xref: /freebsd/sys/crypto/aesni/aesni_wrap.c (revision da7d7b9c861cf98e912c0bd1e549752d2dae4fb6)
1 /*-
2  * Copyright (C) 2008 Damien Miller <djm@mindrot.org>
3  * Copyright (c) 2010 Konstantin Belousov <kib@FreeBSD.org>
4  * Copyright (c) 2010-2011 Pawel Jakub Dawidek <pawel@dawidek.net>
5  * Copyright 2012-2013 John-Mark Gurney <jmg@FreeBSD.org>
6  * Copyright (c) 2014 The FreeBSD Foundation
7  * All rights reserved.
8  *
9  * Portions of this software were developed by John-Mark Gurney
10  * under sponsorship of the FreeBSD Foundation and
11  * Rubicon Communications, LLC (Netgate).
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include <sys/cdefs.h>
36 __FBSDID("$FreeBSD$");
37 
38 #include <sys/param.h>
39 #include <sys/libkern.h>
40 #include <sys/malloc.h>
41 #include <sys/proc.h>
42 #include <sys/systm.h>
43 #include <crypto/aesni/aesni.h>
44 
45 #include <opencrypto/gmac.h>
46 
47 #include "aesencdec.h"
48 #include <smmintrin.h>
49 
50 MALLOC_DECLARE(M_AESNI);
51 
52 struct blocks8 {
53 	__m128i	blk[8];
54 } __packed;
55 
56 void
57 aesni_encrypt_cbc(int rounds, const void *key_schedule, size_t len,
58     const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN])
59 {
60 	__m128i tot, ivreg;
61 	size_t i;
62 
63 	len /= AES_BLOCK_LEN;
64 	ivreg = _mm_loadu_si128((const __m128i *)iv);
65 	for (i = 0; i < len; i++) {
66 		tot = aesni_enc(rounds - 1, key_schedule,
67 		    _mm_loadu_si128((const __m128i *)from) ^ ivreg);
68 		ivreg = tot;
69 		_mm_storeu_si128((__m128i *)to, tot);
70 		from += AES_BLOCK_LEN;
71 		to += AES_BLOCK_LEN;
72 	}
73 }
74 
75 void
76 aesni_decrypt_cbc(int rounds, const void *key_schedule, size_t len,
77     uint8_t *buf, const uint8_t iv[AES_BLOCK_LEN])
78 {
79 	__m128i blocks[8];
80 	struct blocks8 *blks;
81 	__m128i ivreg, nextiv;
82 	size_t i, j, cnt;
83 
84 	ivreg = _mm_loadu_si128((const __m128i *)iv);
85 	cnt = len / AES_BLOCK_LEN / 8;
86 	for (i = 0; i < cnt; i++) {
87 		blks = (struct blocks8 *)buf;
88 		aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
89 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
90 		    blks->blk[6], blks->blk[7], &blocks[0]);
91 		for (j = 0; j < 8; j++) {
92 			nextiv = blks->blk[j];
93 			blks->blk[j] = blocks[j] ^ ivreg;
94 			ivreg = nextiv;
95 		}
96 		buf += AES_BLOCK_LEN * 8;
97 	}
98 	i *= 8;
99 	cnt = len / AES_BLOCK_LEN;
100 	for (; i < cnt; i++) {
101 		nextiv = _mm_loadu_si128((void *)buf);
102 		_mm_storeu_si128((void *)buf,
103 		    aesni_dec(rounds - 1, key_schedule, nextiv) ^ ivreg);
104 		ivreg = nextiv;
105 		buf += AES_BLOCK_LEN;
106 	}
107 }
108 
109 void
110 aesni_encrypt_ecb(int rounds, const void *key_schedule, size_t len,
111     const uint8_t *from, uint8_t *to)
112 {
113 	__m128i tot;
114 	__m128i tout[8];
115 	struct blocks8 *top;
116 	const struct blocks8 *blks;
117 	size_t i, cnt;
118 
119 	cnt = len / AES_BLOCK_LEN / 8;
120 	for (i = 0; i < cnt; i++) {
121 		blks = (const struct blocks8 *)from;
122 		top = (struct blocks8 *)to;
123 		aesni_enc8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
124 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
125 		    blks->blk[6], blks->blk[7], tout);
126 		top->blk[0] = tout[0];
127 		top->blk[1] = tout[1];
128 		top->blk[2] = tout[2];
129 		top->blk[3] = tout[3];
130 		top->blk[4] = tout[4];
131 		top->blk[5] = tout[5];
132 		top->blk[6] = tout[6];
133 		top->blk[7] = tout[7];
134 		from += AES_BLOCK_LEN * 8;
135 		to += AES_BLOCK_LEN * 8;
136 	}
137 	i *= 8;
138 	cnt = len / AES_BLOCK_LEN;
139 	for (; i < cnt; i++) {
140 		tot = aesni_enc(rounds - 1, key_schedule,
141 		    _mm_loadu_si128((const __m128i *)from));
142 		_mm_storeu_si128((__m128i *)to, tot);
143 		from += AES_BLOCK_LEN;
144 		to += AES_BLOCK_LEN;
145 	}
146 }
147 
148 void
149 aesni_decrypt_ecb(int rounds, const void *key_schedule, size_t len,
150     const uint8_t from[AES_BLOCK_LEN], uint8_t to[AES_BLOCK_LEN])
151 {
152 	__m128i tot;
153 	__m128i tout[8];
154 	const struct blocks8 *blks;
155 	struct blocks8 *top;
156 	size_t i, cnt;
157 
158 	cnt = len / AES_BLOCK_LEN / 8;
159 	for (i = 0; i < cnt; i++) {
160 		blks = (const struct blocks8 *)from;
161 		top = (struct blocks8 *)to;
162 		aesni_dec8(rounds - 1, key_schedule, blks->blk[0], blks->blk[1],
163 		    blks->blk[2], blks->blk[3], blks->blk[4], blks->blk[5],
164 		    blks->blk[6], blks->blk[7], tout);
165 		top->blk[0] = tout[0];
166 		top->blk[1] = tout[1];
167 		top->blk[2] = tout[2];
168 		top->blk[3] = tout[3];
169 		top->blk[4] = tout[4];
170 		top->blk[5] = tout[5];
171 		top->blk[6] = tout[6];
172 		top->blk[7] = tout[7];
173 		from += AES_BLOCK_LEN * 8;
174 		to += AES_BLOCK_LEN * 8;
175 	}
176 	i *= 8;
177 	cnt = len / AES_BLOCK_LEN;
178 	for (; i < cnt; i++) {
179 		tot = aesni_dec(rounds - 1, key_schedule,
180 		    _mm_loadu_si128((const __m128i *)from));
181 		_mm_storeu_si128((__m128i *)to, tot);
182 		from += AES_BLOCK_LEN;
183 		to += AES_BLOCK_LEN;
184 	}
185 }
186 
187 /*
188  * mixed endian increment, low 64bits stored in hi word to be compatible
189  * with _icm's BSWAP.
190  */
191 static inline __m128i
192 nextc(__m128i x)
193 {
194 	const __m128i ONE = _mm_setr_epi32(0, 0, 1, 0);
195 	const __m128i ZERO = _mm_setzero_si128();
196 
197 	x = _mm_add_epi64(x, ONE);
198 	__m128i t = _mm_cmpeq_epi64(x, ZERO);
199 	t = _mm_unpackhi_epi64(t, ZERO);
200 	x = _mm_sub_epi64(x, t);
201 
202 	return x;
203 }
204 
205 void
206 aesni_encrypt_icm(int rounds, const void *key_schedule, size_t len,
207     const uint8_t *from, uint8_t *to, const uint8_t iv[AES_BLOCK_LEN])
208 {
209 	__m128i tot;
210 	__m128i tmp1, tmp2, tmp3, tmp4;
211 	__m128i tmp5, tmp6, tmp7, tmp8;
212 	__m128i ctr1, ctr2, ctr3, ctr4;
213 	__m128i ctr5, ctr6, ctr7, ctr8;
214 	__m128i BSWAP_EPI64;
215 	__m128i tout[8];
216 	struct blocks8 *top;
217 	const struct blocks8 *blks;
218 	size_t i, cnt;
219 
220 	BSWAP_EPI64 = _mm_set_epi8(8,9,10,11,12,13,14,15,0,1,2,3,4,5,6,7);
221 
222 	ctr1 = _mm_loadu_si128((__m128i*)iv);
223 	ctr1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
224 
225 	cnt = len / AES_BLOCK_LEN / 8;
226 	for (i = 0; i < cnt; i++) {
227 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
228 		ctr2 = nextc(ctr1);
229 		tmp2 = _mm_shuffle_epi8(ctr2, BSWAP_EPI64);
230 		ctr3 = nextc(ctr2);
231 		tmp3 = _mm_shuffle_epi8(ctr3, BSWAP_EPI64);
232 		ctr4 = nextc(ctr3);
233 		tmp4 = _mm_shuffle_epi8(ctr4, BSWAP_EPI64);
234 		ctr5 = nextc(ctr4);
235 		tmp5 = _mm_shuffle_epi8(ctr5, BSWAP_EPI64);
236 		ctr6 = nextc(ctr5);
237 		tmp6 = _mm_shuffle_epi8(ctr6, BSWAP_EPI64);
238 		ctr7 = nextc(ctr6);
239 		tmp7 = _mm_shuffle_epi8(ctr7, BSWAP_EPI64);
240 		ctr8 = nextc(ctr7);
241 		tmp8 = _mm_shuffle_epi8(ctr8, BSWAP_EPI64);
242 		ctr1 = nextc(ctr8);
243 
244 		blks = (const struct blocks8 *)from;
245 		top = (struct blocks8 *)to;
246 		aesni_enc8(rounds - 1, key_schedule, tmp1, tmp2, tmp3, tmp4,
247 		    tmp5, tmp6, tmp7, tmp8, tout);
248 
249 		top->blk[0] = blks->blk[0] ^ tout[0];
250 		top->blk[1] = blks->blk[1] ^ tout[1];
251 		top->blk[2] = blks->blk[2] ^ tout[2];
252 		top->blk[3] = blks->blk[3] ^ tout[3];
253 		top->blk[4] = blks->blk[4] ^ tout[4];
254 		top->blk[5] = blks->blk[5] ^ tout[5];
255 		top->blk[6] = blks->blk[6] ^ tout[6];
256 		top->blk[7] = blks->blk[7] ^ tout[7];
257 
258 		from += AES_BLOCK_LEN * 8;
259 		to += AES_BLOCK_LEN * 8;
260 	}
261 	i *= 8;
262 	cnt = len / AES_BLOCK_LEN;
263 	for (; i < cnt; i++) {
264 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
265 		ctr1 = nextc(ctr1);
266 
267 		tot = aesni_enc(rounds - 1, key_schedule, tmp1);
268 
269 		tot = tot ^ _mm_loadu_si128((const __m128i *)from);
270 		_mm_storeu_si128((__m128i *)to, tot);
271 
272 		from += AES_BLOCK_LEN;
273 		to += AES_BLOCK_LEN;
274 	}
275 
276 	/* handle remaining partial round */
277 	if (len % AES_BLOCK_LEN != 0) {
278 		tmp1 = _mm_shuffle_epi8(ctr1, BSWAP_EPI64);
279 		tot = aesni_enc(rounds - 1, key_schedule, tmp1);
280 		tot = tot ^ _mm_loadu_si128((const __m128i *)from);
281 		memcpy(to, &tot, len % AES_BLOCK_LEN);
282 	}
283 }
284 
285 #define	AES_XTS_BLOCKSIZE	16
286 #define	AES_XTS_IVSIZE		8
287 #define	AES_XTS_ALPHA		0x87	/* GF(2^128) generator polynomial */
288 
289 static inline __m128i
290 xts_crank_lfsr(__m128i inp)
291 {
292 	const __m128i alphamask = _mm_set_epi32(1, 1, 1, AES_XTS_ALPHA);
293 	__m128i xtweak, ret;
294 
295 	/* set up xor mask */
296 	xtweak = _mm_shuffle_epi32(inp, 0x93);
297 	xtweak = _mm_srai_epi32(xtweak, 31);
298 	xtweak &= alphamask;
299 
300 	/* next term */
301 	ret = _mm_slli_epi32(inp, 1);
302 	ret ^= xtweak;
303 
304 	return ret;
305 }
306 
307 static void
308 aesni_crypt_xts_block(int rounds, const __m128i *key_schedule, __m128i *tweak,
309     const uint8_t *from, uint8_t *to, int do_encrypt)
310 {
311 	__m128i block;
312 
313 	block = _mm_loadu_si128((const __m128i *)from) ^ *tweak;
314 
315 	if (do_encrypt)
316 		block = aesni_enc(rounds - 1, key_schedule, block);
317 	else
318 		block = aesni_dec(rounds - 1, key_schedule, block);
319 
320 	_mm_storeu_si128((__m128i *)to, block ^ *tweak);
321 
322 	*tweak = xts_crank_lfsr(*tweak);
323 }
324 
325 static void
326 aesni_crypt_xts_block8(int rounds, const __m128i *key_schedule, __m128i *tweak,
327     const uint8_t *from, uint8_t *to, int do_encrypt)
328 {
329 	__m128i tmptweak;
330 	__m128i a, b, c, d, e, f, g, h;
331 	__m128i tweaks[8];
332 	__m128i tmp[8];
333 	__m128i *top;
334 	const __m128i *fromp;
335 
336 	tmptweak = *tweak;
337 
338 	/*
339 	 * unroll the loop.  This lets gcc put values directly in the
340 	 * register and saves memory accesses.
341 	 */
342 	fromp = (const __m128i *)from;
343 #define PREPINP(v, pos) 					\
344 		do {						\
345 			tweaks[(pos)] = tmptweak;		\
346 			(v) = _mm_loadu_si128(&fromp[pos]) ^	\
347 			    tmptweak;				\
348 			tmptweak = xts_crank_lfsr(tmptweak);	\
349 		} while (0)
350 	PREPINP(a, 0);
351 	PREPINP(b, 1);
352 	PREPINP(c, 2);
353 	PREPINP(d, 3);
354 	PREPINP(e, 4);
355 	PREPINP(f, 5);
356 	PREPINP(g, 6);
357 	PREPINP(h, 7);
358 	*tweak = tmptweak;
359 
360 	if (do_encrypt)
361 		aesni_enc8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
362 		    tmp);
363 	else
364 		aesni_dec8(rounds - 1, key_schedule, a, b, c, d, e, f, g, h,
365 		    tmp);
366 
367 	top = (__m128i *)to;
368 	_mm_storeu_si128(&top[0], tmp[0] ^ tweaks[0]);
369 	_mm_storeu_si128(&top[1], tmp[1] ^ tweaks[1]);
370 	_mm_storeu_si128(&top[2], tmp[2] ^ tweaks[2]);
371 	_mm_storeu_si128(&top[3], tmp[3] ^ tweaks[3]);
372 	_mm_storeu_si128(&top[4], tmp[4] ^ tweaks[4]);
373 	_mm_storeu_si128(&top[5], tmp[5] ^ tweaks[5]);
374 	_mm_storeu_si128(&top[6], tmp[6] ^ tweaks[6]);
375 	_mm_storeu_si128(&top[7], tmp[7] ^ tweaks[7]);
376 }
377 
378 static void
379 aesni_crypt_xts(int rounds, const __m128i *data_schedule,
380     const __m128i *tweak_schedule, size_t len, const uint8_t *from,
381     uint8_t *to, const uint8_t iv[AES_BLOCK_LEN], int do_encrypt)
382 {
383 	__m128i tweakreg;
384 	uint8_t tweak[AES_XTS_BLOCKSIZE] __aligned(16);
385 	size_t i, cnt;
386 
387 	/*
388 	 * Prepare tweak as E_k2(IV). IV is specified as LE representation
389 	 * of a 64-bit block number which we allow to be passed in directly.
390 	 */
391 #if BYTE_ORDER == LITTLE_ENDIAN
392 	bcopy(iv, tweak, AES_XTS_IVSIZE);
393 	/* Last 64 bits of IV are always zero. */
394 	bzero(tweak + AES_XTS_IVSIZE, AES_XTS_IVSIZE);
395 #else
396 #error Only LITTLE_ENDIAN architectures are supported.
397 #endif
398 	tweakreg = _mm_loadu_si128((__m128i *)&tweak[0]);
399 	tweakreg = aesni_enc(rounds - 1, tweak_schedule, tweakreg);
400 
401 	cnt = len / AES_XTS_BLOCKSIZE / 8;
402 	for (i = 0; i < cnt; i++) {
403 		aesni_crypt_xts_block8(rounds, data_schedule, &tweakreg,
404 		    from, to, do_encrypt);
405 		from += AES_XTS_BLOCKSIZE * 8;
406 		to += AES_XTS_BLOCKSIZE * 8;
407 	}
408 	i *= 8;
409 	cnt = len / AES_XTS_BLOCKSIZE;
410 	for (; i < cnt; i++) {
411 		aesni_crypt_xts_block(rounds, data_schedule, &tweakreg,
412 		    from, to, do_encrypt);
413 		from += AES_XTS_BLOCKSIZE;
414 		to += AES_XTS_BLOCKSIZE;
415 	}
416 }
417 
418 void
419 aesni_encrypt_xts(int rounds, const void *data_schedule,
420     const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
421     const uint8_t iv[AES_BLOCK_LEN])
422 {
423 
424 	aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
425 	    iv, 1);
426 }
427 
428 void
429 aesni_decrypt_xts(int rounds, const void *data_schedule,
430     const void *tweak_schedule, size_t len, const uint8_t *from, uint8_t *to,
431     const uint8_t iv[AES_BLOCK_LEN])
432 {
433 
434 	aesni_crypt_xts(rounds, data_schedule, tweak_schedule, len, from, to,
435 	    iv, 0);
436 }
437 
438 int
439 aesni_cipher_setup_common(struct aesni_session *ses, const uint8_t *key,
440     int keylen)
441 {
442 	int decsched;
443 
444 	decsched = 1;
445 
446 	switch (ses->algo) {
447 	case CRYPTO_AES_ICM:
448 	case CRYPTO_AES_NIST_GCM_16:
449 		decsched = 0;
450 		/* FALLTHROUGH */
451 	case CRYPTO_AES_CBC:
452 		switch (keylen) {
453 		case 128:
454 			ses->rounds = AES128_ROUNDS;
455 			break;
456 		case 192:
457 			ses->rounds = AES192_ROUNDS;
458 			break;
459 		case 256:
460 			ses->rounds = AES256_ROUNDS;
461 			break;
462 		default:
463 			CRYPTDEB("invalid CBC/ICM/GCM key length");
464 			return (EINVAL);
465 		}
466 		break;
467 	case CRYPTO_AES_XTS:
468 		switch (keylen) {
469 		case 256:
470 			ses->rounds = AES128_ROUNDS;
471 			break;
472 		case 512:
473 			ses->rounds = AES256_ROUNDS;
474 			break;
475 		default:
476 			CRYPTDEB("invalid XTS key length");
477 			return (EINVAL);
478 		}
479 		break;
480 	default:
481 		return (EINVAL);
482 	}
483 
484 	aesni_set_enckey(key, ses->enc_schedule, ses->rounds);
485 	if (decsched)
486 		aesni_set_deckey(ses->enc_schedule, ses->dec_schedule,
487 		    ses->rounds);
488 
489 	if (ses->algo == CRYPTO_AES_XTS)
490 		aesni_set_enckey(key + keylen / 16, ses->xts_schedule,
491 		    ses->rounds);
492 
493 	return (0);
494 }
495