xref: /freebsd/sys/crypto/aesni/intel_sha256.c (revision 59c8e88e72633afbc47a4ace0d2170d00d51f7dc)
1 /*******************************************************************************
2 * Copyright (c) 2013, Intel Corporation
3 *
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 *   notice, this list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright
14 *   notice, this list of conditions and the following disclaimer in the
15 *   documentation and/or other materials provided with the
16 *   distribution.
17 *
18 * * Neither the name of the Intel Corporation nor the names of its
19 *   contributors may be used to endorse or promote products derived from
20 *   this software without specific prior written permission.
21 *
22 *
23 * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
24 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
27 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ********************************************************************************
35 *
36 * Intel SHA Extensions optimized implementation of a SHA-256 update function
37 *
38 * The function takes a pointer to the current hash values, a pointer to the
39 * input data, and a number of 64 byte blocks to process.  Once all blocks have
40 * been processed, the digest pointer is  updated with the resulting hash value.
41 * The function only processes complete blocks, there is no functionality to
42 * store partial blocks.  All message padding and hash value initialization must
43 * be done outside the update function.
44 *
45 * The indented lines in the loop are instructions related to rounds processing.
46 * The non-indented lines are instructions related to the message schedule.
47 *
48 * Author: Sean Gulley <sean.m.gulley@intel.com>
49 * Date:   July 2013
50 *
51 ********************************************************************************
52 *
53 * Example complier command line:
54 * icc intel_sha_extensions_sha256_intrinsic.c
55 * gcc -msha -msse4 intel_sha_extensions_sha256_intrinsic.c
56 *
57 *******************************************************************************/
58 
59 #include <sys/types.h>
60 #include <crypto/aesni/aesni_os.h>
61 #include <crypto/aesni/sha_sse.h>
62 
63 #include <immintrin.h>
64 
65 void intel_sha256_step(uint32_t *digest, const char *data, uint32_t num_blks) {
66    __m128i state0, state1;
67    __m128i msg;
68    __m128i msgtmp0, msgtmp1, msgtmp2, msgtmp3;
69    __m128i tmp;
70    __m128i shuf_mask;
71    __m128i abef_save, cdgh_save;
72 
73    // Load initial hash values
74    // Need to reorder these appropriately
75    // DCBA, HGFE -> ABEF, CDGH
76    tmp    = _mm_loadu_si128((__m128i*) digest);
77    state1 = _mm_loadu_si128((__m128i*) (digest+4));
78 
79    tmp    = _mm_shuffle_epi32(tmp, 0xB1);       // CDAB
80    state1 = _mm_shuffle_epi32(state1, 0x1B);    // EFGH
81    state0 = _mm_alignr_epi8(tmp, state1, 8);    // ABEF
82    state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH
83 
84    shuf_mask = _mm_set_epi64x(0x0c0d0e0f08090a0bull, 0x0405060700010203ull);
85 
86    while (num_blks > 0) {
87       // Save hash values for addition after rounds
88       abef_save = state0;
89       cdgh_save = state1;
90 
91       // Rounds 0-3
92       msg     = _mm_loadu_si128((const __m128i*) data);
93       msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask);
94          msg    = _mm_add_epi32(msgtmp0,
95                   _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 0x71374491428A2F98ull));
96          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
97          msg    = _mm_shuffle_epi32(msg, 0x0E);
98          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
99 
100       // Rounds 4-7
101       msgtmp1 = _mm_loadu_si128((const __m128i*) (data+16));
102       msgtmp1 = _mm_shuffle_epi8(msgtmp1, shuf_mask);
103          msg    = _mm_add_epi32(msgtmp1,
104                   _mm_set_epi64x(0xAB1C5ED5923F82A4ull, 0x59F111F13956C25Bull));
105          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
106          msg    = _mm_shuffle_epi32(msg, 0x0E);
107          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
108       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
109 
110       // Rounds 8-11
111       msgtmp2 = _mm_loadu_si128((const __m128i*) (data+32));
112       msgtmp2 = _mm_shuffle_epi8(msgtmp2, shuf_mask);
113          msg    = _mm_add_epi32(msgtmp2,
114                   _mm_set_epi64x(0x550C7DC3243185BEull, 0x12835B01D807AA98ull));
115          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
116          msg    = _mm_shuffle_epi32(msg, 0x0E);
117          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
118       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
119 
120       // Rounds 12-15
121       msgtmp3 = _mm_loadu_si128((const __m128i*) (data+48));
122       msgtmp3 = _mm_shuffle_epi8(msgtmp3, shuf_mask);
123          msg    = _mm_add_epi32(msgtmp3,
124                   _mm_set_epi64x(0xC19BF1749BDC06A7ull, 0x80DEB1FE72BE5D74ull));
125          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
126       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
127       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
128       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
129          msg    = _mm_shuffle_epi32(msg, 0x0E);
130          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
131       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
132 
133       // Rounds 16-19
134          msg    = _mm_add_epi32(msgtmp0,
135                   _mm_set_epi64x(0x240CA1CC0FC19DC6ull, 0xEFBE4786E49B69C1ull));
136          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
137       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
138       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
139       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
140          msg    = _mm_shuffle_epi32(msg, 0x0E);
141          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
142       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
143 
144       // Rounds 20-23
145          msg    = _mm_add_epi32(msgtmp1,
146                   _mm_set_epi64x(0x76F988DA5CB0A9DCull, 0x4A7484AA2DE92C6Full));
147          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
148       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
149       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
150       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
151          msg    = _mm_shuffle_epi32(msg, 0x0E);
152          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
153       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
154 
155       // Rounds 24-27
156          msg    = _mm_add_epi32(msgtmp2,
157                   _mm_set_epi64x(0xBF597FC7B00327C8ull, 0xA831C66D983E5152ull));
158          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
159       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
160       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
161       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
162          msg    = _mm_shuffle_epi32(msg, 0x0E);
163          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
164       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
165 
166       // Rounds 28-31
167          msg    = _mm_add_epi32(msgtmp3,
168                   _mm_set_epi64x(0x1429296706CA6351ull, 0xD5A79147C6E00BF3ull));
169          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
170       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
171       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
172       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
173          msg    = _mm_shuffle_epi32(msg, 0x0E);
174          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
175       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
176 
177       // Rounds 32-35
178          msg    = _mm_add_epi32(msgtmp0,
179                   _mm_set_epi64x(0x53380D134D2C6DFCull, 0x2E1B213827B70A85ull));
180          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
181       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
182       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
183       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
184          msg    = _mm_shuffle_epi32(msg, 0x0E);
185          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
186       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
187 
188       // Rounds 36-39
189          msg    = _mm_add_epi32(msgtmp1,
190                   _mm_set_epi64x(0x92722C8581C2C92Eull, 0x766A0ABB650A7354ull));
191          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
192       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
193       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
194       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
195          msg    = _mm_shuffle_epi32(msg, 0x0E);
196          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
197       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
198 
199       // Rounds 40-43
200          msg    = _mm_add_epi32(msgtmp2,
201                   _mm_set_epi64x(0xC76C51A3C24B8B70ull, 0xA81A664BA2BFE8A1ull));
202          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
203       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
204       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
205       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
206          msg    = _mm_shuffle_epi32(msg, 0x0E);
207          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
208       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
209 
210       // Rounds 44-47
211          msg    = _mm_add_epi32(msgtmp3,
212                   _mm_set_epi64x(0x106AA070F40E3585ull, 0xD6990624D192E819ull));
213          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
214       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
215       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
216       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
217          msg    = _mm_shuffle_epi32(msg, 0x0E);
218          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
219       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
220 
221       // Rounds 48-51
222          msg    = _mm_add_epi32(msgtmp0,
223                   _mm_set_epi64x(0x34B0BCB52748774Cull, 0x1E376C0819A4C116ull));
224          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
225       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
226       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
227       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
228          msg    = _mm_shuffle_epi32(msg, 0x0E);
229          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
230       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
231 
232       // Rounds 52-55
233          msg    = _mm_add_epi32(msgtmp1,
234                   _mm_set_epi64x(0x682E6FF35B9CCA4Full, 0x4ED8AA4A391C0CB3ull));
235          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
236       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
237       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
238       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
239          msg    = _mm_shuffle_epi32(msg, 0x0E);
240          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
241 
242       // Rounds 56-59
243          msg    = _mm_add_epi32(msgtmp2,
244                   _mm_set_epi64x(0x8CC7020884C87814ull, 0x78A5636F748F82EEull));
245          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
246       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
247       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
248       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
249          msg    = _mm_shuffle_epi32(msg, 0x0E);
250          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
251 
252       // Rounds 60-63
253          msg    = _mm_add_epi32(msgtmp3,
254                   _mm_set_epi64x(0xC67178F2BEF9A3F7ull, 0xA4506CEB90BEFFFAull));
255          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
256          msg    = _mm_shuffle_epi32(msg, 0x0E);
257          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
258 
259       // Add current hash values with previously saved
260       state0 = _mm_add_epi32(state0, abef_save);
261       state1 = _mm_add_epi32(state1, cdgh_save);
262 
263       data += 64;
264       num_blks--;
265    }
266 
267    // Write hash values back in the correct order
268    tmp    = _mm_shuffle_epi32(state0, 0x1B);    // FEBA
269    state1 = _mm_shuffle_epi32(state1, 0xB1);    // DCHG
270    state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA
271    state1 = _mm_alignr_epi8(state1, tmp, 8);    // ABEF
272 
273    _mm_store_si128((__m128i*) digest, state0);
274    _mm_store_si128((__m128i*) (digest+4), state1);
275 }
276 
277