xref: /freebsd/sys/crypto/via/padlock_hash.c (revision 1f88aa09417f1cfb3929fd37531b1ab51213c2d6)
1 /*-
2  * Copyright (c) 2006 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include <sys/param.h>
31 #include <sys/systm.h>
32 #include <sys/kernel.h>
33 #include <sys/module.h>
34 #include <sys/malloc.h>
35 #include <sys/libkern.h>
36 #include <sys/endian.h>
37 #include <sys/pcpu.h>
38 #if defined(__amd64__) || defined(__i386__)
39 #include <machine/cpufunc.h>
40 #include <machine/cputypes.h>
41 #include <machine/md_var.h>
42 #include <machine/specialreg.h>
43 #endif
44 #include <machine/pcb.h>
45 
46 #include <opencrypto/cryptodev.h>
47 #include <opencrypto/xform.h>
48 
49 #include <crypto/via/padlock.h>
50 
51 /*
52  * Implementation notes.
53  *
54  * Some VIA CPUs provides SHA1 and SHA256 acceleration.
55  * We implement all HMAC algorithms provided by crypto(9) framework, but we do
56  * the crypto work in software unless this is HMAC/SHA1 or HMAC/SHA256 and
57  * our CPU can accelerate it.
58  *
59  * Additional CPU instructions, which preform SHA1 and SHA256 are one-shot
60  * functions - we have only one chance to give the data, CPU itself will add
61  * the padding and calculate hash automatically.
62  * This means, it is not possible to implement common init(), update(), final()
63  * methods.
64  * The way I've choosen is to keep adding data to the buffer on update()
65  * (reallocating the buffer if necessary) and call XSHA{1,256} instruction on
66  * final().
67  */
68 
69 struct padlock_sha_ctx {
70 	uint8_t	*psc_buf;
71 	int	 psc_offset;
72 	int	 psc_size;
73 };
74 CTASSERT(sizeof(struct padlock_sha_ctx) <= sizeof(union authctx));
75 
76 static void padlock_sha_init(void *vctx);
77 static int padlock_sha_update(void *vctx, const void *buf, u_int bufsize);
78 static void padlock_sha1_final(uint8_t *hash, void *vctx);
79 static void padlock_sha256_final(uint8_t *hash, void *vctx);
80 
81 static const struct auth_hash padlock_hmac_sha1 = {
82 	.type = CRYPTO_SHA1_HMAC,
83 	.name = "HMAC-SHA1",
84 	.keysize = SHA1_BLOCK_LEN,
85 	.hashsize = SHA1_HASH_LEN,
86 	.ctxsize = sizeof(struct padlock_sha_ctx),
87 	.blocksize = SHA1_BLOCK_LEN,
88         .Init = padlock_sha_init,
89 	.Update = padlock_sha_update,
90 	.Final = padlock_sha1_final,
91 };
92 
93 static const struct auth_hash padlock_hmac_sha256 = {
94 	.type = CRYPTO_SHA2_256_HMAC,
95 	.name = "HMAC-SHA2-256",
96 	.keysize = SHA2_256_BLOCK_LEN,
97 	.hashsize = SHA2_256_HASH_LEN,
98 	.ctxsize = sizeof(struct padlock_sha_ctx),
99 	.blocksize = SHA2_256_BLOCK_LEN,
100         .Init = padlock_sha_init,
101 	.Update = padlock_sha_update,
102 	.Final = padlock_sha256_final,
103 };
104 
105 MALLOC_DECLARE(M_PADLOCK);
106 
107 static __inline void
108 padlock_output_block(uint32_t *src, uint32_t *dst, size_t count)
109 {
110 
111 	while (count-- > 0)
112 		*dst++ = bswap32(*src++);
113 }
114 
115 static void
116 padlock_do_sha1(const u_char *in, u_char *out, int count)
117 {
118 	u_char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
119 	u_char *result = PADLOCK_ALIGN(buf);
120 
121 	((uint32_t *)result)[0] = 0x67452301;
122 	((uint32_t *)result)[1] = 0xEFCDAB89;
123 	((uint32_t *)result)[2] = 0x98BADCFE;
124 	((uint32_t *)result)[3] = 0x10325476;
125 	((uint32_t *)result)[4] = 0xC3D2E1F0;
126 
127 #ifdef __GNUCLIKE_ASM
128 	__asm __volatile(
129 		".byte  0xf3, 0x0f, 0xa6, 0xc8" /* rep xsha1 */
130 			: "+S"(in), "+D"(result)
131 			: "c"(count), "a"(0)
132 		);
133 #endif
134 
135 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
136 	    SHA1_HASH_LEN / sizeof(uint32_t));
137 }
138 
139 static void
140 padlock_do_sha256(const char *in, char *out, int count)
141 {
142 	char buf[128+16];	/* PadLock needs at least 128 bytes buffer. */
143 	char *result = PADLOCK_ALIGN(buf);
144 
145 	((uint32_t *)result)[0] = 0x6A09E667;
146 	((uint32_t *)result)[1] = 0xBB67AE85;
147 	((uint32_t *)result)[2] = 0x3C6EF372;
148 	((uint32_t *)result)[3] = 0xA54FF53A;
149 	((uint32_t *)result)[4] = 0x510E527F;
150 	((uint32_t *)result)[5] = 0x9B05688C;
151 	((uint32_t *)result)[6] = 0x1F83D9AB;
152 	((uint32_t *)result)[7] = 0x5BE0CD19;
153 
154 #ifdef __GNUCLIKE_ASM
155 	__asm __volatile(
156 		".byte  0xf3, 0x0f, 0xa6, 0xd0" /* rep xsha256 */
157 			: "+S"(in), "+D"(result)
158 			: "c"(count), "a"(0)
159 		);
160 #endif
161 
162 	padlock_output_block((uint32_t *)result, (uint32_t *)out,
163 	    SHA2_256_HASH_LEN / sizeof(uint32_t));
164 }
165 
166 static void
167 padlock_sha_init(void *vctx)
168 {
169 	struct padlock_sha_ctx *ctx;
170 
171 	ctx = vctx;
172 	ctx->psc_buf = NULL;
173 	ctx->psc_offset = 0;
174 	ctx->psc_size = 0;
175 }
176 
177 static int
178 padlock_sha_update(void *vctx, const void *buf, u_int bufsize)
179 {
180 	struct padlock_sha_ctx *ctx;
181 
182 	ctx = vctx;
183 	if (ctx->psc_size - ctx->psc_offset < bufsize) {
184 		ctx->psc_size = MAX(ctx->psc_size * 2, ctx->psc_size + bufsize);
185 		ctx->psc_buf = realloc(ctx->psc_buf, ctx->psc_size, M_PADLOCK,
186 		    M_NOWAIT);
187 		if(ctx->psc_buf == NULL)
188 			return (ENOMEM);
189 	}
190 	bcopy(buf, ctx->psc_buf + ctx->psc_offset, bufsize);
191 	ctx->psc_offset += bufsize;
192 	return (0);
193 }
194 
195 static void
196 padlock_sha_free(void *vctx)
197 {
198 	struct padlock_sha_ctx *ctx;
199 
200 	ctx = vctx;
201 	if (ctx->psc_buf != NULL) {
202 		zfree(ctx->psc_buf, M_PADLOCK);
203 		ctx->psc_buf = NULL;
204 		ctx->psc_offset = 0;
205 		ctx->psc_size = 0;
206 	}
207 }
208 
209 static void
210 padlock_sha1_final(uint8_t *hash, void *vctx)
211 {
212 	struct padlock_sha_ctx *ctx;
213 
214 	ctx = vctx;
215 	padlock_do_sha1(ctx->psc_buf, hash, ctx->psc_offset);
216 	padlock_sha_free(ctx);
217 }
218 
219 static void
220 padlock_sha256_final(uint8_t *hash, void *vctx)
221 {
222 	struct padlock_sha_ctx *ctx;
223 
224 	ctx = vctx;
225 	padlock_do_sha256(ctx->psc_buf, hash, ctx->psc_offset);
226 	padlock_sha_free(ctx);
227 }
228 
229 static void
230 padlock_copy_ctx(const struct auth_hash *axf, void *sctx, void *dctx)
231 {
232 
233 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
234 	    (axf->type == CRYPTO_SHA1_HMAC ||
235 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
236 		struct padlock_sha_ctx *spctx = sctx, *dpctx = dctx;
237 
238 		dpctx->psc_offset = spctx->psc_offset;
239 		dpctx->psc_size = spctx->psc_size;
240 		dpctx->psc_buf = malloc(dpctx->psc_size, M_PADLOCK, M_WAITOK);
241 		bcopy(spctx->psc_buf, dpctx->psc_buf, dpctx->psc_size);
242 	} else {
243 		bcopy(sctx, dctx, axf->ctxsize);
244 	}
245 }
246 
247 static void
248 padlock_free_ctx(const struct auth_hash *axf, void *ctx)
249 {
250 
251 	if ((via_feature_xcrypt & VIA_HAS_SHA) != 0 &&
252 	    (axf->type == CRYPTO_SHA1_HMAC ||
253 	     axf->type == CRYPTO_SHA2_256_HMAC)) {
254 		padlock_sha_free(ctx);
255 	}
256 }
257 
258 static void
259 padlock_hash_key_setup(struct padlock_session *ses, const uint8_t *key,
260     int klen)
261 {
262 	const struct auth_hash *axf;
263 
264 	axf = ses->ses_axf;
265 
266 	/*
267 	 * Try to free contexts before using them, because
268 	 * padlock_hash_key_setup() can be called twice - once from
269 	 * padlock_newsession() and again from padlock_process().
270 	 */
271 	padlock_free_ctx(axf, ses->ses_ictx);
272 	padlock_free_ctx(axf, ses->ses_octx);
273 
274 	hmac_init_ipad(axf, key, klen, ses->ses_ictx);
275 	hmac_init_opad(axf, key, klen, ses->ses_octx);
276 }
277 
278 /*
279  * Compute keyed-hash authenticator.
280  */
281 static int
282 padlock_authcompute(struct padlock_session *ses, struct cryptop *crp)
283 {
284 	u_char hash[HASH_MAX_LEN], hash2[HASH_MAX_LEN];
285 	const struct auth_hash *axf;
286 	union authctx ctx;
287 	int error;
288 
289 	axf = ses->ses_axf;
290 
291 	padlock_copy_ctx(axf, ses->ses_ictx, &ctx);
292 	error = crypto_apply(crp, crp->crp_aad_start, crp->crp_aad_length,
293 	    axf->Update, &ctx);
294 	if (error != 0) {
295 		padlock_free_ctx(axf, &ctx);
296 		return (error);
297 	}
298 	error = crypto_apply(crp, crp->crp_payload_start,
299 	    crp->crp_payload_length, axf->Update, &ctx);
300 	if (error != 0) {
301 		padlock_free_ctx(axf, &ctx);
302 		return (error);
303 	}
304 	axf->Final(hash, &ctx);
305 
306 	padlock_copy_ctx(axf, ses->ses_octx, &ctx);
307 	axf->Update(&ctx, hash, axf->hashsize);
308 	axf->Final(hash, &ctx);
309 
310 	if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) {
311 		crypto_copydata(crp, crp->crp_digest_start, ses->ses_mlen,
312 		    hash2);
313 		if (timingsafe_bcmp(hash, hash2, ses->ses_mlen) != 0)
314 			return (EBADMSG);
315 	} else
316 		crypto_copyback(crp, crp->crp_digest_start, ses->ses_mlen,
317 		    hash);
318 	return (0);
319 }
320 
321 /* Find software structure which describes HMAC algorithm. */
322 static const struct auth_hash *
323 padlock_hash_lookup(int alg)
324 {
325 	const struct auth_hash *axf;
326 
327 	switch (alg) {
328 	case CRYPTO_NULL_HMAC:
329 		axf = &auth_hash_null;
330 		break;
331 	case CRYPTO_SHA1_HMAC:
332 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
333 			axf = &padlock_hmac_sha1;
334 		else
335 			axf = &auth_hash_hmac_sha1;
336 		break;
337 	case CRYPTO_RIPEMD160_HMAC:
338 		axf = &auth_hash_hmac_ripemd_160;
339 		break;
340 	case CRYPTO_SHA2_256_HMAC:
341 		if ((via_feature_xcrypt & VIA_HAS_SHA) != 0)
342 			axf = &padlock_hmac_sha256;
343 		else
344 			axf = &auth_hash_hmac_sha2_256;
345 		break;
346 	case CRYPTO_SHA2_384_HMAC:
347 		axf = &auth_hash_hmac_sha2_384;
348 		break;
349 	case CRYPTO_SHA2_512_HMAC:
350 		axf = &auth_hash_hmac_sha2_512;
351 		break;
352 	default:
353 		axf = NULL;
354 		break;
355 	}
356 	return (axf);
357 }
358 
359 bool
360 padlock_hash_check(const struct crypto_session_params *csp)
361 {
362 
363 	return (padlock_hash_lookup(csp->csp_auth_alg) != NULL);
364 }
365 
366 int
367 padlock_hash_setup(struct padlock_session *ses,
368     const struct crypto_session_params *csp)
369 {
370 
371 	ses->ses_axf = padlock_hash_lookup(csp->csp_auth_alg);
372 	if (csp->csp_auth_mlen == 0)
373 		ses->ses_mlen = ses->ses_axf->hashsize;
374 	else
375 		ses->ses_mlen = csp->csp_auth_mlen;
376 
377 	/* Allocate memory for HMAC inner and outer contexts. */
378 	ses->ses_ictx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
379 	    M_ZERO | M_NOWAIT);
380 	ses->ses_octx = malloc(ses->ses_axf->ctxsize, M_PADLOCK,
381 	    M_ZERO | M_NOWAIT);
382 	if (ses->ses_ictx == NULL || ses->ses_octx == NULL)
383 		return (ENOMEM);
384 
385 	/* Setup key if given. */
386 	if (csp->csp_auth_key != NULL) {
387 		padlock_hash_key_setup(ses, csp->csp_auth_key,
388 		    csp->csp_auth_klen);
389 	}
390 	return (0);
391 }
392 
393 int
394 padlock_hash_process(struct padlock_session *ses, struct cryptop *crp,
395     const struct crypto_session_params *csp)
396 {
397 	struct thread *td;
398 	int error;
399 
400 	td = curthread;
401 	fpu_kern_enter(td, ses->ses_fpu_ctx, FPU_KERN_NORMAL | FPU_KERN_KTHR);
402 	if (crp->crp_auth_key != NULL)
403 		padlock_hash_key_setup(ses, crp->crp_auth_key,
404 		    csp->csp_auth_klen);
405 
406 	error = padlock_authcompute(ses, crp);
407 	fpu_kern_leave(td, ses->ses_fpu_ctx);
408 	return (error);
409 }
410 
411 void
412 padlock_hash_free(struct padlock_session *ses)
413 {
414 
415 	if (ses->ses_ictx != NULL) {
416 		padlock_free_ctx(ses->ses_axf, ses->ses_ictx);
417 		zfree(ses->ses_ictx, M_PADLOCK);
418 		ses->ses_ictx = NULL;
419 	}
420 	if (ses->ses_octx != NULL) {
421 		padlock_free_ctx(ses->ses_axf, ses->ses_octx);
422 		zfree(ses->ses_octx, M_PADLOCK);
423 		ses->ses_octx = NULL;
424 	}
425 }
426