xref: /freebsd/sys/crypto/via/padlock_hash.c (revision 2a0c0aea42092f89c2a5345991e6e3ce4cbef99a)
1 /*-
2  * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/malloc.h>
35 #include <sys/libkern.h>
36 #include <sys/endian.h>
37 #include <sys/pcpu.h>
38 #if defined(__amd64__) || defined(__i386__)
39 #include <machine/cpufunc.h>
40 #include <machine/cputypes.h>
41 #include <machine/md_var.h>
42 #include <machine/specialreg.h>
43 #endif
44 #include <machine/pcb.h>
45 
46 #include <opencrypto/cryptodev.h>
47 #include <opencrypto/xform.h>
48 
49 #include <crypto/via/padlock.h>
50 
51 /*
52  * Implementation notes.
53  *
54  * Some VIA CPUs provides SHA1 and SHA256 acceleration.
55  * We implement all HMAC algorithms provided by crypto(9) framework, but we do
56  * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
57  * our CPU can accelerate it.
58  *
59  * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
60  * functions - we have only one chance to give the data, CPU itself will add
61  * the padding and calculate hash automatically.
62  * This means, it is not possible to implement common init(), update(), final()
63  * methods.
64  * The way I've choosen is to keep adding data to the buffer on update()
65  * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
66  * final().
67  */
68 
69 struct padlock_sha_ctx {
70 	uint8_t	*psc_buf;
71 	int	 psc_offset;
72 	int	 psc_size;
73 };
74 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
75 
76 static void padlock_sha_init(void *vctx);
77 static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize);
78 static void padlock_sha1_final(uint8_t *hash, void *vctx);
79 static void padlock_sha256_final(uint8_t *hash, void *vctx);
80 
81 static const struct auth_hash padlock_hmac_sha1 = {
82 	.type = CRYPTO_SHA1_HMAC,
83 	.name = "HMAC-SHA1",
84 	.keysize = SHA1_BLOCK_LEN,
85 	.hashsize = SHA1_HASH_LEN,
86 	.ctxsize = sizeof(struct padlock_sha_ctx),
87 	.blocksize = SHA1_BLOCK_LEN,
88         .Init = padlock_sha_init,
89 	.Update = padlock_sha_update,
90 	.Final = padlock_sha1_final,
91 };
92 
93 static const struct auth_hash padlock_hmac_sha256 = {
94 	.type = CRYPTO_SHA2_256_HMAC,
95 	.name = "HMAC-SHA2-256",
96 	.keysize = SHA2_256_BLOCK_LEN,
97 	.hashsize = SHA2_256_HASH_LEN,
98 	.ctxsize = sizeof(struct padlock_sha_ctx),
99 	.blocksize = SHA2_256_BLOCK_LEN,
100         .Init = padlock_sha_init,
101 	.Update = padlock_sha_update,
102 	.Final = padlock_sha256_final,
103 };
104 
105 MALLOC_DECLARE(M_PADLOCK);
106 
107 static __inline void
108 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
109 {
110 
111 	while (count-- > 0)
112 		*dst++ = bswap32(*src++);
113 }
114 
115 static void
116 padlock_do_sha1(const u_char *in, u_char *out, int count)
117 {
118 	u_char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
119 	u_char *result = PADLOCK_ALIGN(buf);
120 
121 	((uint32_t *)result)[0] = 0x67452301;
122 	((uint32_t *)result)[1] = 0xEFCDAB89;
123 	((uint32_t *)result)[2] = 0x98BADCFE;
124 	((uint32_t *)result)[3] = 0x10325476;
125 	((uint32_t *)result)[4] = 0xC3D2E1F0;
126 
127 	__asm __volatile(
128 		".byte  0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
129 			: "+S"(in), "+D"(result)
130 			: "c"(count), "a"(0)
131 		);
132 
133 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
134 	    SHA1_HASH_LEN / sizeof(uint32_t));
135 }
136 
137 static void
138 padlock_do_sha256(const char *in, char *out, int count)
139 {
140 	char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
141 	char *result = PADLOCK_ALIGN(buf);
142 
143 	((uint32_t *)result)[0] = 0x6A09E667;
144 	((uint32_t *)result)[1] = 0xBB67AE85;
145 	((uint32_t *)result)[2] = 0x3C6EF372;
146 	((uint32_t *)result)[3] = 0xA54FF53A;
147 	((uint32_t *)result)[4] = 0x510E527F;
148 	((uint32_t *)result)[5] = 0x9B05688C;
149 	((uint32_t *)result)[6] = 0x1F83D9AB;
150 	((uint32_t *)result)[7] = 0x5BE0CD19;
151 
152 	__asm __volatile(
153 		".byte  0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
154 			: "+S"(in), "+D"(result)
155 			: "c"(count), "a"(0)
156 		);
157 
158 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
159 	    SHA2_256_HASH_LEN / sizeof(uint32_t));
160 }
161 
162 static void
163 padlock_sha_init(void *vctx)
164 {
165 	struct padlock_sha_ctx *ctx;
166 
167 	ctx = vctx;
168 	ctx->psc_buf = NULL;
169 	ctx->psc_offset = 0;
170 	ctx->psc_size = 0;
171 }
172 
173 static int
174 padlock_sha_update(void *vctx, const void *buf, u_int bufsize)
175 {
176 	struct padlock_sha_ctx *ctx;
177 
178 	ctx = vctx;
179 	if (ctx->psc_size - ctx->psc_offset < bufsize) {
180 		ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
181 		ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
182 		    M_NOWAIT);
183 		if(ctx->psc_buf == NULL)
184 			return (ENOMEM);
185 	}
186 	bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
187 	ctx->psc_offset += bufsize;
188 	return (0);
189 }
190 
191 static void
192 padlock_sha_free(void *vctx)
193 {
194 	struct padlock_sha_ctx *ctx;
195 
196 	ctx = vctx;
197 	if (ctx->psc_buf != NULL) {
198 		zfree(ctx->psc_buf, M_PADLOCK);
199 		ctx->psc_buf = NULL;
200 		ctx->psc_offset = 0;
201 		ctx->psc_size = 0;
202 	}
203 }
204 
205 static void
206 padlock_sha1_final(uint8_t *hash, void *vctx)
207 {
208 	struct padlock_sha_ctx *ctx;
209 
210 	ctx = vctx;
211 	padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
212 	padlock_sha_free(ctx);
213 }
214 
215 static void
216 padlock_sha256_final(uint8_t *hash, void *vctx)
217 {
218 	struct padlock_sha_ctx *ctx;
219 
220 	ctx = vctx;
221 	padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
222 	padlock_sha_free(ctx);
223 }
224 
225 static void
226 padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx)
227 {
228 
229 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
230 	    (axf->type == CRYPTO_SHA1_HMAC ||
231 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
232 		struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
233 
234 		dpctx->psc_offset = spctx->psc_offset;
235 		dpctx->psc_size = spctx->psc_size;
236 		dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
237 		bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
238 	} else {
239 		bcopy(sctx, dctx, axf->ctxsize);
240 	}
241 }
242 
243 static void
244 padlock_free_ctx(const struct auth_hash *axf, void *ctx)
245 {
246 
247 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
248 	    (axf->type == CRYPTO_SHA1_HMAC ||
249 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
250 		padlock_sha_free(ctx);
251 	}
252 }
253 
254 static void
255 padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key,
256     int klen)
257 {
258 	const struct auth_hash *axf;
259 
260 	axf = ses->ses_axf;
261 
262 	/*
263 	 * Try to free contexts before using them, because
264 	 * padlock_hash_key_setup() can be called twice - once from
265 	 * padlock_newsession() and again from padlock_process().
266 	 */
267 	padlock_free_ctx(axf, ses->ses_ictx);
268 	padlock_free_ctx(axf, ses->ses_octx);
269 
270 	hmac_init_ipad(axf, key, klen, ses->ses_ictx);
271 	hmac_init_opad(axf, key, klen, ses->ses_octx);
272 }
273 
274 /*
275  * Compute keyed-hash authenticator.
276  */
277 static int
278 padlock_authcompute(struct padlock_session *ses, struct cryptop *crp)
279 {
280 	u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN];
281 	const struct auth_hash *axf;
282 	union authctx ctx;
283 	int error;
284 
285 	axf = ses->ses_axf;
286 
287 	padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
288 	error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
289 	    axf->Update, &ctx);
290 	if (error != 0) {
291 		padlock_free_ctx(axf, &ctx);
292 		return (error);
293 	}
294 	error = crypto_apply(crp, crp->crp_payload_start,
295 	    crp->crp_payload_length, axf->Update, &ctx);
296 	if (error != 0) {
297 		padlock_free_ctx(axf, &ctx);
298 		return (error);
299 	}
300 	axf->Final(hash, &ctx);
301 
302 	padlock_copy_ctx(axf, ses->ses_octx, &ctx);
303 	axf->Update(&ctx, hash, axf->hashsize);
304 	axf->Final(hash, &ctx);
305 
306 	if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
307 		crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen,
308 		    hash2);
309 		if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0)
310 			return (EBADMSG);
311 	} else
312 		crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen,
313 		    hash);
314 	return (0);
315 }
316 
317 /* Find software structure which describes HMAC algorithm. */
318 static const struct auth_hash *
319 padlock_hash_lookup(int alg)
320 {
321 	const struct auth_hash *axf;
322 
323 	switch (alg) {
324 	case CRYPTO_NULL_HMAC:
325 		axf = &auth_hash_null;
326 		break;
327 	case CRYPTO_SHA1_HMAC:
328 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
329 			axf = &padlock_hmac_sha1;
330 		else
331 			axf = &auth_hash_hmac_sha1;
332 		break;
333 	case CRYPTO_RIPEMD160_HMAC:
334 		axf = &auth_hash_hmac_ripemd_160;
335 		break;
336 	case CRYPTO_SHA2_256_HMAC:
337 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
338 			axf = &padlock_hmac_sha256;
339 		else
340 			axf = &auth_hash_hmac_sha2_256;
341 		break;
342 	case CRYPTO_SHA2_384_HMAC:
343 		axf = &auth_hash_hmac_sha2_384;
344 		break;
345 	case CRYPTO_SHA2_512_HMAC:
346 		axf = &auth_hash_hmac_sha2_512;
347 		break;
348 	default:
349 		axf = NULL;
350 		break;
351 	}
352 	return (axf);
353 }
354 
355 bool
356 padlock_hash_check(const struct crypto_session_params *csp)
357 {
358 
359 	return (padlock_hash_lookup(csp->csp_auth_alg) != NULL);
360 }
361 
362 int
363 padlock_hash_setup(struct padlock_session *ses,
364     const struct crypto_session_params *csp)
365 {
366 
367 	ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg);
368 	if (csp->csp_auth_mlen == 0)
369 		ses->ses_mlen = ses->ses_axf->hashsize;
370 	else
371 		ses->ses_mlen = csp->csp_auth_mlen;
372 
373 	/* Allocate memory for HMAC inner and outer contexts. */
374 	ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
375 	    M_ZERO | M_NOWAIT);
376 	ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
377 	    M_ZERO | M_NOWAIT);
378 	if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
379 		return (ENOMEM);
380 
381 	/* Setup key if given. */
382 	if (csp->csp_auth_key != NULL) {
383 		padlock_hash_key_setup(ses, csp->csp_auth_key,
384 		    csp->csp_auth_klen);
385 	}
386 	return (0);
387 }
388 
389 int
390 padlock_hash_process(struct padlock_session *ses, struct cryptop *crp,
391     const struct crypto_session_params *csp)
392 {
393 	struct thread *td;
394 	int error;
395 
396 	td = curthread;
397 	fpu_kern_enter(td, ses->ses_fpu_ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR);
398 	if (crp->crp_auth_key != NULL)
399 		padlock_hash_key_setup(ses, crp->crp_auth_key,
400 		    csp->csp_auth_klen);
401 
402 	error = padlock_authcompute(ses, crp);
403 	fpu_kern_leave(td, ses->ses_fpu_ctx);
404 	return (error);
405 }
406 
407 void
408 padlock_hash_free(struct padlock_session *ses)
409 {
410 
411 	if (ses->ses_ictx != NULL) {
412 		padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
413 		zfree(ses->ses_ictx, M_PADLOCK);
414 		ses->ses_ictx = NULL;
415 	}
416 	if (ses->ses_octx != NULL) {
417 		padlock_free_ctx(ses->ses_axf, ses->ses_octx);
418 		zfree(ses->ses_octx, M_PADLOCK);
419 		ses->ses_octx = NULL;
420 	}
421 }
422