xref: /freebsd/sys/crypto/rijndael/rijndael-alg-fst.c (revision e0c27215058b5786c78fcfb3963eebe61a989511)
1 /*	$KAME: rijndael-alg-fst.c,v 1.7 2001/05/27 00:23:23 itojun Exp $	*/
2 
3 /*
4  * rijndael-alg-fst.c   v2.3   April '2000
5  *
6  * Optimised ANSI C code
7  *
8  * authors: v1.0: Antoon Bosselaers
9  *          v2.0: Vincent Rijmen
10  *          v2.3: Paulo Barreto
11  *
12  * This code is placed in the public domain.
13  */
14 
15 #include <sys/cdefs.h>
16 __FBSDID("$FreeBSD$");
17 
18 #include <sys/cdefs.h>
19 #include <sys/types.h>
20 #ifdef _KERNEL
21 #include <sys/systm.h>
22 #else
23 #include <string.h>
24 #endif
25 #include <crypto/rijndael/rijndael-alg-fst.h>
26 #include <crypto/rijndael/rijndael_local.h>
27 
28 #include <crypto/rijndael/boxes-fst.dat>
29 
30 int rijndaelKeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
31 	/* Calculate the necessary round keys
32 	 * The number of calculations depends on keyBits and blockBits
33 	 */
34 	int j, r, t, rconpointer = 0;
35 	union {
36 		word8	x8[MAXKC][4];
37 		word32	x32[MAXKC];
38 	} xtk;
39 #define	tk	xtk.x8
40 	int KC = ROUNDS - 6;
41 
42 	for (j = KC-1; j >= 0; j--) {
43 		*((word32*)tk[j]) = *((word32*)k[j]);
44 	}
45 	r = 0;
46 	t = 0;
47 	/* copy values into round key array */
48 	for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
49 		for (; (j < KC) && (t < 4); j++, t++) {
50 			*((word32*)W[r][t]) = *((word32*)tk[j]);
51 		}
52 		if (t == 4) {
53 			r++;
54 			t = 0;
55 		}
56 	}
57 
58 	while (r < ROUNDS + 1) { /* while not enough round key material calculated */
59 		/* calculate new values */
60 		tk[0][0] ^= S[tk[KC-1][1]];
61 		tk[0][1] ^= S[tk[KC-1][2]];
62 		tk[0][2] ^= S[tk[KC-1][3]];
63 		tk[0][3] ^= S[tk[KC-1][0]];
64 		tk[0][0] ^= rcon[rconpointer++];
65 
66 		if (KC != 8) {
67 			for (j = 1; j < KC; j++) {
68 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
69 			}
70 		} else {
71 			for (j = 1; j < KC/2; j++) {
72 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
73 			}
74 			tk[KC/2][0] ^= S[tk[KC/2 - 1][0]];
75 			tk[KC/2][1] ^= S[tk[KC/2 - 1][1]];
76 			tk[KC/2][2] ^= S[tk[KC/2 - 1][2]];
77 			tk[KC/2][3] ^= S[tk[KC/2 - 1][3]];
78 			for (j = KC/2 + 1; j < KC; j++) {
79 				*((word32*)tk[j]) ^= *((word32*)tk[j-1]);
80 			}
81 		}
82 		/* copy values into round key array */
83 		for (j = 0; (j < KC) && (r < ROUNDS + 1); ) {
84 			for (; (j < KC) && (t < 4); j++, t++) {
85 				*((word32*)W[r][t]) = *((word32*)tk[j]);
86 			}
87 			if (t == 4) {
88 				r++;
89 				t = 0;
90 			}
91 		}
92 	}
93 	return 0;
94 #undef tk
95 }
96 
97 int rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) {
98 	int r;
99 	word8 *w;
100 
101 	for (r = 1; r < ROUNDS; r++) {
102 		w = W[r][0];
103 		*((word32*)w) =
104 			  *((const word32*)U1[w[0]])
105 			^ *((const word32*)U2[w[1]])
106 			^ *((const word32*)U3[w[2]])
107 			^ *((const word32*)U4[w[3]]);
108 
109 		w = W[r][1];
110 		*((word32*)w) =
111 			  *((const word32*)U1[w[0]])
112 			^ *((const word32*)U2[w[1]])
113 			^ *((const word32*)U3[w[2]])
114 			^ *((const word32*)U4[w[3]]);
115 
116 		w = W[r][2];
117 		*((word32*)w) =
118 			  *((const word32*)U1[w[0]])
119 			^ *((const word32*)U2[w[1]])
120 			^ *((const word32*)U3[w[2]])
121 			^ *((const word32*)U4[w[3]]);
122 
123 		w = W[r][3];
124 		*((word32*)w) =
125 			  *((const word32*)U1[w[0]])
126 			^ *((const word32*)U2[w[1]])
127 			^ *((const word32*)U3[w[2]])
128 			^ *((const word32*)U4[w[3]]);
129 	}
130 	return 0;
131 }
132 
133 /**
134  * Encrypt a single block.
135  */
136 int rijndaelEncrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
137 	int r;
138 	union {
139 		word8	x8[16];
140 		word32	x32[4];
141 	} xa, xb;
142 #define	a	xa.x8
143 #define	b	xb.x8
144 	union {
145 		word8	x8[4][4];
146 		word32	x32[4];
147 	} xtemp;
148 #define	temp	xtemp.x8
149 
150     memcpy(a, in, sizeof a);
151 
152     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[0][0]);
153     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]);
154     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]);
155     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]);
156     *((word32*)(b    )) = *((const word32*)T1[temp[0][0]])
157 					^ *((const word32*)T2[temp[1][1]])
158 					^ *((const word32*)T3[temp[2][2]])
159 					^ *((const word32*)T4[temp[3][3]]);
160     *((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
161 					^ *((const word32*)T2[temp[2][1]])
162 					^ *((const word32*)T3[temp[3][2]])
163 					^ *((const word32*)T4[temp[0][3]]);
164     *((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
165 					^ *((const word32*)T2[temp[3][1]])
166 					^ *((const word32*)T3[temp[0][2]])
167 					^ *((const word32*)T4[temp[1][3]]);
168     *((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
169 					^ *((const word32*)T2[temp[0][1]])
170 					^ *((const word32*)T3[temp[1][2]])
171 					^ *((const word32*)T4[temp[2][3]]);
172 	for (r = 1; r < ROUNDS-1; r++) {
173 		*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
174 		*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
175 		*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
176 		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
177 
178 		*((word32*)(b    )) = *((const word32*)T1[temp[0][0]])
179 					^ *((const word32*)T2[temp[1][1]])
180 					^ *((const word32*)T3[temp[2][2]])
181 					^ *((const word32*)T4[temp[3][3]]);
182 		*((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]])
183 					^ *((const word32*)T2[temp[2][1]])
184 					^ *((const word32*)T3[temp[3][2]])
185 					^ *((const word32*)T4[temp[0][3]]);
186 		*((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]])
187 					^ *((const word32*)T2[temp[3][1]])
188 					^ *((const word32*)T3[temp[0][2]])
189 					^ *((const word32*)T4[temp[1][3]]);
190 		*((word32*)(b +12)) = *((const word32*)T1[temp[3][0]])
191 					^ *((const word32*)T2[temp[0][1]])
192 					^ *((const word32*)T3[temp[1][2]])
193 					^ *((const word32*)T4[temp[2][3]]);
194 	}
195 	/* last round is special */
196 	*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[ROUNDS-1][0]);
197 	*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]);
198 	*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]);
199 	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]);
200 	b[ 0] = T1[temp[0][0]][1];
201 	b[ 1] = T1[temp[1][1]][1];
202 	b[ 2] = T1[temp[2][2]][1];
203 	b[ 3] = T1[temp[3][3]][1];
204 	b[ 4] = T1[temp[1][0]][1];
205 	b[ 5] = T1[temp[2][1]][1];
206 	b[ 6] = T1[temp[3][2]][1];
207 	b[ 7] = T1[temp[0][3]][1];
208 	b[ 8] = T1[temp[2][0]][1];
209 	b[ 9] = T1[temp[3][1]][1];
210 	b[10] = T1[temp[0][2]][1];
211 	b[11] = T1[temp[1][3]][1];
212 	b[12] = T1[temp[3][0]][1];
213 	b[13] = T1[temp[0][1]][1];
214 	b[14] = T1[temp[1][2]][1];
215 	b[15] = T1[temp[2][3]][1];
216 	*((word32*)(b   )) ^= *((word32*)rk[ROUNDS][0]);
217 	*((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]);
218 	*((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]);
219 	*((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]);
220 
221 	memcpy(out, b, sizeof b /* XXX out */);
222 
223 	return 0;
224 #undef a
225 #undef b
226 #undef temp
227 }
228 
229 #ifdef INTERMEDIATE_VALUE_KAT
230 /**
231  * Encrypt only a certain number of rounds.
232  * Only used in the Intermediate Value Known Answer Test.
233  */
234 int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
235 	int r;
236 	word8 temp[4][4];
237 
238 	/* make number of rounds sane */
239 	if (rounds > ROUNDS) {
240 		rounds = ROUNDS;
241 	}
242 
243 	*((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]);
244 	*((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]);
245 	*((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]);
246 	*((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]);
247 
248 	for (r = 1; (r <= rounds) && (r < ROUNDS); r++) {
249 		*((word32*)temp[0]) = *((word32*)T1[a[0][0]])
250            ^ *((word32*)T2[a[1][1]])
251            ^ *((word32*)T3[a[2][2]])
252            ^ *((word32*)T4[a[3][3]]);
253 		*((word32*)temp[1]) = *((word32*)T1[a[1][0]])
254            ^ *((word32*)T2[a[2][1]])
255            ^ *((word32*)T3[a[3][2]])
256            ^ *((word32*)T4[a[0][3]]);
257 		*((word32*)temp[2]) = *((word32*)T1[a[2][0]])
258            ^ *((word32*)T2[a[3][1]])
259            ^ *((word32*)T3[a[0][2]])
260            ^ *((word32*)T4[a[1][3]]);
261 		*((word32*)temp[3]) = *((word32*)T1[a[3][0]])
262            ^ *((word32*)T2[a[0][1]])
263            ^ *((word32*)T3[a[1][2]])
264            ^ *((word32*)T4[a[2][3]]);
265 		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]);
266 		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]);
267 		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]);
268 		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]);
269 	}
270 	if (rounds == ROUNDS) {
271 	   	/* last round is special */
272 	   	temp[0][0] = T1[a[0][0]][1];
273 	   	temp[0][1] = T1[a[1][1]][1];
274 	   	temp[0][2] = T1[a[2][2]][1];
275 	   	temp[0][3] = T1[a[3][3]][1];
276 	   	temp[1][0] = T1[a[1][0]][1];
277 	   	temp[1][1] = T1[a[2][1]][1];
278 	   	temp[1][2] = T1[a[3][2]][1];
279 	   	temp[1][3] = T1[a[0][3]][1];
280 	   	temp[2][0] = T1[a[2][0]][1];
281 	   	temp[2][1] = T1[a[3][1]][1];
282 	   	temp[2][2] = T1[a[0][2]][1];
283 	   	temp[2][3] = T1[a[1][3]][1];
284 	   	temp[3][0] = T1[a[3][0]][1];
285 	   	temp[3][1] = T1[a[0][1]][1];
286 	   	temp[3][2] = T1[a[1][2]][1];
287 	   	temp[3][3] = T1[a[2][3]][1];
288 		*((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]);
289 		*((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]);
290 		*((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]);
291 		*((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]);
292 	}
293 
294 	return 0;
295 }
296 #endif /* INTERMEDIATE_VALUE_KAT */
297 
298 /**
299  * Decrypt a single block.
300  */
301 int rijndaelDecrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) {
302 	int r;
303 	union {
304 		word8	x8[16];
305 		word32	x32[4];
306 	} xa, xb;
307 #define	a	xa.x8
308 #define	b	xb.x8
309 	union {
310 		word8	x8[4][4];
311 		word32	x32[4];
312 	} xtemp;
313 #define	temp	xtemp.x8
314 
315     memcpy(a, in, sizeof a);
316 
317     *((word32*)temp[0]) = *((word32*)(a   )) ^ *((word32*)rk[ROUNDS][0]);
318     *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]);
319     *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]);
320     *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]);
321 
322     *((word32*)(b   )) = *((const word32*)T5[temp[0][0]])
323            ^ *((const word32*)T6[temp[3][1]])
324            ^ *((const word32*)T7[temp[2][2]])
325            ^ *((const word32*)T8[temp[1][3]]);
326 	*((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
327            ^ *((const word32*)T6[temp[0][1]])
328            ^ *((const word32*)T7[temp[3][2]])
329            ^ *((const word32*)T8[temp[2][3]]);
330 	*((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
331            ^ *((const word32*)T6[temp[1][1]])
332            ^ *((const word32*)T7[temp[0][2]])
333            ^ *((const word32*)T8[temp[3][3]]);
334 	*((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
335            ^ *((const word32*)T6[temp[2][1]])
336            ^ *((const word32*)T7[temp[1][2]])
337            ^ *((const word32*)T8[temp[0][3]]);
338 	for (r = ROUNDS-1; r > 1; r--) {
339 		*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[r][0]);
340 		*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]);
341 		*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]);
342 		*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]);
343 		*((word32*)(b   )) = *((const word32*)T5[temp[0][0]])
344            ^ *((const word32*)T6[temp[3][1]])
345            ^ *((const word32*)T7[temp[2][2]])
346            ^ *((const word32*)T8[temp[1][3]]);
347 		*((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]])
348            ^ *((const word32*)T6[temp[0][1]])
349            ^ *((const word32*)T7[temp[3][2]])
350            ^ *((const word32*)T8[temp[2][3]]);
351 		*((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]])
352            ^ *((const word32*)T6[temp[1][1]])
353            ^ *((const word32*)T7[temp[0][2]])
354            ^ *((const word32*)T8[temp[3][3]]);
355 		*((word32*)(b+12)) = *((const word32*)T5[temp[3][0]])
356            ^ *((const word32*)T6[temp[2][1]])
357            ^ *((const word32*)T7[temp[1][2]])
358            ^ *((const word32*)T8[temp[0][3]]);
359 	}
360 	/* last round is special */
361 	*((word32*)temp[0]) = *((word32*)(b   )) ^ *((word32*)rk[1][0]);
362 	*((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]);
363 	*((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]);
364 	*((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]);
365 	b[ 0] = S5[temp[0][0]];
366 	b[ 1] = S5[temp[3][1]];
367 	b[ 2] = S5[temp[2][2]];
368 	b[ 3] = S5[temp[1][3]];
369 	b[ 4] = S5[temp[1][0]];
370 	b[ 5] = S5[temp[0][1]];
371 	b[ 6] = S5[temp[3][2]];
372 	b[ 7] = S5[temp[2][3]];
373 	b[ 8] = S5[temp[2][0]];
374 	b[ 9] = S5[temp[1][1]];
375 	b[10] = S5[temp[0][2]];
376 	b[11] = S5[temp[3][3]];
377 	b[12] = S5[temp[3][0]];
378 	b[13] = S5[temp[2][1]];
379 	b[14] = S5[temp[1][2]];
380 	b[15] = S5[temp[0][3]];
381 	*((word32*)(b   )) ^= *((word32*)rk[0][0]);
382 	*((word32*)(b+ 4)) ^= *((word32*)rk[0][1]);
383 	*((word32*)(b+ 8)) ^= *((word32*)rk[0][2]);
384 	*((word32*)(b+12)) ^= *((word32*)rk[0][3]);
385 
386 	memcpy(out, b, sizeof b /* XXX out */);
387 
388 	return 0;
389 #undef a
390 #undef b
391 #undef temp
392 }
393 
394 
395 #ifdef INTERMEDIATE_VALUE_KAT
396 /**
397  * Decrypt only a certain number of rounds.
398  * Only used in the Intermediate Value Known Answer Test.
399  * Operations rearranged such that the intermediate values
400  * of decryption correspond with the intermediate values
401  * of encryption.
402  */
403 int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) {
404 	int r, i;
405 	word8 temp[4], shift;
406 
407 	/* make number of rounds sane */
408 	if (rounds > ROUNDS) {
409 		rounds = ROUNDS;
410 	}
411     /* first round is special: */
412 	*(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0];
413 	*(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1];
414 	*(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2];
415 	*(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3];
416 	for (i = 0; i < 4; i++) {
417 		a[i][0] = Si[a[i][0]];
418 		a[i][1] = Si[a[i][1]];
419 		a[i][2] = Si[a[i][2]];
420 		a[i][3] = Si[a[i][3]];
421 	}
422 	for (i = 1; i < 4; i++) {
423 		shift = (4 - i) & 3;
424 		temp[0] = a[(0 + shift) & 3][i];
425 		temp[1] = a[(1 + shift) & 3][i];
426 		temp[2] = a[(2 + shift) & 3][i];
427 		temp[3] = a[(3 + shift) & 3][i];
428 		a[0][i] = temp[0];
429 		a[1][i] = temp[1];
430 		a[2][i] = temp[2];
431 		a[3][i] = temp[3];
432 	}
433 	/* ROUNDS-1 ordinary rounds */
434 	for (r = ROUNDS-1; r > rounds; r--) {
435 		*(word32 *)a[0] ^= *(word32 *)rk[r][0];
436 		*(word32 *)a[1] ^= *(word32 *)rk[r][1];
437 		*(word32 *)a[2] ^= *(word32 *)rk[r][2];
438 		*(word32 *)a[3] ^= *(word32 *)rk[r][3];
439 
440 		*((word32*)a[0]) =
441 			  *((word32*)U1[a[0][0]])
442 			^ *((word32*)U2[a[0][1]])
443 			^ *((word32*)U3[a[0][2]])
444 			^ *((word32*)U4[a[0][3]]);
445 
446 		*((word32*)a[1]) =
447 			  *((word32*)U1[a[1][0]])
448 			^ *((word32*)U2[a[1][1]])
449 			^ *((word32*)U3[a[1][2]])
450 			^ *((word32*)U4[a[1][3]]);
451 
452 		*((word32*)a[2]) =
453 			  *((word32*)U1[a[2][0]])
454 			^ *((word32*)U2[a[2][1]])
455 			^ *((word32*)U3[a[2][2]])
456 			^ *((word32*)U4[a[2][3]]);
457 
458 		*((word32*)a[3]) =
459 			  *((word32*)U1[a[3][0]])
460 			^ *((word32*)U2[a[3][1]])
461 			^ *((word32*)U3[a[3][2]])
462 			^ *((word32*)U4[a[3][3]]);
463 		for (i = 0; i < 4; i++) {
464 			a[i][0] = Si[a[i][0]];
465 			a[i][1] = Si[a[i][1]];
466 			a[i][2] = Si[a[i][2]];
467 			a[i][3] = Si[a[i][3]];
468 		}
469 		for (i = 1; i < 4; i++) {
470 			shift = (4 - i) & 3;
471 			temp[0] = a[(0 + shift) & 3][i];
472 			temp[1] = a[(1 + shift) & 3][i];
473 			temp[2] = a[(2 + shift) & 3][i];
474 			temp[3] = a[(3 + shift) & 3][i];
475 			a[0][i] = temp[0];
476 			a[1][i] = temp[1];
477 			a[2][i] = temp[2];
478 			a[3][i] = temp[3];
479 		}
480 	}
481 	if (rounds == 0) {
482 		/* End with the extra key addition */
483 		*(word32 *)a[0] ^= *(word32 *)rk[0][0];
484 		*(word32 *)a[1] ^= *(word32 *)rk[0][1];
485 		*(word32 *)a[2] ^= *(word32 *)rk[0][2];
486 		*(word32 *)a[3] ^= *(word32 *)rk[0][3];
487 	}
488 	return 0;
489 }
490 #endif /* INTERMEDIATE_VALUE_KAT */
491