padding is not needed, can it be put to use instead
573 	 * of ignored?
574 	 */
575 	(void)bus_dmamap_load(sc->aac_common_dmat, sc->aac_common_dmamap,
576 			sc->aac_common, 8192 + sizeof(*sc->aac_common),
577 			aac_common_map, sc, 0);
578 
579 	if (sc->aac_common_busaddr < 8192) {
580 		sc->aac_common = (struct aac_common *)
581 		    ((uint8_t *)sc->aac_common + 8192);
582 		sc->aac_common_busaddr += 8192;
583 	}
584 	bzero(sc->aac_common, sizeof(*sc->aac_common));
585 
586 	/* Allocate some FIBs and associated command structs */
587 	TAILQ_INIT(&sc->aac_fibmap_tqh);
588 	sc->aac_commands = malloc(sc->aac_max_fibs * sizeof(struct aac_command),
589 				  M_AACBUF, M_WAITOK|M_ZERO);
590 	while (sc->total_fibs < sc->aac_max_fibs) {
591 		if (aac_alloc_commands(sc) != 0)
592 			break;
593 	}
594 	if (sc->total_fibs == 0)
595 		return (ENOMEM);
596 
597 	return (0);
598 }
599 
600 /*
601  * Free all of the resources associated with (sc)
602  *
603  * Should not be called if the controller is active.
604  */
605 void
606 aac_free(struct aac_softc *sc)
607 {
608 
609 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
610 
611 	/* remove the control device */
612 	if (sc->aac_dev_t != NULL)
613 		destroy_dev(sc->aac_dev_t);
614 
615 	/* throw away any FIB buffers, discard the FIB DMA tag */
616 	aac_free_commands(sc);
617 	if (sc->aac_fib_dmat)
618 		bus_dma_tag_destroy(sc->aac_fib_dmat);
619 
620 	free(sc->aac_commands, M_AACBUF);
621 
622 	/* destroy the common area */
623 	if (sc->aac_common) {
624 		bus_dmamap_unload(sc->aac_common_dmat, sc->aac_common_dmamap);
625 		bus_dmamem_free(sc->aac_common_dmat, sc->aac_common,
626 				sc->aac_common_dmamap);
627 	}
628 	if (sc->aac_common_dmat)
629 		bus_dma_tag_destroy(sc->aac_common_dmat);
630 
631 	/* disconnect the interrupt handler */
632 	if (sc->aac_intr)
633 		bus_teardown_intr(sc->aac_dev, sc->aac_irq, sc->aac_intr);
634 	if (sc->aac_irq != NULL) {
635 		bus_release_resource(sc->aac_dev, SYS_RES_IRQ,
636 		    rman_get_rid(sc->aac_irq), sc->aac_irq);
637 		pci_release_msi(sc->aac_dev);
638 	}
639 
640 	/* destroy data-transfer DMA tag */
641 	if (sc->aac_buffer_dmat)
642 		bus_dma_tag_destroy(sc->aac_buffer_dmat);
643 
644 	/* destroy the parent DMA tag */
645 	if (sc->aac_parent_dmat)
646 		bus_dma_tag_destroy(sc->aac_parent_dmat);
647 
648 	/* release the register window mapping */
649 	if (sc->aac_regs_res0 != NULL)
650 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
651 		    rman_get_rid(sc->aac_regs_res0), sc->aac_regs_res0);
652 	if (sc->aac_hwif == AAC_HWIF_NARK && sc->aac_regs_res1 != NULL)
653 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY,
654 		    rman_get_rid(sc->aac_regs_res1), sc->aac_regs_res1);
655 }
656 
657 /*
658  * Disconnect from the controller completely, in preparation for unload.
659  */
660 int
661 aac_detach(device_t dev)
662 {
663 	struct aac_softc *sc;
664 	struct aac_container *co;
665 	struct aac_sim	*sim;
666 	int error;
667 
668 	sc = device_get_softc(dev);
669 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
670 
671 	callout_drain(&sc->aac_daemontime);
672 
673 	mtx_lock(&sc->aac_io_lock);
674 	while (sc->aifflags & AAC_AIFFLAGS_RUNNING) {
675 		sc->aifflags |= AAC_AIFFLAGS_EXIT;
676 		wakeup(sc->aifthread);
677 		msleep(sc->aac_dev, &sc->aac_io_lock, PUSER, "aacdch", 0);
678 	}
679 	mtx_unlock(&sc->aac_io_lock);
680 	KASSERT((sc->aifflags & AAC_AIFFLAGS_RUNNING) == 0,
681 	    ("%s: invalid detach state", __func__));
682 
683 	/* Remove the child containers */
684 	while ((co = TAILQ_FIRST(&sc->aac_container_tqh)) != NULL) {
685 		error = device_delete_child(dev, co->co_disk);
686 		if (error)
687 			return (error);
688 		TAILQ_REMOVE(&sc->aac_container_tqh, co, co_link);
689 		free(co, M_AACBUF);
690 	}
691 
692 	/* Remove the CAM SIMs */
693 	while ((sim = TAILQ_FIRST(&sc->aac_sim_tqh)) != NULL) {
694 		TAILQ_REMOVE(&sc->aac_sim_tqh, sim, sim_link);
695 		error = device_delete_child(dev, sim->sim_dev);
696 		if (error)
697 			return (error);
698 		free(sim, M_AACBUF);
699 	}
700 
701 	if ((error = aac_shutdown(dev)))
702 		return(error);
703 
704 	EVENTHANDLER_DEREGISTER(shutdown_final, sc->eh);
705 
706 	aac_free(sc);
707 
708 	mtx_destroy(&sc->aac_aifq_lock);
709 	mtx_destroy(&sc->aac_io_lock);
710 	mtx_destroy(&sc->aac_container_lock);
711 
712 	return(0);
713 }
714 
715 /*
716  * Bring the controller down to a dormant state and detach all child devices.
717  *
718  * This function is called before detach or system shutdown.
719  *
720  * Note that we can assume that the bioq on the controller is empty, as we won't
721  * allow shutdown if any device is open.
722  */
723 int
724 aac_shutdown(device_t dev)
725 {
726 	struct aac_softc *sc;
727 	struct aac_fib *fib;
728 	struct aac_close_command *cc;
729 
730 	sc = device_get_softc(dev);
731 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
732 
733 	sc->aac_state |= AAC_STATE_SUSPEND;
734 
735 	/*
736 	 * Send a Container shutdown followed by a HostShutdown FIB to the
737 	 * controller to convince it that we don't want to talk to it anymore.
738 	 * We've been closed and all I/O completed already
739 	 */
740 	device_printf(sc->aac_dev, "shutting down controller...");
741 
742 	mtx_lock(&sc->aac_io_lock);
743 	aac_alloc_sync_fib(sc, &fib);
744 	cc = (struct aac_close_command *)&fib->data[0];
745 
746 	bzero(cc, sizeof(struct aac_close_command));
747 	cc->Command = VM_CloseAll;
748 	cc->ContainerId = 0xffffffff;
749 	if (aac_sync_fib(sc, ContainerCommand, 0, fib,
750 	    sizeof(struct aac_close_command)))
751 		printf("FAILED.\n");
752 	else
753 		printf("done\n");
754 #if 0
755 	else {
756 		fib->data[0] = 0;
757 		/*
758 		 * XXX Issuing this command to the controller makes it shut down
759 		 * but also keeps it from coming back up without a reset of the
760 		 * PCI bus.  This is not desirable if you are just unloading the
761 		 * driver module with the intent to reload it later.
762 		 */
763 		if (aac_sync_fib(sc, FsaHostShutdown, AAC_FIBSTATE_SHUTDOWN,
764 		    fib, 1)) {
765 			printf("FAILED.\n");
766 		} else {
767 			printf("done.\n");
768 		}
769 	}
770 #endif
771 
772 	AAC_MASK_INTERRUPTS(sc);
773 	aac_release_sync_fib(sc);
774 	mtx_unlock(&sc->aac_io_lock);
775 
776 	return(0);
777 }
778 
779 /*
780  * Bring the controller to a quiescent state, ready for system suspend.
781  */
782 int
783 aac_suspend(device_t dev)
784 {
785 	struct aac_softc *sc;
786 
787 	sc = device_get_softc(dev);
788 
789 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
790 	sc->aac_state |= AAC_STATE_SUSPEND;
791 
792 	AAC_MASK_INTERRUPTS(sc);
793 	return(0);
794 }
795 
796 /*
797  * Bring the controller back to a state ready for operation.
798  */
799 int
800 aac_resume(device_t dev)
801 {
802 	struct aac_softc *sc;
803 
804 	sc = device_get_softc(dev);
805 
806 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
807 	sc->aac_state &= ~AAC_STATE_SUSPEND;
808 	AAC_UNMASK_INTERRUPTS(sc);
809 	return(0);
810 }
811 
812 /*
813  * Interrupt handler for NEW_COMM interface.
814  */
815 void
816 aac_new_intr(void *arg)
817 {
818 	struct aac_softc *sc;
819 	u_int32_t index, fast;
820 	struct aac_command *cm;
821 	struct aac_fib *fib;
822 	int i;
823 
824 	sc = (struct aac_softc *)arg;
825 
826 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
827 	mtx_lock(&sc->aac_io_lock);
828 	while (1) {
829 		index = AAC_GET_OUTB_QUEUE(sc);
830 		if (index == 0xffffffff)
831 			index = AAC_GET_OUTB_QUEUE(sc);
832 		if (index == 0xffffffff)
833 			break;
834 		if (index & 2) {
835 			if (index == 0xfffffffe) {
836 				/* XXX This means that the controller wants
837 				 * more work.  Ignore it for now.
838 				 */
839 				continue;
840 			}
841 			/* AIF */
842 			fib = (struct aac_fib *)malloc(sizeof *fib, M_AACBUF,
843 				   M_NOWAIT | M_ZERO);
844 			if (fib == NULL) {
845 				/* If we're really this short on memory,
846 				 * hopefully breaking out of the handler will
847 				 * allow something to get freed.  This
848 				 * actually sucks a whole lot.
849 				 */
850 				break;
851 			}
852 			index &= ~2;
853 			for (i = 0; i < sizeof(struct aac_fib)/4; ++i)
854 				((u_int32_t *)fib)[i] = AAC_MEM1_GETREG4(sc, index + i*4);
855 			aac_handle_aif(sc, fib);
856 			free(fib, M_AACBUF);
857 
858 			/*
859 			 * AIF memory is owned by the adapter, so let it
860 			 * know that we are done with it.
861 			 */
862 			AAC_SET_OUTB_QUEUE(sc, index);
863 			AAC_CLEAR_ISTATUS(sc, AAC_DB_RESPONSE_READY);
864 		} else {
865 			fast = index & 1;
866 			cm = sc->aac_commands + (index >> 2);
867 			fib = cm->cm_fib;
868 			if (fast) {
869 				fib->Header.XferState |= AAC_FIBSTATE_DONEADAP;
870 				*((u_int32_t *)(fib->data)) = AAC_ERROR_NORMAL;
871 			}
872 			aac_remove_busy(cm);
873  			aac_unmap_command(cm);
874 			cm->cm_flags |= AAC_CMD_COMPLETED;
875 
876 			/* is there a completion handler? */
877 			if (cm->cm_complete != NULL) {
878 				cm->cm_complete(cm);
879 			} else {
880 				/* assume that someone is sleeping on this
881 				 * command
882 				 */
883 				wakeup(cm);
884 			}
885 			sc->flags &= ~AAC_QUEUE_FRZN;
886 		}
887 	}
888 	/* see if we can start some more I/O */
889 	if ((sc->flags & AAC_QUEUE_FRZN) == 0)
890 		aac_startio(sc);
891 
892 	mtx_unlock(&sc->aac_io_lock);
893 }
894 
895 /*
896  * Interrupt filter for !NEW_COMM interface.
897  */
898 int
899 aac_filter(void *arg)
900 {
901 	struct aac_softc *sc;
902 	u_int16_t reason;
903 
904 	sc = (struct aac_softc *)arg;
905 
906 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
907 	/*
908 	 * Read the status register directly.  This is faster than taking the
909 	 * driver lock and reading the queues directly.  It also saves having
910 	 * to turn parts of the driver lock into a spin mutex, which would be
911 	 * ugly.
912 	 */
913 	reason = AAC_GET_ISTATUS(sc);
914 	AAC_CLEAR_ISTATUS(sc, reason);
915 
916 	/* handle completion processing */
917 	if (reason & AAC_DB_RESPONSE_READY)
918 		taskqueue_enqueue(taskqueue_fast, &sc->aac_task_complete);
919 
920 	/* controller wants to talk to us */
921 	if (reason & (AAC_DB_PRINTF | AAC_DB_COMMAND_READY)) {
922 		/*
923 		 * XXX Make sure that we don't get fooled by strange messages
924 		 * that start with a NULL.
925 		 */
926 		if ((reason & AAC_DB_PRINTF) &&
927 			(sc->aac_common->ac_printf[0] == 0))
928 			sc->aac_common->ac_printf[0] = 32;
929 
930 		/*
931 		 * This might miss doing the actual wakeup.  However, the
932 		 * msleep that this is waking up has a timeout, so it will
933 		 * wake up eventually.  AIFs and printfs are low enough
934 		 * priority that they can handle hanging out for a few seconds
935 		 * if needed.
936 		 */
937 		wakeup(sc->aifthread);
938 	}
939 	return (FILTER_HANDLED);
940 }
941 
942 /*
943  * Command Processing
944  */
945 
946 /*
947  * Start as much queued I/O as possible on the controller
948  */
949 void
950 aac_startio(struct aac_softc *sc)
951 {
952 	struct aac_command *cm;
953 	int error;
954 
955 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
956 
957 	for (;;) {
958 		/*
959 		 * This flag might be set if the card is out of resources.
960 		 * Checking it here prevents an infinite loop of deferrals.
961 		 */
962 		if (sc->flags & AAC_QUEUE_FRZN)
963 			break;
964 
965 		/*
966 		 * Try to get a command that's been put off for lack of
967 		 * resources
968 		 */
969 		cm = aac_dequeue_ready(sc);
970 
971 		/*
972 		 * Try to build a command off the bio queue (ignore error
973 		 * return)
974 		 */
975 		if (cm == NULL)
976 			aac_bio_command(sc, &cm);
977 
978 		/* nothing to do? */
979 		if (cm == NULL)
980 			break;
981 
982 		/* don't map more than once */
983 		if (cm->cm_flags & AAC_CMD_MAPPED)
984 			panic("aac: command %p already mapped", cm);
985 
986 		/*
987 		 * Set up the command to go to the controller.  If there are no
988 		 * data buffers associated with the command then it can bypass
989 		 * busdma.
990 		 */
991 		if (cm->cm_datalen != 0) {
992 			if (cm->cm_flags & AAC_REQ_BIO)
993 				error = bus_dmamap_load_bio(
994 				    sc->aac_buffer_dmat, cm->cm_datamap,
995 				    (struct bio *)cm->cm_private,
996 				    aac_map_command_sg, cm, 0);
997 			else
998 				error = bus_dmamap_load(sc->aac_buffer_dmat,
999 				    cm->cm_datamap, cm->cm_data,
1000 				    cm->cm_datalen, aac_map_command_sg, cm, 0);
1001 			if (error == EINPROGRESS) {
1002 				fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "freezing queue\n");
1003 				sc->flags |= AAC_QUEUE_FRZN;
1004 			} else if (error != 0)
1005 				panic("aac_startio: unexpected error %d from "
1006 				      "busdma", error);
1007 		} else
1008 			aac_map_command_sg(cm, NULL, 0, 0);
1009 	}
1010 }
1011 
1012 /*
1013  * Handle notification of one or more FIBs coming from the controller.
1014  */
1015 static void
1016 aac_command_thread(struct aac_softc *sc)
1017 {
1018 	struct aac_fib *fib;
1019 	u_int32_t fib_size;
1020 	int size, retval;
1021 
1022 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1023 
1024 	mtx_lock(&sc->aac_io_lock);
1025 	sc->aifflags = AAC_AIFFLAGS_RUNNING;
1026 
1027 	while ((sc->aifflags & AAC_AIFFLAGS_EXIT) == 0) {
1028 
1029 		retval = 0;
1030 		if ((sc->aifflags & AAC_AIFFLAGS_PENDING) == 0)
1031 			retval = msleep(sc->aifthread, &sc->aac_io_lock, PRIBIO,
1032 					"aifthd", AAC_PERIODIC_INTERVAL * hz);
1033 
1034 		/*
1035 		 * First see if any FIBs need to be allocated.  This needs
1036 		 * to be called without the driver lock because contigmalloc
1037 		 * can sleep.
1038 		 */
1039 		if ((sc->aifflags & AAC_AIFFLAGS_ALLOCFIBS) != 0) {
1040 			mtx_unlock(&sc->aac_io_lock);
1041 			aac_alloc_commands(sc);
1042 			mtx_lock(&sc->aac_io_lock);
1043 			sc->aifflags &= ~AAC_AIFFLAGS_ALLOCFIBS;
1044 			aac_startio(sc);
1045 		}
1046 
1047 		/*
1048 		 * While we're here, check to see if any commands are stuck.
1049 		 * This is pretty low-priority, so it's ok if it doesn't
1050 		 * always fire.
1051 		 */
1052 		if (retval == EWOULDBLOCK)
1053 			aac_timeout(sc);
1054 
1055 		/* Check the hardware printf message buffer */
1056 		if (sc->aac_common->ac_printf[0] != 0)
1057 			aac_print_printf(sc);
1058 
1059 		/* Also check to see if the adapter has a command for us. */
1060 		if (sc->flags & AAC_FLAGS_NEW_COMM)
1061 			continue;
1062 		for (;;) {
1063 			if (aac_dequeue_fib(sc, AAC_HOST_NORM_CMD_QUEUE,
1064 					   &fib_size, &fib))
1065 				break;
1066 
1067 			AAC_PRINT_FIB(sc, fib);
1068 
1069 			switch (fib->Header.Command) {
1070 			case AifRequest:
1071 				aac_handle_aif(sc, fib);
1072 				break;
1073 			default:
1074 				device_printf(sc->aac_dev, "unknown command "
1075 					      "from controller\n");
1076 				break;
1077 			}
1078 
1079 			if ((fib->Header.XferState == 0) ||
1080 			    (fib->Header.StructType != AAC_FIBTYPE_TFIB)) {
1081 				break;
1082 			}
1083 
1084 			/* Return the AIF to the controller. */
1085 			if (fib->Header.XferState & AAC_FIBSTATE_FROMADAP) {
1086 				fib->Header.XferState |= AAC_FIBSTATE_DONEHOST;
1087 				*(AAC_FSAStatus*)fib->data = ST_OK;
1088 
1089 				/* XXX Compute the Size field? */
1090 				size = fib->Header.Size;
1091 				if (size > sizeof(struct aac_fib)) {
1092 					size = sizeof(struct aac_fib);
1093 					fib->Header.Size = size;
1094 				}
1095 				/*
1096 				 * Since we did not generate this command, it
1097 				 * cannot go through the normal
1098 				 * enqueue->startio chain.
1099 				 */
1100 				aac_enqueue_response(sc,
1101 						 AAC_ADAP_NORM_RESP_QUEUE,
1102 						 fib);
1103 			}
1104 		}
1105 	}
1106 	sc->aifflags &= ~AAC_AIFFLAGS_RUNNING;
1107 	mtx_unlock(&sc->aac_io_lock);
1108 	wakeup(sc->aac_dev);
1109 
1110 	kproc_exit(0);
1111 }
1112 
1113 /*
1114  * Process completed commands.
1115  */
1116 static void
1117 aac_complete(void *context, int pending)
1118 {
1119 	struct aac_softc *sc;
1120 	struct aac_command *cm;
1121 	struct aac_fib *fib;
1122 	u_int32_t fib_size;
1123 
1124 	sc = (struct aac_softc *)context;
1125 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1126 
1127 	mtx_lock(&sc->aac_io_lock);
1128 
1129 	/* pull completed commands off the queue */
1130 	for (;;) {
1131 		/* look for completed FIBs on our queue */
1132 		if (aac_dequeue_fib(sc, AAC_HOST_NORM_RESP_QUEUE, &fib_size,
1133 							&fib))
1134 			break;	/* nothing to do */
1135 
1136 		/* get the command, unmap and hand off for processing */
1137 		cm = sc->aac_commands + fib->Header.SenderData;
1138 		if (cm == NULL) {
1139 			AAC_PRINT_FIB(sc, fib);
1140 			break;
1141 		}
1142 		if ((cm->cm_flags & AAC_CMD_TIMEDOUT) != 0)
1143 			device_printf(sc->aac_dev,
1144 			    "COMMAND %p COMPLETED AFTER %d SECONDS\n",
1145 			    cm, (int)(time_uptime-cm->cm_timestamp));
1146 
1147 		aac_remove_busy(cm);
1148 
1149  		aac_unmap_command(cm);
1150 		cm->cm_flags |= AAC_CMD_COMPLETED;
1151 
1152 		/* is there a completion handler? */
1153 		if (cm->cm_complete != NULL) {
1154 			cm->cm_complete(cm);
1155 		} else {
1156 			/* assume that someone is sleeping on this command */
1157 			wakeup(cm);
1158 		}
1159 	}
1160 
1161 	/* see if we can start some more I/O */
1162 	sc->flags &= ~AAC_QUEUE_FRZN;
1163 	aac_startio(sc);
1164 
1165 	mtx_unlock(&sc->aac_io_lock);
1166 }
1167 
1168 /*
1169  * Handle a bio submitted from a disk device.
1170  */
1171 void
1172 aac_submit_bio(struct bio *bp)
1173 {
1174 	struct aac_disk *ad;
1175 	struct aac_softc *sc;
1176 
1177 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1178 	sc = ad->ad_controller;
1179 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1180 
1181 	/* queue the BIO and try to get some work done */
1182 	aac_enqueue_bio(sc, bp);
1183 	aac_startio(sc);
1184 }
1185 
1186 /*
1187  * Get a bio and build a command to go with it.
1188  */
1189 static int
1190 aac_bio_command(struct aac_softc *sc, struct aac_command **cmp)
1191 {
1192 	struct aac_command *cm;
1193 	struct aac_fib *fib;
1194 	struct aac_disk *ad;
1195 	struct bio *bp;
1196 
1197 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1198 
1199 	/* get the resources we will need */
1200 	cm = NULL;
1201 	bp = NULL;
1202 	if (aac_alloc_command(sc, &cm))	/* get a command */
1203 		goto fail;
1204 	if ((bp = aac_dequeue_bio(sc)) == NULL)
1205 		goto fail;
1206 
1207 	/* fill out the command */
1208 	cm->cm_datalen = bp->bio_bcount;
1209 	cm->cm_complete = aac_bio_complete;
1210 	cm->cm_flags = AAC_REQ_BIO;
1211 	cm->cm_private = bp;
1212 	cm->cm_timestamp = time_uptime;
1213 
1214 	/* build the FIB */
1215 	fib = cm->cm_fib;
1216 	fib->Header.Size = sizeof(struct aac_fib_header);
1217 	fib->Header.XferState =
1218 		AAC_FIBSTATE_HOSTOWNED   |
1219 		AAC_FIBSTATE_INITIALISED |
1220 		AAC_FIBSTATE_EMPTY	 |
1221 		AAC_FIBSTATE_FROMHOST	 |
1222 		AAC_FIBSTATE_REXPECTED   |
1223 		AAC_FIBSTATE_NORM	 |
1224 		AAC_FIBSTATE_ASYNC	 |
1225 		AAC_FIBSTATE_FAST_RESPONSE;
1226 
1227 	/* build the read/write request */
1228 	ad = (struct aac_disk *)bp->bio_disk->d_drv1;
1229 
1230 	if (sc->flags & AAC_FLAGS_RAW_IO) {
1231 		struct aac_raw_io *raw;
1232 		raw = (struct aac_raw_io *)&fib->data[0];
1233 		fib->Header.Command = RawIo;
1234 		raw->BlockNumber = (u_int64_t)bp->bio_pblkno;
1235 		raw->ByteCount = bp->bio_bcount;
1236 		raw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1237 		raw->BpTotal = 0;
1238 		raw->BpComplete = 0;
1239 		fib->Header.Size += sizeof(struct aac_raw_io);
1240 		cm->cm_sgtable = (struct aac_sg_table *)&raw->SgMapRaw;
1241 		if (bp->bio_cmd == BIO_READ) {
1242 			raw->Flags = 1;
1243 			cm->cm_flags |= AAC_CMD_DATAIN;
1244 		} else {
1245 			raw->Flags = 0;
1246 			cm->cm_flags |= AAC_CMD_DATAOUT;
1247 		}
1248 	} else if ((sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1249 		fib->Header.Command = ContainerCommand;
1250 		if (bp->bio_cmd == BIO_READ) {
1251 			struct aac_blockread *br;
1252 			br = (struct aac_blockread *)&fib->data[0];
1253 			br->Command = VM_CtBlockRead;
1254 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1255 			br->BlockNumber = bp->bio_pblkno;
1256 			br->ByteCount = bp->bio_bcount;
1257 			fib->Header.Size += sizeof(struct aac_blockread);
1258 			cm->cm_sgtable = &br->SgMap;
1259 			cm->cm_flags |= AAC_CMD_DATAIN;
1260 		} else {
1261 			struct aac_blockwrite *bw;
1262 			bw = (struct aac_blockwrite *)&fib->data[0];
1263 			bw->Command = VM_CtBlockWrite;
1264 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1265 			bw->BlockNumber = bp->bio_pblkno;
1266 			bw->ByteCount = bp->bio_bcount;
1267 			bw->Stable = CUNSTABLE;
1268 			fib->Header.Size += sizeof(struct aac_blockwrite);
1269 			cm->cm_flags |= AAC_CMD_DATAOUT;
1270 			cm->cm_sgtable = &bw->SgMap;
1271 		}
1272 	} else {
1273 		fib->Header.Command = ContainerCommand64;
1274 		if (bp->bio_cmd == BIO_READ) {
1275 			struct aac_blockread64 *br;
1276 			br = (struct aac_blockread64 *)&fib->data[0];
1277 			br->Command = VM_CtHostRead64;
1278 			br->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1279 			br->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1280 			br->BlockNumber = bp->bio_pblkno;
1281 			br->Pad = 0;
1282 			br->Flags = 0;
1283 			fib->Header.Size += sizeof(struct aac_blockread64);
1284 			cm->cm_flags |= AAC_CMD_DATAIN;
1285 			cm->cm_sgtable = (struct aac_sg_table *)&br->SgMap64;
1286 		} else {
1287 			struct aac_blockwrite64 *bw;
1288 			bw = (struct aac_blockwrite64 *)&fib->data[0];
1289 			bw->Command = VM_CtHostWrite64;
1290 			bw->ContainerId = ad->ad_container->co_mntobj.ObjectId;
1291 			bw->SectorCount = bp->bio_bcount / AAC_BLOCK_SIZE;
1292 			bw->BlockNumber = bp->bio_pblkno;
1293 			bw->Pad = 0;
1294 			bw->Flags = 0;
1295 			fib->Header.Size += sizeof(struct aac_blockwrite64);
1296 			cm->cm_flags |= AAC_CMD_DATAOUT;
1297 			cm->cm_sgtable = (struct aac_sg_table *)&bw->SgMap64;
1298 		}
1299 	}
1300 
1301 	*cmp = cm;
1302 	return(0);
1303 
1304 fail:
1305 	if (bp != NULL)
1306 		aac_enqueue_bio(sc, bp);
1307 	if (cm != NULL)
1308 		aac_release_command(cm);
1309 	return(ENOMEM);
1310 }
1311 
1312 /*
1313  * Handle a bio-instigated command that has been completed.
1314  */
1315 static void
1316 aac_bio_complete(struct aac_command *cm)
1317 {
1318 	struct aac_blockread_response *brr;
1319 	struct aac_blockwrite_response *bwr;
1320 	struct bio *bp;
1321 	AAC_FSAStatus status;
1322 
1323 	/* fetch relevant status and then release the command */
1324 	bp = (struct bio *)cm->cm_private;
1325 	if (bp->bio_cmd == BIO_READ) {
1326 		brr = (struct aac_blockread_response *)&cm->cm_fib->data[0];
1327 		status = brr->Status;
1328 	} else {
1329 		bwr = (struct aac_blockwrite_response *)&cm->cm_fib->data[0];
1330 		status = bwr->Status;
1331 	}
1332 	aac_release_command(cm);
1333 
1334 	/* fix up the bio based on status */
1335 	if (status == ST_OK) {
1336 		bp->bio_resid = 0;
1337 	} else {
1338 		bp->bio_error = EIO;
1339 		bp->bio_flags |= BIO_ERROR;
1340 	}
1341 	aac_biodone(bp);
1342 }
1343 
1344 /*
1345  * Submit a command to the controller, return when it completes.
1346  * XXX This is very dangerous!  If the card has gone out to lunch, we could
1347  *     be stuck here forever.  At the same time, signals are not caught
1348  *     because there is a risk that a signal could wakeup the sleep before
1349  *     the card has a chance to complete the command.  Since there is no way
1350  *     to cancel a command that is in progress, we can't protect against the
1351  *     card completing a command late and spamming the command and data
1352  *     memory.  So, we are held hostage until the command completes.
1353  */
1354 static int
1355 aac_wait_command(struct aac_command *cm)
1356 {
1357 	struct aac_softc *sc;
1358 	int error;
1359 
1360 	sc = cm->cm_sc;
1361 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1362 
1363 	/* Put the command on the ready queue and get things going */
1364 	aac_enqueue_ready(cm);
1365 	aac_startio(sc);
1366 	error = msleep(cm, &sc->aac_io_lock, PRIBIO, "aacwait", 0);
1367 	return(error);
1368 }
1369 
1370 /*
1371  *Command Buffer Management
1372  */
1373 
1374 /*
1375  * Allocate a command.
1376  */
1377 int
1378 aac_alloc_command(struct aac_softc *sc, struct aac_command **cmp)
1379 {
1380 	struct aac_command *cm;
1381 
1382 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1383 
1384 	if ((cm = aac_dequeue_free(sc)) == NULL) {
1385 		if (sc->total_fibs < sc->aac_max_fibs) {
1386 			mtx_lock(&sc->aac_io_lock);
1387 			sc->aifflags |= AAC_AIFFLAGS_ALLOCFIBS;
1388 			mtx_unlock(&sc->aac_io_lock);
1389 			wakeup(sc->aifthread);
1390 		}
1391 		return (EBUSY);
1392 	}
1393 
1394 	*cmp = cm;
1395 	return(0);
1396 }
1397 
1398 /*
1399  * Release a command back to the freelist.
1400  */
1401 void
1402 aac_release_command(struct aac_command *cm)
1403 {
1404 	struct aac_event *event;
1405 	struct aac_softc *sc;
1406 
1407 	sc = cm->cm_sc;
1408 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1409 
1410 	/* (re)initialize the command/FIB */
1411 	cm->cm_datalen = 0;
1412 	cm->cm_sgtable = NULL;
1413 	cm->cm_flags = 0;
1414 	cm->cm_complete = NULL;
1415 	cm->cm_private = NULL;
1416 	cm->cm_queue = AAC_ADAP_NORM_CMD_QUEUE;
1417 	cm->cm_fib->Header.XferState = AAC_FIBSTATE_EMPTY;
1418 	cm->cm_fib->Header.StructType = AAC_FIBTYPE_TFIB;
1419 	cm->cm_fib->Header.Flags = 0;
1420 	cm->cm_fib->Header.SenderSize = cm->cm_sc->aac_max_fib_size;
1421 
1422 	/*
1423 	 * These are duplicated in aac_start to cover the case where an
1424 	 * intermediate stage may have destroyed them.  They're left
1425 	 * initialized here for debugging purposes only.
1426 	 */
1427 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1428 	cm->cm_fib->Header.SenderData = 0;
1429 
1430 	aac_enqueue_free(cm);
1431 
1432 	if ((event = TAILQ_FIRST(&sc->aac_ev_cmfree)) != NULL) {
1433 		TAILQ_REMOVE(&sc->aac_ev_cmfree, event, ev_links);
1434 		event->ev_callback(sc, event, event->ev_arg);
1435 	}
1436 }
1437 
1438 /*
1439  * Map helper for command/FIB allocation.
1440  */
1441 static void
1442 aac_map_command_helper(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1443 {
1444 	uint64_t	*fibphys;
1445 
1446 	fibphys = (uint64_t *)arg;
1447 
1448 	*fibphys = segs[0].ds_addr;
1449 }
1450 
1451 /*
1452  * Allocate and initialize commands/FIBs for this adapter.
1453  */
1454 static int
1455 aac_alloc_commands(struct aac_softc *sc)
1456 {
1457 	struct aac_command *cm;
1458 	struct aac_fibmap *fm;
1459 	uint64_t fibphys;
1460 	int i, error;
1461 
1462 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1463 
1464 	if (sc->total_fibs + sc->aac_max_fibs_alloc > sc->aac_max_fibs)
1465 		return (ENOMEM);
1466 
1467 	fm = malloc(sizeof(struct aac_fibmap), M_AACBUF, M_NOWAIT|M_ZERO);
1468 	if (fm == NULL)
1469 		return (ENOMEM);
1470 
1471 	/* allocate the FIBs in DMAable memory and load them */
1472 	if (bus_dmamem_alloc(sc->aac_fib_dmat, (void **)&fm->aac_fibs,
1473 			     BUS_DMA_NOWAIT, &fm->aac_fibmap)) {
1474 		device_printf(sc->aac_dev,
1475 			      "Not enough contiguous memory available.\n");
1476 		free(fm, M_AACBUF);
1477 		return (ENOMEM);
1478 	}
1479 
1480 	/* Ignore errors since this doesn't bounce */
1481 	(void)bus_dmamap_load(sc->aac_fib_dmat, fm->aac_fibmap, fm->aac_fibs,
1482 			      sc->aac_max_fibs_alloc * sc->aac_max_fib_size,
1483 			      aac_map_command_helper, &fibphys, 0);
1484 
1485 	/* initialize constant fields in the command structure */
1486 	bzero(fm->aac_fibs, sc->aac_max_fibs_alloc * sc->aac_max_fib_size);
1487 	for (i = 0; i < sc->aac_max_fibs_alloc; i++) {
1488 		cm = sc->aac_commands + sc->total_fibs;
1489 		fm->aac_commands = cm;
1490 		cm->cm_sc = sc;
1491 		cm->cm_fib = (struct aac_fib *)
1492 			((u_int8_t *)fm->aac_fibs + i*sc->aac_max_fib_size);
1493 		cm->cm_fibphys = fibphys + i*sc->aac_max_fib_size;
1494 		cm->cm_index = sc->total_fibs;
1495 
1496 		if ((error = bus_dmamap_create(sc->aac_buffer_dmat, 0,
1497 					       &cm->cm_datamap)) != 0)
1498 			break;
1499 		mtx_lock(&sc->aac_io_lock);
1500 		aac_release_command(cm);
1501 		sc->total_fibs++;
1502 		mtx_unlock(&sc->aac_io_lock);
1503 	}
1504 
1505 	if (i > 0) {
1506 		mtx_lock(&sc->aac_io_lock);
1507 		TAILQ_INSERT_TAIL(&sc->aac_fibmap_tqh, fm, fm_link);
1508 		fwprintf(sc, HBA_FLAGS_DBG_COMM_B, "total_fibs= %d\n", sc->total_fibs);
1509 		mtx_unlock(&sc->aac_io_lock);
1510 		return (0);
1511 	}
1512 
1513 	bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1514 	bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1515 	free(fm, M_AACBUF);
1516 	return (ENOMEM);
1517 }
1518 
1519 /*
1520  * Free FIBs owned by this adapter.
1521  */
1522 static void
1523 aac_free_commands(struct aac_softc *sc)
1524 {
1525 	struct aac_fibmap *fm;
1526 	struct aac_command *cm;
1527 	int i;
1528 
1529 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1530 
1531 	while ((fm = TAILQ_FIRST(&sc->aac_fibmap_tqh)) != NULL) {
1532 
1533 		TAILQ_REMOVE(&sc->aac_fibmap_tqh, fm, fm_link);
1534 		/*
1535 		 * We check against total_fibs to handle partially
1536 		 * allocated blocks.
1537 		 */
1538 		for (i = 0; i < sc->aac_max_fibs_alloc && sc->total_fibs--; i++) {
1539 			cm = fm->aac_commands + i;
1540 			bus_dmamap_destroy(sc->aac_buffer_dmat, cm->cm_datamap);
1541 		}
1542 		bus_dmamap_unload(sc->aac_fib_dmat, fm->aac_fibmap);
1543 		bus_dmamem_free(sc->aac_fib_dmat, fm->aac_fibs, fm->aac_fibmap);
1544 		free(fm, M_AACBUF);
1545 	}
1546 }
1547 
1548 /*
1549  * Command-mapping helper function - populate this command's s/g table.
1550  */
1551 static void
1552 aac_map_command_sg(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1553 {
1554 	struct aac_softc *sc;
1555 	struct aac_command *cm;
1556 	struct aac_fib *fib;
1557 	int i;
1558 
1559 	cm = (struct aac_command *)arg;
1560 	sc = cm->cm_sc;
1561 	fib = cm->cm_fib;
1562 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1563 
1564 	/* copy into the FIB */
1565 	if (cm->cm_sgtable != NULL) {
1566 		if (fib->Header.Command == RawIo) {
1567 			struct aac_sg_tableraw *sg;
1568 			sg = (struct aac_sg_tableraw *)cm->cm_sgtable;
1569 			sg->SgCount = nseg;
1570 			for (i = 0; i < nseg; i++) {
1571 				sg->SgEntryRaw[i].SgAddress = segs[i].ds_addr;
1572 				sg->SgEntryRaw[i].SgByteCount = segs[i].ds_len;
1573 				sg->SgEntryRaw[i].Next = 0;
1574 				sg->SgEntryRaw[i].Prev = 0;
1575 				sg->SgEntryRaw[i].Flags = 0;
1576 			}
1577 			/* update the FIB size for the s/g count */
1578 			fib->Header.Size += nseg*sizeof(struct aac_sg_entryraw);
1579 		} else if ((cm->cm_sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
1580 			struct aac_sg_table *sg;
1581 			sg = cm->cm_sgtable;
1582 			sg->SgCount = nseg;
1583 			for (i = 0; i < nseg; i++) {
1584 				sg->SgEntry[i].SgAddress = segs[i].ds_addr;
1585 				sg->SgEntry[i].SgByteCount = segs[i].ds_len;
1586 			}
1587 			/* update the FIB size for the s/g count */
1588 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry);
1589 		} else {
1590 			struct aac_sg_table64 *sg;
1591 			sg = (struct aac_sg_table64 *)cm->cm_sgtable;
1592 			sg->SgCount = nseg;
1593 			for (i = 0; i < nseg; i++) {
1594 				sg->SgEntry64[i].SgAddress = segs[i].ds_addr;
1595 				sg->SgEntry64[i].SgByteCount = segs[i].ds_len;
1596 			}
1597 			/* update the FIB size for the s/g count */
1598 			fib->Header.Size += nseg*sizeof(struct aac_sg_entry64);
1599 		}
1600 	}
1601 
1602 	/* Fix up the address values in the FIB.  Use the command array index
1603 	 * instead of a pointer since these fields are only 32 bits.  Shift
1604 	 * the SenderFibAddress over to make room for the fast response bit
1605 	 * and for the AIF bit
1606 	 */
1607 	cm->cm_fib->Header.SenderFibAddress = (cm->cm_index << 2);
1608 	cm->cm_fib->Header.ReceiverFibAddress = (u_int32_t)cm->cm_fibphys;
1609 
1610 	/* save a pointer to the command for speedy reverse-lookup */
1611 	cm->cm_fib->Header.SenderData = cm->cm_index;
1612 
1613 	if (cm->cm_flags & AAC_CMD_DATAIN)
1614 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1615 				BUS_DMASYNC_PREREAD);
1616 	if (cm->cm_flags & AAC_CMD_DATAOUT)
1617 		bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1618 				BUS_DMASYNC_PREWRITE);
1619 	cm->cm_flags |= AAC_CMD_MAPPED;
1620 
1621 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1622 		int count = 10000000L;
1623 		while (AAC_SEND_COMMAND(sc, cm) != 0) {
1624 			if (--count == 0) {
1625 				aac_unmap_command(cm);
1626 				sc->flags |= AAC_QUEUE_FRZN;
1627 				aac_requeue_ready(cm);
1628 			}
1629 			DELAY(5);			/* wait 5 usec. */
1630 		}
1631 	} else {
1632 		/* Put the FIB on the outbound queue */
1633 		if (aac_enqueue_fib(sc, cm->cm_queue, cm) == EBUSY) {
1634 			aac_unmap_command(cm);
1635 			sc->flags |= AAC_QUEUE_FRZN;
1636 			aac_requeue_ready(cm);
1637 		}
1638 	}
1639 }
1640 
1641 /*
1642  * Unmap a command from controller-visible space.
1643  */
1644 static void
1645 aac_unmap_command(struct aac_command *cm)
1646 {
1647 	struct aac_softc *sc;
1648 
1649 	sc = cm->cm_sc;
1650 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1651 
1652 	if (!(cm->cm_flags & AAC_CMD_MAPPED))
1653 		return;
1654 
1655 	if (cm->cm_datalen != 0) {
1656 		if (cm->cm_flags & AAC_CMD_DATAIN)
1657 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1658 					BUS_DMASYNC_POSTREAD);
1659 		if (cm->cm_flags & AAC_CMD_DATAOUT)
1660 			bus_dmamap_sync(sc->aac_buffer_dmat, cm->cm_datamap,
1661 					BUS_DMASYNC_POSTWRITE);
1662 
1663 		bus_dmamap_unload(sc->aac_buffer_dmat, cm->cm_datamap);
1664 	}
1665 	cm->cm_flags &= ~AAC_CMD_MAPPED;
1666 }
1667 
1668 /*
1669  * Hardware Interface
1670  */
1671 
1672 /*
1673  * Initialize the adapter.
1674  */
1675 static void
1676 aac_common_map(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1677 {
1678 	struct aac_softc *sc;
1679 
1680 	sc = (struct aac_softc *)arg;
1681 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1682 
1683 	sc->aac_common_busaddr = segs[0].ds_addr;
1684 }
1685 
1686 static int
1687 aac_check_firmware(struct aac_softc *sc)
1688 {
1689 	u_int32_t code, major, minor, options = 0, atu_size = 0;
1690 	int rid, status;
1691 	time_t then;
1692 
1693 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1694 	/*
1695 	 * Wait for the adapter to come ready.
1696 	 */
1697 	then = time_uptime;
1698 	do {
1699 		code = AAC_GET_FWSTATUS(sc);
1700 		if (code & AAC_SELF_TEST_FAILED) {
1701 			device_printf(sc->aac_dev, "FATAL: selftest failed\n");
1702 			return(ENXIO);
1703 		}
1704 		if (code & AAC_KERNEL_PANIC) {
1705 			device_printf(sc->aac_dev,
1706 				      "FATAL: controller kernel panic");
1707 			return(ENXIO);
1708 		}
1709 		if (time_uptime > (then + AAC_BOOT_TIMEOUT)) {
1710 			device_printf(sc->aac_dev,
1711 				      "FATAL: controller not coming ready, "
1712 					   "status %x\n", code);
1713 			return(ENXIO);
1714 		}
1715 	} while (!(code & AAC_UP_AND_RUNNING));
1716 
1717 	/*
1718 	 * Retrieve the firmware version numbers.  Dell PERC2/QC cards with
1719 	 * firmware version 1.x are not compatible with this driver.
1720 	 */
1721 	if (sc->flags & AAC_FLAGS_PERC2QC) {
1722 		if (aac_sync_command(sc, AAC_MONKER_GETKERNVER, 0, 0, 0, 0,
1723 				     NULL)) {
1724 			device_printf(sc->aac_dev,
1725 				      "Error reading firmware version\n");
1726 			return (EIO);
1727 		}
1728 
1729 		/* These numbers are stored as ASCII! */
1730 		major = (AAC_GET_MAILBOX(sc, 1) & 0xff) - 0x30;
1731 		minor = (AAC_GET_MAILBOX(sc, 2) & 0xff) - 0x30;
1732 		if (major == 1) {
1733 			device_printf(sc->aac_dev,
1734 			    "Firmware version %d.%d is not supported.\n",
1735 			    major, minor);
1736 			return (EINVAL);
1737 		}
1738 	}
1739 
1740 	/*
1741 	 * Retrieve the capabilities/supported options word so we know what
1742 	 * work-arounds to enable.  Some firmware revs don't support this
1743 	 * command.
1744 	 */
1745 	if (aac_sync_command(sc, AAC_MONKER_GETINFO, 0, 0, 0, 0, &status)) {
1746 		if (status != AAC_SRB_STS_INVALID_REQUEST) {
1747 			device_printf(sc->aac_dev,
1748 			     "RequestAdapterInfo failed\n");
1749 			return (EIO);
1750 		}
1751 	} else {
1752 		options = AAC_GET_MAILBOX(sc, 1);
1753 		atu_size = AAC_GET_MAILBOX(sc, 2);
1754 		sc->supported_options = options;
1755 
1756 		if ((options & AAC_SUPPORTED_4GB_WINDOW) != 0 &&
1757 		    (sc->flags & AAC_FLAGS_NO4GB) == 0)
1758 			sc->flags |= AAC_FLAGS_4GB_WINDOW;
1759 		if (options & AAC_SUPPORTED_NONDASD)
1760 			sc->flags |= AAC_FLAGS_ENABLE_CAM;
1761 		if ((options & AAC_SUPPORTED_SGMAP_HOST64) != 0
1762 		     && (sizeof(bus_addr_t) > 4)) {
1763 			device_printf(sc->aac_dev,
1764 			    "Enabling 64-bit address support\n");
1765 			sc->flags |= AAC_FLAGS_SG_64BIT;
1766 		}
1767 		if ((options & AAC_SUPPORTED_NEW_COMM)
1768 		 && sc->aac_if->aif_send_command)
1769 			sc->flags |= AAC_FLAGS_NEW_COMM;
1770 		if (options & AAC_SUPPORTED_64BIT_ARRAYSIZE)
1771 			sc->flags |= AAC_FLAGS_ARRAY_64BIT;
1772 	}
1773 
1774 	/* Check for broken hardware that does a lower number of commands */
1775 	sc->aac_max_fibs = (sc->flags & AAC_FLAGS_256FIBS ? 256:512);
1776 
1777 	/* Remap mem. resource, if required */
1778 	if ((sc->flags & AAC_FLAGS_NEW_COMM) &&
1779 	    atu_size > rman_get_size(sc->aac_regs_res1)) {
1780 		rid = rman_get_rid(sc->aac_regs_res1);
1781 		bus_release_resource(sc->aac_dev, SYS_RES_MEMORY, rid,
1782 		    sc->aac_regs_res1);
1783 		sc->aac_regs_res1 = bus_alloc_resource_anywhere(sc->aac_dev,
1784 		    SYS_RES_MEMORY, &rid, atu_size, RF_ACTIVE);
1785 		if (sc->aac_regs_res1 == NULL) {
1786 			sc->aac_regs_res1 = bus_alloc_resource_any(
1787 			    sc->aac_dev, SYS_RES_MEMORY, &rid, RF_ACTIVE);
1788 			if (sc->aac_regs_res1 == NULL) {
1789 				device_printf(sc->aac_dev,
1790 				    "couldn't allocate register window\n");
1791 				return (ENXIO);
1792 			}
1793 			sc->flags &= ~AAC_FLAGS_NEW_COMM;
1794 		}
1795 		sc->aac_btag1 = rman_get_bustag(sc->aac_regs_res1);
1796 		sc->aac_bhandle1 = rman_get_bushandle(sc->aac_regs_res1);
1797 
1798 		if (sc->aac_hwif == AAC_HWIF_NARK) {
1799 			sc->aac_regs_res0 = sc->aac_regs_res1;
1800 			sc->aac_btag0 = sc->aac_btag1;
1801 			sc->aac_bhandle0 = sc->aac_bhandle1;
1802 		}
1803 	}
1804 
1805 	/* Read preferred settings */
1806 	sc->aac_max_fib_size = sizeof(struct aac_fib);
1807 	sc->aac_max_sectors = 128;				/* 64KB */
1808 	if (sc->flags & AAC_FLAGS_SG_64BIT)
1809 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1810 		 - sizeof(struct aac_blockwrite64))
1811 		 / sizeof(struct aac_sg_entry64);
1812 	else
1813 		sc->aac_sg_tablesize = (AAC_FIB_DATASIZE
1814 		 - sizeof(struct aac_blockwrite))
1815 		 / sizeof(struct aac_sg_entry);
1816 
1817 	if (!aac_sync_command(sc, AAC_MONKER_GETCOMMPREF, 0, 0, 0, 0, NULL)) {
1818 		options = AAC_GET_MAILBOX(sc, 1);
1819 		sc->aac_max_fib_size = (options & 0xFFFF);
1820 		sc->aac_max_sectors = (options >> 16) << 1;
1821 		options = AAC_GET_MAILBOX(sc, 2);
1822 		sc->aac_sg_tablesize = (options >> 16);
1823 		options = AAC_GET_MAILBOX(sc, 3);
1824 		sc->aac_max_fibs = (options & 0xFFFF);
1825 	}
1826 	if (sc->aac_max_fib_size > PAGE_SIZE)
1827 		sc->aac_max_fib_size = PAGE_SIZE;
1828 	sc->aac_max_fibs_alloc = PAGE_SIZE / sc->aac_max_fib_size;
1829 
1830 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1831 		sc->flags |= AAC_FLAGS_RAW_IO;
1832 		device_printf(sc->aac_dev, "Enable Raw I/O\n");
1833 	}
1834 	if ((sc->flags & AAC_FLAGS_RAW_IO) &&
1835 	    (sc->flags & AAC_FLAGS_ARRAY_64BIT)) {
1836 		sc->flags |= AAC_FLAGS_LBA_64BIT;
1837 		device_printf(sc->aac_dev, "Enable 64-bit array\n");
1838 	}
1839 
1840 	return (0);
1841 }
1842 
1843 static int
1844 aac_init(struct aac_softc *sc)
1845 {
1846 	struct aac_adapter_init	*ip;
1847 	u_int32_t qoffset;
1848 	int error;
1849 
1850 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
1851 
1852 	/*
1853 	 * Fill in the init structure.  This tells the adapter about the
1854 	 * physical location of various important shared data structures.
1855 	 */
1856 	ip = &sc->aac_common->ac_init;
1857 	ip->InitStructRevision = AAC_INIT_STRUCT_REVISION;
1858 	if (sc->aac_max_fib_size > sizeof(struct aac_fib)) {
1859 		ip->InitStructRevision = AAC_INIT_STRUCT_REVISION_4;
1860 		sc->flags |= AAC_FLAGS_RAW_IO;
1861 	}
1862 	ip->MiniPortRevision = AAC_INIT_STRUCT_MINIPORT_REVISION;
1863 
1864 	ip->AdapterFibsPhysicalAddress = sc->aac_common_busaddr +
1865 					 offsetof(struct aac_common, ac_fibs);
1866 	ip->AdapterFibsVirtualAddress = 0;
1867 	ip->AdapterFibsSize = AAC_ADAPTER_FIBS * sizeof(struct aac_fib);
1868 	ip->AdapterFibAlign = sizeof(struct aac_fib);
1869 
1870 	ip->PrintfBufferAddress = sc->aac_common_busaddr +
1871 				  offsetof(struct aac_common, ac_printf);
1872 	ip->PrintfBufferSize = AAC_PRINTF_BUFSIZE;
1873 
1874 	/*
1875 	 * The adapter assumes that pages are 4K in size, except on some
1876  	 * broken firmware versions that do the page->byte conversion twice,
1877 	 * therefore 'assuming' that this value is in 16MB units (2^24).
1878 	 * Round up since the granularity is so high.
1879 	 */
1880 	ip->HostPhysMemPages = ctob(physmem) / AAC_PAGE_SIZE;
1881 	if (sc->flags & AAC_FLAGS_BROKEN_MEMMAP) {
1882 		ip->HostPhysMemPages =
1883 		    (ip->HostPhysMemPages + AAC_PAGE_SIZE) / AAC_PAGE_SIZE;
1884 	}
1885 	ip->HostElapsedSeconds = time_uptime;	/* reset later if invalid */
1886 
1887 	ip->InitFlags = 0;
1888 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
1889 		ip->InitFlags |= AAC_INITFLAGS_NEW_COMM_SUPPORTED;
1890 		device_printf(sc->aac_dev, "New comm. interface enabled\n");
1891 	}
1892 
1893 	ip->MaxIoCommands = sc->aac_max_fibs;
1894 	ip->MaxIoSize = sc->aac_max_sectors << 9;
1895 	ip->MaxFibSize = sc->aac_max_fib_size;
1896 
1897 	/*
1898 	 * Initialize FIB queues.  Note that it appears that the layout of the
1899 	 * indexes and the segmentation of the entries may be mandated by the
1900 	 * adapter, which is only told about the base of the queue index fields.
1901 	 *
1902 	 * The initial values of the indices are assumed to inform the adapter
1903 	 * of the sizes of the respective queues, and theoretically it could
1904 	 * work out the entire layout of the queue structures from this.  We
1905 	 * take the easy route and just lay this area out like everyone else
1906 	 * does.
1907 	 *
1908 	 * The Linux driver uses a much more complex scheme whereby several
1909 	 * header records are kept for each queue.  We use a couple of generic
1910 	 * list manipulation functions which 'know' the size of each list by
1911 	 * virtue of a table.
1912 	 */
1913 	qoffset = offsetof(struct aac_common, ac_qbuf) + AAC_QUEUE_ALIGN;
1914 	qoffset &= ~(AAC_QUEUE_ALIGN - 1);
1915 	sc->aac_queues =
1916 	    (struct aac_queue_table *)((uintptr_t)sc->aac_common + qoffset);
1917 	ip->CommHeaderAddress = sc->aac_common_busaddr + qoffset;
1918 
1919 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1920 		AAC_HOST_NORM_CMD_ENTRIES;
1921 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1922 		AAC_HOST_NORM_CMD_ENTRIES;
1923 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1924 		AAC_HOST_HIGH_CMD_ENTRIES;
1925 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1926 		AAC_HOST_HIGH_CMD_ENTRIES;
1927 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1928 		AAC_ADAP_NORM_CMD_ENTRIES;
1929 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1930 		AAC_ADAP_NORM_CMD_ENTRIES;
1931 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_PRODUCER_INDEX] =
1932 		AAC_ADAP_HIGH_CMD_ENTRIES;
1933 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_CMD_QUEUE][AAC_CONSUMER_INDEX] =
1934 		AAC_ADAP_HIGH_CMD_ENTRIES;
1935 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1936 		AAC_HOST_NORM_RESP_ENTRIES;
1937 	sc->aac_queues->qt_qindex[AAC_HOST_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1938 		AAC_HOST_NORM_RESP_ENTRIES;
1939 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1940 		AAC_HOST_HIGH_RESP_ENTRIES;
1941 	sc->aac_queues->qt_qindex[AAC_HOST_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1942 		AAC_HOST_HIGH_RESP_ENTRIES;
1943 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1944 		AAC_ADAP_NORM_RESP_ENTRIES;
1945 	sc->aac_queues->qt_qindex[AAC_ADAP_NORM_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1946 		AAC_ADAP_NORM_RESP_ENTRIES;
1947 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_PRODUCER_INDEX]=
1948 		AAC_ADAP_HIGH_RESP_ENTRIES;
1949 	sc->aac_queues->qt_qindex[AAC_ADAP_HIGH_RESP_QUEUE][AAC_CONSUMER_INDEX]=
1950 		AAC_ADAP_HIGH_RESP_ENTRIES;
1951 	sc->aac_qentries[AAC_HOST_NORM_CMD_QUEUE] =
1952 		&sc->aac_queues->qt_HostNormCmdQueue[0];
1953 	sc->aac_qentries[AAC_HOST_HIGH_CMD_QUEUE] =
1954 		&sc->aac_queues->qt_HostHighCmdQueue[0];
1955 	sc->aac_qentries[AAC_ADAP_NORM_CMD_QUEUE] =
1956 		&sc->aac_queues->qt_AdapNormCmdQueue[0];
1957 	sc->aac_qentries[AAC_ADAP_HIGH_CMD_QUEUE] =
1958 		&sc->aac_queues->qt_AdapHighCmdQueue[0];
1959 	sc->aac_qentries[AAC_HOST_NORM_RESP_QUEUE] =
1960 		&sc->aac_queues->qt_HostNormRespQueue[0];
1961 	sc->aac_qentries[AAC_HOST_HIGH_RESP_QUEUE] =
1962 		&sc->aac_queues->qt_HostHighRespQueue[0];
1963 	sc->aac_qentries[AAC_ADAP_NORM_RESP_QUEUE] =
1964 		&sc->aac_queues->qt_AdapNormRespQueue[0];
1965 	sc->aac_qentries[AAC_ADAP_HIGH_RESP_QUEUE] =
1966 		&sc->aac_queues->qt_AdapHighRespQueue[0];
1967 
1968 	/*
1969 	 * Do controller-type-specific initialisation
1970 	 */
1971 	switch (sc->aac_hwif) {
1972 	case AAC_HWIF_I960RX:
1973 		AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, ~0);
1974 		break;
1975 	case AAC_HWIF_RKT:
1976 		AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, ~0);
1977 		break;
1978 	default:
1979 		break;
1980 	}
1981 
1982 	/*
1983 	 * Give the init structure to the controller.
1984 	 */
1985 	if (aac_sync_command(sc, AAC_MONKER_INITSTRUCT,
1986 			     sc->aac_common_busaddr +
1987 			     offsetof(struct aac_common, ac_init), 0, 0, 0,
1988 			     NULL)) {
1989 		device_printf(sc->aac_dev,
1990 			      "error establishing init structure\n");
1991 		error = EIO;
1992 		goto out;
1993 	}
1994 
1995 	error = 0;
1996 out:
1997 	return(error);
1998 }
1999 
2000 static int
2001 aac_setup_intr(struct aac_softc *sc)
2002 {
2003 
2004 	if (sc->flags & AAC_FLAGS_NEW_COMM) {
2005 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2006 				   INTR_MPSAFE|INTR_TYPE_BIO, NULL,
2007 				   aac_new_intr, sc, &sc->aac_intr)) {
2008 			device_printf(sc->aac_dev, "can't set up interrupt\n");
2009 			return (EINVAL);
2010 		}
2011 	} else {
2012 		if (bus_setup_intr(sc->aac_dev, sc->aac_irq,
2013 				   INTR_TYPE_BIO, aac_filter, NULL,
2014 				   sc, &sc->aac_intr)) {
2015 			device_printf(sc->aac_dev,
2016 				      "can't set up interrupt filter\n");
2017 			return (EINVAL);
2018 		}
2019 	}
2020 	return (0);
2021 }
2022 
2023 /*
2024  * Send a synchronous command to the controller and wait for a result.
2025  * Indicate if the controller completed the command with an error status.
2026  */
2027 static int
2028 aac_sync_command(struct aac_softc *sc, u_int32_t command,
2029 		 u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3,
2030 		 u_int32_t *sp)
2031 {
2032 	time_t then;
2033 	u_int32_t status;
2034 
2035 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2036 
2037 	/* populate the mailbox */
2038 	AAC_SET_MAILBOX(sc, command, arg0, arg1, arg2, arg3);
2039 
2040 	/* ensure the sync command doorbell flag is cleared */
2041 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2042 
2043 	/* then set it to signal the adapter */
2044 	AAC_QNOTIFY(sc, AAC_DB_SYNC_COMMAND);
2045 
2046 	/* spin waiting for the command to complete */
2047 	then = time_uptime;
2048 	do {
2049 		if (time_uptime > (then + AAC_IMMEDIATE_TIMEOUT)) {
2050 			fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "timed out");
2051 			return(EIO);
2052 		}
2053 	} while (!(AAC_GET_ISTATUS(sc) & AAC_DB_SYNC_COMMAND));
2054 
2055 	/* clear the completion flag */
2056 	AAC_CLEAR_ISTATUS(sc, AAC_DB_SYNC_COMMAND);
2057 
2058 	/* get the command status */
2059 	status = AAC_GET_MAILBOX(sc, 0);
2060 	if (sp != NULL)
2061 		*sp = status;
2062 
2063 	if (status != AAC_SRB_STS_SUCCESS)
2064 		return (-1);
2065 	return(0);
2066 }
2067 
2068 int
2069 aac_sync_fib(struct aac_softc *sc, u_int32_t command, u_int32_t xferstate,
2070 		 struct aac_fib *fib, u_int16_t datasize)
2071 {
2072 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2073 	mtx_assert(&sc->aac_io_lock, MA_OWNED);
2074 
2075 	if (datasize > AAC_FIB_DATASIZE)
2076 		return(EINVAL);
2077 
2078 	/*
2079 	 * Set up the sync FIB
2080 	 */
2081 	fib->Header.XferState = AAC_FIBSTATE_HOSTOWNED |
2082 				AAC_FIBSTATE_INITIALISED |
2083 				AAC_FIBSTATE_EMPTY;
2084 	fib->Header.XferState |= xferstate;
2085 	fib->Header.Command = command;
2086 	fib->Header.StructType = AAC_FIBTYPE_TFIB;
2087 	fib->Header.Size = sizeof(struct aac_fib_header) + datasize;
2088 	fib->Header.SenderSize = sizeof(struct aac_fib);
2089 	fib->Header.SenderFibAddress = 0;	/* Not needed */
2090 	fib->Header.ReceiverFibAddress = sc->aac_common_busaddr +
2091 					 offsetof(struct aac_common,
2092 						  ac_sync_fib);
2093 
2094 	/*
2095 	 * Give the FIB to the controller, wait for a response.
2096 	 */
2097 	if (aac_sync_command(sc, AAC_MONKER_SYNCFIB,
2098 			     fib->Header.ReceiverFibAddress, 0, 0, 0, NULL)) {
2099 		fwprintf(sc, HBA_FLAGS_DBG_ERROR_B, "IO error");
2100 		return(EIO);
2101 	}
2102 
2103 	return (0);
2104 }
2105 
2106 /*
2107  * Adapter-space FIB queue manipulation
2108  *
2109  * Note that the queue implementation here is a little funky; neither the PI or
2110  * CI will ever be zero.  This behaviour is a controller feature.
2111  */
2112 static const struct {
2113 	int		size;
2114 	int		notify;
2115 } aac_qinfo[] = {
2116 	{AAC_HOST_NORM_CMD_ENTRIES, AAC_DB_COMMAND_NOT_FULL},
2117 	{AAC_HOST_HIGH_CMD_ENTRIES, 0},
2118 	{AAC_ADAP_NORM_CMD_ENTRIES, AAC_DB_COMMAND_READY},
2119 	{AAC_ADAP_HIGH_CMD_ENTRIES, 0},
2120 	{AAC_HOST_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_NOT_FULL},
2121 	{AAC_HOST_HIGH_RESP_ENTRIES, 0},
2122 	{AAC_ADAP_NORM_RESP_ENTRIES, AAC_DB_RESPONSE_READY},
2123 	{AAC_ADAP_HIGH_RESP_ENTRIES, 0}
2124 };
2125 
2126 /*
2127  * Atomically insert an entry into the nominated queue, returns 0 on success or
2128  * EBUSY if the queue is full.
2129  *
2130  * Note: it would be more efficient to defer notifying the controller in
2131  *	 the case where we may be inserting several entries in rapid succession,
2132  *	 but implementing this usefully may be difficult (it would involve a
2133  *	 separate queue/notify interface).
2134  */
2135 static int
2136 aac_enqueue_fib(struct aac_softc *sc, int queue, struct aac_command *cm)
2137 {
2138 	u_int32_t pi, ci;
2139 	int error;
2140 	u_int32_t fib_size;
2141 	u_int32_t fib_addr;
2142 
2143 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2144 
2145 	fib_size = cm->cm_fib->Header.Size;
2146 	fib_addr = cm->cm_fib->Header.ReceiverFibAddress;
2147 
2148 	/* get the producer/consumer indices */
2149 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2150 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2151 
2152 	/* wrap the queue? */
2153 	if (pi >= aac_qinfo[queue].size)
2154 		pi = 0;
2155 
2156 	/* check for queue full */
2157 	if ((pi + 1) == ci) {
2158 		error = EBUSY;
2159 		goto out;
2160 	}
2161 
2162 	/*
2163 	 * To avoid a race with its completion interrupt, place this command on
2164 	 * the busy queue prior to advertising it to the controller.
2165 	 */
2166 	aac_enqueue_busy(cm);
2167 
2168 	/* populate queue entry */
2169 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2170 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2171 
2172 	/* update producer index */
2173 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2174 
2175 	/* notify the adapter if we know how */
2176 	if (aac_qinfo[queue].notify != 0)
2177 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2178 
2179 	error = 0;
2180 
2181 out:
2182 	return(error);
2183 }
2184 
2185 /*
2186  * Atomically remove one entry from the nominated queue, returns 0 on
2187  * success or ENOENT if the queue is empty.
2188  */
2189 static int
2190 aac_dequeue_fib(struct aac_softc *sc, int queue, u_int32_t *fib_size,
2191 		struct aac_fib **fib_addr)
2192 {
2193 	u_int32_t pi, ci;
2194 	u_int32_t fib_index;
2195 	int error;
2196 	int notify;
2197 
2198 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2199 
2200 	/* get the producer/consumer indices */
2201 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2202 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2203 
2204 	/* check for queue empty */
2205 	if (ci == pi) {
2206 		error = ENOENT;
2207 		goto out;
2208 	}
2209 
2210 	/* wrap the pi so the following test works */
2211 	if (pi >= aac_qinfo[queue].size)
2212 		pi = 0;
2213 
2214 	notify = 0;
2215 	if (ci == pi + 1)
2216 		notify++;
2217 
2218 	/* wrap the queue? */
2219 	if (ci >= aac_qinfo[queue].size)
2220 		ci = 0;
2221 
2222 	/* fetch the entry */
2223 	*fib_size = (sc->aac_qentries[queue] + ci)->aq_fib_size;
2224 
2225 	switch (queue) {
2226 	case AAC_HOST_NORM_CMD_QUEUE:
2227 	case AAC_HOST_HIGH_CMD_QUEUE:
2228 		/*
2229 		 * The aq_fib_addr is only 32 bits wide so it can't be counted
2230 		 * on to hold an address.  For AIF's, the adapter assumes
2231 		 * that it's giving us an address into the array of AIF fibs.
2232 		 * Therefore, we have to convert it to an index.
2233 		 */
2234 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr /
2235 			sizeof(struct aac_fib);
2236 		*fib_addr = &sc->aac_common->ac_fibs[fib_index];
2237 		break;
2238 
2239 	case AAC_HOST_NORM_RESP_QUEUE:
2240 	case AAC_HOST_HIGH_RESP_QUEUE:
2241 	{
2242 		struct aac_command *cm;
2243 
2244 		/*
2245 		 * As above, an index is used instead of an actual address.
2246 		 * Gotta shift the index to account for the fast response
2247 		 * bit.  No other correction is needed since this value was
2248 		 * originally provided by the driver via the SenderFibAddress
2249 		 * field.
2250 		 */
2251 		fib_index = (sc->aac_qentries[queue] + ci)->aq_fib_addr;
2252 		cm = sc->aac_commands + (fib_index >> 2);
2253 		*fib_addr = cm->cm_fib;
2254 
2255 		/*
2256 		 * Is this a fast response? If it is, update the fib fields in
2257 		 * local memory since the whole fib isn't DMA'd back up.
2258 		 */
2259 		if (fib_index & 0x01) {
2260 			(*fib_addr)->Header.XferState |= AAC_FIBSTATE_DONEADAP;
2261 			*((u_int32_t*)((*fib_addr)->data)) = AAC_ERROR_NORMAL;
2262 		}
2263 		break;
2264 	}
2265 	default:
2266 		panic("Invalid queue in aac_dequeue_fib()");
2267 		break;
2268 	}
2269 
2270 	/* update consumer index */
2271 	sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX] = ci + 1;
2272 
2273 	/* if we have made the queue un-full, notify the adapter */
2274 	if (notify && (aac_qinfo[queue].notify != 0))
2275 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2276 	error = 0;
2277 
2278 out:
2279 	return(error);
2280 }
2281 
2282 /*
2283  * Put our response to an Adapter Initialed Fib on the response queue
2284  */
2285 static int
2286 aac_enqueue_response(struct aac_softc *sc, int queue, struct aac_fib *fib)
2287 {
2288 	u_int32_t pi, ci;
2289 	int error;
2290 	u_int32_t fib_size;
2291 	u_int32_t fib_addr;
2292 
2293 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2294 
2295 	/* Tell the adapter where the FIB is */
2296 	fib_size = fib->Header.Size;
2297 	fib_addr = fib->Header.SenderFibAddress;
2298 	fib->Header.ReceiverFibAddress = fib_addr;
2299 
2300 	/* get the producer/consumer indices */
2301 	pi = sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX];
2302 	ci = sc->aac_queues->qt_qindex[queue][AAC_CONSUMER_INDEX];
2303 
2304 	/* wrap the queue? */
2305 	if (pi >= aac_qinfo[queue].size)
2306 		pi = 0;
2307 
2308 	/* check for queue full */
2309 	if ((pi + 1) == ci) {
2310 		error = EBUSY;
2311 		goto out;
2312 	}
2313 
2314 	/* populate queue entry */
2315 	(sc->aac_qentries[queue] + pi)->aq_fib_size = fib_size;
2316 	(sc->aac_qentries[queue] + pi)->aq_fib_addr = fib_addr;
2317 
2318 	/* update producer index */
2319 	sc->aac_queues->qt_qindex[queue][AAC_PRODUCER_INDEX] = pi + 1;
2320 
2321 	/* notify the adapter if we know how */
2322 	if (aac_qinfo[queue].notify != 0)
2323 		AAC_QNOTIFY(sc, aac_qinfo[queue].notify);
2324 
2325 	error = 0;
2326 
2327 out:
2328 	return(error);
2329 }
2330 
2331 /*
2332  * Check for commands that have been outstanding for a suspiciously long time,
2333  * and complain about them.
2334  */
2335 static void
2336 aac_timeout(struct aac_softc *sc)
2337 {
2338 	struct aac_command *cm;
2339 	time_t deadline;
2340 	int timedout, code;
2341 
2342 	/*
2343 	 * Traverse the busy command list, bitch about late commands once
2344 	 * only.
2345 	 */
2346 	timedout = 0;
2347 	deadline = time_uptime - AAC_CMD_TIMEOUT;
2348 	TAILQ_FOREACH(cm, &sc->aac_busy, cm_link) {
2349 		if ((cm->cm_timestamp  < deadline)
2350 		    && !(cm->cm_flags & AAC_CMD_TIMEDOUT)) {
2351 			cm->cm_flags |= AAC_CMD_TIMEDOUT;
2352 			device_printf(sc->aac_dev,
2353 			    "COMMAND %p (TYPE %d) TIMEOUT AFTER %d SECONDS\n",
2354 			    cm, cm->cm_fib->Header.Command,
2355 			    (int)(time_uptime-cm->cm_timestamp));
2356 			AAC_PRINT_FIB(sc, cm->cm_fib);
2357 			timedout++;
2358 		}
2359 	}
2360 
2361 	if (timedout) {
2362 		code = AAC_GET_FWSTATUS(sc);
2363 		if (code != AAC_UP_AND_RUNNING) {
2364 			device_printf(sc->aac_dev, "WARNING! Controller is no "
2365 				      "longer running! code= 0x%x\n", code);
2366 		}
2367 	}
2368 }
2369 
2370 /*
2371  * Interface Function Vectors
2372  */
2373 
2374 /*
2375  * Read the current firmware status word.
2376  */
2377 static int
2378 aac_sa_get_fwstatus(struct aac_softc *sc)
2379 {
2380 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2381 
2382 	return(AAC_MEM0_GETREG4(sc, AAC_SA_FWSTATUS));
2383 }
2384 
2385 static int
2386 aac_rx_get_fwstatus(struct aac_softc *sc)
2387 {
2388 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2389 
2390 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2391 	    AAC_RX_OMR0 : AAC_RX_FWSTATUS));
2392 }
2393 
2394 static int
2395 aac_rkt_get_fwstatus(struct aac_softc *sc)
2396 {
2397 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2398 
2399 	return(AAC_MEM0_GETREG4(sc, sc->flags & AAC_FLAGS_NEW_COMM ?
2400 	    AAC_RKT_OMR0 : AAC_RKT_FWSTATUS));
2401 }
2402 
2403 /*
2404  * Notify the controller of a change in a given queue
2405  */
2406 
2407 static void
2408 aac_sa_qnotify(struct aac_softc *sc, int qbit)
2409 {
2410 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2411 
2412 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL1_SET, qbit);
2413 }
2414 
2415 static void
2416 aac_rx_qnotify(struct aac_softc *sc, int qbit)
2417 {
2418 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2419 
2420 	AAC_MEM0_SETREG4(sc, AAC_RX_IDBR, qbit);
2421 }
2422 
2423 static void
2424 aac_rkt_qnotify(struct aac_softc *sc, int qbit)
2425 {
2426 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2427 
2428 	AAC_MEM0_SETREG4(sc, AAC_RKT_IDBR, qbit);
2429 }
2430 
2431 /*
2432  * Get the interrupt reason bits
2433  */
2434 static int
2435 aac_sa_get_istatus(struct aac_softc *sc)
2436 {
2437 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2438 
2439 	return(AAC_MEM0_GETREG2(sc, AAC_SA_DOORBELL0));
2440 }
2441 
2442 static int
2443 aac_rx_get_istatus(struct aac_softc *sc)
2444 {
2445 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2446 
2447 	return(AAC_MEM0_GETREG4(sc, AAC_RX_ODBR));
2448 }
2449 
2450 static int
2451 aac_rkt_get_istatus(struct aac_softc *sc)
2452 {
2453 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2454 
2455 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_ODBR));
2456 }
2457 
2458 /*
2459  * Clear some interrupt reason bits
2460  */
2461 static void
2462 aac_sa_clear_istatus(struct aac_softc *sc, int mask)
2463 {
2464 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2465 
2466 	AAC_MEM0_SETREG2(sc, AAC_SA_DOORBELL0_CLEAR, mask);
2467 }
2468 
2469 static void
2470 aac_rx_clear_istatus(struct aac_softc *sc, int mask)
2471 {
2472 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2473 
2474 	AAC_MEM0_SETREG4(sc, AAC_RX_ODBR, mask);
2475 }
2476 
2477 static void
2478 aac_rkt_clear_istatus(struct aac_softc *sc, int mask)
2479 {
2480 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2481 
2482 	AAC_MEM0_SETREG4(sc, AAC_RKT_ODBR, mask);
2483 }
2484 
2485 /*
2486  * Populate the mailbox and set the command word
2487  */
2488 static void
2489 aac_sa_set_mailbox(struct aac_softc *sc, u_int32_t command,
2490 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2491 {
2492 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2493 
2494 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX, command);
2495 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 4, arg0);
2496 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 8, arg1);
2497 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 12, arg2);
2498 	AAC_MEM1_SETREG4(sc, AAC_SA_MAILBOX + 16, arg3);
2499 }
2500 
2501 static void
2502 aac_rx_set_mailbox(struct aac_softc *sc, u_int32_t command,
2503 		u_int32_t arg0, u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2504 {
2505 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2506 
2507 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX, command);
2508 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 4, arg0);
2509 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 8, arg1);
2510 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 12, arg2);
2511 	AAC_MEM1_SETREG4(sc, AAC_RX_MAILBOX + 16, arg3);
2512 }
2513 
2514 static void
2515 aac_rkt_set_mailbox(struct aac_softc *sc, u_int32_t command, u_int32_t arg0,
2516 		    u_int32_t arg1, u_int32_t arg2, u_int32_t arg3)
2517 {
2518 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2519 
2520 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX, command);
2521 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 4, arg0);
2522 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 8, arg1);
2523 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 12, arg2);
2524 	AAC_MEM1_SETREG4(sc, AAC_RKT_MAILBOX + 16, arg3);
2525 }
2526 
2527 /*
2528  * Fetch the immediate command status word
2529  */
2530 static int
2531 aac_sa_get_mailbox(struct aac_softc *sc, int mb)
2532 {
2533 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2534 
2535 	return(AAC_MEM1_GETREG4(sc, AAC_SA_MAILBOX + (mb * 4)));
2536 }
2537 
2538 static int
2539 aac_rx_get_mailbox(struct aac_softc *sc, int mb)
2540 {
2541 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2542 
2543 	return(AAC_MEM1_GETREG4(sc, AAC_RX_MAILBOX + (mb * 4)));
2544 }
2545 
2546 static int
2547 aac_rkt_get_mailbox(struct aac_softc *sc, int mb)
2548 {
2549 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2550 
2551 	return(AAC_MEM1_GETREG4(sc, AAC_RKT_MAILBOX + (mb * 4)));
2552 }
2553 
2554 /*
2555  * Set/clear interrupt masks
2556  */
2557 static void
2558 aac_sa_set_interrupts(struct aac_softc *sc, int enable)
2559 {
2560 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2561 
2562 	if (enable) {
2563 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_CLEAR, AAC_DB_INTERRUPTS);
2564 	} else {
2565 		AAC_MEM0_SETREG2((sc), AAC_SA_MASK0_SET, ~0);
2566 	}
2567 }
2568 
2569 static void
2570 aac_rx_set_interrupts(struct aac_softc *sc, int enable)
2571 {
2572 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2573 
2574 	if (enable) {
2575 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2576 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INT_NEW_COMM);
2577 		else
2578 			AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~AAC_DB_INTERRUPTS);
2579 	} else {
2580 		AAC_MEM0_SETREG4(sc, AAC_RX_OIMR, ~0);
2581 	}
2582 }
2583 
2584 static void
2585 aac_rkt_set_interrupts(struct aac_softc *sc, int enable)
2586 {
2587 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "%sable interrupts", enable ? "en" : "dis");
2588 
2589 	if (enable) {
2590 		if (sc->flags & AAC_FLAGS_NEW_COMM)
2591 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INT_NEW_COMM);
2592 		else
2593 			AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~AAC_DB_INTERRUPTS);
2594 	} else {
2595 		AAC_MEM0_SETREG4(sc, AAC_RKT_OIMR, ~0);
2596 	}
2597 }
2598 
2599 /*
2600  * New comm. interface: Send command functions
2601  */
2602 static int
2603 aac_rx_send_command(struct aac_softc *sc, struct aac_command *cm)
2604 {
2605 	u_int32_t index, device;
2606 
2607 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2608 
2609 	index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2610 	if (index == 0xffffffffL)
2611 		index = AAC_MEM0_GETREG4(sc, AAC_RX_IQUE);
2612 	if (index == 0xffffffffL)
2613 		return index;
2614 	aac_enqueue_busy(cm);
2615 	device = index;
2616 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2617 	device += 4;
2618 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2619 	device += 4;
2620 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2621 	AAC_MEM0_SETREG4(sc, AAC_RX_IQUE, index);
2622 	return 0;
2623 }
2624 
2625 static int
2626 aac_rkt_send_command(struct aac_softc *sc, struct aac_command *cm)
2627 {
2628 	u_int32_t index, device;
2629 
2630 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "send command (new comm.)");
2631 
2632 	index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2633 	if (index == 0xffffffffL)
2634 		index = AAC_MEM0_GETREG4(sc, AAC_RKT_IQUE);
2635 	if (index == 0xffffffffL)
2636 		return index;
2637 	aac_enqueue_busy(cm);
2638 	device = index;
2639 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys & 0xffffffffUL));
2640 	device += 4;
2641 	AAC_MEM1_SETREG4(sc, device, (u_int32_t)(cm->cm_fibphys >> 32));
2642 	device += 4;
2643 	AAC_MEM1_SETREG4(sc, device, cm->cm_fib->Header.Size);
2644 	AAC_MEM0_SETREG4(sc, AAC_RKT_IQUE, index);
2645 	return 0;
2646 }
2647 
2648 /*
2649  * New comm. interface: get, set outbound queue index
2650  */
2651 static int
2652 aac_rx_get_outb_queue(struct aac_softc *sc)
2653 {
2654 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2655 
2656 	return(AAC_MEM0_GETREG4(sc, AAC_RX_OQUE));
2657 }
2658 
2659 static int
2660 aac_rkt_get_outb_queue(struct aac_softc *sc)
2661 {
2662 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2663 
2664 	return(AAC_MEM0_GETREG4(sc, AAC_RKT_OQUE));
2665 }
2666 
2667 static void
2668 aac_rx_set_outb_queue(struct aac_softc *sc, int index)
2669 {
2670 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2671 
2672 	AAC_MEM0_SETREG4(sc, AAC_RX_OQUE, index);
2673 }
2674 
2675 static void
2676 aac_rkt_set_outb_queue(struct aac_softc *sc, int index)
2677 {
2678 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2679 
2680 	AAC_MEM0_SETREG4(sc, AAC_RKT_OQUE, index);
2681 }
2682 
2683 /*
2684  * Debugging and Diagnostics
2685  */
2686 
2687 /*
2688  * Print some information about the controller.
2689  */
2690 static void
2691 aac_describe_controller(struct aac_softc *sc)
2692 {
2693 	struct aac_fib *fib;
2694 	struct aac_adapter_info	*info;
2695 	char *adapter_type = "Adaptec RAID controller";
2696 
2697 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2698 
2699 	mtx_lock(&sc->aac_io_lock);
2700 	aac_alloc_sync_fib(sc, &fib);
2701 
2702 	fib->data[0] = 0;
2703 	if (aac_sync_fib(sc, RequestAdapterInfo, 0, fib, 1)) {
2704 		device_printf(sc->aac_dev, "RequestAdapterInfo failed\n");
2705 		aac_release_sync_fib(sc);
2706 		mtx_unlock(&sc->aac_io_lock);
2707 		return;
2708 	}
2709 
2710 	/* save the kernel revision structure for later use */
2711 	info = (struct aac_adapter_info *)&fib->data[0];
2712 	sc->aac_revision = info->KernelRevision;
2713 
2714 	if (bootverbose) {
2715 		device_printf(sc->aac_dev, "%s %dMHz, %dMB memory "
2716 		    "(%dMB cache, %dMB execution), %s\n",
2717 		    aac_describe_code(aac_cpu_variant, info->CpuVariant),
2718 		    info->ClockSpeed, info->TotalMem / (1024 * 1024),
2719 		    info->BufferMem / (1024 * 1024),
2720 		    info->ExecutionMem / (1024 * 1024),
2721 		    aac_describe_code(aac_battery_platform,
2722 		    info->batteryPlatform));
2723 
2724 		device_printf(sc->aac_dev,
2725 		    "Kernel %d.%d-%d, Build %d, S/N %6X\n",
2726 		    info->KernelRevision.external.comp.major,
2727 		    info->KernelRevision.external.comp.minor,
2728 		    info->KernelRevision.external.comp.dash,
2729 		    info->KernelRevision.buildNumber,
2730 		    (u_int32_t)(info->SerialNumber & 0xffffff));
2731 
2732 		device_printf(sc->aac_dev, "Supported Options=%b\n",
2733 			      sc->supported_options,
2734 			      "\20"
2735 			      "\1SNAPSHOT"
2736 			      "\2CLUSTERS"
2737 			      "\3WCACHE"
2738 			      "\4DATA64"
2739 			      "\5HOSTTIME"
2740 			      "\6RAID50"
2741 			      "\7WINDOW4GB"
2742 			      "\10SCSIUPGD"
2743 			      "\11SOFTERR"
2744 			      "\12NORECOND"
2745 			      "\13SGMAP64"
2746 			      "\14ALARM"
2747 			      "\15NONDASD"
2748 			      "\16SCSIMGT"
2749 			      "\17RAIDSCSI"
2750 			      "\21ADPTINFO"
2751 			      "\22NEWCOMM"
2752 			      "\23ARRAY64BIT"
2753 			      "\24HEATSENSOR");
2754 	}
2755 
2756 	if (sc->supported_options & AAC_SUPPORTED_SUPPLEMENT_ADAPTER_INFO) {
2757 		fib->data[0] = 0;
2758 		if (aac_sync_fib(sc, RequestSupplementAdapterInfo, 0, fib, 1))
2759 			device_printf(sc->aac_dev,
2760 			    "RequestSupplementAdapterInfo failed\n");
2761 		else
2762 			adapter_type = ((struct aac_supplement_adapter_info *)
2763 			    &fib->data[0])->AdapterTypeText;
2764 	}
2765 	device_printf(sc->aac_dev, "%s, aac driver %d.%d.%d-%d\n",
2766 		adapter_type,
2767 		AAC_DRIVER_MAJOR_VERSION, AAC_DRIVER_MINOR_VERSION,
2768 		AAC_DRIVER_BUGFIX_LEVEL, AAC_DRIVER_BUILD);
2769 
2770 	aac_release_sync_fib(sc);
2771 	mtx_unlock(&sc->aac_io_lock);
2772 }
2773 
2774 /*
2775  * Look up a text description of a numeric error code and return a pointer to
2776  * same.
2777  */
2778 static const char *
2779 aac_describe_code(const struct aac_code_lookup *table, u_int32_t code)
2780 {
2781 	int i;
2782 
2783 	for (i = 0; table[i].string != NULL; i++)
2784 		if (table[i].code == code)
2785 			return(table[i].string);
2786 	return(table[i + 1].string);
2787 }
2788 
2789 /*
2790  * Management Interface
2791  */
2792 
2793 static int
2794 aac_open(struct cdev *dev, int flags, int fmt, struct thread *td)
2795 {
2796 	struct aac_softc *sc;
2797 
2798 	sc = dev->si_drv1;
2799 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2800 	device_busy(sc->aac_dev);
2801 	devfs_set_cdevpriv(sc, aac_cdevpriv_dtor);
2802 
2803 	return 0;
2804 }
2805 
2806 static int
2807 aac_ioctl(struct cdev *dev, u_long cmd, caddr_t arg, int flag, struct thread *td)
2808 {
2809 	union aac_statrequest *as;
2810 	struct aac_softc *sc;
2811 	int error = 0;
2812 
2813 	as = (union aac_statrequest *)arg;
2814 	sc = dev->si_drv1;
2815 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2816 
2817 	switch (cmd) {
2818 	case AACIO_STATS:
2819 		switch (as->as_item) {
2820 		case AACQ_FREE:
2821 		case AACQ_BIO:
2822 		case AACQ_READY:
2823 		case AACQ_BUSY:
2824 			bcopy(&sc->aac_qstat[as->as_item], &as->as_qstat,
2825 			      sizeof(struct aac_qstat));
2826 			break;
2827 		default:
2828 			error = ENOENT;
2829 			break;
2830 		}
2831 	break;
2832 
2833 	case FSACTL_SENDFIB:
2834 	case FSACTL_SEND_LARGE_FIB:
2835 		arg = *(caddr_t*)arg;
2836 	case FSACTL_LNX_SENDFIB:
2837 	case FSACTL_LNX_SEND_LARGE_FIB:
2838 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SENDFIB");
2839 		error = aac_ioctl_sendfib(sc, arg);
2840 		break;
2841 	case FSACTL_SEND_RAW_SRB:
2842 		arg = *(caddr_t*)arg;
2843 	case FSACTL_LNX_SEND_RAW_SRB:
2844 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_SEND_RAW_SRB");
2845 		error = aac_ioctl_send_raw_srb(sc, arg);
2846 		break;
2847 	case FSACTL_AIF_THREAD:
2848 	case FSACTL_LNX_AIF_THREAD:
2849 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_AIF_THREAD");
2850 		error = EINVAL;
2851 		break;
2852 	case FSACTL_OPEN_GET_ADAPTER_FIB:
2853 		arg = *(caddr_t*)arg;
2854 	case FSACTL_LNX_OPEN_GET_ADAPTER_FIB:
2855 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_OPEN_GET_ADAPTER_FIB");
2856 		error = aac_open_aif(sc, arg);
2857 		break;
2858 	case FSACTL_GET_NEXT_ADAPTER_FIB:
2859 		arg = *(caddr_t*)arg;
2860 	case FSACTL_LNX_GET_NEXT_ADAPTER_FIB:
2861 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_NEXT_ADAPTER_FIB");
2862 		error = aac_getnext_aif(sc, arg);
2863 		break;
2864 	case FSACTL_CLOSE_GET_ADAPTER_FIB:
2865 		arg = *(caddr_t*)arg;
2866 	case FSACTL_LNX_CLOSE_GET_ADAPTER_FIB:
2867 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_CLOSE_GET_ADAPTER_FIB");
2868 		error = aac_close_aif(sc, arg);
2869 		break;
2870 	case FSACTL_MINIPORT_REV_CHECK:
2871 		arg = *(caddr_t*)arg;
2872 	case FSACTL_LNX_MINIPORT_REV_CHECK:
2873 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_MINIPORT_REV_CHECK");
2874 		error = aac_rev_check(sc, arg);
2875 		break;
2876 	case FSACTL_QUERY_DISK:
2877 		arg = *(caddr_t*)arg;
2878 	case FSACTL_LNX_QUERY_DISK:
2879 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_QUERY_DISK");
2880 		error = aac_query_disk(sc, arg);
2881 		break;
2882 	case FSACTL_DELETE_DISK:
2883 	case FSACTL_LNX_DELETE_DISK:
2884 		/*
2885 		 * We don't trust the underland to tell us when to delete a
2886 		 * container, rather we rely on an AIF coming from the
2887 		 * controller
2888 		 */
2889 		error = 0;
2890 		break;
2891 	case FSACTL_GET_PCI_INFO:
2892 		arg = *(caddr_t*)arg;
2893 	case FSACTL_LNX_GET_PCI_INFO:
2894 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_PCI_INFO");
2895 		error = aac_get_pci_info(sc, arg);
2896 		break;
2897 	case FSACTL_GET_FEATURES:
2898 		arg = *(caddr_t*)arg;
2899 	case FSACTL_LNX_GET_FEATURES:
2900 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "FSACTL_GET_FEATURES");
2901 		error = aac_supported_features(sc, arg);
2902 		break;
2903 	default:
2904 		fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "unsupported cmd 0x%lx\n", cmd);
2905 		error = EINVAL;
2906 		break;
2907 	}
2908 	return(error);
2909 }
2910 
2911 static int
2912 aac_poll(struct cdev *dev, int poll_events, struct thread *td)
2913 {
2914 	struct aac_softc *sc;
2915 	struct aac_fib_context *ctx;
2916 	int revents;
2917 
2918 	sc = dev->si_drv1;
2919 	revents = 0;
2920 
2921 	mtx_lock(&sc->aac_aifq_lock);
2922 	if ((poll_events & (POLLRDNORM | POLLIN)) != 0) {
2923 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
2924 			if (ctx->ctx_idx != sc->aifq_idx || ctx->ctx_wrap) {
2925 				revents |= poll_events & (POLLIN | POLLRDNORM);
2926 				break;
2927 			}
2928 		}
2929 	}
2930 	mtx_unlock(&sc->aac_aifq_lock);
2931 
2932 	if (revents == 0) {
2933 		if (poll_events & (POLLIN | POLLRDNORM))
2934 			selrecord(td, &sc->rcv_select);
2935 	}
2936 
2937 	return (revents);
2938 }
2939 
2940 static void
2941 aac_ioctl_event(struct aac_softc *sc, struct aac_event *event, void *arg)
2942 {
2943 
2944 	switch (event->ev_type) {
2945 	case AAC_EVENT_CMFREE:
2946 		mtx_assert(&sc->aac_io_lock, MA_OWNED);
2947 		if (aac_alloc_command(sc, (struct aac_command **)arg)) {
2948 			aac_add_event(sc, event);
2949 			return;
2950 		}
2951 		free(event, M_AACBUF);
2952 		wakeup(arg);
2953 		break;
2954 	default:
2955 		break;
2956 	}
2957 }
2958 
2959 /*
2960  * Send a FIB supplied from userspace
2961  */
2962 static int
2963 aac_ioctl_sendfib(struct aac_softc *sc, caddr_t ufib)
2964 {
2965 	struct aac_command *cm;
2966 	int size, error;
2967 
2968 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
2969 
2970 	cm = NULL;
2971 
2972 	/*
2973 	 * Get a command
2974 	 */
2975 	mtx_lock(&sc->aac_io_lock);
2976 	if (aac_alloc_command(sc, &cm)) {
2977 		struct aac_event *event;
2978 
2979 		event = malloc(sizeof(struct aac_event), M_AACBUF,
2980 		    M_NOWAIT | M_ZERO);
2981 		if (event == NULL) {
2982 			error = EBUSY;
2983 			mtx_unlock(&sc->aac_io_lock);
2984 			goto out;
2985 		}
2986 		event->ev_type = AAC_EVENT_CMFREE;
2987 		event->ev_callback = aac_ioctl_event;
2988 		event->ev_arg = &cm;
2989 		aac_add_event(sc, event);
2990 		msleep(&cm, &sc->aac_io_lock, 0, "sendfib", 0);
2991 	}
2992 	mtx_unlock(&sc->aac_io_lock);
2993 
2994 	/*
2995 	 * Fetch the FIB header, then re-copy to get data as well.
2996 	 */
2997 	if ((error = copyin(ufib, cm->cm_fib,
2998 			    sizeof(struct aac_fib_header))) != 0)
2999 		goto out;
3000 	size = cm->cm_fib->Header.Size + sizeof(struct aac_fib_header);
3001 	if (size > sc->aac_max_fib_size) {
3002 		device_printf(sc->aac_dev, "incoming FIB oversized (%d > %d)\n",
3003 			      size, sc->aac_max_fib_size);
3004 		size = sc->aac_max_fib_size;
3005 	}
3006 	if ((error = copyin(ufib, cm->cm_fib, size)) != 0)
3007 		goto out;
3008 	cm->cm_fib->Header.Size = size;
3009 	cm->cm_timestamp = time_uptime;
3010 
3011 	/*
3012 	 * Pass the FIB to the controller, wait for it to complete.
3013 	 */
3014 	mtx_lock(&sc->aac_io_lock);
3015 	error = aac_wait_command(cm);
3016 	mtx_unlock(&sc->aac_io_lock);
3017 	if (error != 0) {
3018 		device_printf(sc->aac_dev,
3019 			      "aac_wait_command return %d\n", error);
3020 		goto out;
3021 	}
3022 
3023 	/*
3024 	 * Copy the FIB and data back out to the caller.
3025 	 */
3026 	size = cm->cm_fib->Header.Size;
3027 	if (size > sc->aac_max_fib_size) {
3028 		device_printf(sc->aac_dev, "outbound FIB oversized (%d > %d)\n",
3029 			      size, sc->aac_max_fib_size);
3030 		size = sc->aac_max_fib_size;
3031 	}
3032 	error = copyout(cm->cm_fib, ufib, size);
3033 
3034 out:
3035 	if (cm != NULL) {
3036 		mtx_lock(&sc->aac_io_lock);
3037 		aac_release_command(cm);
3038 		mtx_unlock(&sc->aac_io_lock);
3039 	}
3040 	return(error);
3041 }
3042 
3043 /*
3044  * Send a passthrough FIB supplied from userspace
3045  */
3046 static int
3047 aac_ioctl_send_raw_srb(struct aac_softc *sc, caddr_t arg)
3048 {
3049 	struct aac_command *cm;
3050 	struct aac_event *event;
3051 	struct aac_fib *fib;
3052 	struct aac_srb *srbcmd, *user_srb;
3053 	struct aac_sg_entry *sge;
3054 	struct aac_sg_entry64 *sge64;
3055 	void *srb_sg_address, *ureply;
3056 	uint32_t fibsize, srb_sg_bytecount;
3057 	int error, transfer_data;
3058 
3059 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3060 
3061 	cm = NULL;
3062 	transfer_data = 0;
3063 	fibsize = 0;
3064 	user_srb = (struct aac_srb *)arg;
3065 
3066 	mtx_lock(&sc->aac_io_lock);
3067 	if (aac_alloc_command(sc, &cm)) {
3068 		 event = malloc(sizeof(struct aac_event), M_AACBUF,
3069 		    M_NOWAIT | M_ZERO);
3070 		if (event == NULL) {
3071 			error = EBUSY;
3072 			mtx_unlock(&sc->aac_io_lock);
3073 			goto out;
3074 		}
3075 		event->ev_type = AAC_EVENT_CMFREE;
3076 		event->ev_callback = aac_ioctl_event;
3077 		event->ev_arg = &cm;
3078 		aac_add_event(sc, event);
3079 		msleep(cm, &sc->aac_io_lock, 0, "aacraw", 0);
3080 	}
3081 	mtx_unlock(&sc->aac_io_lock);
3082 
3083 	cm->cm_data = NULL;
3084 	fib = cm->cm_fib;
3085 	srbcmd = (struct aac_srb *)fib->data;
3086 	error = copyin(&user_srb->data_len, &fibsize, sizeof(uint32_t));
3087 	if (error != 0)
3088 		goto out;
3089 	if (fibsize > (sc->aac_max_fib_size - sizeof(struct aac_fib_header))) {
3090 		error = EINVAL;
3091 		goto out;
3092 	}
3093 	error = copyin(user_srb, srbcmd, fibsize);
3094 	if (error != 0)
3095 		goto out;
3096 	srbcmd->function = 0;
3097 	srbcmd->retry_limit = 0;
3098 	if (srbcmd->sg_map.SgCount > 1) {
3099 		error = EINVAL;
3100 		goto out;
3101 	}
3102 
3103 	/* Retrieve correct SG entries. */
3104 	if (fibsize == (sizeof(struct aac_srb) +
3105 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry))) {
3106 		struct aac_sg_entry sg;
3107 
3108 		sge = srbcmd->sg_map.SgEntry;
3109 		sge64 = NULL;
3110 
3111 		if ((error = copyin(sge, &sg, sizeof(sg))) != 0)
3112 			goto out;
3113 
3114 		srb_sg_bytecount = sg.SgByteCount;
3115 		srb_sg_address = (void *)(uintptr_t)sg.SgAddress;
3116 	}
3117 #ifdef __amd64__
3118 	else if (fibsize == (sizeof(struct aac_srb) +
3119 	    srbcmd->sg_map.SgCount * sizeof(struct aac_sg_entry64))) {
3120 		struct aac_sg_entry64 sg;
3121 
3122 		sge = NULL;
3123 		sge64 = (struct aac_sg_entry64 *)srbcmd->sg_map.SgEntry;
3124 
3125 		if ((error = copyin(sge64, &sg, sizeof(sg))) != 0)
3126 			goto out;
3127 
3128 		srb_sg_bytecount = sg.SgByteCount;
3129 		srb_sg_address = (void *)sg.SgAddress;
3130 		if (sge64->SgAddress > 0xffffffffull &&
3131 		    (sc->flags & AAC_FLAGS_SG_64BIT) == 0) {
3132 			error = EINVAL;
3133 			goto out;
3134 		}
3135 	}
3136 #endif
3137 	else {
3138 		error = EINVAL;
3139 		goto out;
3140 	}
3141 	ureply = (char *)arg + fibsize;
3142 	srbcmd->data_len = srb_sg_bytecount;
3143 	if (srbcmd->sg_map.SgCount == 1)
3144 		transfer_data = 1;
3145 
3146 	cm->cm_sgtable = (struct aac_sg_table *)&srbcmd->sg_map;
3147 	if (transfer_data) {
3148 		cm->cm_datalen = srb_sg_bytecount;
3149 		cm->cm_data = malloc(cm->cm_datalen, M_AACBUF, M_NOWAIT);
3150 		if (cm->cm_data == NULL) {
3151 			error = ENOMEM;
3152 			goto out;
3153 		}
3154 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN)
3155 			cm->cm_flags |= AAC_CMD_DATAIN;
3156 		if (srbcmd->flags & AAC_SRB_FLAGS_DATA_OUT) {
3157 			cm->cm_flags |= AAC_CMD_DATAOUT;
3158 			error = copyin(srb_sg_address, cm->cm_data,
3159 			    cm->cm_datalen);
3160 			if (error != 0)
3161 				goto out;
3162 		}
3163 	}
3164 
3165 	fib->Header.Size = sizeof(struct aac_fib_header) +
3166 	    sizeof(struct aac_srb);
3167 	fib->Header.XferState =
3168 	    AAC_FIBSTATE_HOSTOWNED   |
3169 	    AAC_FIBSTATE_INITIALISED |
3170 	    AAC_FIBSTATE_EMPTY       |
3171 	    AAC_FIBSTATE_FROMHOST    |
3172 	    AAC_FIBSTATE_REXPECTED   |
3173 	    AAC_FIBSTATE_NORM        |
3174 	    AAC_FIBSTATE_ASYNC       |
3175 	    AAC_FIBSTATE_FAST_RESPONSE;
3176 	fib->Header.Command = (sc->flags & AAC_FLAGS_SG_64BIT) != 0 ?
3177 	    ScsiPortCommandU64 : ScsiPortCommand;
3178 
3179 	mtx_lock(&sc->aac_io_lock);
3180 	aac_wait_command(cm);
3181 	mtx_unlock(&sc->aac_io_lock);
3182 
3183 	if (transfer_data && (srbcmd->flags & AAC_SRB_FLAGS_DATA_IN) != 0) {
3184 		error = copyout(cm->cm_data, srb_sg_address, cm->cm_datalen);
3185 		if (error != 0)
3186 			goto out;
3187 	}
3188 	error = copyout(fib->data, ureply, sizeof(struct aac_srb_response));
3189 out:
3190 	if (cm != NULL) {
3191 		if (cm->cm_data != NULL)
3192 			free(cm->cm_data, M_AACBUF);
3193 		mtx_lock(&sc->aac_io_lock);
3194 		aac_release_command(cm);
3195 		mtx_unlock(&sc->aac_io_lock);
3196 	}
3197 	return(error);
3198 }
3199 
3200 /*
3201  * cdevpriv interface private destructor.
3202  */
3203 static void
3204 aac_cdevpriv_dtor(void *arg)
3205 {
3206 	struct aac_softc *sc;
3207 
3208 	sc = arg;
3209 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3210 	mtx_lock(&Giant);
3211 	device_unbusy(sc->aac_dev);
3212 	mtx_unlock(&Giant);
3213 }
3214 
3215 /*
3216  * Handle an AIF sent to us by the controller; queue it for later reference.
3217  * If the queue fills up, then drop the older entries.
3218  */
3219 static void
3220 aac_handle_aif(struct aac_softc *sc, struct aac_fib *fib)
3221 {
3222 	struct aac_aif_command *aif;
3223 	struct aac_container *co, *co_next;
3224 	struct aac_fib_context *ctx;
3225 	struct aac_mntinforesp *mir;
3226 	int next, current, found;
3227 	int count = 0, added = 0, i = 0;
3228 	uint32_t channel;
3229 
3230 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3231 
3232 	aif = (struct aac_aif_command*)&fib->data[0];
3233 	aac_print_aif(sc, aif);
3234 
3235 	/* Is it an event that we should care about? */
3236 	switch (aif->command) {
3237 	case AifCmdEventNotify:
3238 		switch (aif->data.EN.type) {
3239 		case AifEnAddContainer:
3240 		case AifEnDeleteContainer:
3241 			/*
3242 			 * A container was added or deleted, but the message
3243 			 * doesn't tell us anything else!  Re-enumerate the
3244 			 * containers and sort things out.
3245 			 */
3246 			aac_alloc_sync_fib(sc, &fib);
3247 			do {
3248 				/*
3249 				 * Ask the controller for its containers one at
3250 				 * a time.
3251 				 * XXX What if the controller's list changes
3252 				 * midway through this enumaration?
3253 				 * XXX This should be done async.
3254 				 */
3255 				if ((mir = aac_get_container_info(sc, fib, i)) == NULL)
3256 					continue;
3257 				if (i == 0)
3258 					count = mir->MntRespCount;
3259 				/*
3260 				 * Check the container against our list.
3261 				 * co->co_found was already set to 0 in a
3262 				 * previous run.
3263 				 */
3264 				if ((mir->Status == ST_OK) &&
3265 				    (mir->MntTable[0].VolType != CT_NONE)) {
3266 					found = 0;
3267 					TAILQ_FOREACH(co,
3268 						      &sc->aac_container_tqh,
3269 						      co_link) {
3270 						if (co->co_mntobj.ObjectId ==
3271 						    mir->MntTable[0].ObjectId) {
3272 							co->co_found = 1;
3273 							found = 1;
3274 							break;
3275 						}
3276 					}
3277 					/*
3278 					 * If the container matched, continue
3279 					 * in the list.
3280 					 */
3281 					if (found) {
3282 						i++;
3283 						continue;
3284 					}
3285 
3286 					/*
3287 					 * This is a new container.  Do all the
3288 					 * appropriate things to set it up.
3289 					 */
3290 					aac_add_container(sc, mir, 1);
3291 					added = 1;
3292 				}
3293 				i++;
3294 			} while ((i < count) && (i < AAC_MAX_CONTAINERS));
3295 			aac_release_sync_fib(sc);
3296 
3297 			/*
3298 			 * Go through our list of containers and see which ones
3299 			 * were not marked 'found'.  Since the controller didn't
3300 			 * list them they must have been deleted.  Do the
3301 			 * appropriate steps to destroy the device.  Also reset
3302 			 * the co->co_found field.
3303 			 */
3304 			co = TAILQ_FIRST(&sc->aac_container_tqh);
3305 			while (co != NULL) {
3306 				if (co->co_found == 0) {
3307 					mtx_unlock(&sc->aac_io_lock);
3308 					mtx_lock(&Giant);
3309 					device_delete_child(sc->aac_dev,
3310 							    co->co_disk);
3311 					mtx_unlock(&Giant);
3312 					mtx_lock(&sc->aac_io_lock);
3313 					co_next = TAILQ_NEXT(co, co_link);
3314 					mtx_lock(&sc->aac_container_lock);
3315 					TAILQ_REMOVE(&sc->aac_container_tqh, co,
3316 						     co_link);
3317 					mtx_unlock(&sc->aac_container_lock);
3318 					free(co, M_AACBUF);
3319 					co = co_next;
3320 				} else {
3321 					co->co_found = 0;
3322 					co = TAILQ_NEXT(co, co_link);
3323 				}
3324 			}
3325 
3326 			/* Attach the newly created containers */
3327 			if (added) {
3328 				mtx_unlock(&sc->aac_io_lock);
3329 				mtx_lock(&Giant);
3330 				bus_generic_attach(sc->aac_dev);
3331 				mtx_unlock(&Giant);
3332 				mtx_lock(&sc->aac_io_lock);
3333 			}
3334 
3335 			break;
3336 
3337 		case AifEnEnclosureManagement:
3338 			switch (aif->data.EN.data.EEE.eventType) {
3339 			case AIF_EM_DRIVE_INSERTION:
3340 			case AIF_EM_DRIVE_REMOVAL:
3341 				channel = aif->data.EN.data.EEE.unitID;
3342 				if (sc->cam_rescan_cb != NULL)
3343 					sc->cam_rescan_cb(sc,
3344 					    (channel >> 24) & 0xF,
3345 					    (channel & 0xFFFF));
3346 				break;
3347 			}
3348 			break;
3349 
3350 		case AifEnAddJBOD:
3351 		case AifEnDeleteJBOD:
3352 			channel = aif->data.EN.data.ECE.container;
3353 			if (sc->cam_rescan_cb != NULL)
3354 				sc->cam_rescan_cb(sc, (channel >> 24) & 0xF,
3355 				    AAC_CAM_TARGET_WILDCARD);
3356 			break;
3357 
3358 		default:
3359 			break;
3360 		}
3361 
3362 	default:
3363 		break;
3364 	}
3365 
3366 	/* Copy the AIF data to the AIF queue for ioctl retrieval */
3367 	mtx_lock(&sc->aac_aifq_lock);
3368 	current = sc->aifq_idx;
3369 	next = (current + 1) % AAC_AIFQ_LENGTH;
3370 	if (next == 0)
3371 		sc->aifq_filled = 1;
3372 	bcopy(fib, &sc->aac_aifq[current], sizeof(struct aac_fib));
3373 	/* modify AIF contexts */
3374 	if (sc->aifq_filled) {
3375 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3376 			if (next == ctx->ctx_idx)
3377 				ctx->ctx_wrap = 1;
3378 			else if (current == ctx->ctx_idx && ctx->ctx_wrap)
3379 				ctx->ctx_idx = next;
3380 		}
3381 	}
3382 	sc->aifq_idx = next;
3383 	/* On the off chance that someone is sleeping for an aif... */
3384 	if (sc->aac_state & AAC_STATE_AIF_SLEEPER)
3385 		wakeup(sc->aac_aifq);
3386 	/* Wakeup any poll()ers */
3387 	selwakeuppri(&sc->rcv_select, PRIBIO);
3388 	mtx_unlock(&sc->aac_aifq_lock);
3389 }
3390 
3391 /*
3392  * Return the Revision of the driver to userspace and check to see if the
3393  * userspace app is possibly compatible.  This is extremely bogus since
3394  * our driver doesn't follow Adaptec's versioning system.  Cheat by just
3395  * returning what the card reported.
3396  */
3397 static int
3398 aac_rev_check(struct aac_softc *sc, caddr_t udata)
3399 {
3400 	struct aac_rev_check rev_check;
3401 	struct aac_rev_check_resp rev_check_resp;
3402 	int error = 0;
3403 
3404 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3405 
3406 	/*
3407 	 * Copyin the revision struct from userspace
3408 	 */
3409 	if ((error = copyin(udata, (caddr_t)&rev_check,
3410 			sizeof(struct aac_rev_check))) != 0) {
3411 		return error;
3412 	}
3413 
3414 	fwprintf(sc, HBA_FLAGS_DBG_IOCTL_COMMANDS_B, "Userland revision= %d\n",
3415 	      rev_check.callingRevision.buildNumber);
3416 
3417 	/*
3418 	 * Doctor up the response struct.
3419 	 */
3420 	rev_check_resp.possiblyCompatible = 1;
3421 	rev_check_resp.adapterSWRevision.external.comp.major =
3422 	    AAC_DRIVER_MAJOR_VERSION;
3423 	rev_check_resp.adapterSWRevision.external.comp.minor =
3424 	    AAC_DRIVER_MINOR_VERSION;
3425 	rev_check_resp.adapterSWRevision.external.comp.type =
3426 	    AAC_DRIVER_TYPE;
3427 	rev_check_resp.adapterSWRevision.external.comp.dash =
3428 	    AAC_DRIVER_BUGFIX_LEVEL;
3429 	rev_check_resp.adapterSWRevision.buildNumber =
3430 	    AAC_DRIVER_BUILD;
3431 
3432 	return(copyout((caddr_t)&rev_check_resp, udata,
3433 			sizeof(struct aac_rev_check_resp)));
3434 }
3435 
3436 /*
3437  * Pass the fib context to the caller
3438  */
3439 static int
3440 aac_open_aif(struct aac_softc *sc, caddr_t arg)
3441 {
3442 	struct aac_fib_context *fibctx, *ctx;
3443 	int error = 0;
3444 
3445 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3446 
3447 	fibctx = malloc(sizeof(struct aac_fib_context), M_AACBUF, M_NOWAIT|M_ZERO);
3448 	if (fibctx == NULL)
3449 		return (ENOMEM);
3450 
3451 	mtx_lock(&sc->aac_aifq_lock);
3452 	/* all elements are already 0, add to queue */
3453 	if (sc->fibctx == NULL)
3454 		sc->fibctx = fibctx;
3455 	else {
3456 		for (ctx = sc->fibctx; ctx->next; ctx = ctx->next)
3457 			;
3458 		ctx->next = fibctx;
3459 		fibctx->prev = ctx;
3460 	}
3461 
3462 	/* evaluate unique value */
3463 	fibctx->unique = (*(u_int32_t *)&fibctx & 0xffffffff);
3464 	ctx = sc->fibctx;
3465 	while (ctx != fibctx) {
3466 		if (ctx->unique == fibctx->unique) {
3467 			fibctx->unique++;
3468 			ctx = sc->fibctx;
3469 		} else {
3470 			ctx = ctx->next;
3471 		}
3472 	}
3473 	mtx_unlock(&sc->aac_aifq_lock);
3474 
3475 	error = copyout(&fibctx->unique, (void *)arg, sizeof(u_int32_t));
3476 	if (error)
3477 		aac_close_aif(sc, (caddr_t)ctx);
3478 	return error;
3479 }
3480 
3481 /*
3482  * Close the caller's fib context
3483  */
3484 static int
3485 aac_close_aif(struct aac_softc *sc, caddr_t arg)
3486 {
3487 	struct aac_fib_context *ctx;
3488 
3489 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3490 
3491 	mtx_lock(&sc->aac_aifq_lock);
3492 	for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3493 		if (ctx->unique == *(uint32_t *)&arg) {
3494 			if (ctx == sc->fibctx)
3495 				sc->fibctx = NULL;
3496 			else {
3497 				ctx->prev->next = ctx->next;
3498 				if (ctx->next)
3499 					ctx->next->prev = ctx->prev;
3500 			}
3501 			break;
3502 		}
3503 	}
3504 	mtx_unlock(&sc->aac_aifq_lock);
3505 	if (ctx)
3506 		free(ctx, M_AACBUF);
3507 
3508 	return 0;
3509 }
3510 
3511 /*
3512  * Pass the caller the next AIF in their queue
3513  */
3514 static int
3515 aac_getnext_aif(struct aac_softc *sc, caddr_t arg)
3516 {
3517 	struct get_adapter_fib_ioctl agf;
3518 	struct aac_fib_context *ctx;
3519 	int error;
3520 
3521 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3522 
3523 	if ((error = copyin(arg, &agf, sizeof(agf))) == 0) {
3524 		for (ctx = sc->fibctx; ctx; ctx = ctx->next) {
3525 			if (agf.AdapterFibContext == ctx->unique)
3526 				break;
3527 		}
3528 		if (!ctx)
3529 			return (EFAULT);
3530 
3531 		error = aac_return_aif(sc, ctx, agf.AifFib);
3532 		if (error == EAGAIN && agf.Wait) {
3533 			fwprintf(sc, HBA_FLAGS_DBG_AIF_B, "aac_getnext_aif(): waiting for AIF");
3534 			sc->aac_state |= AAC_STATE_AIF_SLEEPER;
3535 			while (error == EAGAIN) {
3536 				error = tsleep(sc->aac_aifq, PRIBIO |
3537 					       PCATCH, "aacaif", 0);
3538 				if (error == 0)
3539 					error = aac_return_aif(sc, ctx, agf.AifFib);
3540 			}
3541 			sc->aac_state &= ~AAC_STATE_AIF_SLEEPER;
3542 		}
3543 	}
3544 	return(error);
3545 }
3546 
3547 /*
3548  * Hand the next AIF off the top of the queue out to userspace.
3549  */
3550 static int
3551 aac_return_aif(struct aac_softc *sc, struct aac_fib_context *ctx, caddr_t uptr)
3552 {
3553 	int current, error;
3554 
3555 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3556 
3557 	mtx_lock(&sc->aac_aifq_lock);
3558 	current = ctx->ctx_idx;
3559 	if (current == sc->aifq_idx && !ctx->ctx_wrap) {
3560 		/* empty */
3561 		mtx_unlock(&sc->aac_aifq_lock);
3562 		return (EAGAIN);
3563 	}
3564 	error =
3565 		copyout(&sc->aac_aifq[current], (void *)uptr, sizeof(struct aac_fib));
3566 	if (error)
3567 		device_printf(sc->aac_dev,
3568 		    "aac_return_aif: copyout returned %d\n", error);
3569 	else {
3570 		ctx->ctx_wrap = 0;
3571 		ctx->ctx_idx = (current + 1) % AAC_AIFQ_LENGTH;
3572 	}
3573 	mtx_unlock(&sc->aac_aifq_lock);
3574 	return(error);
3575 }
3576 
3577 static int
3578 aac_get_pci_info(struct aac_softc *sc, caddr_t uptr)
3579 {
3580 	struct aac_pci_info {
3581 		u_int32_t bus;
3582 		u_int32_t slot;
3583 	} pciinf;
3584 	int error;
3585 
3586 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3587 
3588 	pciinf.bus = pci_get_bus(sc->aac_dev);
3589 	pciinf.slot = pci_get_slot(sc->aac_dev);
3590 
3591 	error = copyout((caddr_t)&pciinf, uptr,
3592 			sizeof(struct aac_pci_info));
3593 
3594 	return (error);
3595 }
3596 
3597 static int
3598 aac_supported_features(struct aac_softc *sc, caddr_t uptr)
3599 {
3600 	struct aac_features f;
3601 	int error;
3602 
3603 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3604 
3605 	if ((error = copyin(uptr, &f, sizeof (f))) != 0)
3606 		return (error);
3607 
3608 	/*
3609 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3610 	 * ALL zero in the featuresState, the driver will return the current
3611 	 * state of all the supported features, the data field will not be
3612 	 * valid.
3613 	 * When the management driver receives FSACTL_GET_FEATURES ioctl with
3614 	 * a specific bit set in the featuresState, the driver will return the
3615 	 * current state of this specific feature and whatever data that are
3616 	 * associated with the feature in the data field or perform whatever
3617 	 * action needed indicates in the data field.
3618 	 */
3619 	if (f.feat.fValue == 0) {
3620 		f.feat.fBits.largeLBA =
3621 		    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3622 		/* TODO: In the future, add other features state here as well */
3623 	} else {
3624 		if (f.feat.fBits.largeLBA)
3625 			f.feat.fBits.largeLBA =
3626 			    (sc->flags & AAC_FLAGS_LBA_64BIT) ? 1 : 0;
3627 		/* TODO: Add other features state and data in the future */
3628 	}
3629 
3630 	error = copyout(&f, uptr, sizeof (f));
3631 	return (error);
3632 }
3633 
3634 /*
3635  * Give the userland some information about the container.  The AAC arch
3636  * expects the driver to be a SCSI passthrough type driver, so it expects
3637  * the containers to have b:t:l numbers.  Fake it.
3638  */
3639 static int
3640 aac_query_disk(struct aac_softc *sc, caddr_t uptr)
3641 {
3642 	struct aac_query_disk query_disk;
3643 	struct aac_container *co;
3644 	struct aac_disk	*disk;
3645 	int error, id;
3646 
3647 	fwprintf(sc, HBA_FLAGS_DBG_FUNCTION_ENTRY_B, "");
3648 
3649 	disk = NULL;
3650 
3651 	error = copyin(uptr, (caddr_t)&query_disk,
3652 		       sizeof(struct aac_query_disk));
3653 	if (error)
3654 		return (error);
3655 
3656 	id = query_disk.ContainerNumber;
3657 	if (id == -1)
3658 		return (EINVAL);
3659 
3660 	mtx_lock(&sc->aac_container_lock);
3661 	TAILQ_FOREACH(co, &sc->aac_container_tqh, co_link) {
3662 		if (co->co_mntobj.ObjectId == id)
3663 			break;
3664 		}
3665 
3666 	if (co == NULL) {
3667 			query_disk.Valid = 0;
3668 			query_disk.Locked = 0;
3669 			query_disk.Deleted = 1;		/* XXX is this right? */
3670 	} else {
3671 		disk = device_get_softc(co->co_disk);
3672 		query_disk.Valid = 1;
3673 		query_disk.Locked =
3674 		    (disk->ad_flags & AAC_DISK_OPEN) ? 1 : 0;
3675 		query_disk.Deleted = 0;
3676 		query_disk.Bus = device_get_unit(sc->aac_dev);
3677 		query_disk.Target = disk->unit;
3678 		query_disk.Lun = 0;
3679 		query_disk.UnMapped = 0;
3680 		sprintf(&query_disk.diskDeviceName[0], "%s%d",
3681 			disk->ad_disk->d_name, disk->ad_disk->d_unit);
3682 	}
3683 	mtx_unlock(&sc->aac_container_lock);
3684 
3685 	error = copyout((caddr_t)&query_disk, uptr,
3686 			sizeof(struct aac_query_disk));
3687 
3688 	return (error);
3689 }
3690 
3691 static void
3692 aac_get_bus_info(struct aac_softc *sc)
3693 {
3694 	struct aac_fib *fib;
3695 	struct aac_ctcfg *c_cmd;
3696 	struct aac_ctcfg_resp *c_resp;
3697 	struct aac_vmioctl *vmi;
3698 	struct aac_vmi_businf_resp *vmi_resp;
3699 	struct aac_getbusinf businfo;
3700 	struct aac_sim *caminf;
3701 	device_t child;
3702 	int i, found, error;
3703 
3704 	mtx_lock(&sc->aac_io_lock);
3705 	aac_alloc_sync_fib(sc, &fib);
3706 	c_cmd = (struct aac_ctcfg *)&fib->data[0];
3707 	bzero(c_cmd, sizeof(struct aac_ctcfg));
3708 
3709 	c_cmd->Command = VM_ContainerConfig;
3710 	c_cmd->cmd = CT_GET_SCSI_METHOD;
3711 	c_cmd->param = 0;
3712 
3713 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3714 	    sizeof(struct aac_ctcfg));
3715 	if (error) {
3716 		device_printf(sc->aac_dev, "Error %d sending "
3717 		    "VM_ContainerConfig command\n", error);
3718 		aac_release_sync_fib(sc);
3719 		mtx_unlock(&sc->aac_io_lock);
3720 		return;
3721 	}
3722 
3723 	c_resp = (struct aac_ctcfg_resp *)&fib->data[0];
3724 	if (c_resp->Status != ST_OK) {
3725 		device_printf(sc->aac_dev, "VM_ContainerConfig returned 0x%x\n",
3726 		    c_resp->Status);
3727 		aac_release_sync_fib(sc);
3728 		mtx_unlock(&sc->aac_io_lock);
3729 		return;
3730 	}
3731 
3732 	sc->scsi_method_id = c_resp->param;
3733 
3734 	vmi = (struct aac_vmioctl *)&fib->data[0];
3735 	bzero(vmi, sizeof(struct aac_vmioctl));
3736 
3737 	vmi->Command = VM_Ioctl;
3738 	vmi->ObjType = FT_DRIVE;
3739 	vmi->MethId = sc->scsi_method_id;
3740 	vmi->ObjId = 0;
3741 	vmi->IoctlCmd = GetBusInfo;
3742 
3743 	error = aac_sync_fib(sc, ContainerCommand, 0, fib,
3744 	    sizeof(struct aac_vmi_businf_resp));
3745 	if (error) {
3746 		device_printf(sc->aac_dev, "Error %d sending VMIoctl command\n",
3747 		    error);
3748 		aac_release_sync_fib(sc);
3749 		mtx_unlock(&sc->aac_io_lock);
3750 		return;
3751 	}
3752 
3753 	vmi_resp = (struct aac_vmi_businf_resp *)&fib->data[0];
3754 	if (vmi_resp->Status != ST_OK) {
3755 		device_printf(sc->aac_dev, "VM_Ioctl returned %d\n",
3756 		    vmi_resp->Status);
3757 		aac_release_sync_fib(sc);
3758 		mtx_unlock(&sc->aac_io_lock);
3759 		return;
3760 	}
3761 
3762 	bcopy(&vmi_resp->BusInf, &businfo, sizeof(struct aac_getbusinf));
3763 	aac_release_sync_fib(sc);
3764 	mtx_unlock(&sc->aac_io_lock);
3765 
3766 	found = 0;
3767 	for (i = 0; i < businfo.BusCount; i++) {
3768 		if (businfo.BusValid[i] != AAC_BUS_VALID)
3769 			continue;
3770 
3771 		caminf = (struct aac_sim *)malloc( sizeof(struct aac_sim),
3772 		    M_AACBUF, M_NOWAIT | M_ZERO);
3773 		if (caminf == NULL) {
3774 			device_printf(sc->aac_dev,
3775 			    "No memory to add passthrough bus %d\n", i);
3776 			break;
3777 		}
3778 
3779 		child = device_add_child(sc->aac_dev, "aacp", -1);
3780 		if (child == NULL) {
3781 			device_printf(sc->aac_dev,
3782 			    "device_add_child failed for passthrough bus %d\n",
3783 			    i);
3784 			free(caminf, M_AACBUF);
3785 			break;
3786 		}
3787 
3788 		caminf->TargetsPerBus = businfo.TargetsPerBus;
3789 		caminf->BusNumber = i;
3790 		caminf->InitiatorBusId = businfo.InitiatorBusId[i];
3791 		caminf->aac_sc = sc;
3792 		caminf->sim_dev = child;
3793 
3794 		device_set_ivars(child, caminf);
3795 		device_set_desc(child, "SCSI Passthrough Bus");
3796 		TAILQ_INSERT_TAIL(&sc->aac_sim_tqh, caminf, sim_link);
3797 
3798 		found = 1;
3799 	}
3800 
3801 	if (found)
3802 		bus_generic_attach(sc->aac_dev);
3803 }
3804