1 /* 2 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /*- Dependencies -*/ 13 #include <stddef.h> /* size_t, ptrdiff_t */ 14 #include <string.h> /* memcpy */ 15 #include <stdlib.h> /* malloc, free, qsort */ 16 17 #ifndef XXH_STATIC_LINKING_ONLY 18 # define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */ 19 #endif 20 #include "xxhash.h" /* XXH64_* */ 21 #include "zstd_v07.h" 22 23 #define FSEv07_STATIC_LINKING_ONLY /* FSEv07_MIN_TABLELOG */ 24 #define HUFv07_STATIC_LINKING_ONLY /* HUFv07_TABLELOG_ABSOLUTEMAX */ 25 #define ZSTDv07_STATIC_LINKING_ONLY 26 27 #include "error_private.h" 28 29 30 #ifdef ZSTDv07_STATIC_LINKING_ONLY 31 32 /* ==================================================================================== 33 * The definitions in this section are considered experimental. 34 * They should never be used with a dynamic library, as they may change in the future. 35 * They are provided for advanced usages. 36 * Use them only in association with static linking. 37 * ==================================================================================== */ 38 39 /*--- Constants ---*/ 40 #define ZSTDv07_MAGIC_SKIPPABLE_START 0x184D2A50U 41 42 #define ZSTDv07_WINDOWLOG_MAX_32 25 43 #define ZSTDv07_WINDOWLOG_MAX_64 27 44 #define ZSTDv07_WINDOWLOG_MAX ((U32)(MEM_32bits() ? ZSTDv07_WINDOWLOG_MAX_32 : ZSTDv07_WINDOWLOG_MAX_64)) 45 #define ZSTDv07_WINDOWLOG_MIN 18 46 #define ZSTDv07_CHAINLOG_MAX (ZSTDv07_WINDOWLOG_MAX+1) 47 #define ZSTDv07_CHAINLOG_MIN 4 48 #define ZSTDv07_HASHLOG_MAX ZSTDv07_WINDOWLOG_MAX 49 #define ZSTDv07_HASHLOG_MIN 12 50 #define ZSTDv07_HASHLOG3_MAX 17 51 #define ZSTDv07_SEARCHLOG_MAX (ZSTDv07_WINDOWLOG_MAX-1) 52 #define ZSTDv07_SEARCHLOG_MIN 1 53 #define ZSTDv07_SEARCHLENGTH_MAX 7 54 #define ZSTDv07_SEARCHLENGTH_MIN 3 55 #define ZSTDv07_TARGETLENGTH_MIN 4 56 #define ZSTDv07_TARGETLENGTH_MAX 999 57 58 #define ZSTDv07_FRAMEHEADERSIZE_MAX 18 /* for static allocation */ 59 static const size_t ZSTDv07_frameHeaderSize_min = 5; 60 static const size_t ZSTDv07_frameHeaderSize_max = ZSTDv07_FRAMEHEADERSIZE_MAX; 61 static const size_t ZSTDv07_skippableHeaderSize = 8; /* magic number + skippable frame length */ 62 63 64 /* custom memory allocation functions */ 65 typedef void* (*ZSTDv07_allocFunction) (void* opaque, size_t size); 66 typedef void (*ZSTDv07_freeFunction) (void* opaque, void* address); 67 typedef struct { ZSTDv07_allocFunction customAlloc; ZSTDv07_freeFunction customFree; void* opaque; } ZSTDv07_customMem; 68 69 70 /*--- Advanced Decompression functions ---*/ 71 72 /*! ZSTDv07_estimateDCtxSize() : 73 * Gives the potential amount of memory allocated to create a ZSTDv07_DCtx */ 74 ZSTDLIBv07_API size_t ZSTDv07_estimateDCtxSize(void); 75 76 /*! ZSTDv07_createDCtx_advanced() : 77 * Create a ZSTD decompression context using external alloc and free functions */ 78 ZSTDLIBv07_API ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem); 79 80 /*! ZSTDv07_sizeofDCtx() : 81 * Gives the amount of memory used by a given ZSTDv07_DCtx */ 82 ZSTDLIBv07_API size_t ZSTDv07_sizeofDCtx(const ZSTDv07_DCtx* dctx); 83 84 85 /* ****************************************************************** 86 * Buffer-less streaming functions (synchronous mode) 87 ********************************************************************/ 88 89 ZSTDLIBv07_API size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx); 90 ZSTDLIBv07_API size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize); 91 ZSTDLIBv07_API void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* preparedDCtx); 92 93 ZSTDLIBv07_API size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx); 94 ZSTDLIBv07_API size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); 95 96 /* 97 Buffer-less streaming decompression (synchronous mode) 98 99 A ZSTDv07_DCtx object is required to track streaming operations. 100 Use ZSTDv07_createDCtx() / ZSTDv07_freeDCtx() to manage it. 101 A ZSTDv07_DCtx object can be re-used multiple times. 102 103 First optional operation is to retrieve frame parameters, using ZSTDv07_getFrameParams(), which doesn't consume the input. 104 It can provide the minimum size of rolling buffer required to properly decompress data (`windowSize`), 105 and optionally the final size of uncompressed content. 106 (Note : content size is an optional info that may not be present. 0 means : content size unknown) 107 Frame parameters are extracted from the beginning of compressed frame. 108 The amount of data to read is variable, from ZSTDv07_frameHeaderSize_min to ZSTDv07_frameHeaderSize_max (so if `srcSize` >= ZSTDv07_frameHeaderSize_max, it will always work) 109 If `srcSize` is too small for operation to succeed, function will return the minimum size it requires to produce a result. 110 Result : 0 when successful, it means the ZSTDv07_frameParams structure has been filled. 111 >0 : means there is not enough data into `src`. Provides the expected size to successfully decode header. 112 errorCode, which can be tested using ZSTDv07_isError() 113 114 Start decompression, with ZSTDv07_decompressBegin() or ZSTDv07_decompressBegin_usingDict(). 115 Alternatively, you can copy a prepared context, using ZSTDv07_copyDCtx(). 116 117 Then use ZSTDv07_nextSrcSizeToDecompress() and ZSTDv07_decompressContinue() alternatively. 118 ZSTDv07_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTDv07_decompressContinue(). 119 ZSTDv07_decompressContinue() requires this exact amount of bytes, or it will fail. 120 121 @result of ZSTDv07_decompressContinue() is the number of bytes regenerated within 'dst' (necessarily <= dstCapacity). 122 It can be zero, which is not an error; it just means ZSTDv07_decompressContinue() has decoded some header. 123 124 ZSTDv07_decompressContinue() needs previous data blocks during decompression, up to `windowSize`. 125 They should preferably be located contiguously, prior to current block. 126 Alternatively, a round buffer of sufficient size is also possible. Sufficient size is determined by frame parameters. 127 ZSTDv07_decompressContinue() is very sensitive to contiguity, 128 if 2 blocks don't follow each other, make sure that either the compressor breaks contiguity at the same place, 129 or that previous contiguous segment is large enough to properly handle maximum back-reference. 130 131 A frame is fully decoded when ZSTDv07_nextSrcSizeToDecompress() returns zero. 132 Context can then be reset to start a new decompression. 133 134 135 == Special case : skippable frames == 136 137 Skippable frames allow the integration of user-defined data into a flow of concatenated frames. 138 Skippable frames will be ignored (skipped) by a decompressor. The format of skippable frame is following: 139 a) Skippable frame ID - 4 Bytes, Little endian format, any value from 0x184D2A50 to 0x184D2A5F 140 b) Frame Size - 4 Bytes, Little endian format, unsigned 32-bits 141 c) Frame Content - any content (User Data) of length equal to Frame Size 142 For skippable frames ZSTDv07_decompressContinue() always returns 0. 143 For skippable frames ZSTDv07_getFrameParams() returns fparamsPtr->windowLog==0 what means that a frame is skippable. 144 It also returns Frame Size as fparamsPtr->frameContentSize. 145 */ 146 147 148 /* ************************************** 149 * Block functions 150 ****************************************/ 151 /*! Block functions produce and decode raw zstd blocks, without frame metadata. 152 Frame metadata cost is typically ~18 bytes, which can be non-negligible for very small blocks (< 100 bytes). 153 User will have to take in charge required information to regenerate data, such as compressed and content sizes. 154 155 A few rules to respect : 156 - Compressing and decompressing require a context structure 157 + Use ZSTDv07_createCCtx() and ZSTDv07_createDCtx() 158 - It is necessary to init context before starting 159 + compression : ZSTDv07_compressBegin() 160 + decompression : ZSTDv07_decompressBegin() 161 + variants _usingDict() are also allowed 162 + copyCCtx() and copyDCtx() work too 163 - Block size is limited, it must be <= ZSTDv07_getBlockSizeMax() 164 + If you need to compress more, cut data into multiple blocks 165 + Consider using the regular ZSTDv07_compress() instead, as frame metadata costs become negligible when source size is large. 166 - When a block is considered not compressible enough, ZSTDv07_compressBlock() result will be zero. 167 In which case, nothing is produced into `dst`. 168 + User must test for such outcome and deal directly with uncompressed data 169 + ZSTDv07_decompressBlock() doesn't accept uncompressed data as input !!! 170 + In case of multiple successive blocks, decoder must be informed of uncompressed block existence to follow proper history. 171 Use ZSTDv07_insertBlock() in such a case. 172 */ 173 174 #define ZSTDv07_BLOCKSIZE_ABSOLUTEMAX (128 * 1024) /* define, for static allocation */ 175 ZSTDLIBv07_API size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize); 176 ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize); /**< insert block into `dctx` history. Useful for uncompressed blocks */ 177 178 179 #endif /* ZSTDv07_STATIC_LINKING_ONLY */ 180 181 182 /* ****************************************************************** 183 mem.h 184 low-level memory access routines 185 Copyright (C) 2013-2015, Yann Collet. 186 187 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 188 189 Redistribution and use in source and binary forms, with or without 190 modification, are permitted provided that the following conditions are 191 met: 192 193 * Redistributions of source code must retain the above copyright 194 notice, this list of conditions and the following disclaimer. 195 * Redistributions in binary form must reproduce the above 196 copyright notice, this list of conditions and the following disclaimer 197 in the documentation and/or other materials provided with the 198 distribution. 199 200 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 201 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 202 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 203 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 204 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 205 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 206 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 207 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 208 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 209 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 210 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 211 212 You can contact the author at : 213 - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy 214 - Public forum : https://groups.google.com/forum/#!forum/lz4c 215 ****************************************************************** */ 216 #ifndef MEM_H_MODULE 217 #define MEM_H_MODULE 218 219 #if defined (__cplusplus) 220 extern "C" { 221 #endif 222 223 /*-**************************************** 224 * Compiler specifics 225 ******************************************/ 226 #if defined(_MSC_VER) /* Visual Studio */ 227 # include <stdlib.h> /* _byteswap_ulong */ 228 # include <intrin.h> /* _byteswap_* */ 229 #endif 230 #if defined(__GNUC__) 231 # define MEM_STATIC static __attribute__((unused)) 232 #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) 233 # define MEM_STATIC static inline 234 #elif defined(_MSC_VER) 235 # define MEM_STATIC static __inline 236 #else 237 # define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */ 238 #endif 239 240 241 /*-************************************************************** 242 * Basic Types 243 *****************************************************************/ 244 #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) ) 245 # include <stdint.h> 246 typedef uint8_t BYTE; 247 typedef uint16_t U16; 248 typedef int16_t S16; 249 typedef uint32_t U32; 250 typedef int32_t S32; 251 typedef uint64_t U64; 252 typedef int64_t S64; 253 #else 254 typedef unsigned char BYTE; 255 typedef unsigned short U16; 256 typedef signed short S16; 257 typedef unsigned int U32; 258 typedef signed int S32; 259 typedef unsigned long long U64; 260 typedef signed long long S64; 261 #endif 262 263 264 /*-************************************************************** 265 * Memory I/O 266 *****************************************************************/ 267 /* MEM_FORCE_MEMORY_ACCESS : 268 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable. 269 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal. 270 * The below switch allow to select different access method for improved performance. 271 * Method 0 (default) : use `memcpy()`. Safe and portable. 272 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable). 273 * This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`. 274 * Method 2 : direct access. This method is portable but violate C standard. 275 * It can generate buggy code on targets depending on alignment. 276 * In some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6) 277 * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details. 278 * Prefer these methods in priority order (0 > 1 > 2) 279 */ 280 #ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */ 281 # if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) ) 282 # define MEM_FORCE_MEMORY_ACCESS 2 283 # elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \ 284 (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) 285 # define MEM_FORCE_MEMORY_ACCESS 1 286 # endif 287 #endif 288 289 MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; } 290 MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; } 291 292 MEM_STATIC unsigned MEM_isLittleEndian(void) 293 { 294 const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */ 295 return one.c[0]; 296 } 297 298 #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2) 299 300 /* violates C standard, by lying on structure alignment. 301 Only use if no other choice to achieve best performance on target platform */ 302 MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; } 303 MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; } 304 MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; } 305 306 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; } 307 308 #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1) 309 310 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */ 311 /* currently only defined for gcc and icc */ 312 typedef union { U16 u16; U32 u32; U64 u64; size_t st; } __attribute__((packed)) unalign; 313 314 MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; } 315 MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; } 316 MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; } 317 318 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; } 319 320 #else 321 322 /* default method, safe and standard. 323 can sometimes prove slower */ 324 325 MEM_STATIC U16 MEM_read16(const void* memPtr) 326 { 327 U16 val; memcpy(&val, memPtr, sizeof(val)); return val; 328 } 329 330 MEM_STATIC U32 MEM_read32(const void* memPtr) 331 { 332 U32 val; memcpy(&val, memPtr, sizeof(val)); return val; 333 } 334 335 MEM_STATIC U64 MEM_read64(const void* memPtr) 336 { 337 U64 val; memcpy(&val, memPtr, sizeof(val)); return val; 338 } 339 340 MEM_STATIC void MEM_write16(void* memPtr, U16 value) 341 { 342 memcpy(memPtr, &value, sizeof(value)); 343 } 344 345 #endif /* MEM_FORCE_MEMORY_ACCESS */ 346 347 MEM_STATIC U32 MEM_swap32(U32 in) 348 { 349 #if defined(_MSC_VER) /* Visual Studio */ 350 return _byteswap_ulong(in); 351 #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403) 352 return __builtin_bswap32(in); 353 #else 354 return ((in << 24) & 0xff000000 ) | 355 ((in << 8) & 0x00ff0000 ) | 356 ((in >> 8) & 0x0000ff00 ) | 357 ((in >> 24) & 0x000000ff ); 358 #endif 359 } 360 361 MEM_STATIC U64 MEM_swap64(U64 in) 362 { 363 #if defined(_MSC_VER) /* Visual Studio */ 364 return _byteswap_uint64(in); 365 #elif defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403) 366 return __builtin_bswap64(in); 367 #else 368 return ((in << 56) & 0xff00000000000000ULL) | 369 ((in << 40) & 0x00ff000000000000ULL) | 370 ((in << 24) & 0x0000ff0000000000ULL) | 371 ((in << 8) & 0x000000ff00000000ULL) | 372 ((in >> 8) & 0x00000000ff000000ULL) | 373 ((in >> 24) & 0x0000000000ff0000ULL) | 374 ((in >> 40) & 0x000000000000ff00ULL) | 375 ((in >> 56) & 0x00000000000000ffULL); 376 #endif 377 } 378 379 380 /*=== Little endian r/w ===*/ 381 382 MEM_STATIC U16 MEM_readLE16(const void* memPtr) 383 { 384 if (MEM_isLittleEndian()) 385 return MEM_read16(memPtr); 386 else { 387 const BYTE* p = (const BYTE*)memPtr; 388 return (U16)(p[0] + (p[1]<<8)); 389 } 390 } 391 392 MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val) 393 { 394 if (MEM_isLittleEndian()) { 395 MEM_write16(memPtr, val); 396 } else { 397 BYTE* p = (BYTE*)memPtr; 398 p[0] = (BYTE)val; 399 p[1] = (BYTE)(val>>8); 400 } 401 } 402 403 MEM_STATIC U32 MEM_readLE32(const void* memPtr) 404 { 405 if (MEM_isLittleEndian()) 406 return MEM_read32(memPtr); 407 else 408 return MEM_swap32(MEM_read32(memPtr)); 409 } 410 411 412 MEM_STATIC U64 MEM_readLE64(const void* memPtr) 413 { 414 if (MEM_isLittleEndian()) 415 return MEM_read64(memPtr); 416 else 417 return MEM_swap64(MEM_read64(memPtr)); 418 } 419 420 MEM_STATIC size_t MEM_readLEST(const void* memPtr) 421 { 422 if (MEM_32bits()) 423 return (size_t)MEM_readLE32(memPtr); 424 else 425 return (size_t)MEM_readLE64(memPtr); 426 } 427 428 429 430 #if defined (__cplusplus) 431 } 432 #endif 433 434 #endif /* MEM_H_MODULE */ 435 /* ****************************************************************** 436 bitstream 437 Part of FSE library 438 header file (to include) 439 Copyright (C) 2013-2016, Yann Collet. 440 441 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 442 443 Redistribution and use in source and binary forms, with or without 444 modification, are permitted provided that the following conditions are 445 met: 446 447 * Redistributions of source code must retain the above copyright 448 notice, this list of conditions and the following disclaimer. 449 * Redistributions in binary form must reproduce the above 450 copyright notice, this list of conditions and the following disclaimer 451 in the documentation and/or other materials provided with the 452 distribution. 453 454 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 455 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 456 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 457 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 458 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 459 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 460 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 461 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 462 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 463 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 464 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 465 466 You can contact the author at : 467 - Source repository : https://github.com/Cyan4973/FiniteStateEntropy 468 ****************************************************************** */ 469 #ifndef BITSTREAM_H_MODULE 470 #define BITSTREAM_H_MODULE 471 472 #if defined (__cplusplus) 473 extern "C" { 474 #endif 475 476 477 /* 478 * This API consists of small unitary functions, which must be inlined for best performance. 479 * Since link-time-optimization is not available for all compilers, 480 * these functions are defined into a .h to be included. 481 */ 482 483 484 /*========================================= 485 * Target specific 486 =========================================*/ 487 #if defined(__BMI__) && defined(__GNUC__) 488 # include <immintrin.h> /* support for bextr (experimental) */ 489 #endif 490 491 /*-******************************************** 492 * bitStream decoding API (read backward) 493 **********************************************/ 494 typedef struct 495 { 496 size_t bitContainer; 497 unsigned bitsConsumed; 498 const char* ptr; 499 const char* start; 500 } BITv07_DStream_t; 501 502 typedef enum { BITv07_DStream_unfinished = 0, 503 BITv07_DStream_endOfBuffer = 1, 504 BITv07_DStream_completed = 2, 505 BITv07_DStream_overflow = 3 } BITv07_DStream_status; /* result of BITv07_reloadDStream() */ 506 /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */ 507 508 MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize); 509 MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, unsigned nbBits); 510 MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD); 511 MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* bitD); 512 513 514 515 /*-**************************************** 516 * unsafe API 517 ******************************************/ 518 MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, unsigned nbBits); 519 /* faster, but works only if nbBits >= 1 */ 520 521 522 523 /*-************************************************************** 524 * Internal functions 525 ****************************************************************/ 526 MEM_STATIC unsigned BITv07_highbit32 (U32 val) 527 { 528 # if defined(_MSC_VER) /* Visual */ 529 unsigned long r=0; 530 _BitScanReverse ( &r, val ); 531 return (unsigned) r; 532 # elif defined(__GNUC__) && (__GNUC__ >= 3) /* Use GCC Intrinsic */ 533 return 31 - __builtin_clz (val); 534 # else /* Software version */ 535 static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; 536 U32 v = val; 537 v |= v >> 1; 538 v |= v >> 2; 539 v |= v >> 4; 540 v |= v >> 8; 541 v |= v >> 16; 542 return DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27]; 543 # endif 544 } 545 546 547 548 /*-******************************************************** 549 * bitStream decoding 550 **********************************************************/ 551 /*! BITv07_initDStream() : 552 * Initialize a BITv07_DStream_t. 553 * `bitD` : a pointer to an already allocated BITv07_DStream_t structure. 554 * `srcSize` must be the *exact* size of the bitStream, in bytes. 555 * @return : size of stream (== srcSize) or an errorCode if a problem is detected 556 */ 557 MEM_STATIC size_t BITv07_initDStream(BITv07_DStream_t* bitD, const void* srcBuffer, size_t srcSize) 558 { 559 if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); } 560 561 if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */ 562 bitD->start = (const char*)srcBuffer; 563 bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer); 564 bitD->bitContainer = MEM_readLEST(bitD->ptr); 565 { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; 566 bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0; 567 if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ } 568 } else { 569 bitD->start = (const char*)srcBuffer; 570 bitD->ptr = bitD->start; 571 bitD->bitContainer = *(const BYTE*)(bitD->start); 572 switch(srcSize) 573 { 574 case 7: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);/* fall-through */ 575 case 6: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);/* fall-through */ 576 case 5: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);/* fall-through */ 577 case 4: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[3]) << 24; /* fall-through */ 578 case 3: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[2]) << 16; /* fall-through */ 579 case 2: bitD->bitContainer += (size_t)(((const BYTE*)(srcBuffer))[1]) << 8; /* fall-through */ 580 default: break; 581 } 582 { BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1]; 583 bitD->bitsConsumed = lastByte ? 8 - BITv07_highbit32(lastByte) : 0; 584 if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ } 585 bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8; 586 } 587 588 return srcSize; 589 } 590 591 592 MEM_STATIC size_t BITv07_lookBits(const BITv07_DStream_t* bitD, U32 nbBits) 593 { 594 U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1; 595 return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask); 596 } 597 598 /*! BITv07_lookBitsFast() : 599 * unsafe version; only works only if nbBits >= 1 */ 600 MEM_STATIC size_t BITv07_lookBitsFast(const BITv07_DStream_t* bitD, U32 nbBits) 601 { 602 U32 const bitMask = sizeof(bitD->bitContainer)*8 - 1; 603 return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask); 604 } 605 606 MEM_STATIC void BITv07_skipBits(BITv07_DStream_t* bitD, U32 nbBits) 607 { 608 bitD->bitsConsumed += nbBits; 609 } 610 611 MEM_STATIC size_t BITv07_readBits(BITv07_DStream_t* bitD, U32 nbBits) 612 { 613 size_t const value = BITv07_lookBits(bitD, nbBits); 614 BITv07_skipBits(bitD, nbBits); 615 return value; 616 } 617 618 /*! BITv07_readBitsFast() : 619 * unsafe version; only works only if nbBits >= 1 */ 620 MEM_STATIC size_t BITv07_readBitsFast(BITv07_DStream_t* bitD, U32 nbBits) 621 { 622 size_t const value = BITv07_lookBitsFast(bitD, nbBits); 623 BITv07_skipBits(bitD, nbBits); 624 return value; 625 } 626 627 MEM_STATIC BITv07_DStream_status BITv07_reloadDStream(BITv07_DStream_t* bitD) 628 { 629 if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8)) /* should not happen => corruption detected */ 630 return BITv07_DStream_overflow; 631 632 if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer)) { 633 bitD->ptr -= bitD->bitsConsumed >> 3; 634 bitD->bitsConsumed &= 7; 635 bitD->bitContainer = MEM_readLEST(bitD->ptr); 636 return BITv07_DStream_unfinished; 637 } 638 if (bitD->ptr == bitD->start) { 639 if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BITv07_DStream_endOfBuffer; 640 return BITv07_DStream_completed; 641 } 642 { U32 nbBytes = bitD->bitsConsumed >> 3; 643 BITv07_DStream_status result = BITv07_DStream_unfinished; 644 if (bitD->ptr - nbBytes < bitD->start) { 645 nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */ 646 result = BITv07_DStream_endOfBuffer; 647 } 648 bitD->ptr -= nbBytes; 649 bitD->bitsConsumed -= nbBytes*8; 650 bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD) */ 651 return result; 652 } 653 } 654 655 /*! BITv07_endOfDStream() : 656 * @return Tells if DStream has exactly reached its end (all bits consumed). 657 */ 658 MEM_STATIC unsigned BITv07_endOfDStream(const BITv07_DStream_t* DStream) 659 { 660 return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8)); 661 } 662 663 #if defined (__cplusplus) 664 } 665 #endif 666 667 #endif /* BITSTREAM_H_MODULE */ 668 /* ****************************************************************** 669 FSE : Finite State Entropy codec 670 Public Prototypes declaration 671 Copyright (C) 2013-2016, Yann Collet. 672 673 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 674 675 Redistribution and use in source and binary forms, with or without 676 modification, are permitted provided that the following conditions are 677 met: 678 679 * Redistributions of source code must retain the above copyright 680 notice, this list of conditions and the following disclaimer. 681 * Redistributions in binary form must reproduce the above 682 copyright notice, this list of conditions and the following disclaimer 683 in the documentation and/or other materials provided with the 684 distribution. 685 686 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 687 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 688 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 689 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 690 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 691 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 692 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 693 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 694 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 695 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 696 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 697 698 You can contact the author at : 699 - Source repository : https://github.com/Cyan4973/FiniteStateEntropy 700 ****************************************************************** */ 701 #ifndef FSEv07_H 702 #define FSEv07_H 703 704 #if defined (__cplusplus) 705 extern "C" { 706 #endif 707 708 709 710 /*-**************************************** 711 * FSE simple functions 712 ******************************************/ 713 714 /*! FSEv07_decompress(): 715 Decompress FSE data from buffer 'cSrc', of size 'cSrcSize', 716 into already allocated destination buffer 'dst', of size 'dstCapacity'. 717 @return : size of regenerated data (<= maxDstSize), 718 or an error code, which can be tested using FSEv07_isError() . 719 720 ** Important ** : FSEv07_decompress() does not decompress non-compressible nor RLE data !!! 721 Why ? : making this distinction requires a header. 722 Header management is intentionally delegated to the user layer, which can better manage special cases. 723 */ 724 size_t FSEv07_decompress(void* dst, size_t dstCapacity, 725 const void* cSrc, size_t cSrcSize); 726 727 728 /* Error Management */ 729 unsigned FSEv07_isError(size_t code); /* tells if a return value is an error code */ 730 const char* FSEv07_getErrorName(size_t code); /* provides error code string (useful for debugging) */ 731 732 733 /*-***************************************** 734 * FSE detailed API 735 ******************************************/ 736 /*! 737 FSEv07_decompress() does the following: 738 1. read normalized counters with readNCount() 739 2. build decoding table 'DTable' from normalized counters 740 3. decode the data stream using decoding table 'DTable' 741 742 The following API allows targeting specific sub-functions for advanced tasks. 743 For example, it's possible to compress several blocks using the same 'CTable', 744 or to save and provide normalized distribution using external method. 745 */ 746 747 748 /* *** DECOMPRESSION *** */ 749 750 /*! FSEv07_readNCount(): 751 Read compactly saved 'normalizedCounter' from 'rBuffer'. 752 @return : size read from 'rBuffer', 753 or an errorCode, which can be tested using FSEv07_isError(). 754 maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */ 755 size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize); 756 757 /*! Constructor and Destructor of FSEv07_DTable. 758 Note that its size depends on 'tableLog' */ 759 typedef unsigned FSEv07_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */ 760 FSEv07_DTable* FSEv07_createDTable(unsigned tableLog); 761 void FSEv07_freeDTable(FSEv07_DTable* dt); 762 763 /*! FSEv07_buildDTable(): 764 Builds 'dt', which must be already allocated, using FSEv07_createDTable(). 765 return : 0, or an errorCode, which can be tested using FSEv07_isError() */ 766 size_t FSEv07_buildDTable (FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog); 767 768 /*! FSEv07_decompress_usingDTable(): 769 Decompress compressed source `cSrc` of size `cSrcSize` using `dt` 770 into `dst` which must be already allocated. 771 @return : size of regenerated data (necessarily <= `dstCapacity`), 772 or an errorCode, which can be tested using FSEv07_isError() */ 773 size_t FSEv07_decompress_usingDTable(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, const FSEv07_DTable* dt); 774 775 /*! 776 Tutorial : 777 ---------- 778 (Note : these functions only decompress FSE-compressed blocks. 779 If block is uncompressed, use memcpy() instead 780 If block is a single repeated byte, use memset() instead ) 781 782 The first step is to obtain the normalized frequencies of symbols. 783 This can be performed by FSEv07_readNCount() if it was saved using FSEv07_writeNCount(). 784 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short. 785 In practice, that means it's necessary to know 'maxSymbolValue' beforehand, 786 or size the table to handle worst case situations (typically 256). 787 FSEv07_readNCount() will provide 'tableLog' and 'maxSymbolValue'. 788 The result of FSEv07_readNCount() is the number of bytes read from 'rBuffer'. 789 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that. 790 If there is an error, the function will return an error code, which can be tested using FSEv07_isError(). 791 792 The next step is to build the decompression tables 'FSEv07_DTable' from 'normalizedCounter'. 793 This is performed by the function FSEv07_buildDTable(). 794 The space required by 'FSEv07_DTable' must be already allocated using FSEv07_createDTable(). 795 If there is an error, the function will return an error code, which can be tested using FSEv07_isError(). 796 797 `FSEv07_DTable` can then be used to decompress `cSrc`, with FSEv07_decompress_usingDTable(). 798 `cSrcSize` must be strictly correct, otherwise decompression will fail. 799 FSEv07_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`). 800 If there is an error, the function will return an error code, which can be tested using FSEv07_isError(). (ex: dst buffer too small) 801 */ 802 803 804 #ifdef FSEv07_STATIC_LINKING_ONLY 805 806 807 /* ***************************************** 808 * Static allocation 809 *******************************************/ 810 /* FSE buffer bounds */ 811 #define FSEv07_NCOUNTBOUND 512 812 #define FSEv07_BLOCKBOUND(size) (size + (size>>7)) 813 814 /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */ 815 #define FSEv07_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<maxTableLog)) 816 817 818 /* ***************************************** 819 * FSE advanced API 820 *******************************************/ 821 size_t FSEv07_countFast(unsigned* count, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize); 822 /**< same as FSEv07_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr */ 823 824 unsigned FSEv07_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus); 825 /**< same as FSEv07_optimalTableLog(), which used `minus==2` */ 826 827 size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits); 828 /**< build a fake FSEv07_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */ 829 830 size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, unsigned char symbolValue); 831 /**< build a fake FSEv07_DTable, designed to always generate the same symbolValue */ 832 833 834 835 /* ***************************************** 836 * FSE symbol decompression API 837 *******************************************/ 838 typedef struct 839 { 840 size_t state; 841 const void* table; /* precise table may vary, depending on U16 */ 842 } FSEv07_DState_t; 843 844 845 static void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt); 846 847 static unsigned char FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD); 848 849 850 851 /* ***************************************** 852 * FSE unsafe API 853 *******************************************/ 854 static unsigned char FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD); 855 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */ 856 857 858 /* ====== Decompression ====== */ 859 860 typedef struct { 861 U16 tableLog; 862 U16 fastMode; 863 } FSEv07_DTableHeader; /* sizeof U32 */ 864 865 typedef struct 866 { 867 unsigned short newState; 868 unsigned char symbol; 869 unsigned char nbBits; 870 } FSEv07_decode_t; /* size == U32 */ 871 872 MEM_STATIC void FSEv07_initDState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD, const FSEv07_DTable* dt) 873 { 874 const void* ptr = dt; 875 const FSEv07_DTableHeader* const DTableH = (const FSEv07_DTableHeader*)ptr; 876 DStatePtr->state = BITv07_readBits(bitD, DTableH->tableLog); 877 BITv07_reloadDStream(bitD); 878 DStatePtr->table = dt + 1; 879 } 880 881 MEM_STATIC BYTE FSEv07_peekSymbol(const FSEv07_DState_t* DStatePtr) 882 { 883 FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state]; 884 return DInfo.symbol; 885 } 886 887 MEM_STATIC void FSEv07_updateState(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD) 888 { 889 FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state]; 890 U32 const nbBits = DInfo.nbBits; 891 size_t const lowBits = BITv07_readBits(bitD, nbBits); 892 DStatePtr->state = DInfo.newState + lowBits; 893 } 894 895 MEM_STATIC BYTE FSEv07_decodeSymbol(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD) 896 { 897 FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state]; 898 U32 const nbBits = DInfo.nbBits; 899 BYTE const symbol = DInfo.symbol; 900 size_t const lowBits = BITv07_readBits(bitD, nbBits); 901 902 DStatePtr->state = DInfo.newState + lowBits; 903 return symbol; 904 } 905 906 /*! FSEv07_decodeSymbolFast() : 907 unsafe, only works if no symbol has a probability > 50% */ 908 MEM_STATIC BYTE FSEv07_decodeSymbolFast(FSEv07_DState_t* DStatePtr, BITv07_DStream_t* bitD) 909 { 910 FSEv07_decode_t const DInfo = ((const FSEv07_decode_t*)(DStatePtr->table))[DStatePtr->state]; 911 U32 const nbBits = DInfo.nbBits; 912 BYTE const symbol = DInfo.symbol; 913 size_t const lowBits = BITv07_readBitsFast(bitD, nbBits); 914 915 DStatePtr->state = DInfo.newState + lowBits; 916 return symbol; 917 } 918 919 920 921 #ifndef FSEv07_COMMONDEFS_ONLY 922 923 /* ************************************************************** 924 * Tuning parameters 925 ****************************************************************/ 926 /*!MEMORY_USAGE : 927 * Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.) 928 * Increasing memory usage improves compression ratio 929 * Reduced memory usage can improve speed, due to cache effect 930 * Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */ 931 #define FSEv07_MAX_MEMORY_USAGE 14 932 #define FSEv07_DEFAULT_MEMORY_USAGE 13 933 934 /*!FSEv07_MAX_SYMBOL_VALUE : 935 * Maximum symbol value authorized. 936 * Required for proper stack allocation */ 937 #define FSEv07_MAX_SYMBOL_VALUE 255 938 939 940 /* ************************************************************** 941 * template functions type & suffix 942 ****************************************************************/ 943 #define FSEv07_FUNCTION_TYPE BYTE 944 #define FSEv07_FUNCTION_EXTENSION 945 #define FSEv07_DECODE_TYPE FSEv07_decode_t 946 947 948 #endif /* !FSEv07_COMMONDEFS_ONLY */ 949 950 951 /* *************************************************************** 952 * Constants 953 *****************************************************************/ 954 #define FSEv07_MAX_TABLELOG (FSEv07_MAX_MEMORY_USAGE-2) 955 #define FSEv07_MAX_TABLESIZE (1U<<FSEv07_MAX_TABLELOG) 956 #define FSEv07_MAXTABLESIZE_MASK (FSEv07_MAX_TABLESIZE-1) 957 #define FSEv07_DEFAULT_TABLELOG (FSEv07_DEFAULT_MEMORY_USAGE-2) 958 #define FSEv07_MIN_TABLELOG 5 959 960 #define FSEv07_TABLELOG_ABSOLUTE_MAX 15 961 #if FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX 962 # error "FSEv07_MAX_TABLELOG > FSEv07_TABLELOG_ABSOLUTE_MAX is not supported" 963 #endif 964 965 #define FSEv07_TABLESTEP(tableSize) ((tableSize>>1) + (tableSize>>3) + 3) 966 967 968 #endif /* FSEv07_STATIC_LINKING_ONLY */ 969 970 971 #if defined (__cplusplus) 972 } 973 #endif 974 975 #endif /* FSEv07_H */ 976 /* ****************************************************************** 977 Huffman coder, part of New Generation Entropy library 978 header file 979 Copyright (C) 2013-2016, Yann Collet. 980 981 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 982 983 Redistribution and use in source and binary forms, with or without 984 modification, are permitted provided that the following conditions are 985 met: 986 987 * Redistributions of source code must retain the above copyright 988 notice, this list of conditions and the following disclaimer. 989 * Redistributions in binary form must reproduce the above 990 copyright notice, this list of conditions and the following disclaimer 991 in the documentation and/or other materials provided with the 992 distribution. 993 994 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 995 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 996 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 997 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 998 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 999 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1000 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1001 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1002 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1003 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1004 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1005 1006 You can contact the author at : 1007 - Source repository : https://github.com/Cyan4973/FiniteStateEntropy 1008 ****************************************************************** */ 1009 #ifndef HUFv07_H_298734234 1010 #define HUFv07_H_298734234 1011 1012 #if defined (__cplusplus) 1013 extern "C" { 1014 #endif 1015 1016 1017 1018 /* *** simple functions *** */ 1019 /** 1020 HUFv07_decompress() : 1021 Decompress HUF data from buffer 'cSrc', of size 'cSrcSize', 1022 into already allocated buffer 'dst', of minimum size 'dstSize'. 1023 `dstSize` : **must** be the ***exact*** size of original (uncompressed) data. 1024 Note : in contrast with FSE, HUFv07_decompress can regenerate 1025 RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, 1026 because it knows size to regenerate. 1027 @return : size of regenerated data (== dstSize), 1028 or an error code, which can be tested using HUFv07_isError() 1029 */ 1030 size_t HUFv07_decompress(void* dst, size_t dstSize, 1031 const void* cSrc, size_t cSrcSize); 1032 1033 1034 /* **************************************** 1035 * Tool functions 1036 ******************************************/ 1037 #define HUFv07_BLOCKSIZE_MAX (128 * 1024) 1038 1039 /* Error Management */ 1040 unsigned HUFv07_isError(size_t code); /**< tells if a return value is an error code */ 1041 const char* HUFv07_getErrorName(size_t code); /**< provides error code string (useful for debugging) */ 1042 1043 1044 /* *** Advanced function *** */ 1045 1046 1047 #ifdef HUFv07_STATIC_LINKING_ONLY 1048 1049 1050 /* *** Constants *** */ 1051 #define HUFv07_TABLELOG_ABSOLUTEMAX 16 /* absolute limit of HUFv07_MAX_TABLELOG. Beyond that value, code does not work */ 1052 #define HUFv07_TABLELOG_MAX 12 /* max configured tableLog (for static allocation); can be modified up to HUFv07_ABSOLUTEMAX_TABLELOG */ 1053 #define HUFv07_TABLELOG_DEFAULT 11 /* tableLog by default, when not specified */ 1054 #define HUFv07_SYMBOLVALUE_MAX 255 1055 #if (HUFv07_TABLELOG_MAX > HUFv07_TABLELOG_ABSOLUTEMAX) 1056 # error "HUFv07_TABLELOG_MAX is too large !" 1057 #endif 1058 1059 1060 /* **************************************** 1061 * Static allocation 1062 ******************************************/ 1063 /* HUF buffer bounds */ 1064 #define HUFv07_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true if incompressible pre-filtered with fast heuristic */ 1065 1066 /* static allocation of HUF's DTable */ 1067 typedef U32 HUFv07_DTable; 1068 #define HUFv07_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog))) 1069 #define HUFv07_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \ 1070 HUFv07_DTable DTable[HUFv07_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1)*0x1000001) } 1071 #define HUFv07_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \ 1072 HUFv07_DTable DTable[HUFv07_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog)*0x1000001) } 1073 1074 1075 /* **************************************** 1076 * Advanced decompression functions 1077 ******************************************/ 1078 size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ 1079 size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ 1080 1081 size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< decodes RLE and uncompressed */ 1082 size_t HUFv07_decompress4X_hufOnly(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< considers RLE and uncompressed as errors */ 1083 size_t HUFv07_decompress4X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ 1084 size_t HUFv07_decompress4X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ 1085 1086 size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); 1087 size_t HUFv07_decompress1X2_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< single-symbol decoder */ 1088 size_t HUFv07_decompress1X4_DCtx(HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /**< double-symbols decoder */ 1089 1090 1091 /* **************************************** 1092 * HUF detailed API 1093 ******************************************/ 1094 /*! 1095 The following API allows targeting specific sub-functions for advanced tasks. 1096 For example, it's possible to compress several blocks using the same 'CTable', 1097 or to save and regenerate 'CTable' using external methods. 1098 */ 1099 /* FSEv07_count() : find it within "fse.h" */ 1100 1101 /*! HUFv07_readStats() : 1102 Read compact Huffman tree, saved by HUFv07_writeCTable(). 1103 `huffWeight` is destination buffer. 1104 @return : size read from `src` , or an error Code . 1105 Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() . */ 1106 size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, 1107 U32* nbSymbolsPtr, U32* tableLogPtr, 1108 const void* src, size_t srcSize); 1109 1110 1111 /* 1112 HUFv07_decompress() does the following: 1113 1. select the decompression algorithm (X2, X4) based on pre-computed heuristics 1114 2. build Huffman table from save, using HUFv07_readDTableXn() 1115 3. decode 1 or 4 segments in parallel using HUFv07_decompressSXn_usingDTable 1116 */ 1117 1118 /** HUFv07_selectDecoder() : 1119 * Tells which decoder is likely to decode faster, 1120 * based on a set of pre-determined metrics. 1121 * @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 . 1122 * Assumption : 0 < cSrcSize < dstSize <= 128 KB */ 1123 U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize); 1124 1125 size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize); 1126 size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize); 1127 1128 size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1129 size_t HUFv07_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1130 size_t HUFv07_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1131 1132 1133 /* single stream variants */ 1134 size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* single-symbol decoder */ 1135 size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); /* double-symbol decoder */ 1136 1137 size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1138 size_t HUFv07_decompress1X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1139 size_t HUFv07_decompress1X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUFv07_DTable* DTable); 1140 1141 1142 #endif /* HUFv07_STATIC_LINKING_ONLY */ 1143 1144 1145 #if defined (__cplusplus) 1146 } 1147 #endif 1148 1149 #endif /* HUFv07_H_298734234 */ 1150 /* 1151 Common functions of New Generation Entropy library 1152 Copyright (C) 2016, Yann Collet. 1153 1154 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 1155 1156 Redistribution and use in source and binary forms, with or without 1157 modification, are permitted provided that the following conditions are 1158 met: 1159 1160 * Redistributions of source code must retain the above copyright 1161 notice, this list of conditions and the following disclaimer. 1162 * Redistributions in binary form must reproduce the above 1163 copyright notice, this list of conditions and the following disclaimer 1164 in the documentation and/or other materials provided with the 1165 distribution. 1166 1167 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1168 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1169 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1170 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1171 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1172 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1173 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1174 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1175 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1176 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1177 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1178 1179 You can contact the author at : 1180 - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy 1181 - Public forum : https://groups.google.com/forum/#!forum/lz4c 1182 *************************************************************************** */ 1183 1184 1185 1186 /*-**************************************** 1187 * FSE Error Management 1188 ******************************************/ 1189 unsigned FSEv07_isError(size_t code) { return ERR_isError(code); } 1190 1191 const char* FSEv07_getErrorName(size_t code) { return ERR_getErrorName(code); } 1192 1193 1194 /* ************************************************************** 1195 * HUF Error Management 1196 ****************************************************************/ 1197 unsigned HUFv07_isError(size_t code) { return ERR_isError(code); } 1198 1199 const char* HUFv07_getErrorName(size_t code) { return ERR_getErrorName(code); } 1200 1201 1202 /*-************************************************************** 1203 * FSE NCount encoding-decoding 1204 ****************************************************************/ 1205 static short FSEv07_abs(short a) { return (short)(a<0 ? -a : a); } 1206 1207 size_t FSEv07_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr, 1208 const void* headerBuffer, size_t hbSize) 1209 { 1210 const BYTE* const istart = (const BYTE*) headerBuffer; 1211 const BYTE* const iend = istart + hbSize; 1212 const BYTE* ip = istart; 1213 int nbBits; 1214 int remaining; 1215 int threshold; 1216 U32 bitStream; 1217 int bitCount; 1218 unsigned charnum = 0; 1219 int previous0 = 0; 1220 1221 if (hbSize < 4) return ERROR(srcSize_wrong); 1222 bitStream = MEM_readLE32(ip); 1223 nbBits = (bitStream & 0xF) + FSEv07_MIN_TABLELOG; /* extract tableLog */ 1224 if (nbBits > FSEv07_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge); 1225 bitStream >>= 4; 1226 bitCount = 4; 1227 *tableLogPtr = nbBits; 1228 remaining = (1<<nbBits)+1; 1229 threshold = 1<<nbBits; 1230 nbBits++; 1231 1232 while ((remaining>1) && (charnum<=*maxSVPtr)) { 1233 if (previous0) { 1234 unsigned n0 = charnum; 1235 while ((bitStream & 0xFFFF) == 0xFFFF) { 1236 n0+=24; 1237 if (ip < iend-5) { 1238 ip+=2; 1239 bitStream = MEM_readLE32(ip) >> bitCount; 1240 } else { 1241 bitStream >>= 16; 1242 bitCount+=16; 1243 } } 1244 while ((bitStream & 3) == 3) { 1245 n0+=3; 1246 bitStream>>=2; 1247 bitCount+=2; 1248 } 1249 n0 += bitStream & 3; 1250 bitCount += 2; 1251 if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall); 1252 while (charnum < n0) normalizedCounter[charnum++] = 0; 1253 if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { 1254 ip += bitCount>>3; 1255 bitCount &= 7; 1256 bitStream = MEM_readLE32(ip) >> bitCount; 1257 } 1258 else 1259 bitStream >>= 2; 1260 } 1261 { short const max = (short)((2*threshold-1)-remaining); 1262 short count; 1263 1264 if ((bitStream & (threshold-1)) < (U32)max) { 1265 count = (short)(bitStream & (threshold-1)); 1266 bitCount += nbBits-1; 1267 } else { 1268 count = (short)(bitStream & (2*threshold-1)); 1269 if (count >= threshold) count -= max; 1270 bitCount += nbBits; 1271 } 1272 1273 count--; /* extra accuracy */ 1274 remaining -= FSEv07_abs(count); 1275 normalizedCounter[charnum++] = count; 1276 previous0 = !count; 1277 while (remaining < threshold) { 1278 nbBits--; 1279 threshold >>= 1; 1280 } 1281 1282 if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) { 1283 ip += bitCount>>3; 1284 bitCount &= 7; 1285 } else { 1286 bitCount -= (int)(8 * (iend - 4 - ip)); 1287 ip = iend - 4; 1288 } 1289 bitStream = MEM_readLE32(ip) >> (bitCount & 31); 1290 } } /* while ((remaining>1) && (charnum<=*maxSVPtr)) */ 1291 if (remaining != 1) return ERROR(GENERIC); 1292 *maxSVPtr = charnum-1; 1293 1294 ip += (bitCount+7)>>3; 1295 if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong); 1296 return ip-istart; 1297 } 1298 1299 1300 /*! HUFv07_readStats() : 1301 Read compact Huffman tree, saved by HUFv07_writeCTable(). 1302 `huffWeight` is destination buffer. 1303 @return : size read from `src` , or an error Code . 1304 Note : Needed by HUFv07_readCTable() and HUFv07_readDTableXn() . 1305 */ 1306 size_t HUFv07_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats, 1307 U32* nbSymbolsPtr, U32* tableLogPtr, 1308 const void* src, size_t srcSize) 1309 { 1310 U32 weightTotal; 1311 const BYTE* ip = (const BYTE*) src; 1312 size_t iSize; 1313 size_t oSize; 1314 1315 if (!srcSize) return ERROR(srcSize_wrong); 1316 iSize = ip[0]; 1317 //memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */ 1318 1319 if (iSize >= 128) { /* special header */ 1320 if (iSize >= (242)) { /* RLE */ 1321 static U32 l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 }; 1322 oSize = l[iSize-242]; 1323 memset(huffWeight, 1, hwSize); 1324 iSize = 0; 1325 } 1326 else { /* Incompressible */ 1327 oSize = iSize - 127; 1328 iSize = ((oSize+1)/2); 1329 if (iSize+1 > srcSize) return ERROR(srcSize_wrong); 1330 if (oSize >= hwSize) return ERROR(corruption_detected); 1331 ip += 1; 1332 { U32 n; 1333 for (n=0; n<oSize; n+=2) { 1334 huffWeight[n] = ip[n/2] >> 4; 1335 huffWeight[n+1] = ip[n/2] & 15; 1336 } } } } 1337 else { /* header compressed with FSE (normal case) */ 1338 if (iSize+1 > srcSize) return ERROR(srcSize_wrong); 1339 oSize = FSEv07_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */ 1340 if (FSEv07_isError(oSize)) return oSize; 1341 } 1342 1343 /* collect weight stats */ 1344 memset(rankStats, 0, (HUFv07_TABLELOG_ABSOLUTEMAX + 1) * sizeof(U32)); 1345 weightTotal = 0; 1346 { U32 n; for (n=0; n<oSize; n++) { 1347 if (huffWeight[n] >= HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected); 1348 rankStats[huffWeight[n]]++; 1349 weightTotal += (1 << huffWeight[n]) >> 1; 1350 } } 1351 if (weightTotal == 0) return ERROR(corruption_detected); 1352 1353 /* get last non-null symbol weight (implied, total must be 2^n) */ 1354 { U32 const tableLog = BITv07_highbit32(weightTotal) + 1; 1355 if (tableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(corruption_detected); 1356 *tableLogPtr = tableLog; 1357 /* determine last weight */ 1358 { U32 const total = 1 << tableLog; 1359 U32 const rest = total - weightTotal; 1360 U32 const verif = 1 << BITv07_highbit32(rest); 1361 U32 const lastWeight = BITv07_highbit32(rest) + 1; 1362 if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */ 1363 huffWeight[oSize] = (BYTE)lastWeight; 1364 rankStats[lastWeight]++; 1365 } } 1366 1367 /* check tree construction validity */ 1368 if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */ 1369 1370 /* results */ 1371 *nbSymbolsPtr = (U32)(oSize+1); 1372 return iSize+1; 1373 } 1374 /* ****************************************************************** 1375 FSE : Finite State Entropy decoder 1376 Copyright (C) 2013-2015, Yann Collet. 1377 1378 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 1379 1380 Redistribution and use in source and binary forms, with or without 1381 modification, are permitted provided that the following conditions are 1382 met: 1383 1384 * Redistributions of source code must retain the above copyright 1385 notice, this list of conditions and the following disclaimer. 1386 * Redistributions in binary form must reproduce the above 1387 copyright notice, this list of conditions and the following disclaimer 1388 in the documentation and/or other materials provided with the 1389 distribution. 1390 1391 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1392 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1393 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1394 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1395 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1396 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1397 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1398 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1399 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1400 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1401 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1402 1403 You can contact the author at : 1404 - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy 1405 - Public forum : https://groups.google.com/forum/#!forum/lz4c 1406 ****************************************************************** */ 1407 1408 1409 /* ************************************************************** 1410 * Compiler specifics 1411 ****************************************************************/ 1412 #ifdef _MSC_VER /* Visual Studio */ 1413 # define FORCE_INLINE static __forceinline 1414 # include <intrin.h> /* For Visual 2005 */ 1415 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 1416 # pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */ 1417 #else 1418 # if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */ 1419 # ifdef __GNUC__ 1420 # define FORCE_INLINE static inline __attribute__((always_inline)) 1421 # else 1422 # define FORCE_INLINE static inline 1423 # endif 1424 # else 1425 # define FORCE_INLINE static 1426 # endif /* __STDC_VERSION__ */ 1427 #endif 1428 1429 1430 /* ************************************************************** 1431 * Error Management 1432 ****************************************************************/ 1433 #define FSEv07_isError ERR_isError 1434 #define FSEv07_STATIC_ASSERT(c) { enum { FSEv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ 1435 1436 1437 /* ************************************************************** 1438 * Complex types 1439 ****************************************************************/ 1440 typedef U32 DTable_max_t[FSEv07_DTABLE_SIZE_U32(FSEv07_MAX_TABLELOG)]; 1441 1442 1443 /* ************************************************************** 1444 * Templates 1445 ****************************************************************/ 1446 /* 1447 designed to be included 1448 for type-specific functions (template emulation in C) 1449 Objective is to write these functions only once, for improved maintenance 1450 */ 1451 1452 /* safety checks */ 1453 #ifndef FSEv07_FUNCTION_EXTENSION 1454 # error "FSEv07_FUNCTION_EXTENSION must be defined" 1455 #endif 1456 #ifndef FSEv07_FUNCTION_TYPE 1457 # error "FSEv07_FUNCTION_TYPE must be defined" 1458 #endif 1459 1460 /* Function names */ 1461 #define FSEv07_CAT(X,Y) X##Y 1462 #define FSEv07_FUNCTION_NAME(X,Y) FSEv07_CAT(X,Y) 1463 #define FSEv07_TYPE_NAME(X,Y) FSEv07_CAT(X,Y) 1464 1465 1466 /* Function templates */ 1467 FSEv07_DTable* FSEv07_createDTable (unsigned tableLog) 1468 { 1469 if (tableLog > FSEv07_TABLELOG_ABSOLUTE_MAX) tableLog = FSEv07_TABLELOG_ABSOLUTE_MAX; 1470 return (FSEv07_DTable*)malloc( FSEv07_DTABLE_SIZE_U32(tableLog) * sizeof (U32) ); 1471 } 1472 1473 void FSEv07_freeDTable (FSEv07_DTable* dt) 1474 { 1475 free(dt); 1476 } 1477 1478 size_t FSEv07_buildDTable(FSEv07_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog) 1479 { 1480 void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */ 1481 FSEv07_DECODE_TYPE* const tableDecode = (FSEv07_DECODE_TYPE*) (tdPtr); 1482 U16 symbolNext[FSEv07_MAX_SYMBOL_VALUE+1]; 1483 1484 U32 const maxSV1 = maxSymbolValue + 1; 1485 U32 const tableSize = 1 << tableLog; 1486 U32 highThreshold = tableSize-1; 1487 1488 /* Sanity Checks */ 1489 if (maxSymbolValue > FSEv07_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge); 1490 if (tableLog > FSEv07_MAX_TABLELOG) return ERROR(tableLog_tooLarge); 1491 1492 /* Init, lay down lowprob symbols */ 1493 { FSEv07_DTableHeader DTableH; 1494 DTableH.tableLog = (U16)tableLog; 1495 DTableH.fastMode = 1; 1496 { S16 const largeLimit= (S16)(1 << (tableLog-1)); 1497 U32 s; 1498 for (s=0; s<maxSV1; s++) { 1499 if (normalizedCounter[s]==-1) { 1500 tableDecode[highThreshold--].symbol = (FSEv07_FUNCTION_TYPE)s; 1501 symbolNext[s] = 1; 1502 } else { 1503 if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0; 1504 symbolNext[s] = normalizedCounter[s]; 1505 } } } 1506 memcpy(dt, &DTableH, sizeof(DTableH)); 1507 } 1508 1509 /* Spread symbols */ 1510 { U32 const tableMask = tableSize-1; 1511 U32 const step = FSEv07_TABLESTEP(tableSize); 1512 U32 s, position = 0; 1513 for (s=0; s<maxSV1; s++) { 1514 int i; 1515 for (i=0; i<normalizedCounter[s]; i++) { 1516 tableDecode[position].symbol = (FSEv07_FUNCTION_TYPE)s; 1517 position = (position + step) & tableMask; 1518 while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */ 1519 } } 1520 1521 if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */ 1522 } 1523 1524 /* Build Decoding table */ 1525 { U32 u; 1526 for (u=0; u<tableSize; u++) { 1527 FSEv07_FUNCTION_TYPE const symbol = (FSEv07_FUNCTION_TYPE)(tableDecode[u].symbol); 1528 U16 nextState = symbolNext[symbol]++; 1529 tableDecode[u].nbBits = (BYTE) (tableLog - BITv07_highbit32 ((U32)nextState) ); 1530 tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize); 1531 } } 1532 1533 return 0; 1534 } 1535 1536 1537 1538 #ifndef FSEv07_COMMONDEFS_ONLY 1539 1540 /*-******************************************************* 1541 * Decompression (Byte symbols) 1542 *********************************************************/ 1543 size_t FSEv07_buildDTable_rle (FSEv07_DTable* dt, BYTE symbolValue) 1544 { 1545 void* ptr = dt; 1546 FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr; 1547 void* dPtr = dt + 1; 1548 FSEv07_decode_t* const cell = (FSEv07_decode_t*)dPtr; 1549 1550 DTableH->tableLog = 0; 1551 DTableH->fastMode = 0; 1552 1553 cell->newState = 0; 1554 cell->symbol = symbolValue; 1555 cell->nbBits = 0; 1556 1557 return 0; 1558 } 1559 1560 1561 size_t FSEv07_buildDTable_raw (FSEv07_DTable* dt, unsigned nbBits) 1562 { 1563 void* ptr = dt; 1564 FSEv07_DTableHeader* const DTableH = (FSEv07_DTableHeader*)ptr; 1565 void* dPtr = dt + 1; 1566 FSEv07_decode_t* const dinfo = (FSEv07_decode_t*)dPtr; 1567 const unsigned tableSize = 1 << nbBits; 1568 const unsigned tableMask = tableSize - 1; 1569 const unsigned maxSV1 = tableMask+1; 1570 unsigned s; 1571 1572 /* Sanity checks */ 1573 if (nbBits < 1) return ERROR(GENERIC); /* min size */ 1574 1575 /* Build Decoding Table */ 1576 DTableH->tableLog = (U16)nbBits; 1577 DTableH->fastMode = 1; 1578 for (s=0; s<maxSV1; s++) { 1579 dinfo[s].newState = 0; 1580 dinfo[s].symbol = (BYTE)s; 1581 dinfo[s].nbBits = (BYTE)nbBits; 1582 } 1583 1584 return 0; 1585 } 1586 1587 FORCE_INLINE size_t FSEv07_decompress_usingDTable_generic( 1588 void* dst, size_t maxDstSize, 1589 const void* cSrc, size_t cSrcSize, 1590 const FSEv07_DTable* dt, const unsigned fast) 1591 { 1592 BYTE* const ostart = (BYTE*) dst; 1593 BYTE* op = ostart; 1594 BYTE* const omax = op + maxDstSize; 1595 BYTE* const olimit = omax-3; 1596 1597 BITv07_DStream_t bitD; 1598 FSEv07_DState_t state1; 1599 FSEv07_DState_t state2; 1600 1601 /* Init */ 1602 { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize); /* replaced last arg by maxCompressed Size */ 1603 if (FSEv07_isError(errorCode)) return errorCode; } 1604 1605 FSEv07_initDState(&state1, &bitD, dt); 1606 FSEv07_initDState(&state2, &bitD, dt); 1607 1608 #define FSEv07_GETSYMBOL(statePtr) fast ? FSEv07_decodeSymbolFast(statePtr, &bitD) : FSEv07_decodeSymbol(statePtr, &bitD) 1609 1610 /* 4 symbols per loop */ 1611 for ( ; (BITv07_reloadDStream(&bitD)==BITv07_DStream_unfinished) && (op<olimit) ; op+=4) { 1612 op[0] = FSEv07_GETSYMBOL(&state1); 1613 1614 if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ 1615 BITv07_reloadDStream(&bitD); 1616 1617 op[1] = FSEv07_GETSYMBOL(&state2); 1618 1619 if (FSEv07_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ 1620 { if (BITv07_reloadDStream(&bitD) > BITv07_DStream_unfinished) { op+=2; break; } } 1621 1622 op[2] = FSEv07_GETSYMBOL(&state1); 1623 1624 if (FSEv07_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */ 1625 BITv07_reloadDStream(&bitD); 1626 1627 op[3] = FSEv07_GETSYMBOL(&state2); 1628 } 1629 1630 /* tail */ 1631 /* note : BITv07_reloadDStream(&bitD) >= FSEv07_DStream_partiallyFilled; Ends at exactly BITv07_DStream_completed */ 1632 while (1) { 1633 if (op>(omax-2)) return ERROR(dstSize_tooSmall); 1634 1635 *op++ = FSEv07_GETSYMBOL(&state1); 1636 1637 if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) { 1638 *op++ = FSEv07_GETSYMBOL(&state2); 1639 break; 1640 } 1641 1642 if (op>(omax-2)) return ERROR(dstSize_tooSmall); 1643 1644 *op++ = FSEv07_GETSYMBOL(&state2); 1645 1646 if (BITv07_reloadDStream(&bitD)==BITv07_DStream_overflow) { 1647 *op++ = FSEv07_GETSYMBOL(&state1); 1648 break; 1649 } } 1650 1651 return op-ostart; 1652 } 1653 1654 1655 size_t FSEv07_decompress_usingDTable(void* dst, size_t originalSize, 1656 const void* cSrc, size_t cSrcSize, 1657 const FSEv07_DTable* dt) 1658 { 1659 const void* ptr = dt; 1660 const FSEv07_DTableHeader* DTableH = (const FSEv07_DTableHeader*)ptr; 1661 const U32 fastMode = DTableH->fastMode; 1662 1663 /* select fast mode (static) */ 1664 if (fastMode) return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1); 1665 return FSEv07_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0); 1666 } 1667 1668 1669 size_t FSEv07_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize) 1670 { 1671 const BYTE* const istart = (const BYTE*)cSrc; 1672 const BYTE* ip = istart; 1673 short counting[FSEv07_MAX_SYMBOL_VALUE+1]; 1674 DTable_max_t dt; /* Static analyzer seems unable to understand this table will be properly initialized later */ 1675 unsigned tableLog; 1676 unsigned maxSymbolValue = FSEv07_MAX_SYMBOL_VALUE; 1677 1678 if (cSrcSize<2) return ERROR(srcSize_wrong); /* too small input size */ 1679 1680 /* normal FSE decoding mode */ 1681 { size_t const NCountLength = FSEv07_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize); 1682 if (FSEv07_isError(NCountLength)) return NCountLength; 1683 if (NCountLength >= cSrcSize) return ERROR(srcSize_wrong); /* too small input size */ 1684 ip += NCountLength; 1685 cSrcSize -= NCountLength; 1686 } 1687 1688 { size_t const errorCode = FSEv07_buildDTable (dt, counting, maxSymbolValue, tableLog); 1689 if (FSEv07_isError(errorCode)) return errorCode; } 1690 1691 return FSEv07_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt); /* always return, even if it is an error code */ 1692 } 1693 1694 1695 1696 #endif /* FSEv07_COMMONDEFS_ONLY */ 1697 1698 /* ****************************************************************** 1699 Huffman decoder, part of New Generation Entropy library 1700 Copyright (C) 2013-2016, Yann Collet. 1701 1702 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 1703 1704 Redistribution and use in source and binary forms, with or without 1705 modification, are permitted provided that the following conditions are 1706 met: 1707 1708 * Redistributions of source code must retain the above copyright 1709 notice, this list of conditions and the following disclaimer. 1710 * Redistributions in binary form must reproduce the above 1711 copyright notice, this list of conditions and the following disclaimer 1712 in the documentation and/or other materials provided with the 1713 distribution. 1714 1715 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 1716 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 1717 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 1718 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 1719 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 1720 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 1721 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 1722 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 1723 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 1724 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 1725 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 1726 1727 You can contact the author at : 1728 - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy 1729 - Public forum : https://groups.google.com/forum/#!forum/lz4c 1730 ****************************************************************** */ 1731 1732 /* ************************************************************** 1733 * Compiler specifics 1734 ****************************************************************/ 1735 #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) 1736 /* inline is defined */ 1737 #elif defined(_MSC_VER) 1738 # define inline __inline 1739 #else 1740 # define inline /* disable inline */ 1741 #endif 1742 1743 1744 #ifdef _MSC_VER /* Visual Studio */ 1745 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 1746 #endif 1747 1748 1749 1750 /* ************************************************************** 1751 * Error Management 1752 ****************************************************************/ 1753 #define HUFv07_STATIC_ASSERT(c) { enum { HUFv07_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */ 1754 1755 1756 /*-***************************/ 1757 /* generic DTableDesc */ 1758 /*-***************************/ 1759 1760 typedef struct { BYTE maxTableLog; BYTE tableType; BYTE tableLog; BYTE reserved; } DTableDesc; 1761 1762 static DTableDesc HUFv07_getDTableDesc(const HUFv07_DTable* table) 1763 { 1764 DTableDesc dtd; 1765 memcpy(&dtd, table, sizeof(dtd)); 1766 return dtd; 1767 } 1768 1769 1770 /*-***************************/ 1771 /* single-symbol decoding */ 1772 /*-***************************/ 1773 1774 typedef struct { BYTE byte; BYTE nbBits; } HUFv07_DEltX2; /* single-symbol decoding */ 1775 1776 size_t HUFv07_readDTableX2 (HUFv07_DTable* DTable, const void* src, size_t srcSize) 1777 { 1778 BYTE huffWeight[HUFv07_SYMBOLVALUE_MAX + 1]; 1779 U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1]; /* large enough for values from 0 to 16 */ 1780 U32 tableLog = 0; 1781 U32 nbSymbols = 0; 1782 size_t iSize; 1783 void* const dtPtr = DTable + 1; 1784 HUFv07_DEltX2* const dt = (HUFv07_DEltX2*)dtPtr; 1785 1786 HUFv07_STATIC_ASSERT(sizeof(DTableDesc) == sizeof(HUFv07_DTable)); 1787 //memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */ 1788 1789 iSize = HUFv07_readStats(huffWeight, HUFv07_SYMBOLVALUE_MAX + 1, rankVal, &nbSymbols, &tableLog, src, srcSize); 1790 if (HUFv07_isError(iSize)) return iSize; 1791 1792 /* Table header */ 1793 { DTableDesc dtd = HUFv07_getDTableDesc(DTable); 1794 if (tableLog > (U32)(dtd.maxTableLog+1)) return ERROR(tableLog_tooLarge); /* DTable too small, huffman tree cannot fit in */ 1795 dtd.tableType = 0; 1796 dtd.tableLog = (BYTE)tableLog; 1797 memcpy(DTable, &dtd, sizeof(dtd)); 1798 } 1799 1800 /* Prepare ranks */ 1801 { U32 n, nextRankStart = 0; 1802 for (n=1; n<tableLog+1; n++) { 1803 U32 current = nextRankStart; 1804 nextRankStart += (rankVal[n] << (n-1)); 1805 rankVal[n] = current; 1806 } } 1807 1808 /* fill DTable */ 1809 { U32 n; 1810 for (n=0; n<nbSymbols; n++) { 1811 U32 const w = huffWeight[n]; 1812 U32 const length = (1 << w) >> 1; 1813 U32 i; 1814 HUFv07_DEltX2 D; 1815 D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w); 1816 for (i = rankVal[w]; i < rankVal[w] + length; i++) 1817 dt[i] = D; 1818 rankVal[w] += length; 1819 } } 1820 1821 return iSize; 1822 } 1823 1824 1825 static BYTE HUFv07_decodeSymbolX2(BITv07_DStream_t* Dstream, const HUFv07_DEltX2* dt, const U32 dtLog) 1826 { 1827 size_t const val = BITv07_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */ 1828 BYTE const c = dt[val].byte; 1829 BITv07_skipBits(Dstream, dt[val].nbBits); 1830 return c; 1831 } 1832 1833 #define HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \ 1834 *ptr++ = HUFv07_decodeSymbolX2(DStreamPtr, dt, dtLog) 1835 1836 #define HUFv07_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \ 1837 if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \ 1838 HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr) 1839 1840 #define HUFv07_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \ 1841 if (MEM_64bits()) \ 1842 HUFv07_DECODE_SYMBOLX2_0(ptr, DStreamPtr) 1843 1844 static inline size_t HUFv07_decodeStreamX2(BYTE* p, BITv07_DStream_t* const bitDPtr, BYTE* const pEnd, const HUFv07_DEltX2* const dt, const U32 dtLog) 1845 { 1846 BYTE* const pStart = p; 1847 1848 /* up to 4 symbols at a time */ 1849 while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-4)) { 1850 HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr); 1851 HUFv07_DECODE_SYMBOLX2_1(p, bitDPtr); 1852 HUFv07_DECODE_SYMBOLX2_2(p, bitDPtr); 1853 HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr); 1854 } 1855 1856 /* closer to the end */ 1857 while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd)) 1858 HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr); 1859 1860 /* no more data to retrieve from bitstream, hence no need to reload */ 1861 while (p < pEnd) 1862 HUFv07_DECODE_SYMBOLX2_0(p, bitDPtr); 1863 1864 return pEnd-pStart; 1865 } 1866 1867 static size_t HUFv07_decompress1X2_usingDTable_internal( 1868 void* dst, size_t dstSize, 1869 const void* cSrc, size_t cSrcSize, 1870 const HUFv07_DTable* DTable) 1871 { 1872 BYTE* op = (BYTE*)dst; 1873 BYTE* const oend = op + dstSize; 1874 const void* dtPtr = DTable + 1; 1875 const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr; 1876 BITv07_DStream_t bitD; 1877 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 1878 U32 const dtLog = dtd.tableLog; 1879 1880 { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize); 1881 if (HUFv07_isError(errorCode)) return errorCode; } 1882 1883 HUFv07_decodeStreamX2(op, &bitD, oend, dt, dtLog); 1884 1885 /* check */ 1886 if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected); 1887 1888 return dstSize; 1889 } 1890 1891 size_t HUFv07_decompress1X2_usingDTable( 1892 void* dst, size_t dstSize, 1893 const void* cSrc, size_t cSrcSize, 1894 const HUFv07_DTable* DTable) 1895 { 1896 DTableDesc dtd = HUFv07_getDTableDesc(DTable); 1897 if (dtd.tableType != 0) return ERROR(GENERIC); 1898 return HUFv07_decompress1X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); 1899 } 1900 1901 size_t HUFv07_decompress1X2_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 1902 { 1903 const BYTE* ip = (const BYTE*) cSrc; 1904 1905 size_t const hSize = HUFv07_readDTableX2 (DCtx, cSrc, cSrcSize); 1906 if (HUFv07_isError(hSize)) return hSize; 1907 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 1908 ip += hSize; cSrcSize -= hSize; 1909 1910 return HUFv07_decompress1X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx); 1911 } 1912 1913 size_t HUFv07_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 1914 { 1915 HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX); 1916 return HUFv07_decompress1X2_DCtx (DTable, dst, dstSize, cSrc, cSrcSize); 1917 } 1918 1919 1920 static size_t HUFv07_decompress4X2_usingDTable_internal( 1921 void* dst, size_t dstSize, 1922 const void* cSrc, size_t cSrcSize, 1923 const HUFv07_DTable* DTable) 1924 { 1925 /* Check */ 1926 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ 1927 1928 { const BYTE* const istart = (const BYTE*) cSrc; 1929 BYTE* const ostart = (BYTE*) dst; 1930 BYTE* const oend = ostart + dstSize; 1931 const void* const dtPtr = DTable + 1; 1932 const HUFv07_DEltX2* const dt = (const HUFv07_DEltX2*)dtPtr; 1933 1934 /* Init */ 1935 BITv07_DStream_t bitD1; 1936 BITv07_DStream_t bitD2; 1937 BITv07_DStream_t bitD3; 1938 BITv07_DStream_t bitD4; 1939 size_t const length1 = MEM_readLE16(istart); 1940 size_t const length2 = MEM_readLE16(istart+2); 1941 size_t const length3 = MEM_readLE16(istart+4); 1942 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); 1943 const BYTE* const istart1 = istart + 6; /* jumpTable */ 1944 const BYTE* const istart2 = istart1 + length1; 1945 const BYTE* const istart3 = istart2 + length2; 1946 const BYTE* const istart4 = istart3 + length3; 1947 const size_t segmentSize = (dstSize+3) / 4; 1948 BYTE* const opStart2 = ostart + segmentSize; 1949 BYTE* const opStart3 = opStart2 + segmentSize; 1950 BYTE* const opStart4 = opStart3 + segmentSize; 1951 BYTE* op1 = ostart; 1952 BYTE* op2 = opStart2; 1953 BYTE* op3 = opStart3; 1954 BYTE* op4 = opStart4; 1955 U32 endSignal; 1956 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 1957 U32 const dtLog = dtd.tableLog; 1958 1959 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ 1960 { size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1); 1961 if (HUFv07_isError(errorCode)) return errorCode; } 1962 { size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2); 1963 if (HUFv07_isError(errorCode)) return errorCode; } 1964 { size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3); 1965 if (HUFv07_isError(errorCode)) return errorCode; } 1966 { size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4); 1967 if (HUFv07_isError(errorCode)) return errorCode; } 1968 1969 /* 16-32 symbols per loop (4-8 symbols per stream) */ 1970 endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4); 1971 for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) { 1972 HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1); 1973 HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2); 1974 HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3); 1975 HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4); 1976 HUFv07_DECODE_SYMBOLX2_1(op1, &bitD1); 1977 HUFv07_DECODE_SYMBOLX2_1(op2, &bitD2); 1978 HUFv07_DECODE_SYMBOLX2_1(op3, &bitD3); 1979 HUFv07_DECODE_SYMBOLX2_1(op4, &bitD4); 1980 HUFv07_DECODE_SYMBOLX2_2(op1, &bitD1); 1981 HUFv07_DECODE_SYMBOLX2_2(op2, &bitD2); 1982 HUFv07_DECODE_SYMBOLX2_2(op3, &bitD3); 1983 HUFv07_DECODE_SYMBOLX2_2(op4, &bitD4); 1984 HUFv07_DECODE_SYMBOLX2_0(op1, &bitD1); 1985 HUFv07_DECODE_SYMBOLX2_0(op2, &bitD2); 1986 HUFv07_DECODE_SYMBOLX2_0(op3, &bitD3); 1987 HUFv07_DECODE_SYMBOLX2_0(op4, &bitD4); 1988 endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4); 1989 } 1990 1991 /* check corruption */ 1992 if (op1 > opStart2) return ERROR(corruption_detected); 1993 if (op2 > opStart3) return ERROR(corruption_detected); 1994 if (op3 > opStart4) return ERROR(corruption_detected); 1995 /* note : op4 supposed already verified within main loop */ 1996 1997 /* finish bitStreams one by one */ 1998 HUFv07_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog); 1999 HUFv07_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog); 2000 HUFv07_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog); 2001 HUFv07_decodeStreamX2(op4, &bitD4, oend, dt, dtLog); 2002 2003 /* check */ 2004 endSignal = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4); 2005 if (!endSignal) return ERROR(corruption_detected); 2006 2007 /* decoded size */ 2008 return dstSize; 2009 } 2010 } 2011 2012 2013 size_t HUFv07_decompress4X2_usingDTable( 2014 void* dst, size_t dstSize, 2015 const void* cSrc, size_t cSrcSize, 2016 const HUFv07_DTable* DTable) 2017 { 2018 DTableDesc dtd = HUFv07_getDTableDesc(DTable); 2019 if (dtd.tableType != 0) return ERROR(GENERIC); 2020 return HUFv07_decompress4X2_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); 2021 } 2022 2023 2024 size_t HUFv07_decompress4X2_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2025 { 2026 const BYTE* ip = (const BYTE*) cSrc; 2027 2028 size_t const hSize = HUFv07_readDTableX2 (dctx, cSrc, cSrcSize); 2029 if (HUFv07_isError(hSize)) return hSize; 2030 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 2031 ip += hSize; cSrcSize -= hSize; 2032 2033 return HUFv07_decompress4X2_usingDTable_internal (dst, dstSize, ip, cSrcSize, dctx); 2034 } 2035 2036 size_t HUFv07_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2037 { 2038 HUFv07_CREATE_STATIC_DTABLEX2(DTable, HUFv07_TABLELOG_MAX); 2039 return HUFv07_decompress4X2_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); 2040 } 2041 2042 2043 /* *************************/ 2044 /* double-symbols decoding */ 2045 /* *************************/ 2046 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUFv07_DEltX4; /* double-symbols decoding */ 2047 2048 typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t; 2049 2050 static void HUFv07_fillDTableX4Level2(HUFv07_DEltX4* DTable, U32 sizeLog, const U32 consumed, 2051 const U32* rankValOrigin, const int minWeight, 2052 const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, 2053 U32 nbBitsBaseline, U16 baseSeq) 2054 { 2055 HUFv07_DEltX4 DElt; 2056 U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1]; 2057 2058 /* get pre-calculated rankVal */ 2059 memcpy(rankVal, rankValOrigin, sizeof(rankVal)); 2060 2061 /* fill skipped values */ 2062 if (minWeight>1) { 2063 U32 i, skipSize = rankVal[minWeight]; 2064 MEM_writeLE16(&(DElt.sequence), baseSeq); 2065 DElt.nbBits = (BYTE)(consumed); 2066 DElt.length = 1; 2067 for (i = 0; i < skipSize; i++) 2068 DTable[i] = DElt; 2069 } 2070 2071 /* fill DTable */ 2072 { U32 s; for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */ 2073 const U32 symbol = sortedSymbols[s].symbol; 2074 const U32 weight = sortedSymbols[s].weight; 2075 const U32 nbBits = nbBitsBaseline - weight; 2076 const U32 length = 1 << (sizeLog-nbBits); 2077 const U32 start = rankVal[weight]; 2078 U32 i = start; 2079 const U32 end = start + length; 2080 2081 MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8))); 2082 DElt.nbBits = (BYTE)(nbBits + consumed); 2083 DElt.length = 2; 2084 do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */ 2085 2086 rankVal[weight] += length; 2087 }} 2088 } 2089 2090 typedef U32 rankVal_t[HUFv07_TABLELOG_ABSOLUTEMAX][HUFv07_TABLELOG_ABSOLUTEMAX + 1]; 2091 2092 static void HUFv07_fillDTableX4(HUFv07_DEltX4* DTable, const U32 targetLog, 2093 const sortedSymbol_t* sortedList, const U32 sortedListSize, 2094 const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight, 2095 const U32 nbBitsBaseline) 2096 { 2097 U32 rankVal[HUFv07_TABLELOG_ABSOLUTEMAX + 1]; 2098 const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */ 2099 const U32 minBits = nbBitsBaseline - maxWeight; 2100 U32 s; 2101 2102 memcpy(rankVal, rankValOrigin, sizeof(rankVal)); 2103 2104 /* fill DTable */ 2105 for (s=0; s<sortedListSize; s++) { 2106 const U16 symbol = sortedList[s].symbol; 2107 const U32 weight = sortedList[s].weight; 2108 const U32 nbBits = nbBitsBaseline - weight; 2109 const U32 start = rankVal[weight]; 2110 const U32 length = 1 << (targetLog-nbBits); 2111 2112 if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */ 2113 U32 sortedRank; 2114 int minWeight = nbBits + scaleLog; 2115 if (minWeight < 1) minWeight = 1; 2116 sortedRank = rankStart[minWeight]; 2117 HUFv07_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits, 2118 rankValOrigin[nbBits], minWeight, 2119 sortedList+sortedRank, sortedListSize-sortedRank, 2120 nbBitsBaseline, symbol); 2121 } else { 2122 HUFv07_DEltX4 DElt; 2123 MEM_writeLE16(&(DElt.sequence), symbol); 2124 DElt.nbBits = (BYTE)(nbBits); 2125 DElt.length = 1; 2126 { U32 u; 2127 const U32 end = start + length; 2128 for (u = start; u < end; u++) DTable[u] = DElt; 2129 } } 2130 rankVal[weight] += length; 2131 } 2132 } 2133 2134 size_t HUFv07_readDTableX4 (HUFv07_DTable* DTable, const void* src, size_t srcSize) 2135 { 2136 BYTE weightList[HUFv07_SYMBOLVALUE_MAX + 1]; 2137 sortedSymbol_t sortedSymbol[HUFv07_SYMBOLVALUE_MAX + 1]; 2138 U32 rankStats[HUFv07_TABLELOG_ABSOLUTEMAX + 1] = { 0 }; 2139 U32 rankStart0[HUFv07_TABLELOG_ABSOLUTEMAX + 2] = { 0 }; 2140 U32* const rankStart = rankStart0+1; 2141 rankVal_t rankVal; 2142 U32 tableLog, maxW, sizeOfSort, nbSymbols; 2143 DTableDesc dtd = HUFv07_getDTableDesc(DTable); 2144 U32 const maxTableLog = dtd.maxTableLog; 2145 size_t iSize; 2146 void* dtPtr = DTable+1; /* force compiler to avoid strict-aliasing */ 2147 HUFv07_DEltX4* const dt = (HUFv07_DEltX4*)dtPtr; 2148 2149 HUFv07_STATIC_ASSERT(sizeof(HUFv07_DEltX4) == sizeof(HUFv07_DTable)); /* if compilation fails here, assertion is false */ 2150 if (maxTableLog > HUFv07_TABLELOG_ABSOLUTEMAX) return ERROR(tableLog_tooLarge); 2151 //memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */ 2152 2153 iSize = HUFv07_readStats(weightList, HUFv07_SYMBOLVALUE_MAX + 1, rankStats, &nbSymbols, &tableLog, src, srcSize); 2154 if (HUFv07_isError(iSize)) return iSize; 2155 2156 /* check result */ 2157 if (tableLog > maxTableLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */ 2158 2159 /* find maxWeight */ 2160 for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */ 2161 2162 /* Get start index of each weight */ 2163 { U32 w, nextRankStart = 0; 2164 for (w=1; w<maxW+1; w++) { 2165 U32 current = nextRankStart; 2166 nextRankStart += rankStats[w]; 2167 rankStart[w] = current; 2168 } 2169 rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/ 2170 sizeOfSort = nextRankStart; 2171 } 2172 2173 /* sort symbols by weight */ 2174 { U32 s; 2175 for (s=0; s<nbSymbols; s++) { 2176 U32 const w = weightList[s]; 2177 U32 const r = rankStart[w]++; 2178 sortedSymbol[r].symbol = (BYTE)s; 2179 sortedSymbol[r].weight = (BYTE)w; 2180 } 2181 rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */ 2182 } 2183 2184 /* Build rankVal */ 2185 { U32* const rankVal0 = rankVal[0]; 2186 { int const rescale = (maxTableLog-tableLog) - 1; /* tableLog <= maxTableLog */ 2187 U32 nextRankVal = 0; 2188 U32 w; 2189 for (w=1; w<maxW+1; w++) { 2190 U32 current = nextRankVal; 2191 nextRankVal += rankStats[w] << (w+rescale); 2192 rankVal0[w] = current; 2193 } } 2194 { U32 const minBits = tableLog+1 - maxW; 2195 U32 consumed; 2196 for (consumed = minBits; consumed < maxTableLog - minBits + 1; consumed++) { 2197 U32* const rankValPtr = rankVal[consumed]; 2198 U32 w; 2199 for (w = 1; w < maxW+1; w++) { 2200 rankValPtr[w] = rankVal0[w] >> consumed; 2201 } } } } 2202 2203 HUFv07_fillDTableX4(dt, maxTableLog, 2204 sortedSymbol, sizeOfSort, 2205 rankStart0, rankVal, maxW, 2206 tableLog+1); 2207 2208 dtd.tableLog = (BYTE)maxTableLog; 2209 dtd.tableType = 1; 2210 memcpy(DTable, &dtd, sizeof(dtd)); 2211 return iSize; 2212 } 2213 2214 2215 static U32 HUFv07_decodeSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog) 2216 { 2217 const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ 2218 memcpy(op, dt+val, 2); 2219 BITv07_skipBits(DStream, dt[val].nbBits); 2220 return dt[val].length; 2221 } 2222 2223 static U32 HUFv07_decodeLastSymbolX4(void* op, BITv07_DStream_t* DStream, const HUFv07_DEltX4* dt, const U32 dtLog) 2224 { 2225 const size_t val = BITv07_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */ 2226 memcpy(op, dt+val, 1); 2227 if (dt[val].length==1) BITv07_skipBits(DStream, dt[val].nbBits); 2228 else { 2229 if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) { 2230 BITv07_skipBits(DStream, dt[val].nbBits); 2231 if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8)) 2232 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */ 2233 } } 2234 return 1; 2235 } 2236 2237 2238 #define HUFv07_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \ 2239 ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) 2240 2241 #define HUFv07_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \ 2242 if (MEM_64bits() || (HUFv07_TABLELOG_MAX<=12)) \ 2243 ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) 2244 2245 #define HUFv07_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \ 2246 if (MEM_64bits()) \ 2247 ptr += HUFv07_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog) 2248 2249 static inline size_t HUFv07_decodeStreamX4(BYTE* p, BITv07_DStream_t* bitDPtr, BYTE* const pEnd, const HUFv07_DEltX4* const dt, const U32 dtLog) 2250 { 2251 BYTE* const pStart = p; 2252 2253 /* up to 8 symbols at a time */ 2254 while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p < pEnd-7)) { 2255 HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr); 2256 HUFv07_DECODE_SYMBOLX4_1(p, bitDPtr); 2257 HUFv07_DECODE_SYMBOLX4_2(p, bitDPtr); 2258 HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr); 2259 } 2260 2261 /* closer to end : up to 2 symbols at a time */ 2262 while ((BITv07_reloadDStream(bitDPtr) == BITv07_DStream_unfinished) && (p <= pEnd-2)) 2263 HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr); 2264 2265 while (p <= pEnd-2) 2266 HUFv07_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */ 2267 2268 if (p < pEnd) 2269 p += HUFv07_decodeLastSymbolX4(p, bitDPtr, dt, dtLog); 2270 2271 return p-pStart; 2272 } 2273 2274 2275 static size_t HUFv07_decompress1X4_usingDTable_internal( 2276 void* dst, size_t dstSize, 2277 const void* cSrc, size_t cSrcSize, 2278 const HUFv07_DTable* DTable) 2279 { 2280 BITv07_DStream_t bitD; 2281 2282 /* Init */ 2283 { size_t const errorCode = BITv07_initDStream(&bitD, cSrc, cSrcSize); 2284 if (HUFv07_isError(errorCode)) return errorCode; 2285 } 2286 2287 /* decode */ 2288 { BYTE* const ostart = (BYTE*) dst; 2289 BYTE* const oend = ostart + dstSize; 2290 const void* const dtPtr = DTable+1; /* force compiler to not use strict-aliasing */ 2291 const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr; 2292 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 2293 HUFv07_decodeStreamX4(ostart, &bitD, oend, dt, dtd.tableLog); 2294 } 2295 2296 /* check */ 2297 if (!BITv07_endOfDStream(&bitD)) return ERROR(corruption_detected); 2298 2299 /* decoded size */ 2300 return dstSize; 2301 } 2302 2303 size_t HUFv07_decompress1X4_usingDTable( 2304 void* dst, size_t dstSize, 2305 const void* cSrc, size_t cSrcSize, 2306 const HUFv07_DTable* DTable) 2307 { 2308 DTableDesc dtd = HUFv07_getDTableDesc(DTable); 2309 if (dtd.tableType != 1) return ERROR(GENERIC); 2310 return HUFv07_decompress1X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); 2311 } 2312 2313 size_t HUFv07_decompress1X4_DCtx (HUFv07_DTable* DCtx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2314 { 2315 const BYTE* ip = (const BYTE*) cSrc; 2316 2317 size_t const hSize = HUFv07_readDTableX4 (DCtx, cSrc, cSrcSize); 2318 if (HUFv07_isError(hSize)) return hSize; 2319 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 2320 ip += hSize; cSrcSize -= hSize; 2321 2322 return HUFv07_decompress1X4_usingDTable_internal (dst, dstSize, ip, cSrcSize, DCtx); 2323 } 2324 2325 size_t HUFv07_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2326 { 2327 HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX); 2328 return HUFv07_decompress1X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); 2329 } 2330 2331 static size_t HUFv07_decompress4X4_usingDTable_internal( 2332 void* dst, size_t dstSize, 2333 const void* cSrc, size_t cSrcSize, 2334 const HUFv07_DTable* DTable) 2335 { 2336 if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */ 2337 2338 { const BYTE* const istart = (const BYTE*) cSrc; 2339 BYTE* const ostart = (BYTE*) dst; 2340 BYTE* const oend = ostart + dstSize; 2341 const void* const dtPtr = DTable+1; 2342 const HUFv07_DEltX4* const dt = (const HUFv07_DEltX4*)dtPtr; 2343 2344 /* Init */ 2345 BITv07_DStream_t bitD1; 2346 BITv07_DStream_t bitD2; 2347 BITv07_DStream_t bitD3; 2348 BITv07_DStream_t bitD4; 2349 size_t const length1 = MEM_readLE16(istart); 2350 size_t const length2 = MEM_readLE16(istart+2); 2351 size_t const length3 = MEM_readLE16(istart+4); 2352 size_t const length4 = cSrcSize - (length1 + length2 + length3 + 6); 2353 const BYTE* const istart1 = istart + 6; /* jumpTable */ 2354 const BYTE* const istart2 = istart1 + length1; 2355 const BYTE* const istart3 = istart2 + length2; 2356 const BYTE* const istart4 = istart3 + length3; 2357 size_t const segmentSize = (dstSize+3) / 4; 2358 BYTE* const opStart2 = ostart + segmentSize; 2359 BYTE* const opStart3 = opStart2 + segmentSize; 2360 BYTE* const opStart4 = opStart3 + segmentSize; 2361 BYTE* op1 = ostart; 2362 BYTE* op2 = opStart2; 2363 BYTE* op3 = opStart3; 2364 BYTE* op4 = opStart4; 2365 U32 endSignal; 2366 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 2367 U32 const dtLog = dtd.tableLog; 2368 2369 if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */ 2370 { size_t const errorCode = BITv07_initDStream(&bitD1, istart1, length1); 2371 if (HUFv07_isError(errorCode)) return errorCode; } 2372 { size_t const errorCode = BITv07_initDStream(&bitD2, istart2, length2); 2373 if (HUFv07_isError(errorCode)) return errorCode; } 2374 { size_t const errorCode = BITv07_initDStream(&bitD3, istart3, length3); 2375 if (HUFv07_isError(errorCode)) return errorCode; } 2376 { size_t const errorCode = BITv07_initDStream(&bitD4, istart4, length4); 2377 if (HUFv07_isError(errorCode)) return errorCode; } 2378 2379 /* 16-32 symbols per loop (4-8 symbols per stream) */ 2380 endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4); 2381 for ( ; (endSignal==BITv07_DStream_unfinished) && (op4<(oend-7)) ; ) { 2382 HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1); 2383 HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2); 2384 HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3); 2385 HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4); 2386 HUFv07_DECODE_SYMBOLX4_1(op1, &bitD1); 2387 HUFv07_DECODE_SYMBOLX4_1(op2, &bitD2); 2388 HUFv07_DECODE_SYMBOLX4_1(op3, &bitD3); 2389 HUFv07_DECODE_SYMBOLX4_1(op4, &bitD4); 2390 HUFv07_DECODE_SYMBOLX4_2(op1, &bitD1); 2391 HUFv07_DECODE_SYMBOLX4_2(op2, &bitD2); 2392 HUFv07_DECODE_SYMBOLX4_2(op3, &bitD3); 2393 HUFv07_DECODE_SYMBOLX4_2(op4, &bitD4); 2394 HUFv07_DECODE_SYMBOLX4_0(op1, &bitD1); 2395 HUFv07_DECODE_SYMBOLX4_0(op2, &bitD2); 2396 HUFv07_DECODE_SYMBOLX4_0(op3, &bitD3); 2397 HUFv07_DECODE_SYMBOLX4_0(op4, &bitD4); 2398 2399 endSignal = BITv07_reloadDStream(&bitD1) | BITv07_reloadDStream(&bitD2) | BITv07_reloadDStream(&bitD3) | BITv07_reloadDStream(&bitD4); 2400 } 2401 2402 /* check corruption */ 2403 if (op1 > opStart2) return ERROR(corruption_detected); 2404 if (op2 > opStart3) return ERROR(corruption_detected); 2405 if (op3 > opStart4) return ERROR(corruption_detected); 2406 /* note : op4 supposed already verified within main loop */ 2407 2408 /* finish bitStreams one by one */ 2409 HUFv07_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog); 2410 HUFv07_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog); 2411 HUFv07_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog); 2412 HUFv07_decodeStreamX4(op4, &bitD4, oend, dt, dtLog); 2413 2414 /* check */ 2415 { U32 const endCheck = BITv07_endOfDStream(&bitD1) & BITv07_endOfDStream(&bitD2) & BITv07_endOfDStream(&bitD3) & BITv07_endOfDStream(&bitD4); 2416 if (!endCheck) return ERROR(corruption_detected); } 2417 2418 /* decoded size */ 2419 return dstSize; 2420 } 2421 } 2422 2423 2424 size_t HUFv07_decompress4X4_usingDTable( 2425 void* dst, size_t dstSize, 2426 const void* cSrc, size_t cSrcSize, 2427 const HUFv07_DTable* DTable) 2428 { 2429 DTableDesc dtd = HUFv07_getDTableDesc(DTable); 2430 if (dtd.tableType != 1) return ERROR(GENERIC); 2431 return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, cSrc, cSrcSize, DTable); 2432 } 2433 2434 2435 size_t HUFv07_decompress4X4_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2436 { 2437 const BYTE* ip = (const BYTE*) cSrc; 2438 2439 size_t hSize = HUFv07_readDTableX4 (dctx, cSrc, cSrcSize); 2440 if (HUFv07_isError(hSize)) return hSize; 2441 if (hSize >= cSrcSize) return ERROR(srcSize_wrong); 2442 ip += hSize; cSrcSize -= hSize; 2443 2444 return HUFv07_decompress4X4_usingDTable_internal(dst, dstSize, ip, cSrcSize, dctx); 2445 } 2446 2447 size_t HUFv07_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2448 { 2449 HUFv07_CREATE_STATIC_DTABLEX4(DTable, HUFv07_TABLELOG_MAX); 2450 return HUFv07_decompress4X4_DCtx(DTable, dst, dstSize, cSrc, cSrcSize); 2451 } 2452 2453 2454 /* ********************************/ 2455 /* Generic decompression selector */ 2456 /* ********************************/ 2457 2458 size_t HUFv07_decompress1X_usingDTable(void* dst, size_t maxDstSize, 2459 const void* cSrc, size_t cSrcSize, 2460 const HUFv07_DTable* DTable) 2461 { 2462 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 2463 return dtd.tableType ? HUFv07_decompress1X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) : 2464 HUFv07_decompress1X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable); 2465 } 2466 2467 size_t HUFv07_decompress4X_usingDTable(void* dst, size_t maxDstSize, 2468 const void* cSrc, size_t cSrcSize, 2469 const HUFv07_DTable* DTable) 2470 { 2471 DTableDesc const dtd = HUFv07_getDTableDesc(DTable); 2472 return dtd.tableType ? HUFv07_decompress4X4_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable) : 2473 HUFv07_decompress4X2_usingDTable_internal(dst, maxDstSize, cSrc, cSrcSize, DTable); 2474 } 2475 2476 2477 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t; 2478 static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] = 2479 { 2480 /* single, double, quad */ 2481 {{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */ 2482 {{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */ 2483 {{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */ 2484 {{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */ 2485 {{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */ 2486 {{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */ 2487 {{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */ 2488 {{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */ 2489 {{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */ 2490 {{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */ 2491 {{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */ 2492 {{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */ 2493 {{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */ 2494 {{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */ 2495 {{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */ 2496 {{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */ 2497 }; 2498 2499 /** HUFv07_selectDecoder() : 2500 * Tells which decoder is likely to decode faster, 2501 * based on a set of pre-determined metrics. 2502 * @return : 0==HUFv07_decompress4X2, 1==HUFv07_decompress4X4 . 2503 * Assumption : 0 < cSrcSize < dstSize <= 128 KB */ 2504 U32 HUFv07_selectDecoder (size_t dstSize, size_t cSrcSize) 2505 { 2506 /* decoder timing evaluation */ 2507 U32 const Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */ 2508 U32 const D256 = (U32)(dstSize >> 8); 2509 U32 const DTime0 = algoTime[Q][0].tableTime + (algoTime[Q][0].decode256Time * D256); 2510 U32 DTime1 = algoTime[Q][1].tableTime + (algoTime[Q][1].decode256Time * D256); 2511 DTime1 += DTime1 >> 3; /* advantage to algorithm using less memory, for cache eviction */ 2512 2513 return DTime1 < DTime0; 2514 } 2515 2516 2517 typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize); 2518 2519 size_t HUFv07_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2520 { 2521 static const decompressionAlgo decompress[2] = { HUFv07_decompress4X2, HUFv07_decompress4X4 }; 2522 2523 /* validation checks */ 2524 if (dstSize == 0) return ERROR(dstSize_tooSmall); 2525 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ 2526 if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ 2527 if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ 2528 2529 { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize); 2530 return decompress[algoNb](dst, dstSize, cSrc, cSrcSize); 2531 } 2532 2533 //return HUFv07_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */ 2534 //return HUFv07_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */ 2535 } 2536 2537 size_t HUFv07_decompress4X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2538 { 2539 /* validation checks */ 2540 if (dstSize == 0) return ERROR(dstSize_tooSmall); 2541 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ 2542 if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ 2543 if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ 2544 2545 { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize); 2546 return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) : 2547 HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ; 2548 } 2549 } 2550 2551 size_t HUFv07_decompress4X_hufOnly (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2552 { 2553 /* validation checks */ 2554 if (dstSize == 0) return ERROR(dstSize_tooSmall); 2555 if ((cSrcSize >= dstSize) || (cSrcSize <= 1)) return ERROR(corruption_detected); /* invalid */ 2556 2557 { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize); 2558 return algoNb ? HUFv07_decompress4X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) : 2559 HUFv07_decompress4X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ; 2560 } 2561 } 2562 2563 size_t HUFv07_decompress1X_DCtx (HUFv07_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize) 2564 { 2565 /* validation checks */ 2566 if (dstSize == 0) return ERROR(dstSize_tooSmall); 2567 if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */ 2568 if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */ 2569 if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */ 2570 2571 { U32 const algoNb = HUFv07_selectDecoder(dstSize, cSrcSize); 2572 return algoNb ? HUFv07_decompress1X4_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) : 2573 HUFv07_decompress1X2_DCtx(dctx, dst, dstSize, cSrc, cSrcSize) ; 2574 } 2575 } 2576 /* 2577 Common functions of Zstd compression library 2578 Copyright (C) 2015-2016, Yann Collet. 2579 2580 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 2581 2582 Redistribution and use in source and binary forms, with or without 2583 modification, are permitted provided that the following conditions are 2584 met: 2585 * Redistributions of source code must retain the above copyright 2586 notice, this list of conditions and the following disclaimer. 2587 * Redistributions in binary form must reproduce the above 2588 copyright notice, this list of conditions and the following disclaimer 2589 in the documentation and/or other materials provided with the 2590 distribution. 2591 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 2592 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 2593 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 2594 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 2595 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 2596 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 2597 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 2598 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 2599 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 2600 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 2601 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 2602 2603 You can contact the author at : 2604 - zstd homepage : http://www.zstd.net/ 2605 */ 2606 2607 2608 2609 /*-**************************************** 2610 * ZSTD Error Management 2611 ******************************************/ 2612 /*! ZSTDv07_isError() : 2613 * tells if a return value is an error code */ 2614 unsigned ZSTDv07_isError(size_t code) { return ERR_isError(code); } 2615 2616 /*! ZSTDv07_getErrorName() : 2617 * provides error code string from function result (useful for debugging) */ 2618 const char* ZSTDv07_getErrorName(size_t code) { return ERR_getErrorName(code); } 2619 2620 2621 2622 /* ************************************************************** 2623 * ZBUFF Error Management 2624 ****************************************************************/ 2625 unsigned ZBUFFv07_isError(size_t errorCode) { return ERR_isError(errorCode); } 2626 2627 const char* ZBUFFv07_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); } 2628 2629 2630 2631 void* ZSTDv07_defaultAllocFunction(void* opaque, size_t size) 2632 { 2633 void* address = malloc(size); 2634 (void)opaque; 2635 /* printf("alloc %p, %d opaque=%p \n", address, (int)size, opaque); */ 2636 return address; 2637 } 2638 2639 void ZSTDv07_defaultFreeFunction(void* opaque, void* address) 2640 { 2641 (void)opaque; 2642 /* if (address) printf("free %p opaque=%p \n", address, opaque); */ 2643 free(address); 2644 } 2645 /* 2646 zstd_internal - common functions to include 2647 Header File for include 2648 Copyright (C) 2014-2016, Yann Collet. 2649 2650 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 2651 2652 Redistribution and use in source and binary forms, with or without 2653 modification, are permitted provided that the following conditions are 2654 met: 2655 * Redistributions of source code must retain the above copyright 2656 notice, this list of conditions and the following disclaimer. 2657 * Redistributions in binary form must reproduce the above 2658 copyright notice, this list of conditions and the following disclaimer 2659 in the documentation and/or other materials provided with the 2660 distribution. 2661 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 2662 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 2663 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 2664 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 2665 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 2666 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 2667 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 2668 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 2669 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 2670 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 2671 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 2672 2673 You can contact the author at : 2674 - zstd homepage : https://www.zstd.net 2675 */ 2676 #ifndef ZSTDv07_CCOMMON_H_MODULE 2677 #define ZSTDv07_CCOMMON_H_MODULE 2678 2679 2680 /*-************************************* 2681 * Common macros 2682 ***************************************/ 2683 #define MIN(a,b) ((a)<(b) ? (a) : (b)) 2684 #define MAX(a,b) ((a)>(b) ? (a) : (b)) 2685 2686 2687 /*-************************************* 2688 * Common constants 2689 ***************************************/ 2690 #define ZSTDv07_OPT_NUM (1<<12) 2691 #define ZSTDv07_DICT_MAGIC 0xEC30A437 /* v0.7 */ 2692 2693 #define ZSTDv07_REP_NUM 3 2694 #define ZSTDv07_REP_INIT ZSTDv07_REP_NUM 2695 #define ZSTDv07_REP_MOVE (ZSTDv07_REP_NUM-1) 2696 static const U32 repStartValue[ZSTDv07_REP_NUM] = { 1, 4, 8 }; 2697 2698 #define KB *(1 <<10) 2699 #define MB *(1 <<20) 2700 #define GB *(1U<<30) 2701 2702 #define BIT7 128 2703 #define BIT6 64 2704 #define BIT5 32 2705 #define BIT4 16 2706 #define BIT1 2 2707 #define BIT0 1 2708 2709 #define ZSTDv07_WINDOWLOG_ABSOLUTEMIN 10 2710 static const size_t ZSTDv07_fcs_fieldSize[4] = { 0, 2, 4, 8 }; 2711 static const size_t ZSTDv07_did_fieldSize[4] = { 0, 1, 2, 4 }; 2712 2713 #define ZSTDv07_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */ 2714 static const size_t ZSTDv07_blockHeaderSize = ZSTDv07_BLOCKHEADERSIZE; 2715 typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t; 2716 2717 #define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */ 2718 #define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */ + MIN_SEQUENCES_SIZE /* nbSeq==0 */) /* for a non-null block */ 2719 2720 #define HufLog 12 2721 typedef enum { lbt_huffman, lbt_repeat, lbt_raw, lbt_rle } litBlockType_t; 2722 2723 #define LONGNBSEQ 0x7F00 2724 2725 #define MINMATCH 3 2726 #define EQUAL_READ32 4 2727 2728 #define Litbits 8 2729 #define MaxLit ((1<<Litbits) - 1) 2730 #define MaxML 52 2731 #define MaxLL 35 2732 #define MaxOff 28 2733 #define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */ 2734 #define MLFSELog 9 2735 #define LLFSELog 9 2736 #define OffFSELog 8 2737 2738 #define FSEv07_ENCODING_RAW 0 2739 #define FSEv07_ENCODING_RLE 1 2740 #define FSEv07_ENCODING_STATIC 2 2741 #define FSEv07_ENCODING_DYNAMIC 3 2742 2743 static const U32 LL_bits[MaxLL+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2744 1, 1, 1, 1, 2, 2, 3, 3, 4, 6, 7, 8, 9,10,11,12, 2745 13,14,15,16 }; 2746 static const S16 LL_defaultNorm[MaxLL+1] = { 4, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2747 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 1, 1, 1, 1, 1, 2748 -1,-1,-1,-1 }; 2749 static const U32 LL_defaultNormLog = 6; 2750 2751 static const U32 ML_bits[MaxML+1] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2752 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2753 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 7, 8, 9,10,11, 2754 12,13,14,15,16 }; 2755 static const S16 ML_defaultNorm[MaxML+1] = { 1, 4, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2756 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2757 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,-1,-1, 2758 -1,-1,-1,-1,-1 }; 2759 static const U32 ML_defaultNormLog = 6; 2760 2761 static const S16 OF_defaultNorm[MaxOff+1] = { 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2762 1, 1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1 }; 2763 static const U32 OF_defaultNormLog = 5; 2764 2765 2766 /*-******************************************* 2767 * Shared functions to include for inlining 2768 *********************************************/ 2769 static void ZSTDv07_copy8(void* dst, const void* src) { memcpy(dst, src, 8); } 2770 #define COPY8(d,s) { ZSTDv07_copy8(d,s); d+=8; s+=8; } 2771 2772 /*! ZSTDv07_wildcopy() : 2773 * custom version of memcpy(), can copy up to 7 bytes too many (8 bytes if length==0) */ 2774 #define WILDCOPY_OVERLENGTH 8 2775 MEM_STATIC void ZSTDv07_wildcopy(void* dst, const void* src, ptrdiff_t length) 2776 { 2777 const BYTE* ip = (const BYTE*)src; 2778 BYTE* op = (BYTE*)dst; 2779 BYTE* const oend = op + length; 2780 do 2781 COPY8(op, ip) 2782 while (op < oend); 2783 } 2784 2785 2786 /*-******************************************* 2787 * Private interfaces 2788 *********************************************/ 2789 typedef struct ZSTDv07_stats_s ZSTDv07_stats_t; 2790 2791 typedef struct { 2792 U32 off; 2793 U32 len; 2794 } ZSTDv07_match_t; 2795 2796 typedef struct { 2797 U32 price; 2798 U32 off; 2799 U32 mlen; 2800 U32 litlen; 2801 U32 rep[ZSTDv07_REP_INIT]; 2802 } ZSTDv07_optimal_t; 2803 2804 struct ZSTDv07_stats_s { U32 unused; }; 2805 2806 typedef struct { 2807 void* buffer; 2808 U32* offsetStart; 2809 U32* offset; 2810 BYTE* offCodeStart; 2811 BYTE* litStart; 2812 BYTE* lit; 2813 U16* litLengthStart; 2814 U16* litLength; 2815 BYTE* llCodeStart; 2816 U16* matchLengthStart; 2817 U16* matchLength; 2818 BYTE* mlCodeStart; 2819 U32 longLengthID; /* 0 == no longLength; 1 == Lit.longLength; 2 == Match.longLength; */ 2820 U32 longLengthPos; 2821 /* opt */ 2822 ZSTDv07_optimal_t* priceTable; 2823 ZSTDv07_match_t* matchTable; 2824 U32* matchLengthFreq; 2825 U32* litLengthFreq; 2826 U32* litFreq; 2827 U32* offCodeFreq; 2828 U32 matchLengthSum; 2829 U32 matchSum; 2830 U32 litLengthSum; 2831 U32 litSum; 2832 U32 offCodeSum; 2833 U32 log2matchLengthSum; 2834 U32 log2matchSum; 2835 U32 log2litLengthSum; 2836 U32 log2litSum; 2837 U32 log2offCodeSum; 2838 U32 factor; 2839 U32 cachedPrice; 2840 U32 cachedLitLength; 2841 const BYTE* cachedLiterals; 2842 ZSTDv07_stats_t stats; 2843 } seqStore_t; 2844 2845 void ZSTDv07_seqToCodes(const seqStore_t* seqStorePtr, size_t const nbSeq); 2846 2847 /* custom memory allocation functions */ 2848 static const ZSTDv07_customMem defaultCustomMem = { ZSTDv07_defaultAllocFunction, ZSTDv07_defaultFreeFunction, NULL }; 2849 2850 #endif /* ZSTDv07_CCOMMON_H_MODULE */ 2851 /* 2852 zstd - standard compression library 2853 Copyright (C) 2014-2016, Yann Collet. 2854 2855 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 2856 2857 Redistribution and use in source and binary forms, with or without 2858 modification, are permitted provided that the following conditions are 2859 met: 2860 * Redistributions of source code must retain the above copyright 2861 notice, this list of conditions and the following disclaimer. 2862 * Redistributions in binary form must reproduce the above 2863 copyright notice, this list of conditions and the following disclaimer 2864 in the documentation and/or other materials provided with the 2865 distribution. 2866 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 2867 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 2868 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 2869 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 2870 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 2871 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 2872 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 2873 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 2874 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 2875 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 2876 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 2877 2878 You can contact the author at : 2879 - zstd homepage : http://www.zstd.net 2880 */ 2881 2882 /* *************************************************************** 2883 * Tuning parameters 2884 *****************************************************************/ 2885 /*! 2886 * HEAPMODE : 2887 * Select how default decompression function ZSTDv07_decompress() will allocate memory, 2888 * in memory stack (0), or in memory heap (1, requires malloc()) 2889 */ 2890 #ifndef ZSTDv07_HEAPMODE 2891 # define ZSTDv07_HEAPMODE 1 2892 #endif 2893 2894 2895 /*-******************************************************* 2896 * Compiler specifics 2897 *********************************************************/ 2898 #ifdef _MSC_VER /* Visual Studio */ 2899 # include <intrin.h> /* For Visual 2005 */ 2900 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */ 2901 # pragma warning(disable : 4324) /* disable: C4324: padded structure */ 2902 # pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */ 2903 #endif 2904 2905 2906 /*-************************************* 2907 * Macros 2908 ***************************************/ 2909 #define ZSTDv07_isError ERR_isError /* for inlining */ 2910 #define FSEv07_isError ERR_isError 2911 #define HUFv07_isError ERR_isError 2912 2913 2914 /*_******************************************************* 2915 * Memory operations 2916 **********************************************************/ 2917 static void ZSTDv07_copy4(void* dst, const void* src) { memcpy(dst, src, 4); } 2918 2919 2920 /*-************************************************************* 2921 * Context management 2922 ***************************************************************/ 2923 typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader, 2924 ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock, 2925 ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTDv07_dStage; 2926 2927 struct ZSTDv07_DCtx_s 2928 { 2929 FSEv07_DTable LLTable[FSEv07_DTABLE_SIZE_U32(LLFSELog)]; 2930 FSEv07_DTable OffTable[FSEv07_DTABLE_SIZE_U32(OffFSELog)]; 2931 FSEv07_DTable MLTable[FSEv07_DTABLE_SIZE_U32(MLFSELog)]; 2932 HUFv07_DTable hufTable[HUFv07_DTABLE_SIZE(HufLog)]; /* can accommodate HUFv07_decompress4X */ 2933 const void* previousDstEnd; 2934 const void* base; 2935 const void* vBase; 2936 const void* dictEnd; 2937 size_t expected; 2938 U32 rep[3]; 2939 ZSTDv07_frameParams fParams; 2940 blockType_t bType; /* used in ZSTDv07_decompressContinue(), to transfer blockType between header decoding and block decoding stages */ 2941 ZSTDv07_dStage stage; 2942 U32 litEntropy; 2943 U32 fseEntropy; 2944 XXH64_state_t xxhState; 2945 size_t headerSize; 2946 U32 dictID; 2947 const BYTE* litPtr; 2948 ZSTDv07_customMem customMem; 2949 size_t litSize; 2950 BYTE litBuffer[ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + WILDCOPY_OVERLENGTH]; 2951 BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX]; 2952 }; /* typedef'd to ZSTDv07_DCtx within "zstd_static.h" */ 2953 2954 int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx); 2955 2956 size_t ZSTDv07_sizeofDCtx (const ZSTDv07_DCtx* dctx) { return sizeof(*dctx); } 2957 2958 size_t ZSTDv07_estimateDCtxSize(void) { return sizeof(ZSTDv07_DCtx); } 2959 2960 size_t ZSTDv07_decompressBegin(ZSTDv07_DCtx* dctx) 2961 { 2962 dctx->expected = ZSTDv07_frameHeaderSize_min; 2963 dctx->stage = ZSTDds_getFrameHeaderSize; 2964 dctx->previousDstEnd = NULL; 2965 dctx->base = NULL; 2966 dctx->vBase = NULL; 2967 dctx->dictEnd = NULL; 2968 dctx->hufTable[0] = (HUFv07_DTable)((HufLog)*0x1000001); 2969 dctx->litEntropy = dctx->fseEntropy = 0; 2970 dctx->dictID = 0; 2971 { int i; for (i=0; i<ZSTDv07_REP_NUM; i++) dctx->rep[i] = repStartValue[i]; } 2972 return 0; 2973 } 2974 2975 ZSTDv07_DCtx* ZSTDv07_createDCtx_advanced(ZSTDv07_customMem customMem) 2976 { 2977 ZSTDv07_DCtx* dctx; 2978 2979 if (!customMem.customAlloc && !customMem.customFree) 2980 customMem = defaultCustomMem; 2981 2982 if (!customMem.customAlloc || !customMem.customFree) 2983 return NULL; 2984 2985 dctx = (ZSTDv07_DCtx*) customMem.customAlloc(customMem.opaque, sizeof(ZSTDv07_DCtx)); 2986 if (!dctx) return NULL; 2987 memcpy(&dctx->customMem, &customMem, sizeof(ZSTDv07_customMem)); 2988 ZSTDv07_decompressBegin(dctx); 2989 return dctx; 2990 } 2991 2992 ZSTDv07_DCtx* ZSTDv07_createDCtx(void) 2993 { 2994 return ZSTDv07_createDCtx_advanced(defaultCustomMem); 2995 } 2996 2997 size_t ZSTDv07_freeDCtx(ZSTDv07_DCtx* dctx) 2998 { 2999 if (dctx==NULL) return 0; /* support free on NULL */ 3000 dctx->customMem.customFree(dctx->customMem.opaque, dctx); 3001 return 0; /* reserved as a potential error code in the future */ 3002 } 3003 3004 void ZSTDv07_copyDCtx(ZSTDv07_DCtx* dstDCtx, const ZSTDv07_DCtx* srcDCtx) 3005 { 3006 memcpy(dstDCtx, srcDCtx, 3007 sizeof(ZSTDv07_DCtx) - (ZSTDv07_BLOCKSIZE_ABSOLUTEMAX+WILDCOPY_OVERLENGTH + ZSTDv07_frameHeaderSize_max)); /* no need to copy workspace */ 3008 } 3009 3010 3011 /*-************************************************************* 3012 * Decompression section 3013 ***************************************************************/ 3014 3015 /* Frame format description 3016 Frame Header - [ Block Header - Block ] - Frame End 3017 1) Frame Header 3018 - 4 bytes - Magic Number : ZSTDv07_MAGICNUMBER (defined within zstd.h) 3019 - 1 byte - Frame Descriptor 3020 2) Block Header 3021 - 3 bytes, starting with a 2-bits descriptor 3022 Uncompressed, Compressed, Frame End, unused 3023 3) Block 3024 See Block Format Description 3025 4) Frame End 3026 - 3 bytes, compatible with Block Header 3027 */ 3028 3029 3030 /* Frame Header : 3031 3032 1 byte - FrameHeaderDescription : 3033 bit 0-1 : dictID (0, 1, 2 or 4 bytes) 3034 bit 2 : checksumFlag 3035 bit 3 : reserved (must be zero) 3036 bit 4 : reserved (unused, can be any value) 3037 bit 5 : Single Segment (if 1, WindowLog byte is not present) 3038 bit 6-7 : FrameContentFieldSize (0, 2, 4, or 8) 3039 if (SkippedWindowLog && !FrameContentFieldsize) FrameContentFieldsize=1; 3040 3041 Optional : WindowLog (0 or 1 byte) 3042 bit 0-2 : octal Fractional (1/8th) 3043 bit 3-7 : Power of 2, with 0 = 1 KB (up to 2 TB) 3044 3045 Optional : dictID (0, 1, 2 or 4 bytes) 3046 Automatic adaptation 3047 0 : no dictID 3048 1 : 1 - 255 3049 2 : 256 - 65535 3050 4 : all other values 3051 3052 Optional : content size (0, 1, 2, 4 or 8 bytes) 3053 0 : unknown (fcfs==0 and swl==0) 3054 1 : 0-255 bytes (fcfs==0 and swl==1) 3055 2 : 256 - 65535+256 (fcfs==1) 3056 4 : 0 - 4GB-1 (fcfs==2) 3057 8 : 0 - 16EB-1 (fcfs==3) 3058 */ 3059 3060 3061 /* Compressed Block, format description 3062 3063 Block = Literal Section - Sequences Section 3064 Prerequisite : size of (compressed) block, maximum size of regenerated data 3065 3066 1) Literal Section 3067 3068 1.1) Header : 1-5 bytes 3069 flags: 2 bits 3070 00 compressed by Huff0 3071 01 unused 3072 10 is Raw (uncompressed) 3073 11 is Rle 3074 Note : using 01 => Huff0 with precomputed table ? 3075 Note : delta map ? => compressed ? 3076 3077 1.1.1) Huff0-compressed literal block : 3-5 bytes 3078 srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream 3079 srcSize < 1 KB => 3 bytes (2-2-10-10) 3080 srcSize < 16KB => 4 bytes (2-2-14-14) 3081 else => 5 bytes (2-2-18-18) 3082 big endian convention 3083 3084 1.1.2) Raw (uncompressed) literal block header : 1-3 bytes 3085 size : 5 bits: (IS_RAW<<6) + (0<<4) + size 3086 12 bits: (IS_RAW<<6) + (2<<4) + (size>>8) 3087 size&255 3088 20 bits: (IS_RAW<<6) + (3<<4) + (size>>16) 3089 size>>8&255 3090 size&255 3091 3092 1.1.3) Rle (repeated single byte) literal block header : 1-3 bytes 3093 size : 5 bits: (IS_RLE<<6) + (0<<4) + size 3094 12 bits: (IS_RLE<<6) + (2<<4) + (size>>8) 3095 size&255 3096 20 bits: (IS_RLE<<6) + (3<<4) + (size>>16) 3097 size>>8&255 3098 size&255 3099 3100 1.1.4) Huff0-compressed literal block, using precomputed CTables : 3-5 bytes 3101 srcSize < 1 KB => 3 bytes (2-2-10-10) => single stream 3102 srcSize < 1 KB => 3 bytes (2-2-10-10) 3103 srcSize < 16KB => 4 bytes (2-2-14-14) 3104 else => 5 bytes (2-2-18-18) 3105 big endian convention 3106 3107 1- CTable available (stored into workspace ?) 3108 2- Small input (fast heuristic ? Full comparison ? depend on clevel ?) 3109 3110 3111 1.2) Literal block content 3112 3113 1.2.1) Huff0 block, using sizes from header 3114 See Huff0 format 3115 3116 1.2.2) Huff0 block, using prepared table 3117 3118 1.2.3) Raw content 3119 3120 1.2.4) single byte 3121 3122 3123 2) Sequences section 3124 TO DO 3125 */ 3126 3127 /** ZSTDv07_frameHeaderSize() : 3128 * srcSize must be >= ZSTDv07_frameHeaderSize_min. 3129 * @return : size of the Frame Header */ 3130 static size_t ZSTDv07_frameHeaderSize(const void* src, size_t srcSize) 3131 { 3132 if (srcSize < ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong); 3133 { BYTE const fhd = ((const BYTE*)src)[4]; 3134 U32 const dictID= fhd & 3; 3135 U32 const directMode = (fhd >> 5) & 1; 3136 U32 const fcsId = fhd >> 6; 3137 return ZSTDv07_frameHeaderSize_min + !directMode + ZSTDv07_did_fieldSize[dictID] + ZSTDv07_fcs_fieldSize[fcsId] 3138 + (directMode && !ZSTDv07_fcs_fieldSize[fcsId]); 3139 } 3140 } 3141 3142 3143 /** ZSTDv07_getFrameParams() : 3144 * decode Frame Header, or require larger `srcSize`. 3145 * @return : 0, `fparamsPtr` is correctly filled, 3146 * >0, `srcSize` is too small, result is expected `srcSize`, 3147 * or an error code, which can be tested using ZSTDv07_isError() */ 3148 size_t ZSTDv07_getFrameParams(ZSTDv07_frameParams* fparamsPtr, const void* src, size_t srcSize) 3149 { 3150 const BYTE* ip = (const BYTE*)src; 3151 3152 if (srcSize < ZSTDv07_frameHeaderSize_min) return ZSTDv07_frameHeaderSize_min; 3153 if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) { 3154 if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) { 3155 if (srcSize < ZSTDv07_skippableHeaderSize) return ZSTDv07_skippableHeaderSize; /* magic number + skippable frame length */ 3156 memset(fparamsPtr, 0, sizeof(*fparamsPtr)); 3157 fparamsPtr->frameContentSize = MEM_readLE32((const char *)src + 4); 3158 fparamsPtr->windowSize = 0; /* windowSize==0 means a frame is skippable */ 3159 return 0; 3160 } 3161 return ERROR(prefix_unknown); 3162 } 3163 3164 /* ensure there is enough `srcSize` to fully read/decode frame header */ 3165 { size_t const fhsize = ZSTDv07_frameHeaderSize(src, srcSize); 3166 if (srcSize < fhsize) return fhsize; } 3167 3168 { BYTE const fhdByte = ip[4]; 3169 size_t pos = 5; 3170 U32 const dictIDSizeCode = fhdByte&3; 3171 U32 const checksumFlag = (fhdByte>>2)&1; 3172 U32 const directMode = (fhdByte>>5)&1; 3173 U32 const fcsID = fhdByte>>6; 3174 U32 const windowSizeMax = 1U << ZSTDv07_WINDOWLOG_MAX; 3175 U32 windowSize = 0; 3176 U32 dictID = 0; 3177 U64 frameContentSize = 0; 3178 if ((fhdByte & 0x08) != 0) return ERROR(frameParameter_unsupported); /* reserved bits, which must be zero */ 3179 if (!directMode) { 3180 BYTE const wlByte = ip[pos++]; 3181 U32 const windowLog = (wlByte >> 3) + ZSTDv07_WINDOWLOG_ABSOLUTEMIN; 3182 if (windowLog > ZSTDv07_WINDOWLOG_MAX) return ERROR(frameParameter_unsupported); 3183 windowSize = (1U << windowLog); 3184 windowSize += (windowSize >> 3) * (wlByte&7); 3185 } 3186 3187 switch(dictIDSizeCode) 3188 { 3189 default: /* impossible */ 3190 case 0 : break; 3191 case 1 : dictID = ip[pos]; pos++; break; 3192 case 2 : dictID = MEM_readLE16(ip+pos); pos+=2; break; 3193 case 3 : dictID = MEM_readLE32(ip+pos); pos+=4; break; 3194 } 3195 switch(fcsID) 3196 { 3197 default: /* impossible */ 3198 case 0 : if (directMode) frameContentSize = ip[pos]; break; 3199 case 1 : frameContentSize = MEM_readLE16(ip+pos)+256; break; 3200 case 2 : frameContentSize = MEM_readLE32(ip+pos); break; 3201 case 3 : frameContentSize = MEM_readLE64(ip+pos); break; 3202 } 3203 if (!windowSize) windowSize = (U32)frameContentSize; 3204 if (windowSize > windowSizeMax) return ERROR(frameParameter_unsupported); 3205 fparamsPtr->frameContentSize = frameContentSize; 3206 fparamsPtr->windowSize = windowSize; 3207 fparamsPtr->dictID = dictID; 3208 fparamsPtr->checksumFlag = checksumFlag; 3209 } 3210 return 0; 3211 } 3212 3213 3214 /** ZSTDv07_getDecompressedSize() : 3215 * compatible with legacy mode 3216 * @return : decompressed size if known, 0 otherwise 3217 note : 0 can mean any of the following : 3218 - decompressed size is not provided within frame header 3219 - frame header unknown / not supported 3220 - frame header not completely provided (`srcSize` too small) */ 3221 unsigned long long ZSTDv07_getDecompressedSize(const void* src, size_t srcSize) 3222 { 3223 { ZSTDv07_frameParams fparams; 3224 size_t const frResult = ZSTDv07_getFrameParams(&fparams, src, srcSize); 3225 if (frResult!=0) return 0; 3226 return fparams.frameContentSize; 3227 } 3228 } 3229 3230 3231 /** ZSTDv07_decodeFrameHeader() : 3232 * `srcSize` must be the size provided by ZSTDv07_frameHeaderSize(). 3233 * @return : 0 if success, or an error code, which can be tested using ZSTDv07_isError() */ 3234 static size_t ZSTDv07_decodeFrameHeader(ZSTDv07_DCtx* dctx, const void* src, size_t srcSize) 3235 { 3236 size_t const result = ZSTDv07_getFrameParams(&(dctx->fParams), src, srcSize); 3237 if (dctx->fParams.dictID && (dctx->dictID != dctx->fParams.dictID)) return ERROR(dictionary_wrong); 3238 if (dctx->fParams.checksumFlag) XXH64_reset(&dctx->xxhState, 0); 3239 return result; 3240 } 3241 3242 3243 typedef struct 3244 { 3245 blockType_t blockType; 3246 U32 origSize; 3247 } blockProperties_t; 3248 3249 /*! ZSTDv07_getcBlockSize() : 3250 * Provides the size of compressed block from block header `src` */ 3251 size_t ZSTDv07_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr) 3252 { 3253 const BYTE* const in = (const BYTE* const)src; 3254 U32 cSize; 3255 3256 if (srcSize < ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong); 3257 3258 bpPtr->blockType = (blockType_t)((*in) >> 6); 3259 cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16); 3260 bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0; 3261 3262 if (bpPtr->blockType == bt_end) return 0; 3263 if (bpPtr->blockType == bt_rle) return 1; 3264 return cSize; 3265 } 3266 3267 3268 static size_t ZSTDv07_copyRawBlock(void* dst, size_t dstCapacity, const void* src, size_t srcSize) 3269 { 3270 if (srcSize > dstCapacity) return ERROR(dstSize_tooSmall); 3271 memcpy(dst, src, srcSize); 3272 return srcSize; 3273 } 3274 3275 3276 /*! ZSTDv07_decodeLiteralsBlock() : 3277 @return : nb of bytes read from src (< srcSize ) */ 3278 size_t ZSTDv07_decodeLiteralsBlock(ZSTDv07_DCtx* dctx, 3279 const void* src, size_t srcSize) /* note : srcSize < BLOCKSIZE */ 3280 { 3281 const BYTE* const istart = (const BYTE*) src; 3282 3283 if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected); 3284 3285 switch((litBlockType_t)(istart[0]>> 6)) 3286 { 3287 case lbt_huffman: 3288 { size_t litSize, litCSize, singleStream=0; 3289 U32 lhSize = (istart[0] >> 4) & 3; 3290 if (srcSize < 5) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need up to 5 for lhSize, + cSize (+nbSeq) */ 3291 switch(lhSize) 3292 { 3293 case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ 3294 /* 2 - 2 - 10 - 10 */ 3295 lhSize=3; 3296 singleStream = istart[0] & 16; 3297 litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2); 3298 litCSize = ((istart[1] & 3) << 8) + istart[2]; 3299 break; 3300 case 2: 3301 /* 2 - 2 - 14 - 14 */ 3302 lhSize=4; 3303 litSize = ((istart[0] & 15) << 10) + (istart[1] << 2) + (istart[2] >> 6); 3304 litCSize = ((istart[2] & 63) << 8) + istart[3]; 3305 break; 3306 case 3: 3307 /* 2 - 2 - 18 - 18 */ 3308 lhSize=5; 3309 litSize = ((istart[0] & 15) << 14) + (istart[1] << 6) + (istart[2] >> 2); 3310 litCSize = ((istart[2] & 3) << 16) + (istart[3] << 8) + istart[4]; 3311 break; 3312 } 3313 if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected); 3314 if (litCSize + lhSize > srcSize) return ERROR(corruption_detected); 3315 3316 if (HUFv07_isError(singleStream ? 3317 HUFv07_decompress1X2_DCtx(dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) : 3318 HUFv07_decompress4X_hufOnly (dctx->hufTable, dctx->litBuffer, litSize, istart+lhSize, litCSize) )) 3319 return ERROR(corruption_detected); 3320 3321 dctx->litPtr = dctx->litBuffer; 3322 dctx->litSize = litSize; 3323 dctx->litEntropy = 1; 3324 memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); 3325 return litCSize + lhSize; 3326 } 3327 case lbt_repeat: 3328 { size_t litSize, litCSize; 3329 U32 lhSize = ((istart[0]) >> 4) & 3; 3330 if (lhSize != 1) /* only case supported for now : small litSize, single stream */ 3331 return ERROR(corruption_detected); 3332 if (dctx->litEntropy==0) 3333 return ERROR(dictionary_corrupted); 3334 3335 /* 2 - 2 - 10 - 10 */ 3336 lhSize=3; 3337 litSize = ((istart[0] & 15) << 6) + (istart[1] >> 2); 3338 litCSize = ((istart[1] & 3) << 8) + istart[2]; 3339 if (litCSize + lhSize > srcSize) return ERROR(corruption_detected); 3340 3341 { size_t const errorCode = HUFv07_decompress1X4_usingDTable(dctx->litBuffer, litSize, istart+lhSize, litCSize, dctx->hufTable); 3342 if (HUFv07_isError(errorCode)) return ERROR(corruption_detected); 3343 } 3344 dctx->litPtr = dctx->litBuffer; 3345 dctx->litSize = litSize; 3346 memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); 3347 return litCSize + lhSize; 3348 } 3349 case lbt_raw: 3350 { size_t litSize; 3351 U32 lhSize = ((istart[0]) >> 4) & 3; 3352 switch(lhSize) 3353 { 3354 case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ 3355 lhSize=1; 3356 litSize = istart[0] & 31; 3357 break; 3358 case 2: 3359 litSize = ((istart[0] & 15) << 8) + istart[1]; 3360 break; 3361 case 3: 3362 litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2]; 3363 break; 3364 } 3365 3366 if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) { /* risk reading beyond src buffer with wildcopy */ 3367 if (litSize+lhSize > srcSize) return ERROR(corruption_detected); 3368 memcpy(dctx->litBuffer, istart+lhSize, litSize); 3369 dctx->litPtr = dctx->litBuffer; 3370 dctx->litSize = litSize; 3371 memset(dctx->litBuffer + dctx->litSize, 0, WILDCOPY_OVERLENGTH); 3372 return lhSize+litSize; 3373 } 3374 /* direct reference into compressed stream */ 3375 dctx->litPtr = istart+lhSize; 3376 dctx->litSize = litSize; 3377 return lhSize+litSize; 3378 } 3379 case lbt_rle: 3380 { size_t litSize; 3381 U32 lhSize = ((istart[0]) >> 4) & 3; 3382 switch(lhSize) 3383 { 3384 case 0: case 1: default: /* note : default is impossible, since lhSize into [0..3] */ 3385 lhSize = 1; 3386 litSize = istart[0] & 31; 3387 break; 3388 case 2: 3389 litSize = ((istart[0] & 15) << 8) + istart[1]; 3390 break; 3391 case 3: 3392 litSize = ((istart[0] & 15) << 16) + (istart[1] << 8) + istart[2]; 3393 if (srcSize<4) return ERROR(corruption_detected); /* srcSize >= MIN_CBLOCK_SIZE == 3; here we need lhSize+1 = 4 */ 3394 break; 3395 } 3396 if (litSize > ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(corruption_detected); 3397 memset(dctx->litBuffer, istart[lhSize], litSize + WILDCOPY_OVERLENGTH); 3398 dctx->litPtr = dctx->litBuffer; 3399 dctx->litSize = litSize; 3400 return lhSize+1; 3401 } 3402 default: 3403 return ERROR(corruption_detected); /* impossible */ 3404 } 3405 } 3406 3407 3408 /*! ZSTDv07_buildSeqTable() : 3409 @return : nb bytes read from src, 3410 or an error code if it fails, testable with ZSTDv07_isError() 3411 */ 3412 size_t ZSTDv07_buildSeqTable(FSEv07_DTable* DTable, U32 type, U32 max, U32 maxLog, 3413 const void* src, size_t srcSize, 3414 const S16* defaultNorm, U32 defaultLog, U32 flagRepeatTable) 3415 { 3416 switch(type) 3417 { 3418 case FSEv07_ENCODING_RLE : 3419 if (!srcSize) return ERROR(srcSize_wrong); 3420 if ( (*(const BYTE*)src) > max) return ERROR(corruption_detected); 3421 FSEv07_buildDTable_rle(DTable, *(const BYTE*)src); /* if *src > max, data is corrupted */ 3422 return 1; 3423 case FSEv07_ENCODING_RAW : 3424 FSEv07_buildDTable(DTable, defaultNorm, max, defaultLog); 3425 return 0; 3426 case FSEv07_ENCODING_STATIC: 3427 if (!flagRepeatTable) return ERROR(corruption_detected); 3428 return 0; 3429 default : /* impossible */ 3430 case FSEv07_ENCODING_DYNAMIC : 3431 { U32 tableLog; 3432 S16 norm[MaxSeq+1]; 3433 size_t const headerSize = FSEv07_readNCount(norm, &max, &tableLog, src, srcSize); 3434 if (FSEv07_isError(headerSize)) return ERROR(corruption_detected); 3435 if (tableLog > maxLog) return ERROR(corruption_detected); 3436 FSEv07_buildDTable(DTable, norm, max, tableLog); 3437 return headerSize; 3438 } } 3439 } 3440 3441 3442 size_t ZSTDv07_decodeSeqHeaders(int* nbSeqPtr, 3443 FSEv07_DTable* DTableLL, FSEv07_DTable* DTableML, FSEv07_DTable* DTableOffb, U32 flagRepeatTable, 3444 const void* src, size_t srcSize) 3445 { 3446 const BYTE* const istart = (const BYTE* const)src; 3447 const BYTE* const iend = istart + srcSize; 3448 const BYTE* ip = istart; 3449 3450 /* check */ 3451 if (srcSize < MIN_SEQUENCES_SIZE) return ERROR(srcSize_wrong); 3452 3453 /* SeqHead */ 3454 { int nbSeq = *ip++; 3455 if (!nbSeq) { *nbSeqPtr=0; return 1; } 3456 if (nbSeq > 0x7F) { 3457 if (nbSeq == 0xFF) { 3458 if (ip+2 > iend) return ERROR(srcSize_wrong); 3459 nbSeq = MEM_readLE16(ip) + LONGNBSEQ, ip+=2; 3460 } else { 3461 if (ip >= iend) return ERROR(srcSize_wrong); 3462 nbSeq = ((nbSeq-0x80)<<8) + *ip++; 3463 } 3464 } 3465 *nbSeqPtr = nbSeq; 3466 } 3467 3468 /* FSE table descriptors */ 3469 { U32 const LLtype = *ip >> 6; 3470 U32 const OFtype = (*ip >> 4) & 3; 3471 U32 const MLtype = (*ip >> 2) & 3; 3472 ip++; 3473 3474 /* check */ 3475 if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */ 3476 3477 /* Build DTables */ 3478 { size_t const llhSize = ZSTDv07_buildSeqTable(DTableLL, LLtype, MaxLL, LLFSELog, ip, iend-ip, LL_defaultNorm, LL_defaultNormLog, flagRepeatTable); 3479 if (ZSTDv07_isError(llhSize)) return ERROR(corruption_detected); 3480 ip += llhSize; 3481 } 3482 { size_t const ofhSize = ZSTDv07_buildSeqTable(DTableOffb, OFtype, MaxOff, OffFSELog, ip, iend-ip, OF_defaultNorm, OF_defaultNormLog, flagRepeatTable); 3483 if (ZSTDv07_isError(ofhSize)) return ERROR(corruption_detected); 3484 ip += ofhSize; 3485 } 3486 { size_t const mlhSize = ZSTDv07_buildSeqTable(DTableML, MLtype, MaxML, MLFSELog, ip, iend-ip, ML_defaultNorm, ML_defaultNormLog, flagRepeatTable); 3487 if (ZSTDv07_isError(mlhSize)) return ERROR(corruption_detected); 3488 ip += mlhSize; 3489 } } 3490 3491 return ip-istart; 3492 } 3493 3494 3495 typedef struct { 3496 size_t litLength; 3497 size_t matchLength; 3498 size_t offset; 3499 } seq_t; 3500 3501 typedef struct { 3502 BITv07_DStream_t DStream; 3503 FSEv07_DState_t stateLL; 3504 FSEv07_DState_t stateOffb; 3505 FSEv07_DState_t stateML; 3506 size_t prevOffset[ZSTDv07_REP_INIT]; 3507 } seqState_t; 3508 3509 3510 static seq_t ZSTDv07_decodeSequence(seqState_t* seqState) 3511 { 3512 seq_t seq; 3513 3514 U32 const llCode = FSEv07_peekSymbol(&(seqState->stateLL)); 3515 U32 const mlCode = FSEv07_peekSymbol(&(seqState->stateML)); 3516 U32 const ofCode = FSEv07_peekSymbol(&(seqState->stateOffb)); /* <= maxOff, by table construction */ 3517 3518 U32 const llBits = LL_bits[llCode]; 3519 U32 const mlBits = ML_bits[mlCode]; 3520 U32 const ofBits = ofCode; 3521 U32 const totalBits = llBits+mlBits+ofBits; 3522 3523 static const U32 LL_base[MaxLL+1] = { 3524 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 3525 16, 18, 20, 22, 24, 28, 32, 40, 48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000, 3526 0x2000, 0x4000, 0x8000, 0x10000 }; 3527 3528 static const U32 ML_base[MaxML+1] = { 3529 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 3530 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 3531 35, 37, 39, 41, 43, 47, 51, 59, 67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803, 3532 0x1003, 0x2003, 0x4003, 0x8003, 0x10003 }; 3533 3534 static const U32 OF_base[MaxOff+1] = { 3535 0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D, 3536 0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD, 3537 0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD, 3538 0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD }; 3539 3540 /* sequence */ 3541 { size_t offset; 3542 if (!ofCode) 3543 offset = 0; 3544 else { 3545 offset = OF_base[ofCode] + BITv07_readBits(&(seqState->DStream), ofBits); /* <= (ZSTDv07_WINDOWLOG_MAX-1) bits */ 3546 if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream)); 3547 } 3548 3549 if (ofCode <= 1) { 3550 if ((llCode == 0) & (offset <= 1)) offset = 1-offset; 3551 if (offset) { 3552 size_t const temp = seqState->prevOffset[offset]; 3553 if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1]; 3554 seqState->prevOffset[1] = seqState->prevOffset[0]; 3555 seqState->prevOffset[0] = offset = temp; 3556 } else { 3557 offset = seqState->prevOffset[0]; 3558 } 3559 } else { 3560 seqState->prevOffset[2] = seqState->prevOffset[1]; 3561 seqState->prevOffset[1] = seqState->prevOffset[0]; 3562 seqState->prevOffset[0] = offset; 3563 } 3564 seq.offset = offset; 3565 } 3566 3567 seq.matchLength = ML_base[mlCode] + ((mlCode>31) ? BITv07_readBits(&(seqState->DStream), mlBits) : 0); /* <= 16 bits */ 3568 if (MEM_32bits() && (mlBits+llBits>24)) BITv07_reloadDStream(&(seqState->DStream)); 3569 3570 seq.litLength = LL_base[llCode] + ((llCode>15) ? BITv07_readBits(&(seqState->DStream), llBits) : 0); /* <= 16 bits */ 3571 if (MEM_32bits() || 3572 (totalBits > 64 - 7 - (LLFSELog+MLFSELog+OffFSELog)) ) BITv07_reloadDStream(&(seqState->DStream)); 3573 3574 /* ANS state update */ 3575 FSEv07_updateState(&(seqState->stateLL), &(seqState->DStream)); /* <= 9 bits */ 3576 FSEv07_updateState(&(seqState->stateML), &(seqState->DStream)); /* <= 9 bits */ 3577 if (MEM_32bits()) BITv07_reloadDStream(&(seqState->DStream)); /* <= 18 bits */ 3578 FSEv07_updateState(&(seqState->stateOffb), &(seqState->DStream)); /* <= 8 bits */ 3579 3580 return seq; 3581 } 3582 3583 3584 static 3585 size_t ZSTDv07_execSequence(BYTE* op, 3586 BYTE* const oend, seq_t sequence, 3587 const BYTE** litPtr, const BYTE* const litLimit, 3588 const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd) 3589 { 3590 BYTE* const oLitEnd = op + sequence.litLength; 3591 size_t const sequenceLength = sequence.litLength + sequence.matchLength; 3592 BYTE* const oMatchEnd = op + sequenceLength; /* risk : address space overflow (32-bits) */ 3593 BYTE* const oend_w = oend-WILDCOPY_OVERLENGTH; 3594 const BYTE* const iLitEnd = *litPtr + sequence.litLength; 3595 const BYTE* match = oLitEnd - sequence.offset; 3596 3597 /* check */ 3598 if ((oLitEnd>oend_w) | (oMatchEnd>oend)) return ERROR(dstSize_tooSmall); /* last match must start at a minimum distance of WILDCOPY_OVERLENGTH from oend */ 3599 if (iLitEnd > litLimit) return ERROR(corruption_detected); /* over-read beyond lit buffer */ 3600 3601 /* copy Literals */ 3602 ZSTDv07_wildcopy(op, *litPtr, sequence.litLength); /* note : since oLitEnd <= oend-WILDCOPY_OVERLENGTH, no risk of overwrite beyond oend */ 3603 op = oLitEnd; 3604 *litPtr = iLitEnd; /* update for next sequence */ 3605 3606 /* copy Match */ 3607 if (sequence.offset > (size_t)(oLitEnd - base)) { 3608 /* offset beyond prefix */ 3609 if (sequence.offset > (size_t)(oLitEnd - vBase)) return ERROR(corruption_detected); 3610 match = dictEnd - (base-match); 3611 if (match + sequence.matchLength <= dictEnd) { 3612 memmove(oLitEnd, match, sequence.matchLength); 3613 return sequenceLength; 3614 } 3615 /* span extDict & currentPrefixSegment */ 3616 { size_t const length1 = dictEnd - match; 3617 memmove(oLitEnd, match, length1); 3618 op = oLitEnd + length1; 3619 sequence.matchLength -= length1; 3620 match = base; 3621 if (op > oend_w || sequence.matchLength < MINMATCH) { 3622 while (op < oMatchEnd) *op++ = *match++; 3623 return sequenceLength; 3624 } 3625 } } 3626 /* Requirement: op <= oend_w */ 3627 3628 /* match within prefix */ 3629 if (sequence.offset < 8) { 3630 /* close range match, overlap */ 3631 static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 }; /* added */ 3632 static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 }; /* substracted */ 3633 int const sub2 = dec64table[sequence.offset]; 3634 op[0] = match[0]; 3635 op[1] = match[1]; 3636 op[2] = match[2]; 3637 op[3] = match[3]; 3638 match += dec32table[sequence.offset]; 3639 ZSTDv07_copy4(op+4, match); 3640 match -= sub2; 3641 } else { 3642 ZSTDv07_copy8(op, match); 3643 } 3644 op += 8; match += 8; 3645 3646 if (oMatchEnd > oend-(16-MINMATCH)) { 3647 if (op < oend_w) { 3648 ZSTDv07_wildcopy(op, match, oend_w - op); 3649 match += oend_w - op; 3650 op = oend_w; 3651 } 3652 while (op < oMatchEnd) *op++ = *match++; 3653 } else { 3654 ZSTDv07_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8); /* works even if matchLength < 8 */ 3655 } 3656 return sequenceLength; 3657 } 3658 3659 3660 static size_t ZSTDv07_decompressSequences( 3661 ZSTDv07_DCtx* dctx, 3662 void* dst, size_t maxDstSize, 3663 const void* seqStart, size_t seqSize) 3664 { 3665 const BYTE* ip = (const BYTE*)seqStart; 3666 const BYTE* const iend = ip + seqSize; 3667 BYTE* const ostart = (BYTE* const)dst; 3668 BYTE* const oend = ostart + maxDstSize; 3669 BYTE* op = ostart; 3670 const BYTE* litPtr = dctx->litPtr; 3671 const BYTE* const litEnd = litPtr + dctx->litSize; 3672 FSEv07_DTable* DTableLL = dctx->LLTable; 3673 FSEv07_DTable* DTableML = dctx->MLTable; 3674 FSEv07_DTable* DTableOffb = dctx->OffTable; 3675 const BYTE* const base = (const BYTE*) (dctx->base); 3676 const BYTE* const vBase = (const BYTE*) (dctx->vBase); 3677 const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd); 3678 int nbSeq; 3679 3680 /* Build Decoding Tables */ 3681 { size_t const seqHSize = ZSTDv07_decodeSeqHeaders(&nbSeq, DTableLL, DTableML, DTableOffb, dctx->fseEntropy, ip, seqSize); 3682 if (ZSTDv07_isError(seqHSize)) return seqHSize; 3683 ip += seqHSize; 3684 } 3685 3686 /* Regen sequences */ 3687 if (nbSeq) { 3688 seqState_t seqState; 3689 dctx->fseEntropy = 1; 3690 { U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) seqState.prevOffset[i] = dctx->rep[i]; } 3691 { size_t const errorCode = BITv07_initDStream(&(seqState.DStream), ip, iend-ip); 3692 if (ERR_isError(errorCode)) return ERROR(corruption_detected); } 3693 FSEv07_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL); 3694 FSEv07_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb); 3695 FSEv07_initDState(&(seqState.stateML), &(seqState.DStream), DTableML); 3696 3697 for ( ; (BITv07_reloadDStream(&(seqState.DStream)) <= BITv07_DStream_completed) && nbSeq ; ) { 3698 nbSeq--; 3699 { seq_t const sequence = ZSTDv07_decodeSequence(&seqState); 3700 size_t const oneSeqSize = ZSTDv07_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd); 3701 if (ZSTDv07_isError(oneSeqSize)) return oneSeqSize; 3702 op += oneSeqSize; 3703 } } 3704 3705 /* check if reached exact end */ 3706 if (nbSeq) return ERROR(corruption_detected); 3707 /* save reps for next block */ 3708 { U32 i; for (i=0; i<ZSTDv07_REP_INIT; i++) dctx->rep[i] = (U32)(seqState.prevOffset[i]); } 3709 } 3710 3711 /* last literal segment */ 3712 { size_t const lastLLSize = litEnd - litPtr; 3713 //if (litPtr > litEnd) return ERROR(corruption_detected); /* too many literals already used */ 3714 if (lastLLSize > (size_t)(oend-op)) return ERROR(dstSize_tooSmall); 3715 memcpy(op, litPtr, lastLLSize); 3716 op += lastLLSize; 3717 } 3718 3719 return op-ostart; 3720 } 3721 3722 3723 static void ZSTDv07_checkContinuity(ZSTDv07_DCtx* dctx, const void* dst) 3724 { 3725 if (dst != dctx->previousDstEnd) { /* not contiguous */ 3726 dctx->dictEnd = dctx->previousDstEnd; 3727 dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); 3728 dctx->base = dst; 3729 dctx->previousDstEnd = dst; 3730 } 3731 } 3732 3733 3734 static size_t ZSTDv07_decompressBlock_internal(ZSTDv07_DCtx* dctx, 3735 void* dst, size_t dstCapacity, 3736 const void* src, size_t srcSize) 3737 { /* blockType == blockCompressed */ 3738 const BYTE* ip = (const BYTE*)src; 3739 3740 if (srcSize >= ZSTDv07_BLOCKSIZE_ABSOLUTEMAX) return ERROR(srcSize_wrong); 3741 3742 /* Decode literals sub-block */ 3743 { size_t const litCSize = ZSTDv07_decodeLiteralsBlock(dctx, src, srcSize); 3744 if (ZSTDv07_isError(litCSize)) return litCSize; 3745 ip += litCSize; 3746 srcSize -= litCSize; 3747 } 3748 return ZSTDv07_decompressSequences(dctx, dst, dstCapacity, ip, srcSize); 3749 } 3750 3751 3752 size_t ZSTDv07_decompressBlock(ZSTDv07_DCtx* dctx, 3753 void* dst, size_t dstCapacity, 3754 const void* src, size_t srcSize) 3755 { 3756 size_t dSize; 3757 ZSTDv07_checkContinuity(dctx, dst); 3758 dSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); 3759 dctx->previousDstEnd = (char*)dst + dSize; 3760 return dSize; 3761 } 3762 3763 3764 /** ZSTDv07_insertBlock() : 3765 insert `src` block into `dctx` history. Useful to track uncompressed blocks. */ 3766 ZSTDLIBv07_API size_t ZSTDv07_insertBlock(ZSTDv07_DCtx* dctx, const void* blockStart, size_t blockSize) 3767 { 3768 ZSTDv07_checkContinuity(dctx, blockStart); 3769 dctx->previousDstEnd = (const char*)blockStart + blockSize; 3770 return blockSize; 3771 } 3772 3773 3774 size_t ZSTDv07_generateNxBytes(void* dst, size_t dstCapacity, BYTE byte, size_t length) 3775 { 3776 if (length > dstCapacity) return ERROR(dstSize_tooSmall); 3777 memset(dst, byte, length); 3778 return length; 3779 } 3780 3781 3782 /*! ZSTDv07_decompressFrame() : 3783 * `dctx` must be properly initialized */ 3784 static size_t ZSTDv07_decompressFrame(ZSTDv07_DCtx* dctx, 3785 void* dst, size_t dstCapacity, 3786 const void* src, size_t srcSize) 3787 { 3788 const BYTE* ip = (const BYTE*)src; 3789 const BYTE* const iend = ip + srcSize; 3790 BYTE* const ostart = (BYTE* const)dst; 3791 BYTE* const oend = ostart + dstCapacity; 3792 BYTE* op = ostart; 3793 size_t remainingSize = srcSize; 3794 3795 /* check */ 3796 if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong); 3797 3798 /* Frame Header */ 3799 { size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min); 3800 if (ZSTDv07_isError(frameHeaderSize)) return frameHeaderSize; 3801 if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong); 3802 if (ZSTDv07_decodeFrameHeader(dctx, src, frameHeaderSize)) return ERROR(corruption_detected); 3803 ip += frameHeaderSize; remainingSize -= frameHeaderSize; 3804 } 3805 3806 /* Loop on each block */ 3807 while (1) { 3808 size_t decodedSize; 3809 blockProperties_t blockProperties; 3810 size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, iend-ip, &blockProperties); 3811 if (ZSTDv07_isError(cBlockSize)) return cBlockSize; 3812 3813 ip += ZSTDv07_blockHeaderSize; 3814 remainingSize -= ZSTDv07_blockHeaderSize; 3815 if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); 3816 3817 switch(blockProperties.blockType) 3818 { 3819 case bt_compressed: 3820 decodedSize = ZSTDv07_decompressBlock_internal(dctx, op, oend-op, ip, cBlockSize); 3821 break; 3822 case bt_raw : 3823 decodedSize = ZSTDv07_copyRawBlock(op, oend-op, ip, cBlockSize); 3824 break; 3825 case bt_rle : 3826 decodedSize = ZSTDv07_generateNxBytes(op, oend-op, *ip, blockProperties.origSize); 3827 break; 3828 case bt_end : 3829 /* end of frame */ 3830 if (remainingSize) return ERROR(srcSize_wrong); 3831 decodedSize = 0; 3832 break; 3833 default: 3834 return ERROR(GENERIC); /* impossible */ 3835 } 3836 if (blockProperties.blockType == bt_end) break; /* bt_end */ 3837 3838 if (ZSTDv07_isError(decodedSize)) return decodedSize; 3839 if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, op, decodedSize); 3840 op += decodedSize; 3841 ip += cBlockSize; 3842 remainingSize -= cBlockSize; 3843 } 3844 3845 return op-ostart; 3846 } 3847 3848 3849 /*! ZSTDv07_decompress_usingPreparedDCtx() : 3850 * Same as ZSTDv07_decompress_usingDict, but using a reference context `preparedDCtx`, where dictionary has been loaded. 3851 * It avoids reloading the dictionary each time. 3852 * `preparedDCtx` must have been properly initialized using ZSTDv07_decompressBegin_usingDict(). 3853 * Requires 2 contexts : 1 for reference (preparedDCtx), which will not be modified, and 1 to run the decompression operation (dctx) */ 3854 size_t ZSTDv07_decompress_usingPreparedDCtx(ZSTDv07_DCtx* dctx, const ZSTDv07_DCtx* refDCtx, 3855 void* dst, size_t dstCapacity, 3856 const void* src, size_t srcSize) 3857 { 3858 ZSTDv07_copyDCtx(dctx, refDCtx); 3859 ZSTDv07_checkContinuity(dctx, dst); 3860 return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize); 3861 } 3862 3863 3864 size_t ZSTDv07_decompress_usingDict(ZSTDv07_DCtx* dctx, 3865 void* dst, size_t dstCapacity, 3866 const void* src, size_t srcSize, 3867 const void* dict, size_t dictSize) 3868 { 3869 ZSTDv07_decompressBegin_usingDict(dctx, dict, dictSize); 3870 ZSTDv07_checkContinuity(dctx, dst); 3871 return ZSTDv07_decompressFrame(dctx, dst, dstCapacity, src, srcSize); 3872 } 3873 3874 3875 size_t ZSTDv07_decompressDCtx(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) 3876 { 3877 return ZSTDv07_decompress_usingDict(dctx, dst, dstCapacity, src, srcSize, NULL, 0); 3878 } 3879 3880 3881 size_t ZSTDv07_decompress(void* dst, size_t dstCapacity, const void* src, size_t srcSize) 3882 { 3883 #if defined(ZSTDv07_HEAPMODE) && (ZSTDv07_HEAPMODE==1) 3884 size_t regenSize; 3885 ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx(); 3886 if (dctx==NULL) return ERROR(memory_allocation); 3887 regenSize = ZSTDv07_decompressDCtx(dctx, dst, dstCapacity, src, srcSize); 3888 ZSTDv07_freeDCtx(dctx); 3889 return regenSize; 3890 #else /* stack mode */ 3891 ZSTDv07_DCtx dctx; 3892 return ZSTDv07_decompressDCtx(&dctx, dst, dstCapacity, src, srcSize); 3893 #endif 3894 } 3895 3896 size_t ZSTDv07_findFrameCompressedSize(const void* src, size_t srcSize) 3897 { 3898 const BYTE* ip = (const BYTE*)src; 3899 size_t remainingSize = srcSize; 3900 3901 /* check */ 3902 if (srcSize < ZSTDv07_frameHeaderSize_min+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong); 3903 3904 /* Frame Header */ 3905 { size_t const frameHeaderSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min); 3906 if (ZSTDv07_isError(frameHeaderSize)) return frameHeaderSize; 3907 if (MEM_readLE32(src) != ZSTDv07_MAGICNUMBER) return ERROR(prefix_unknown); 3908 if (srcSize < frameHeaderSize+ZSTDv07_blockHeaderSize) return ERROR(srcSize_wrong); 3909 ip += frameHeaderSize; remainingSize -= frameHeaderSize; 3910 } 3911 3912 /* Loop on each block */ 3913 while (1) { 3914 blockProperties_t blockProperties; 3915 size_t const cBlockSize = ZSTDv07_getcBlockSize(ip, remainingSize, &blockProperties); 3916 if (ZSTDv07_isError(cBlockSize)) return cBlockSize; 3917 3918 ip += ZSTDv07_blockHeaderSize; 3919 remainingSize -= ZSTDv07_blockHeaderSize; 3920 3921 if (blockProperties.blockType == bt_end) break; 3922 3923 if (cBlockSize > remainingSize) return ERROR(srcSize_wrong); 3924 3925 ip += cBlockSize; 3926 remainingSize -= cBlockSize; 3927 } 3928 3929 return ip - (const BYTE*)src; 3930 } 3931 3932 /*_****************************** 3933 * Streaming Decompression API 3934 ********************************/ 3935 size_t ZSTDv07_nextSrcSizeToDecompress(ZSTDv07_DCtx* dctx) 3936 { 3937 return dctx->expected; 3938 } 3939 3940 int ZSTDv07_isSkipFrame(ZSTDv07_DCtx* dctx) 3941 { 3942 return dctx->stage == ZSTDds_skipFrame; 3943 } 3944 3945 /** ZSTDv07_decompressContinue() : 3946 * @return : nb of bytes generated into `dst` (necessarily <= `dstCapacity) 3947 * or an error code, which can be tested using ZSTDv07_isError() */ 3948 size_t ZSTDv07_decompressContinue(ZSTDv07_DCtx* dctx, void* dst, size_t dstCapacity, const void* src, size_t srcSize) 3949 { 3950 /* Sanity check */ 3951 if (srcSize != dctx->expected) return ERROR(srcSize_wrong); 3952 if (dstCapacity) ZSTDv07_checkContinuity(dctx, dst); 3953 3954 switch (dctx->stage) 3955 { 3956 case ZSTDds_getFrameHeaderSize : 3957 if (srcSize != ZSTDv07_frameHeaderSize_min) return ERROR(srcSize_wrong); /* impossible */ 3958 if ((MEM_readLE32(src) & 0xFFFFFFF0U) == ZSTDv07_MAGIC_SKIPPABLE_START) { 3959 memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min); 3960 dctx->expected = ZSTDv07_skippableHeaderSize - ZSTDv07_frameHeaderSize_min; /* magic number + skippable frame length */ 3961 dctx->stage = ZSTDds_decodeSkippableHeader; 3962 return 0; 3963 } 3964 dctx->headerSize = ZSTDv07_frameHeaderSize(src, ZSTDv07_frameHeaderSize_min); 3965 if (ZSTDv07_isError(dctx->headerSize)) return dctx->headerSize; 3966 memcpy(dctx->headerBuffer, src, ZSTDv07_frameHeaderSize_min); 3967 if (dctx->headerSize > ZSTDv07_frameHeaderSize_min) { 3968 dctx->expected = dctx->headerSize - ZSTDv07_frameHeaderSize_min; 3969 dctx->stage = ZSTDds_decodeFrameHeader; 3970 return 0; 3971 } 3972 dctx->expected = 0; /* not necessary to copy more */ 3973 /* fall-through */ 3974 case ZSTDds_decodeFrameHeader: 3975 { size_t result; 3976 memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected); 3977 result = ZSTDv07_decodeFrameHeader(dctx, dctx->headerBuffer, dctx->headerSize); 3978 if (ZSTDv07_isError(result)) return result; 3979 dctx->expected = ZSTDv07_blockHeaderSize; 3980 dctx->stage = ZSTDds_decodeBlockHeader; 3981 return 0; 3982 } 3983 case ZSTDds_decodeBlockHeader: 3984 { blockProperties_t bp; 3985 size_t const cBlockSize = ZSTDv07_getcBlockSize(src, ZSTDv07_blockHeaderSize, &bp); 3986 if (ZSTDv07_isError(cBlockSize)) return cBlockSize; 3987 if (bp.blockType == bt_end) { 3988 if (dctx->fParams.checksumFlag) { 3989 U64 const h64 = XXH64_digest(&dctx->xxhState); 3990 U32 const h32 = (U32)(h64>>11) & ((1<<22)-1); 3991 const BYTE* const ip = (const BYTE*)src; 3992 U32 const check32 = ip[2] + (ip[1] << 8) + ((ip[0] & 0x3F) << 16); 3993 if (check32 != h32) return ERROR(checksum_wrong); 3994 } 3995 dctx->expected = 0; 3996 dctx->stage = ZSTDds_getFrameHeaderSize; 3997 } else { 3998 dctx->expected = cBlockSize; 3999 dctx->bType = bp.blockType; 4000 dctx->stage = ZSTDds_decompressBlock; 4001 } 4002 return 0; 4003 } 4004 case ZSTDds_decompressBlock: 4005 { size_t rSize; 4006 switch(dctx->bType) 4007 { 4008 case bt_compressed: 4009 rSize = ZSTDv07_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize); 4010 break; 4011 case bt_raw : 4012 rSize = ZSTDv07_copyRawBlock(dst, dstCapacity, src, srcSize); 4013 break; 4014 case bt_rle : 4015 return ERROR(GENERIC); /* not yet handled */ 4016 break; 4017 case bt_end : /* should never happen (filtered at phase 1) */ 4018 rSize = 0; 4019 break; 4020 default: 4021 return ERROR(GENERIC); /* impossible */ 4022 } 4023 dctx->stage = ZSTDds_decodeBlockHeader; 4024 dctx->expected = ZSTDv07_blockHeaderSize; 4025 dctx->previousDstEnd = (char*)dst + rSize; 4026 if (ZSTDv07_isError(rSize)) return rSize; 4027 if (dctx->fParams.checksumFlag) XXH64_update(&dctx->xxhState, dst, rSize); 4028 return rSize; 4029 } 4030 case ZSTDds_decodeSkippableHeader: 4031 { memcpy(dctx->headerBuffer + ZSTDv07_frameHeaderSize_min, src, dctx->expected); 4032 dctx->expected = MEM_readLE32(dctx->headerBuffer + 4); 4033 dctx->stage = ZSTDds_skipFrame; 4034 return 0; 4035 } 4036 case ZSTDds_skipFrame: 4037 { dctx->expected = 0; 4038 dctx->stage = ZSTDds_getFrameHeaderSize; 4039 return 0; 4040 } 4041 default: 4042 return ERROR(GENERIC); /* impossible */ 4043 } 4044 } 4045 4046 4047 static size_t ZSTDv07_refDictContent(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize) 4048 { 4049 dctx->dictEnd = dctx->previousDstEnd; 4050 dctx->vBase = (const char*)dict - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base)); 4051 dctx->base = dict; 4052 dctx->previousDstEnd = (const char*)dict + dictSize; 4053 return 0; 4054 } 4055 4056 static size_t ZSTDv07_loadEntropy(ZSTDv07_DCtx* dctx, const void* const dict, size_t const dictSize) 4057 { 4058 const BYTE* dictPtr = (const BYTE*)dict; 4059 const BYTE* const dictEnd = dictPtr + dictSize; 4060 4061 { size_t const hSize = HUFv07_readDTableX4(dctx->hufTable, dict, dictSize); 4062 if (HUFv07_isError(hSize)) return ERROR(dictionary_corrupted); 4063 dictPtr += hSize; 4064 } 4065 4066 { short offcodeNCount[MaxOff+1]; 4067 U32 offcodeMaxValue=MaxOff, offcodeLog; 4068 size_t const offcodeHeaderSize = FSEv07_readNCount(offcodeNCount, &offcodeMaxValue, &offcodeLog, dictPtr, dictEnd-dictPtr); 4069 if (FSEv07_isError(offcodeHeaderSize)) return ERROR(dictionary_corrupted); 4070 if (offcodeLog > OffFSELog) return ERROR(dictionary_corrupted); 4071 { size_t const errorCode = FSEv07_buildDTable(dctx->OffTable, offcodeNCount, offcodeMaxValue, offcodeLog); 4072 if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); } 4073 dictPtr += offcodeHeaderSize; 4074 } 4075 4076 { short matchlengthNCount[MaxML+1]; 4077 unsigned matchlengthMaxValue = MaxML, matchlengthLog; 4078 size_t const matchlengthHeaderSize = FSEv07_readNCount(matchlengthNCount, &matchlengthMaxValue, &matchlengthLog, dictPtr, dictEnd-dictPtr); 4079 if (FSEv07_isError(matchlengthHeaderSize)) return ERROR(dictionary_corrupted); 4080 if (matchlengthLog > MLFSELog) return ERROR(dictionary_corrupted); 4081 { size_t const errorCode = FSEv07_buildDTable(dctx->MLTable, matchlengthNCount, matchlengthMaxValue, matchlengthLog); 4082 if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); } 4083 dictPtr += matchlengthHeaderSize; 4084 } 4085 4086 { short litlengthNCount[MaxLL+1]; 4087 unsigned litlengthMaxValue = MaxLL, litlengthLog; 4088 size_t const litlengthHeaderSize = FSEv07_readNCount(litlengthNCount, &litlengthMaxValue, &litlengthLog, dictPtr, dictEnd-dictPtr); 4089 if (FSEv07_isError(litlengthHeaderSize)) return ERROR(dictionary_corrupted); 4090 if (litlengthLog > LLFSELog) return ERROR(dictionary_corrupted); 4091 { size_t const errorCode = FSEv07_buildDTable(dctx->LLTable, litlengthNCount, litlengthMaxValue, litlengthLog); 4092 if (FSEv07_isError(errorCode)) return ERROR(dictionary_corrupted); } 4093 dictPtr += litlengthHeaderSize; 4094 } 4095 4096 if (dictPtr+12 > dictEnd) return ERROR(dictionary_corrupted); 4097 dctx->rep[0] = MEM_readLE32(dictPtr+0); if (dctx->rep[0] == 0 || dctx->rep[0] >= dictSize) return ERROR(dictionary_corrupted); 4098 dctx->rep[1] = MEM_readLE32(dictPtr+4); if (dctx->rep[1] == 0 || dctx->rep[1] >= dictSize) return ERROR(dictionary_corrupted); 4099 dctx->rep[2] = MEM_readLE32(dictPtr+8); if (dctx->rep[2] == 0 || dctx->rep[2] >= dictSize) return ERROR(dictionary_corrupted); 4100 dictPtr += 12; 4101 4102 dctx->litEntropy = dctx->fseEntropy = 1; 4103 return dictPtr - (const BYTE*)dict; 4104 } 4105 4106 static size_t ZSTDv07_decompress_insertDictionary(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize) 4107 { 4108 if (dictSize < 8) return ZSTDv07_refDictContent(dctx, dict, dictSize); 4109 { U32 const magic = MEM_readLE32(dict); 4110 if (magic != ZSTDv07_DICT_MAGIC) { 4111 return ZSTDv07_refDictContent(dctx, dict, dictSize); /* pure content mode */ 4112 } } 4113 dctx->dictID = MEM_readLE32((const char*)dict + 4); 4114 4115 /* load entropy tables */ 4116 dict = (const char*)dict + 8; 4117 dictSize -= 8; 4118 { size_t const eSize = ZSTDv07_loadEntropy(dctx, dict, dictSize); 4119 if (ZSTDv07_isError(eSize)) return ERROR(dictionary_corrupted); 4120 dict = (const char*)dict + eSize; 4121 dictSize -= eSize; 4122 } 4123 4124 /* reference dictionary content */ 4125 return ZSTDv07_refDictContent(dctx, dict, dictSize); 4126 } 4127 4128 4129 size_t ZSTDv07_decompressBegin_usingDict(ZSTDv07_DCtx* dctx, const void* dict, size_t dictSize) 4130 { 4131 { size_t const errorCode = ZSTDv07_decompressBegin(dctx); 4132 if (ZSTDv07_isError(errorCode)) return errorCode; } 4133 4134 if (dict && dictSize) { 4135 size_t const errorCode = ZSTDv07_decompress_insertDictionary(dctx, dict, dictSize); 4136 if (ZSTDv07_isError(errorCode)) return ERROR(dictionary_corrupted); 4137 } 4138 4139 return 0; 4140 } 4141 4142 4143 struct ZSTDv07_DDict_s { 4144 void* dict; 4145 size_t dictSize; 4146 ZSTDv07_DCtx* refContext; 4147 }; /* typedef'd tp ZSTDv07_CDict within zstd.h */ 4148 4149 ZSTDv07_DDict* ZSTDv07_createDDict_advanced(const void* dict, size_t dictSize, ZSTDv07_customMem customMem) 4150 { 4151 if (!customMem.customAlloc && !customMem.customFree) 4152 customMem = defaultCustomMem; 4153 4154 if (!customMem.customAlloc || !customMem.customFree) 4155 return NULL; 4156 4157 { ZSTDv07_DDict* const ddict = (ZSTDv07_DDict*) customMem.customAlloc(customMem.opaque, sizeof(*ddict)); 4158 void* const dictContent = customMem.customAlloc(customMem.opaque, dictSize); 4159 ZSTDv07_DCtx* const dctx = ZSTDv07_createDCtx_advanced(customMem); 4160 4161 if (!dictContent || !ddict || !dctx) { 4162 customMem.customFree(customMem.opaque, dictContent); 4163 customMem.customFree(customMem.opaque, ddict); 4164 customMem.customFree(customMem.opaque, dctx); 4165 return NULL; 4166 } 4167 4168 memcpy(dictContent, dict, dictSize); 4169 { size_t const errorCode = ZSTDv07_decompressBegin_usingDict(dctx, dictContent, dictSize); 4170 if (ZSTDv07_isError(errorCode)) { 4171 customMem.customFree(customMem.opaque, dictContent); 4172 customMem.customFree(customMem.opaque, ddict); 4173 customMem.customFree(customMem.opaque, dctx); 4174 return NULL; 4175 } } 4176 4177 ddict->dict = dictContent; 4178 ddict->dictSize = dictSize; 4179 ddict->refContext = dctx; 4180 return ddict; 4181 } 4182 } 4183 4184 /*! ZSTDv07_createDDict() : 4185 * Create a digested dictionary, ready to start decompression without startup delay. 4186 * `dict` can be released after `ZSTDv07_DDict` creation */ 4187 ZSTDv07_DDict* ZSTDv07_createDDict(const void* dict, size_t dictSize) 4188 { 4189 ZSTDv07_customMem const allocator = { NULL, NULL, NULL }; 4190 return ZSTDv07_createDDict_advanced(dict, dictSize, allocator); 4191 } 4192 4193 size_t ZSTDv07_freeDDict(ZSTDv07_DDict* ddict) 4194 { 4195 ZSTDv07_freeFunction const cFree = ddict->refContext->customMem.customFree; 4196 void* const opaque = ddict->refContext->customMem.opaque; 4197 ZSTDv07_freeDCtx(ddict->refContext); 4198 cFree(opaque, ddict->dict); 4199 cFree(opaque, ddict); 4200 return 0; 4201 } 4202 4203 /*! ZSTDv07_decompress_usingDDict() : 4204 * Decompression using a pre-digested Dictionary 4205 * Use dictionary without significant overhead. */ 4206 ZSTDLIBv07_API size_t ZSTDv07_decompress_usingDDict(ZSTDv07_DCtx* dctx, 4207 void* dst, size_t dstCapacity, 4208 const void* src, size_t srcSize, 4209 const ZSTDv07_DDict* ddict) 4210 { 4211 return ZSTDv07_decompress_usingPreparedDCtx(dctx, ddict->refContext, 4212 dst, dstCapacity, 4213 src, srcSize); 4214 } 4215 /* 4216 Buffered version of Zstd compression library 4217 Copyright (C) 2015-2016, Yann Collet. 4218 4219 BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php) 4220 4221 Redistribution and use in source and binary forms, with or without 4222 modification, are permitted provided that the following conditions are 4223 met: 4224 * Redistributions of source code must retain the above copyright 4225 notice, this list of conditions and the following disclaimer. 4226 * Redistributions in binary form must reproduce the above 4227 copyright notice, this list of conditions and the following disclaimer 4228 in the documentation and/or other materials provided with the 4229 distribution. 4230 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 4231 "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 4232 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 4233 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 4234 OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 4235 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 4236 LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 4237 DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 4238 THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 4239 (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 4240 OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 4241 4242 You can contact the author at : 4243 - zstd homepage : http://www.zstd.net/ 4244 */ 4245 4246 4247 4248 /*-*************************************************************************** 4249 * Streaming decompression howto 4250 * 4251 * A ZBUFFv07_DCtx object is required to track streaming operations. 4252 * Use ZBUFFv07_createDCtx() and ZBUFFv07_freeDCtx() to create/release resources. 4253 * Use ZBUFFv07_decompressInit() to start a new decompression operation, 4254 * or ZBUFFv07_decompressInitDictionary() if decompression requires a dictionary. 4255 * Note that ZBUFFv07_DCtx objects can be re-init multiple times. 4256 * 4257 * Use ZBUFFv07_decompressContinue() repetitively to consume your input. 4258 * *srcSizePtr and *dstCapacityPtr can be any size. 4259 * The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr. 4260 * Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again. 4261 * The content of @dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change @dst. 4262 * @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to help latency), 4263 * or 0 when a frame is completely decoded, 4264 * or an error code, which can be tested using ZBUFFv07_isError(). 4265 * 4266 * Hint : recommended buffer sizes (not compulsory) : ZBUFFv07_recommendedDInSize() and ZBUFFv07_recommendedDOutSize() 4267 * output : ZBUFFv07_recommendedDOutSize==128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded. 4268 * input : ZBUFFv07_recommendedDInSize == 128KB + 3; 4269 * just follow indications from ZBUFFv07_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 . 4270 * *******************************************************************************/ 4271 4272 typedef enum { ZBUFFds_init, ZBUFFds_loadHeader, 4273 ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFFv07_dStage; 4274 4275 /* *** Resource management *** */ 4276 struct ZBUFFv07_DCtx_s { 4277 ZSTDv07_DCtx* zd; 4278 ZSTDv07_frameParams fParams; 4279 ZBUFFv07_dStage stage; 4280 char* inBuff; 4281 size_t inBuffSize; 4282 size_t inPos; 4283 char* outBuff; 4284 size_t outBuffSize; 4285 size_t outStart; 4286 size_t outEnd; 4287 size_t blockSize; 4288 BYTE headerBuffer[ZSTDv07_FRAMEHEADERSIZE_MAX]; 4289 size_t lhSize; 4290 ZSTDv07_customMem customMem; 4291 }; /* typedef'd to ZBUFFv07_DCtx within "zstd_buffered.h" */ 4292 4293 ZSTDLIBv07_API ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem); 4294 4295 ZBUFFv07_DCtx* ZBUFFv07_createDCtx(void) 4296 { 4297 return ZBUFFv07_createDCtx_advanced(defaultCustomMem); 4298 } 4299 4300 ZBUFFv07_DCtx* ZBUFFv07_createDCtx_advanced(ZSTDv07_customMem customMem) 4301 { 4302 ZBUFFv07_DCtx* zbd; 4303 4304 if (!customMem.customAlloc && !customMem.customFree) 4305 customMem = defaultCustomMem; 4306 4307 if (!customMem.customAlloc || !customMem.customFree) 4308 return NULL; 4309 4310 zbd = (ZBUFFv07_DCtx*)customMem.customAlloc(customMem.opaque, sizeof(ZBUFFv07_DCtx)); 4311 if (zbd==NULL) return NULL; 4312 memset(zbd, 0, sizeof(ZBUFFv07_DCtx)); 4313 memcpy(&zbd->customMem, &customMem, sizeof(ZSTDv07_customMem)); 4314 zbd->zd = ZSTDv07_createDCtx_advanced(customMem); 4315 if (zbd->zd == NULL) { ZBUFFv07_freeDCtx(zbd); return NULL; } 4316 zbd->stage = ZBUFFds_init; 4317 return zbd; 4318 } 4319 4320 size_t ZBUFFv07_freeDCtx(ZBUFFv07_DCtx* zbd) 4321 { 4322 if (zbd==NULL) return 0; /* support free on null */ 4323 ZSTDv07_freeDCtx(zbd->zd); 4324 if (zbd->inBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff); 4325 if (zbd->outBuff) zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff); 4326 zbd->customMem.customFree(zbd->customMem.opaque, zbd); 4327 return 0; 4328 } 4329 4330 4331 /* *** Initialization *** */ 4332 4333 size_t ZBUFFv07_decompressInitDictionary(ZBUFFv07_DCtx* zbd, const void* dict, size_t dictSize) 4334 { 4335 zbd->stage = ZBUFFds_loadHeader; 4336 zbd->lhSize = zbd->inPos = zbd->outStart = zbd->outEnd = 0; 4337 return ZSTDv07_decompressBegin_usingDict(zbd->zd, dict, dictSize); 4338 } 4339 4340 size_t ZBUFFv07_decompressInit(ZBUFFv07_DCtx* zbd) 4341 { 4342 return ZBUFFv07_decompressInitDictionary(zbd, NULL, 0); 4343 } 4344 4345 4346 /* internal util function */ 4347 MEM_STATIC size_t ZBUFFv07_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize) 4348 { 4349 size_t const length = MIN(dstCapacity, srcSize); 4350 memcpy(dst, src, length); 4351 return length; 4352 } 4353 4354 4355 /* *** Decompression *** */ 4356 4357 size_t ZBUFFv07_decompressContinue(ZBUFFv07_DCtx* zbd, 4358 void* dst, size_t* dstCapacityPtr, 4359 const void* src, size_t* srcSizePtr) 4360 { 4361 const char* const istart = (const char*)src; 4362 const char* const iend = istart + *srcSizePtr; 4363 const char* ip = istart; 4364 char* const ostart = (char*)dst; 4365 char* const oend = ostart + *dstCapacityPtr; 4366 char* op = ostart; 4367 U32 notDone = 1; 4368 4369 while (notDone) { 4370 switch(zbd->stage) 4371 { 4372 case ZBUFFds_init : 4373 return ERROR(init_missing); 4374 4375 case ZBUFFds_loadHeader : 4376 { size_t const hSize = ZSTDv07_getFrameParams(&(zbd->fParams), zbd->headerBuffer, zbd->lhSize); 4377 if (ZSTDv07_isError(hSize)) return hSize; 4378 if (hSize != 0) { 4379 size_t const toLoad = hSize - zbd->lhSize; /* if hSize!=0, hSize > zbd->lhSize */ 4380 if (toLoad > (size_t)(iend-ip)) { /* not enough input to load full header */ 4381 memcpy(zbd->headerBuffer + zbd->lhSize, ip, iend-ip); 4382 zbd->lhSize += iend-ip; 4383 *dstCapacityPtr = 0; 4384 return (hSize - zbd->lhSize) + ZSTDv07_blockHeaderSize; /* remaining header bytes + next block header */ 4385 } 4386 memcpy(zbd->headerBuffer + zbd->lhSize, ip, toLoad); zbd->lhSize = hSize; ip += toLoad; 4387 break; 4388 } } 4389 4390 /* Consume header */ 4391 { size_t const h1Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); /* == ZSTDv07_frameHeaderSize_min */ 4392 size_t const h1Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer, h1Size); 4393 if (ZSTDv07_isError(h1Result)) return h1Result; 4394 if (h1Size < zbd->lhSize) { /* long header */ 4395 size_t const h2Size = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); 4396 size_t const h2Result = ZSTDv07_decompressContinue(zbd->zd, NULL, 0, zbd->headerBuffer+h1Size, h2Size); 4397 if (ZSTDv07_isError(h2Result)) return h2Result; 4398 } } 4399 4400 zbd->fParams.windowSize = MAX(zbd->fParams.windowSize, 1U << ZSTDv07_WINDOWLOG_ABSOLUTEMIN); 4401 4402 /* Frame header instruct buffer sizes */ 4403 { size_t const blockSize = MIN(zbd->fParams.windowSize, ZSTDv07_BLOCKSIZE_ABSOLUTEMAX); 4404 zbd->blockSize = blockSize; 4405 if (zbd->inBuffSize < blockSize) { 4406 zbd->customMem.customFree(zbd->customMem.opaque, zbd->inBuff); 4407 zbd->inBuffSize = blockSize; 4408 zbd->inBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, blockSize); 4409 if (zbd->inBuff == NULL) return ERROR(memory_allocation); 4410 } 4411 { size_t const neededOutSize = zbd->fParams.windowSize + blockSize + WILDCOPY_OVERLENGTH * 2; 4412 if (zbd->outBuffSize < neededOutSize) { 4413 zbd->customMem.customFree(zbd->customMem.opaque, zbd->outBuff); 4414 zbd->outBuffSize = neededOutSize; 4415 zbd->outBuff = (char*)zbd->customMem.customAlloc(zbd->customMem.opaque, neededOutSize); 4416 if (zbd->outBuff == NULL) return ERROR(memory_allocation); 4417 } } } 4418 zbd->stage = ZBUFFds_read; 4419 /* pass-through */ 4420 /* fall-through */ 4421 case ZBUFFds_read: 4422 { size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); 4423 if (neededInSize==0) { /* end of frame */ 4424 zbd->stage = ZBUFFds_init; 4425 notDone = 0; 4426 break; 4427 } 4428 if ((size_t)(iend-ip) >= neededInSize) { /* decode directly from src */ 4429 const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd); 4430 size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd, 4431 zbd->outBuff + zbd->outStart, (isSkipFrame ? 0 : zbd->outBuffSize - zbd->outStart), 4432 ip, neededInSize); 4433 if (ZSTDv07_isError(decodedSize)) return decodedSize; 4434 ip += neededInSize; 4435 if (!decodedSize && !isSkipFrame) break; /* this was just a header */ 4436 zbd->outEnd = zbd->outStart + decodedSize; 4437 zbd->stage = ZBUFFds_flush; 4438 break; 4439 } 4440 if (ip==iend) { notDone = 0; break; } /* no more input */ 4441 zbd->stage = ZBUFFds_load; 4442 } 4443 /* fall-through */ 4444 case ZBUFFds_load: 4445 { size_t const neededInSize = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); 4446 size_t const toLoad = neededInSize - zbd->inPos; /* should always be <= remaining space within inBuff */ 4447 size_t loadedSize; 4448 if (toLoad > zbd->inBuffSize - zbd->inPos) return ERROR(corruption_detected); /* should never happen */ 4449 loadedSize = ZBUFFv07_limitCopy(zbd->inBuff + zbd->inPos, toLoad, ip, iend-ip); 4450 ip += loadedSize; 4451 zbd->inPos += loadedSize; 4452 if (loadedSize < toLoad) { notDone = 0; break; } /* not enough input, wait for more */ 4453 4454 /* decode loaded input */ 4455 { const int isSkipFrame = ZSTDv07_isSkipFrame(zbd->zd); 4456 size_t const decodedSize = ZSTDv07_decompressContinue(zbd->zd, 4457 zbd->outBuff + zbd->outStart, zbd->outBuffSize - zbd->outStart, 4458 zbd->inBuff, neededInSize); 4459 if (ZSTDv07_isError(decodedSize)) return decodedSize; 4460 zbd->inPos = 0; /* input is consumed */ 4461 if (!decodedSize && !isSkipFrame) { zbd->stage = ZBUFFds_read; break; } /* this was just a header */ 4462 zbd->outEnd = zbd->outStart + decodedSize; 4463 zbd->stage = ZBUFFds_flush; 4464 /* break; */ 4465 /* pass-through */ 4466 } 4467 } 4468 /* fall-through */ 4469 case ZBUFFds_flush: 4470 { size_t const toFlushSize = zbd->outEnd - zbd->outStart; 4471 size_t const flushedSize = ZBUFFv07_limitCopy(op, oend-op, zbd->outBuff + zbd->outStart, toFlushSize); 4472 op += flushedSize; 4473 zbd->outStart += flushedSize; 4474 if (flushedSize == toFlushSize) { 4475 zbd->stage = ZBUFFds_read; 4476 if (zbd->outStart + zbd->blockSize > zbd->outBuffSize) 4477 zbd->outStart = zbd->outEnd = 0; 4478 break; 4479 } 4480 /* cannot flush everything */ 4481 notDone = 0; 4482 break; 4483 } 4484 default: return ERROR(GENERIC); /* impossible */ 4485 } } 4486 4487 /* result */ 4488 *srcSizePtr = ip-istart; 4489 *dstCapacityPtr = op-ostart; 4490 { size_t nextSrcSizeHint = ZSTDv07_nextSrcSizeToDecompress(zbd->zd); 4491 nextSrcSizeHint -= zbd->inPos; /* already loaded*/ 4492 return nextSrcSizeHint; 4493 } 4494 } 4495 4496 4497 4498 /* ************************************* 4499 * Tool functions 4500 ***************************************/ 4501 size_t ZBUFFv07_recommendedDInSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX + ZSTDv07_blockHeaderSize /* block header size*/ ; } 4502 size_t ZBUFFv07_recommendedDOutSize(void) { return ZSTDv07_BLOCKSIZE_ABSOLUTEMAX; } 4503