xref: /freebsd/sys/crypto/aesni/intel_sha1.c (revision 357378bbdedf24ce2b90e9bd831af4a9db3ec70a)
1 /*******************************************************************************
2 * Copyright (c) 2013, Intel Corporation
3 *
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 * * Redistributions of source code must retain the above copyright
11 *   notice, this list of conditions and the following disclaimer.
12 *
13 * * Redistributions in binary form must reproduce the above copyright
14 *   notice, this list of conditions and the following disclaimer in the
15 *   documentation and/or other materials provided with the
16 *   distribution.
17 *
18 * * Neither the name of the Intel Corporation nor the names of its
19 *   contributors may be used to endorse or promote products derived from
20 *   this software without specific prior written permission.
21 *
22 *
23 * THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
24 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
27 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
28 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
29 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 ********************************************************************************
35 *
36 * Intel SHA Extensions optimized implementation of a SHA-1 update function
37 *
38 * The function takes a pointer to the current hash values, a pointer to the
39 * input data, and a number of 64 byte blocks to process.  Once all blocks have
40 * been processed, the digest pointer is  updated with the resulting hash value.
41 * The function only processes complete blocks, there is no functionality to
42 * store partial blocks.  All message padding and hash value initialization must
43 * be done outside the update function.
44 *
45 * The indented lines in the loop are instructions related to rounds processing.
46 * The non-indented lines are instructions related to the message schedule.
47 *
48 * Author: Sean Gulley <sean.m.gulley@intel.com>
49 * Date:   July 2013
50 *
51 ********************************************************************************
52 *
53 * Example complier command line:
54 * icc intel_sha_extensions_sha1_intrinsic.c
55 * gcc -msha -msse4 intel_sha_extensions_sha1_intrinsic.c
56 *
57 *******************************************************************************/
58 
59 #include <sys/types.h>
60 #include <crypto/aesni/aesni_os.h>
61 #include <crypto/aesni/sha_sse.h>
62 
63 #include <immintrin.h>
64 
65 void intel_sha1_step(uint32_t *digest, const char *data, uint32_t num_blks) {
66    __m128i abcd, e0, e1;
67    __m128i abcd_save, e_save;
68    __m128i msg0, msg1, msg2, msg3;
69    __m128i shuf_mask, e_mask;
70 
71 #if 0
72    e_mask    = _mm_set_epi64x(0xFFFFFFFF00000000ull, 0x0000000000000000ull);
73 #else
74    (void)e_mask;
75    e0        = _mm_set_epi64x(0, 0);
76 #endif
77    shuf_mask = _mm_set_epi64x(0x0001020304050607ull, 0x08090a0b0c0d0e0full);
78 
79    // Load initial hash values
80    abcd      = _mm_loadu_si128((__m128i*) digest);
81    e0        = _mm_insert_epi32(e0, *(digest+4), 3);
82    abcd      = _mm_shuffle_epi32(abcd, 0x1B);
83 #if 0
84    e0        = _mm_and_si128(e0, e_mask);
85 #endif
86 
87    while (num_blks > 0) {
88       // Save hash values for addition after rounds
89       abcd_save = abcd;
90       e_save    = e0;
91 
92       // Rounds 0-3
93       msg0 = _mm_loadu_si128((const __m128i*) data);
94       msg0 = _mm_shuffle_epi8(msg0, shuf_mask);
95          e0   = _mm_add_epi32(e0, msg0);
96          e1   = abcd;
97          abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
98 
99       // Rounds 4-7
100       msg1 = _mm_loadu_si128((const __m128i*) (data+16));
101       msg1 = _mm_shuffle_epi8(msg1, shuf_mask);
102          e1   = _mm_sha1nexte_epu32(e1, msg1);
103          e0   = abcd;
104          abcd = _mm_sha1rnds4_epu32(abcd, e1, 0);
105       msg0 = _mm_sha1msg1_epu32(msg0, msg1);
106 
107       // Rounds 8-11
108       msg2 = _mm_loadu_si128((const __m128i*) (data+32));
109       msg2 = _mm_shuffle_epi8(msg2, shuf_mask);
110          e0   = _mm_sha1nexte_epu32(e0, msg2);
111          e1   = abcd;
112          abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
113       msg1 = _mm_sha1msg1_epu32(msg1, msg2);
114       msg0 = _mm_xor_si128(msg0, msg2);
115 
116       // Rounds 12-15
117       msg3 = _mm_loadu_si128((const __m128i*) (data+48));
118       msg3 = _mm_shuffle_epi8(msg3, shuf_mask);
119          e1   = _mm_sha1nexte_epu32(e1, msg3);
120          e0   = abcd;
121       msg0 = _mm_sha1msg2_epu32(msg0, msg3);
122          abcd = _mm_sha1rnds4_epu32(abcd, e1, 0);
123       msg2 = _mm_sha1msg1_epu32(msg2, msg3);
124       msg1 = _mm_xor_si128(msg1, msg3);
125 
126       // Rounds 16-19
127          e0   = _mm_sha1nexte_epu32(e0, msg0);
128          e1   = abcd;
129       msg1 = _mm_sha1msg2_epu32(msg1, msg0);
130          abcd = _mm_sha1rnds4_epu32(abcd, e0, 0);
131       msg3 = _mm_sha1msg1_epu32(msg3, msg0);
132       msg2 = _mm_xor_si128(msg2, msg0);
133 
134       // Rounds 20-23
135          e1   = _mm_sha1nexte_epu32(e1, msg1);
136          e0   = abcd;
137       msg2 = _mm_sha1msg2_epu32(msg2, msg1);
138          abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
139       msg0 = _mm_sha1msg1_epu32(msg0, msg1);
140       msg3 = _mm_xor_si128(msg3, msg1);
141 
142       // Rounds 24-27
143          e0   = _mm_sha1nexte_epu32(e0, msg2);
144          e1   = abcd;
145       msg3 = _mm_sha1msg2_epu32(msg3, msg2);
146          abcd = _mm_sha1rnds4_epu32(abcd, e0, 1);
147       msg1 = _mm_sha1msg1_epu32(msg1, msg2);
148       msg0 = _mm_xor_si128(msg0, msg2);
149 
150       // Rounds 28-31
151          e1   = _mm_sha1nexte_epu32(e1, msg3);
152          e0   = abcd;
153       msg0 = _mm_sha1msg2_epu32(msg0, msg3);
154          abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
155       msg2 = _mm_sha1msg1_epu32(msg2, msg3);
156       msg1 = _mm_xor_si128(msg1, msg3);
157 
158       // Rounds 32-35
159          e0   = _mm_sha1nexte_epu32(e0, msg0);
160          e1   = abcd;
161       msg1 = _mm_sha1msg2_epu32(msg1, msg0);
162          abcd = _mm_sha1rnds4_epu32(abcd, e0, 1);
163       msg3 = _mm_sha1msg1_epu32(msg3, msg0);
164       msg2 = _mm_xor_si128(msg2, msg0);
165 
166       // Rounds 36-39
167          e1   = _mm_sha1nexte_epu32(e1, msg1);
168          e0   = abcd;
169       msg2 = _mm_sha1msg2_epu32(msg2, msg1);
170          abcd = _mm_sha1rnds4_epu32(abcd, e1, 1);
171       msg0 = _mm_sha1msg1_epu32(msg0, msg1);
172       msg3 = _mm_xor_si128(msg3, msg1);
173 
174       // Rounds 40-43
175          e0   = _mm_sha1nexte_epu32(e0, msg2);
176          e1   = abcd;
177       msg3 = _mm_sha1msg2_epu32(msg3, msg2);
178          abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
179       msg1 = _mm_sha1msg1_epu32(msg1, msg2);
180       msg0 = _mm_xor_si128(msg0, msg2);
181 
182       // Rounds 44-47
183          e1   = _mm_sha1nexte_epu32(e1, msg3);
184          e0   = abcd;
185       msg0 = _mm_sha1msg2_epu32(msg0, msg3);
186          abcd = _mm_sha1rnds4_epu32(abcd, e1, 2);
187       msg2 = _mm_sha1msg1_epu32(msg2, msg3);
188       msg1 = _mm_xor_si128(msg1, msg3);
189 
190       // Rounds 48-51
191          e0   = _mm_sha1nexte_epu32(e0, msg0);
192          e1   = abcd;
193       msg1 = _mm_sha1msg2_epu32(msg1, msg0);
194          abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
195       msg3 = _mm_sha1msg1_epu32(msg3, msg0);
196       msg2 = _mm_xor_si128(msg2, msg0);
197 
198       // Rounds 52-55
199          e1   = _mm_sha1nexte_epu32(e1, msg1);
200          e0   = abcd;
201       msg2 = _mm_sha1msg2_epu32(msg2, msg1);
202          abcd = _mm_sha1rnds4_epu32(abcd, e1, 2);
203       msg0 = _mm_sha1msg1_epu32(msg0, msg1);
204       msg3 = _mm_xor_si128(msg3, msg1);
205 
206       // Rounds 56-59
207          e0   = _mm_sha1nexte_epu32(e0, msg2);
208          e1   = abcd;
209       msg3 = _mm_sha1msg2_epu32(msg3, msg2);
210          abcd = _mm_sha1rnds4_epu32(abcd, e0, 2);
211       msg1 = _mm_sha1msg1_epu32(msg1, msg2);
212       msg0 = _mm_xor_si128(msg0, msg2);
213 
214       // Rounds 60-63
215          e1   = _mm_sha1nexte_epu32(e1, msg3);
216          e0   = abcd;
217       msg0 = _mm_sha1msg2_epu32(msg0, msg3);
218          abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
219       msg2 = _mm_sha1msg1_epu32(msg2, msg3);
220       msg1 = _mm_xor_si128(msg1, msg3);
221 
222       // Rounds 64-67
223          e0   = _mm_sha1nexte_epu32(e0, msg0);
224          e1   = abcd;
225       msg1 = _mm_sha1msg2_epu32(msg1, msg0);
226          abcd = _mm_sha1rnds4_epu32(abcd, e0, 3);
227       msg3 = _mm_sha1msg1_epu32(msg3, msg0);
228       msg2 = _mm_xor_si128(msg2, msg0);
229 
230       // Rounds 68-71
231          e1   = _mm_sha1nexte_epu32(e1, msg1);
232          e0   = abcd;
233       msg2 = _mm_sha1msg2_epu32(msg2, msg1);
234          abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
235       msg3 = _mm_xor_si128(msg3, msg1);
236 
237       // Rounds 72-75
238          e0   = _mm_sha1nexte_epu32(e0, msg2);
239          e1   = abcd;
240       msg3 = _mm_sha1msg2_epu32(msg3, msg2);
241          abcd = _mm_sha1rnds4_epu32(abcd, e0, 3);
242 
243       // Rounds 76-79
244          e1   = _mm_sha1nexte_epu32(e1, msg3);
245          e0   = abcd;
246          abcd = _mm_sha1rnds4_epu32(abcd, e1, 3);
247 
248       // Add current hash values with previously saved
249       e0   = _mm_sha1nexte_epu32(e0, e_save);
250       abcd = _mm_add_epi32(abcd, abcd_save);
251 
252       data += 64;
253       num_blks--;
254    }
255 
256    abcd = _mm_shuffle_epi32(abcd, 0x1B);
257    _mm_store_si128((__m128i*) digest, abcd);
258    *(digest+4) = _mm_extract_epi32(e0, 3);
259 }
260 
261