xref: /freebsd/sys/crypto/aesni/intel_sha256.c (revision 13ea0450a9c8742119d36f3bf8f47accdce46e54)
1 /*******************************************************************************
2 * Copyright (c) 2013, Intel Corporation
3 *
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 *   notice, this list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright
14 *   notice, this list of conditions and the following disclaimer in the
15 *   documentation and/or other materials provided with the
16 *   distribution.
17 *
18 * * Neither the name of the Intel Corporation nor the names of its
19 *   contributors may be used to endorse or promote products derived from
20 *   this software without specific prior written permission.
21 *
22 *
23 * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
24 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
27 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ********************************************************************************
35 *
36 * Intel SHA Extensions optimized implementation of a SHA-256 update function
37 *
38 * The function takes a pointer to the current hash values, a pointer to the
39 * input data, and a number of 64 byte blocks to process.  Once all blocks have
40 * been processed, the digest pointer is  updated with the resulting hash value.
41 * The function only processes complete blocks, there is no functionality to
42 * store partial blocks.  All message padding and hash value initialization must
43 * be done outside the update function.
44 *
45 * The indented lines in the loop are instructions related to rounds processing.
46 * The non-indented lines are instructions related to the message schedule.
47 *
48 * Author: Sean Gulley <sean.m.gulley@intel.com>
49 * Date:   July 2013
50 *
51 ********************************************************************************
52 *
53 * Example complier command line:
54 * icc intel_sha_extensions_sha256_intrinsic.c
55 * gcc -msha -msse4 intel_sha_extensions_sha256_intrinsic.c
56 *
57 *******************************************************************************/
58 #include <sys/cdefs.h>
59 __FBSDID("$FreeBSD$");
60 
61 #include <sys/types.h>
62 #include <crypto/aesni/aesni_os.h>
63 #include <crypto/aesni/sha_sse.h>
64 
65 #include <immintrin.h>
66 
67 void intel_sha256_step(uint32_t *digest, const char *data, uint32_t num_blks) {
68    __m128i state0, state1;
69    __m128i msg;
70    __m128i msgtmp0, msgtmp1, msgtmp2, msgtmp3;
71    __m128i tmp;
72    __m128i shuf_mask;
73    __m128i abef_save, cdgh_save;
74 
75    // Load initial hash values
76    // Need to reorder these appropriately
77    // DCBA, HGFE -> ABEF, CDGH
78    tmp    = _mm_loadu_si128((__m128i*) digest);
79    state1 = _mm_loadu_si128((__m128i*) (digest+4));
80 
81    tmp    = _mm_shuffle_epi32(tmp, 0xB1);       // CDAB
82    state1 = _mm_shuffle_epi32(state1, 0x1B);    // EFGH
83    state0 = _mm_alignr_epi8(tmp, state1, 8);    // ABEF
84    state1 = _mm_blend_epi16(state1, tmp, 0xF0); // CDGH
85 
86    shuf_mask = _mm_set_epi64x(0x0c0d0e0f08090a0bull, 0x0405060700010203ull);
87 
88    while (num_blks > 0) {
89       // Save hash values for addition after rounds
90       abef_save = state0;
91       cdgh_save = state1;
92 
93       // Rounds 0-3
94       msg     = _mm_loadu_si128((const __m128i*) data);
95       msgtmp0 = _mm_shuffle_epi8(msg, shuf_mask);
96          msg    = _mm_add_epi32(msgtmp0,
97                   _mm_set_epi64x(0xE9B5DBA5B5C0FBCFull, 0x71374491428A2F98ull));
98          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
99          msg    = _mm_shuffle_epi32(msg, 0x0E);
100          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
101 
102       // Rounds 4-7
103       msgtmp1 = _mm_loadu_si128((const __m128i*) (data+16));
104       msgtmp1 = _mm_shuffle_epi8(msgtmp1, shuf_mask);
105          msg    = _mm_add_epi32(msgtmp1,
106                   _mm_set_epi64x(0xAB1C5ED5923F82A4ull, 0x59F111F13956C25Bull));
107          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
108          msg    = _mm_shuffle_epi32(msg, 0x0E);
109          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
110       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
111 
112       // Rounds 8-11
113       msgtmp2 = _mm_loadu_si128((const __m128i*) (data+32));
114       msgtmp2 = _mm_shuffle_epi8(msgtmp2, shuf_mask);
115          msg    = _mm_add_epi32(msgtmp2,
116                   _mm_set_epi64x(0x550C7DC3243185BEull, 0x12835B01D807AA98ull));
117          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
118          msg    = _mm_shuffle_epi32(msg, 0x0E);
119          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
120       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
121 
122       // Rounds 12-15
123       msgtmp3 = _mm_loadu_si128((const __m128i*) (data+48));
124       msgtmp3 = _mm_shuffle_epi8(msgtmp3, shuf_mask);
125          msg    = _mm_add_epi32(msgtmp3,
126                   _mm_set_epi64x(0xC19BF1749BDC06A7ull, 0x80DEB1FE72BE5D74ull));
127          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
128       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
129       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
130       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
131          msg    = _mm_shuffle_epi32(msg, 0x0E);
132          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
133       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
134 
135       // Rounds 16-19
136          msg    = _mm_add_epi32(msgtmp0,
137                   _mm_set_epi64x(0x240CA1CC0FC19DC6ull, 0xEFBE4786E49B69C1ull));
138          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
139       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
140       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
141       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
142          msg    = _mm_shuffle_epi32(msg, 0x0E);
143          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
144       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
145 
146       // Rounds 20-23
147          msg    = _mm_add_epi32(msgtmp1,
148                   _mm_set_epi64x(0x76F988DA5CB0A9DCull, 0x4A7484AA2DE92C6Full));
149          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
150       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
151       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
152       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
153          msg    = _mm_shuffle_epi32(msg, 0x0E);
154          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
155       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
156 
157       // Rounds 24-27
158          msg    = _mm_add_epi32(msgtmp2,
159                   _mm_set_epi64x(0xBF597FC7B00327C8ull, 0xA831C66D983E5152ull));
160          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
161       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
162       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
163       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
164          msg    = _mm_shuffle_epi32(msg, 0x0E);
165          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
166       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
167 
168       // Rounds 28-31
169          msg    = _mm_add_epi32(msgtmp3,
170                   _mm_set_epi64x(0x1429296706CA6351ull, 0xD5A79147C6E00BF3ull));
171          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
172       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
173       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
174       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
175          msg    = _mm_shuffle_epi32(msg, 0x0E);
176          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
177       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
178 
179       // Rounds 32-35
180          msg    = _mm_add_epi32(msgtmp0,
181                   _mm_set_epi64x(0x53380D134D2C6DFCull, 0x2E1B213827B70A85ull));
182          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
183       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
184       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
185       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
186          msg    = _mm_shuffle_epi32(msg, 0x0E);
187          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
188       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
189 
190       // Rounds 36-39
191          msg    = _mm_add_epi32(msgtmp1,
192                   _mm_set_epi64x(0x92722C8581C2C92Eull, 0x766A0ABB650A7354ull));
193          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
194       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
195       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
196       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
197          msg    = _mm_shuffle_epi32(msg, 0x0E);
198          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
199       msgtmp0 = _mm_sha256msg1_epu32(msgtmp0, msgtmp1);
200 
201       // Rounds 40-43
202          msg    = _mm_add_epi32(msgtmp2,
203                   _mm_set_epi64x(0xC76C51A3C24B8B70ull, 0xA81A664BA2BFE8A1ull));
204          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
205       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
206       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
207       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
208          msg    = _mm_shuffle_epi32(msg, 0x0E);
209          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
210       msgtmp1 = _mm_sha256msg1_epu32(msgtmp1, msgtmp2);
211 
212       // Rounds 44-47
213          msg    = _mm_add_epi32(msgtmp3,
214                   _mm_set_epi64x(0x106AA070F40E3585ull, 0xD6990624D192E819ull));
215          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
216       tmp     = _mm_alignr_epi8(msgtmp3, msgtmp2, 4);
217       msgtmp0 = _mm_add_epi32(msgtmp0, tmp);
218       msgtmp0 = _mm_sha256msg2_epu32(msgtmp0, msgtmp3);
219          msg    = _mm_shuffle_epi32(msg, 0x0E);
220          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
221       msgtmp2 = _mm_sha256msg1_epu32(msgtmp2, msgtmp3);
222 
223       // Rounds 48-51
224          msg    = _mm_add_epi32(msgtmp0,
225                   _mm_set_epi64x(0x34B0BCB52748774Cull, 0x1E376C0819A4C116ull));
226          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
227       tmp     = _mm_alignr_epi8(msgtmp0, msgtmp3, 4);
228       msgtmp1 = _mm_add_epi32(msgtmp1, tmp);
229       msgtmp1 = _mm_sha256msg2_epu32(msgtmp1, msgtmp0);
230          msg    = _mm_shuffle_epi32(msg, 0x0E);
231          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
232       msgtmp3 = _mm_sha256msg1_epu32(msgtmp3, msgtmp0);
233 
234       // Rounds 52-55
235          msg    = _mm_add_epi32(msgtmp1,
236                   _mm_set_epi64x(0x682E6FF35B9CCA4Full, 0x4ED8AA4A391C0CB3ull));
237          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
238       tmp     = _mm_alignr_epi8(msgtmp1, msgtmp0, 4);
239       msgtmp2 = _mm_add_epi32(msgtmp2, tmp);
240       msgtmp2 = _mm_sha256msg2_epu32(msgtmp2, msgtmp1);
241          msg    = _mm_shuffle_epi32(msg, 0x0E);
242          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
243 
244       // Rounds 56-59
245          msg    = _mm_add_epi32(msgtmp2,
246                   _mm_set_epi64x(0x8CC7020884C87814ull, 0x78A5636F748F82EEull));
247          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
248       tmp     = _mm_alignr_epi8(msgtmp2, msgtmp1, 4);
249       msgtmp3 = _mm_add_epi32(msgtmp3, tmp);
250       msgtmp3 = _mm_sha256msg2_epu32(msgtmp3, msgtmp2);
251          msg    = _mm_shuffle_epi32(msg, 0x0E);
252          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
253 
254       // Rounds 60-63
255          msg    = _mm_add_epi32(msgtmp3,
256                   _mm_set_epi64x(0xC67178F2BEF9A3F7ull, 0xA4506CEB90BEFFFAull));
257          state1 = _mm_sha256rnds2_epu32(state1, state0, msg);
258          msg    = _mm_shuffle_epi32(msg, 0x0E);
259          state0 = _mm_sha256rnds2_epu32(state0, state1, msg);
260 
261       // Add current hash values with previously saved
262       state0 = _mm_add_epi32(state0, abef_save);
263       state1 = _mm_add_epi32(state1, cdgh_save);
264 
265       data += 64;
266       num_blks--;
267    }
268 
269    // Write hash values back in the correct order
270    tmp    = _mm_shuffle_epi32(state0, 0x1B);    // FEBA
271    state1 = _mm_shuffle_epi32(state1, 0xB1);    // DCHG
272    state0 = _mm_blend_epi16(tmp, state1, 0xF0); // DCBA
273    state1 = _mm_alignr_epi8(state1, tmp, 8);    // ABEF
274 
275    _mm_store_si128((__m128i*) digest, state0);
276    _mm_store_si128((__m128i*) (digest+4), state1);
277 }
278 
279