1 /*- 2 * Copyright (C) 2008 Damien Miller <djm@mindrot.org> 3 * Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org> 4 * Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net> 5 * Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org> 6 * Copyright (c) 2014 The FreeBSD Foundation 7 * All rights reserved. 8 * 9 * Portions of this software were developed by John-Mark Gurney 10 * under sponsorship of the FreeBSD Foundation and 11 * Rubicon Communications, LLC (Netgate). 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 __FBSDID("$FreeBSD$"); 37 38 #include <sys/param.h> 39 #include <sys/libkern.h> 40 #include <sys/malloc.h> 41 #include <sys/proc.h> 42 #include <sys/systm.h> 43 #include <crypto/aesni/aesni.h> 44 45 #include <opencrypto/gmac.h> 46 47 #include "aesencdec.h" 48 #include <smmintrin.h> 49 50 MALLOC_DECLARE(M_AESNI); 51 52 struct blocks8 { 53 __m128i blk[8]; 54 } __packed; 55 56 void 57 aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len, 58 const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) 59 { 60 __m128i tot, ivreg; 61 size_t i; 62 63 len /= AES_BLOCK_LEN; 64 ivreg = _mm_loadu_si128((const __m128i *)iv); 65 for (i = 0; i < len; i++) { 66 tot = aesni_enc(rounds - 1, key_schedule, 67 _mm_loadu_si128((const __m128i *)from) ^ ivreg); 68 ivreg = tot; 69 _mm_storeu_si128((__m128i *)to, tot); 70 from += AES_BLOCK_LEN; 71 to += AES_BLOCK_LEN; 72 } 73 } 74 75 void 76 aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len, 77 uint8_t *buf, const uint8_t iv[static AES_BLOCK_LEN]) 78 { 79 __m128i blocks[8]; 80 struct blocks8 *blks; 81 __m128i ivreg, nextiv; 82 size_t i, j, cnt; 83 84 ivreg = _mm_loadu_si128((const __m128i *)iv); 85 cnt = len / AES_BLOCK_LEN / 8; 86 for (i = 0; i < cnt; i++) { 87 blks = (struct blocks8 *)buf; 88 aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], 89 blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], 90 blks->blk[6], blks->blk[7], &blocks[0]); 91 for (j = 0; j < 8; j++) { 92 nextiv = blks->blk[j]; 93 blks->blk[j] = blocks[j] ^ ivreg; 94 ivreg = nextiv; 95 } 96 buf += AES_BLOCK_LEN * 8; 97 } 98 i *= 8; 99 cnt = len / AES_BLOCK_LEN; 100 for (; i < cnt; i++) { 101 nextiv = _mm_loadu_si128((void *)buf); 102 _mm_storeu_si128((void *)buf, 103 aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg); 104 ivreg = nextiv; 105 buf += AES_BLOCK_LEN; 106 } 107 } 108 109 void 110 aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len, 111 const uint8_t *from, uint8_t *to) 112 { 113 __m128i tot; 114 __m128i tout[8]; 115 struct blocks8 *top; 116 const struct blocks8 *blks; 117 size_t i, cnt; 118 119 cnt = len / AES_BLOCK_LEN / 8; 120 for (i = 0; i < cnt; i++) { 121 blks = (const struct blocks8 *)from; 122 top = (struct blocks8 *)to; 123 aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], 124 blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], 125 blks->blk[6], blks->blk[7], tout); 126 top->blk[0] = tout[0]; 127 top->blk[1] = tout[1]; 128 top->blk[2] = tout[2]; 129 top->blk[3] = tout[3]; 130 top->blk[4] = tout[4]; 131 top->blk[5] = tout[5]; 132 top->blk[6] = tout[6]; 133 top->blk[7] = tout[7]; 134 from += AES_BLOCK_LEN * 8; 135 to += AES_BLOCK_LEN * 8; 136 } 137 i *= 8; 138 cnt = len / AES_BLOCK_LEN; 139 for (; i < cnt; i++) { 140 tot = aesni_enc(rounds - 1, key_schedule, 141 _mm_loadu_si128((const __m128i *)from)); 142 _mm_storeu_si128((__m128i *)to, tot); 143 from += AES_BLOCK_LEN; 144 to += AES_BLOCK_LEN; 145 } 146 } 147 148 void 149 aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len, 150 const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN]) 151 { 152 __m128i tot; 153 __m128i tout[8]; 154 const struct blocks8 *blks; 155 struct blocks8 *top; 156 size_t i, cnt; 157 158 cnt = len / AES_BLOCK_LEN / 8; 159 for (i = 0; i < cnt; i++) { 160 blks = (const struct blocks8 *)from; 161 top = (struct blocks8 *)to; 162 aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1], 163 blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5], 164 blks->blk[6], blks->blk[7], tout); 165 top->blk[0] = tout[0]; 166 top->blk[1] = tout[1]; 167 top->blk[2] = tout[2]; 168 top->blk[3] = tout[3]; 169 top->blk[4] = tout[4]; 170 top->blk[5] = tout[5]; 171 top->blk[6] = tout[6]; 172 top->blk[7] = tout[7]; 173 from += AES_BLOCK_LEN * 8; 174 to += AES_BLOCK_LEN * 8; 175 } 176 i *= 8; 177 cnt = len / AES_BLOCK_LEN; 178 for (; i < cnt; i++) { 179 tot = aesni_dec(rounds - 1, key_schedule, 180 _mm_loadu_si128((const __m128i *)from)); 181 _mm_storeu_si128((__m128i *)to, tot); 182 from += AES_BLOCK_LEN; 183 to += AES_BLOCK_LEN; 184 } 185 } 186 187 /* 188 * mixed endian increment, low 64bits stored in hi word to be compatible 189 * with _icm's BSWAP. 190 */ 191 static inline __m128i 192 nextc(__m128i x) 193 { 194 const __m128i ONE = _mm_setr_epi32(0, 0, 1, 0); 195 const __m128i ZERO = _mm_setzero_si128(); 196 197 x = _mm_add_epi64(x, ONE); 198 __m128i t = _mm_cmpeq_epi64(x, ZERO); 199 t = _mm_unpackhi_epi64(t, ZERO); 200 x = _mm_sub_epi64(x, t); 201 202 return x; 203 } 204 205 void 206 aesni_encrypt_icm(int rounds, const void *key_schedule, size_t len, 207 const uint8_t *from, uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN]) 208 { 209 __m128i tot; 210 __m128i tmp1, tmp2, tmp3, tmp4; 211 __m128i tmp5, tmp6, tmp7, tmp8; 212 __m128i ctr1, ctr2, ctr3, ctr4; 213 __m128i ctr5, ctr6, ctr7, ctr8; 214 __m128i BSWAP_EPI64; 215 __m128i tout[8]; 216 __m128i block; 217 struct blocks8 *top; 218 const struct blocks8 *blks; 219 size_t i, cnt, resid; 220 221 BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7); 222 223 ctr1 = _mm_loadu_si128((const __m128i *)iv); 224 ctr1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); 225 226 cnt = len / AES_BLOCK_LEN / 8; 227 for (i = 0; i < cnt; i++) { 228 tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); 229 ctr2 = nextc(ctr1); 230 tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64); 231 ctr3 = nextc(ctr2); 232 tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64); 233 ctr4 = nextc(ctr3); 234 tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64); 235 ctr5 = nextc(ctr4); 236 tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64); 237 ctr6 = nextc(ctr5); 238 tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64); 239 ctr7 = nextc(ctr6); 240 tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64); 241 ctr8 = nextc(ctr7); 242 tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64); 243 ctr1 = nextc(ctr8); 244 245 blks = (const struct blocks8 *)from; 246 top = (struct blocks8 *)to; 247 aesni_enc8(rounds - 1, key_schedule, tmp1, tmp2, tmp3, tmp4, 248 tmp5, tmp6, tmp7, tmp8, tout); 249 250 top->blk[0] = blks->blk[0] ^ tout[0]; 251 top->blk[1] = blks->blk[1] ^ tout[1]; 252 top->blk[2] = blks->blk[2] ^ tout[2]; 253 top->blk[3] = blks->blk[3] ^ tout[3]; 254 top->blk[4] = blks->blk[4] ^ tout[4]; 255 top->blk[5] = blks->blk[5] ^ tout[5]; 256 top->blk[6] = blks->blk[6] ^ tout[6]; 257 top->blk[7] = blks->blk[7] ^ tout[7]; 258 259 from += AES_BLOCK_LEN * 8; 260 to += AES_BLOCK_LEN * 8; 261 } 262 i *= 8; 263 cnt = len / AES_BLOCK_LEN; 264 for (; i < cnt; i++) { 265 tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); 266 ctr1 = nextc(ctr1); 267 268 tot = aesni_enc(rounds - 1, key_schedule, tmp1); 269 270 tot = tot ^ _mm_loadu_si128((const __m128i *)from); 271 _mm_storeu_si128((__m128i *)to, tot); 272 273 from += AES_BLOCK_LEN; 274 to += AES_BLOCK_LEN; 275 } 276 277 /* 278 * Handle remaining partial round. Copy the remaining payload onto the 279 * stack to ensure that the full block can be loaded safely. 280 */ 281 resid = len % AES_BLOCK_LEN; 282 if (resid != 0) { 283 tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64); 284 tot = aesni_enc(rounds - 1, key_schedule, tmp1); 285 block = _mm_setzero_si128(); 286 memcpy(&block, from, resid); 287 tot = tot ^ _mm_loadu_si128(&block); 288 memcpy(to, &tot, resid); 289 explicit_bzero(&block, sizeof(block)); 290 } 291 } 292 293 #define AES_XTS_BLOCKSIZE 16 294 #define AES_XTS_IVSIZE 8 295 #define AES_XTS_ALPHA 0x87 /* GF(2^128) generator polynomial */ 296 297 static inline __m128i 298 xts_crank_lfsr(__m128i inp) 299 { 300 const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA); 301 __m128i xtweak, ret; 302 303 /* set up xor mask */ 304 xtweak = _mm_shuffle_epi32(inp, 0x93); 305 xtweak = _mm_srai_epi32(xtweak, 31); 306 xtweak &= alphamask; 307 308 /* next term */ 309 ret = _mm_slli_epi32(inp, 1); 310 ret ^= xtweak; 311 312 return ret; 313 } 314 315 static void 316 aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak, 317 const uint8_t *from, uint8_t *to, int do_encrypt) 318 { 319 __m128i block; 320 321 block = _mm_loadu_si128((const __m128i *)from) ^ *tweak; 322 323 if (do_encrypt) 324 block = aesni_enc(rounds - 1, key_schedule, block); 325 else 326 block = aesni_dec(rounds - 1, key_schedule, block); 327 328 _mm_storeu_si128((__m128i *)to, block ^ *tweak); 329 330 *tweak = xts_crank_lfsr(*tweak); 331 } 332 333 static void 334 aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak, 335 const uint8_t *from, uint8_t *to, int do_encrypt) 336 { 337 __m128i tmptweak; 338 __m128i a, b, c, d, e, f, g, h; 339 __m128i tweaks[8]; 340 __m128i tmp[8]; 341 __m128i *top; 342 const __m128i *fromp; 343 344 tmptweak = *tweak; 345 346 /* 347 * unroll the loop. This lets gcc put values directly in the 348 * register and saves memory accesses. 349 */ 350 fromp = (const __m128i *)from; 351 #define PREPINP(v, pos) \ 352 do { \ 353 tweaks[(pos)] = tmptweak; \ 354 (v) = _mm_loadu_si128(&fromp[pos]) ^ \ 355 tmptweak; \ 356 tmptweak = xts_crank_lfsr(tmptweak); \ 357 } while (0) 358 PREPINP(a, 0); 359 PREPINP(b, 1); 360 PREPINP(c, 2); 361 PREPINP(d, 3); 362 PREPINP(e, 4); 363 PREPINP(f, 5); 364 PREPINP(g, 6); 365 PREPINP(h, 7); 366 *tweak = tmptweak; 367 368 if (do_encrypt) 369 aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h, 370 tmp); 371 else 372 aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h, 373 tmp); 374 375 top = (__m128i *)to; 376 _mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]); 377 _mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]); 378 _mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]); 379 _mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]); 380 _mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]); 381 _mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]); 382 _mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]); 383 _mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]); 384 } 385 386 static void 387 aesni_crypt_xts(int rounds, const __m128i *data_schedule, 388 const __m128i *tweak_schedule, size_t len, const uint8_t *from, 389 uint8_t *to, const uint8_t iv[static AES_BLOCK_LEN], int do_encrypt) 390 { 391 __m128i tweakreg; 392 uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16); 393 size_t i, cnt; 394 395 /* 396 * Prepare tweak as E_k2(IV). IV is specified as LE representation 397 * of a 64-bit block number which we allow to be passed in directly. 398 */ 399 #if BYTE_ORDER == LITTLE_ENDIAN 400 bcopy(iv, tweak, AES_XTS_IVSIZE); 401 /* Last 64 bits of IV are always zero. */ 402 bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE); 403 #else 404 #error Only LITTLE_ENDIAN architectures are supported. 405 #endif 406 tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]); 407 tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg); 408 409 cnt = len / AES_XTS_BLOCKSIZE / 8; 410 for (i = 0; i < cnt; i++) { 411 aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg, 412 from, to, do_encrypt); 413 from += AES_XTS_BLOCKSIZE * 8; 414 to += AES_XTS_BLOCKSIZE * 8; 415 } 416 i *= 8; 417 cnt = len / AES_XTS_BLOCKSIZE; 418 for (; i < cnt; i++) { 419 aesni_crypt_xts_block(rounds, data_schedule, &tweakreg, 420 from, to, do_encrypt); 421 from += AES_XTS_BLOCKSIZE; 422 to += AES_XTS_BLOCKSIZE; 423 } 424 } 425 426 void 427 aesni_encrypt_xts(int rounds, const void *data_schedule, 428 const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to, 429 const uint8_t iv[static AES_BLOCK_LEN]) 430 { 431 432 aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to, 433 iv, 1); 434 } 435 436 void 437 aesni_decrypt_xts(int rounds, const void *data_schedule, 438 const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to, 439 const uint8_t iv[static AES_BLOCK_LEN]) 440 { 441 442 aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to, 443 iv, 0); 444 } 445 446 void 447 aesni_cipher_setup_common(struct aesni_session *ses, 448 const struct crypto_session_params *csp, const uint8_t *key, int keylen) 449 { 450 int decsched; 451 452 decsched = 1; 453 454 switch (csp->csp_cipher_alg) { 455 case CRYPTO_AES_ICM: 456 case CRYPTO_AES_NIST_GCM_16: 457 case CRYPTO_AES_CCM_16: 458 decsched = 0; 459 break; 460 } 461 462 if (csp->csp_cipher_alg == CRYPTO_AES_XTS) 463 keylen /= 2; 464 465 switch (keylen * 8) { 466 case 128: 467 ses->rounds = AES128_ROUNDS; 468 break; 469 case 192: 470 ses->rounds = AES192_ROUNDS; 471 break; 472 case 256: 473 ses->rounds = AES256_ROUNDS; 474 break; 475 default: 476 panic("shouldn't happen"); 477 } 478 479 aesni_set_enckey(key, ses->enc_schedule, ses->rounds); 480 if (decsched) 481 aesni_set_deckey(ses->enc_schedule, ses->dec_schedule, 482 ses->rounds); 483 484 if (csp->csp_cipher_alg == CRYPTO_AES_XTS) 485 aesni_set_enckey(key + keylen, ses->xts_schedule, 486 ses->rounds); 487 } 488