xref: /freebsd/sys/contrib/zstd/lib/legacy/zstd_v04.c (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 /*
2  * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12  /******************************************
13  *  Includes
14  ******************************************/
15 #include <stddef.h>    /* size_t, ptrdiff_t */
16 #include <string.h>    /* memcpy */
17 
18 #include "zstd_v04.h"
19 #include "error_private.h"
20 
21 
22 /* ******************************************************************
23  *   mem.h
24  *******************************************************************/
25 #ifndef MEM_H_MODULE
26 #define MEM_H_MODULE
27 
28 #if defined (__cplusplus)
29 extern "C" {
30 #endif
31 
32 
33 /******************************************
34 *  Compiler-specific
35 ******************************************/
36 #if defined(_MSC_VER)   /* Visual Studio */
37 #   include <stdlib.h>  /* _byteswap_ulong */
38 #   include <intrin.h>  /* _byteswap_* */
39 #endif
40 #if defined(__GNUC__)
41 #  define MEM_STATIC static __attribute__((unused))
42 #elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
43 #  define MEM_STATIC static inline
44 #elif defined(_MSC_VER)
45 #  define MEM_STATIC static __inline
46 #else
47 #  define MEM_STATIC static  /* this version may generate warnings for unused static functions; disable the relevant warning */
48 #endif
49 
50 
51 /****************************************************************
52 *  Basic Types
53 *****************************************************************/
54 #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
55 # include <stdint.h>
56   typedef  uint8_t BYTE;
57   typedef uint16_t U16;
58   typedef  int16_t S16;
59   typedef uint32_t U32;
60   typedef  int32_t S32;
61   typedef uint64_t U64;
62   typedef  int64_t S64;
63 #else
64   typedef unsigned char       BYTE;
65   typedef unsigned short      U16;
66   typedef   signed short      S16;
67   typedef unsigned int        U32;
68   typedef   signed int        S32;
69   typedef unsigned long long  U64;
70   typedef   signed long long  S64;
71 #endif
72 
73 
74 /*-*************************************
75 *  Debug
76 ***************************************/
77 #include "debug.h"
78 #ifndef assert
79 #  define assert(condition) ((void)0)
80 #endif
81 
82 
83 /****************************************************************
84 *  Memory I/O
85 *****************************************************************/
86 /* MEM_FORCE_MEMORY_ACCESS
87  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
88  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
89  * The below switch allow to select different access method for improved performance.
90  * Method 0 (default) : use `memcpy()`. Safe and portable.
91  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
92  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
93  * Method 2 : direct access. This method is portable but violate C standard.
94  *            It can generate buggy code on targets generating assembly depending on alignment.
95  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
96  * See http://fastcompression.blogspot.fr/2015/08/accessing-unaligned-memory.html for details.
97  * Prefer these methods in priority order (0 > 1 > 2)
98  */
99 #ifndef MEM_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
100 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
101 #    define MEM_FORCE_MEMORY_ACCESS 2
102 #  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
103   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) ))
104 #    define MEM_FORCE_MEMORY_ACCESS 1
105 #  endif
106 #endif
107 
108 MEM_STATIC unsigned MEM_32bits(void) { return sizeof(void*)==4; }
109 MEM_STATIC unsigned MEM_64bits(void) { return sizeof(void*)==8; }
110 
111 MEM_STATIC unsigned MEM_isLittleEndian(void)
112 {
113     const union { U32 u; BYTE c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
114     return one.c[0];
115 }
116 
117 #if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
118 
119 /* violates C standard on structure alignment.
120 Only use if no other choice to achieve best performance on target platform */
121 MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
122 MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
123 MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
124 
125 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
126 
127 #elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
128 
129 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
130 /* currently only defined for gcc and icc */
131 typedef union { U16 u16; U32 u32; U64 u64; } __attribute__((packed)) unalign;
132 
133 MEM_STATIC U16 MEM_read16(const void* ptr) { return ((const unalign*)ptr)->u16; }
134 MEM_STATIC U32 MEM_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
135 MEM_STATIC U64 MEM_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
136 
137 MEM_STATIC void MEM_write16(void* memPtr, U16 value) { ((unalign*)memPtr)->u16 = value; }
138 
139 #else
140 
141 /* default method, safe and standard.
142    can sometimes prove slower */
143 
144 MEM_STATIC U16 MEM_read16(const void* memPtr)
145 {
146     U16 val; memcpy(&val, memPtr, sizeof(val)); return val;
147 }
148 
149 MEM_STATIC U32 MEM_read32(const void* memPtr)
150 {
151     U32 val; memcpy(&val, memPtr, sizeof(val)); return val;
152 }
153 
154 MEM_STATIC U64 MEM_read64(const void* memPtr)
155 {
156     U64 val; memcpy(&val, memPtr, sizeof(val)); return val;
157 }
158 
159 MEM_STATIC void MEM_write16(void* memPtr, U16 value)
160 {
161     memcpy(memPtr, &value, sizeof(value));
162 }
163 
164 #endif // MEM_FORCE_MEMORY_ACCESS
165 
166 
167 MEM_STATIC U16 MEM_readLE16(const void* memPtr)
168 {
169     if (MEM_isLittleEndian())
170         return MEM_read16(memPtr);
171     else
172     {
173         const BYTE* p = (const BYTE*)memPtr;
174         return (U16)(p[0] + (p[1]<<8));
175     }
176 }
177 
178 MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
179 {
180     if (MEM_isLittleEndian())
181     {
182         MEM_write16(memPtr, val);
183     }
184     else
185     {
186         BYTE* p = (BYTE*)memPtr;
187         p[0] = (BYTE)val;
188         p[1] = (BYTE)(val>>8);
189     }
190 }
191 
192 MEM_STATIC U32 MEM_readLE24(const void* memPtr)
193 {
194     return MEM_readLE16(memPtr) + (((const BYTE*)memPtr)[2] << 16);
195 }
196 
197 MEM_STATIC U32 MEM_readLE32(const void* memPtr)
198 {
199     if (MEM_isLittleEndian())
200         return MEM_read32(memPtr);
201     else
202     {
203         const BYTE* p = (const BYTE*)memPtr;
204         return (U32)((U32)p[0] + ((U32)p[1]<<8) + ((U32)p[2]<<16) + ((U32)p[3]<<24));
205     }
206 }
207 
208 
209 MEM_STATIC U64 MEM_readLE64(const void* memPtr)
210 {
211     if (MEM_isLittleEndian())
212         return MEM_read64(memPtr);
213     else
214     {
215         const BYTE* p = (const BYTE*)memPtr;
216         return (U64)((U64)p[0] + ((U64)p[1]<<8) + ((U64)p[2]<<16) + ((U64)p[3]<<24)
217                      + ((U64)p[4]<<32) + ((U64)p[5]<<40) + ((U64)p[6]<<48) + ((U64)p[7]<<56));
218     }
219 }
220 
221 
222 MEM_STATIC size_t MEM_readLEST(const void* memPtr)
223 {
224     if (MEM_32bits())
225         return (size_t)MEM_readLE32(memPtr);
226     else
227         return (size_t)MEM_readLE64(memPtr);
228 }
229 
230 
231 #if defined (__cplusplus)
232 }
233 #endif
234 
235 #endif /* MEM_H_MODULE */
236 
237 /*
238     zstd - standard compression library
239     Header File for static linking only
240 */
241 #ifndef ZSTD_STATIC_H
242 #define ZSTD_STATIC_H
243 
244 
245 /* *************************************
246 *  Types
247 ***************************************/
248 #define ZSTD_WINDOWLOG_ABSOLUTEMIN 11
249 
250 /** from faster to stronger */
251 typedef enum { ZSTD_fast, ZSTD_greedy, ZSTD_lazy, ZSTD_lazy2, ZSTD_btlazy2 } ZSTD_strategy;
252 
253 typedef struct
254 {
255     U64 srcSize;       /* optional : tells how much bytes are present in the frame. Use 0 if not known. */
256     U32 windowLog;     /* largest match distance : larger == more compression, more memory needed during decompression */
257     U32 contentLog;    /* full search segment : larger == more compression, slower, more memory (useless for fast) */
258     U32 hashLog;       /* dispatch table : larger == more memory, faster */
259     U32 searchLog;     /* nb of searches : larger == more compression, slower */
260     U32 searchLength;  /* size of matches : larger == faster decompression, sometimes less compression */
261     ZSTD_strategy strategy;
262 } ZSTD_parameters;
263 
264 typedef ZSTDv04_Dctx ZSTD_DCtx;
265 
266 /* *************************************
267 *  Advanced functions
268 ***************************************/
269 /** ZSTD_decompress_usingDict
270 *   Same as ZSTD_decompressDCtx, using a Dictionary content as prefix
271 *   Note : dict can be NULL, in which case, it's equivalent to ZSTD_decompressDCtx() */
272 static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
273                                              void* dst, size_t maxDstSize,
274                                        const void* src, size_t srcSize,
275                                        const void* dict,size_t dictSize);
276 
277 
278 /* **************************************
279 *  Streaming functions (direct mode)
280 ****************************************/
281 static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx);
282 static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize);
283 static void   ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* src, size_t srcSize);
284 
285 static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx);
286 static size_t ZSTD_decompressContinue(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
287 
288 /**
289   Streaming decompression, bufferless mode
290 
291   A ZSTD_DCtx object is required to track streaming operations.
292   Use ZSTD_createDCtx() / ZSTD_freeDCtx() to manage it.
293   A ZSTD_DCtx object can be re-used multiple times. Use ZSTD_resetDCtx() to return to fresh status.
294 
295   First operation is to retrieve frame parameters, using ZSTD_getFrameParams().
296   This function doesn't consume its input. It needs enough input data to properly decode the frame header.
297   Objective is to retrieve *params.windowlog, to know minimum amount of memory required during decoding.
298   Result : 0 when successful, it means the ZSTD_parameters structure has been filled.
299            >0 : means there is not enough data into src. Provides the expected size to successfully decode header.
300            errorCode, which can be tested using ZSTD_isError() (For example, if it's not a ZSTD header)
301 
302   Then, you can optionally insert a dictionary.
303   This operation must mimic the compressor behavior, otherwise decompression will fail or be corrupted.
304 
305   Then it's possible to start decompression.
306   Use ZSTD_nextSrcSizeToDecompress() and ZSTD_decompressContinue() alternatively.
307   ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
308   ZSTD_decompressContinue() requires this exact amount of bytes, or it will fail.
309   ZSTD_decompressContinue() needs previous data blocks during decompression, up to (1 << windowlog).
310   They should preferably be located contiguously, prior to current block. Alternatively, a round buffer is also possible.
311 
312   @result of ZSTD_decompressContinue() is the number of bytes regenerated within 'dst'.
313   It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
314 
315   A frame is fully decoded when ZSTD_nextSrcSizeToDecompress() returns zero.
316   Context can then be reset to start a new decompression.
317 */
318 
319 
320 
321 
322 #endif  /* ZSTD_STATIC_H */
323 
324 
325 /*
326     zstd_internal - common functions to include
327     Header File for include
328 */
329 #ifndef ZSTD_CCOMMON_H_MODULE
330 #define ZSTD_CCOMMON_H_MODULE
331 
332 /* *************************************
333 *  Common macros
334 ***************************************/
335 #define MIN(a,b) ((a)<(b) ? (a) : (b))
336 #define MAX(a,b) ((a)>(b) ? (a) : (b))
337 
338 
339 /* *************************************
340 *  Common constants
341 ***************************************/
342 #define ZSTD_MAGICNUMBER 0xFD2FB524   /* v0.4 */
343 
344 #define KB *(1 <<10)
345 #define MB *(1 <<20)
346 #define GB *(1U<<30)
347 
348 #define BLOCKSIZE (128 KB)                 /* define, for static allocation */
349 
350 static const size_t ZSTD_blockHeaderSize = 3;
351 static const size_t ZSTD_frameHeaderSize_min = 5;
352 #define ZSTD_frameHeaderSize_max 5         /* define, for static allocation */
353 
354 #define BIT7 128
355 #define BIT6  64
356 #define BIT5  32
357 #define BIT4  16
358 #define BIT1   2
359 #define BIT0   1
360 
361 #define IS_RAW BIT0
362 #define IS_RLE BIT1
363 
364 #define MINMATCH 4
365 #define REPCODE_STARTVALUE 4
366 
367 #define MLbits   7
368 #define LLbits   6
369 #define Offbits  5
370 #define MaxML  ((1<<MLbits) - 1)
371 #define MaxLL  ((1<<LLbits) - 1)
372 #define MaxOff ((1<<Offbits)- 1)
373 #define MLFSELog   10
374 #define LLFSELog   10
375 #define OffFSELog   9
376 #define MaxSeq MAX(MaxLL, MaxML)
377 
378 #define MIN_SEQUENCES_SIZE (2 /*seqNb*/ + 2 /*dumps*/ + 3 /*seqTables*/ + 1 /*bitStream*/)
379 #define MIN_CBLOCK_SIZE (3 /*litCSize*/ + MIN_SEQUENCES_SIZE)
380 
381 #define ZSTD_CONTENTSIZE_ERROR   (0ULL - 2)
382 
383 typedef enum { bt_compressed, bt_raw, bt_rle, bt_end } blockType_t;
384 
385 
386 /* ******************************************
387 *  Shared functions to include for inlining
388 ********************************************/
389 static void ZSTD_copy8(void* dst, const void* src) { memcpy(dst, src, 8); }
390 
391 #define COPY8(d,s) { ZSTD_copy8(d,s); d+=8; s+=8; }
392 
393 /*! ZSTD_wildcopy : custom version of memcpy(), can copy up to 7-8 bytes too many */
394 static void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length)
395 {
396     const BYTE* ip = (const BYTE*)src;
397     BYTE* op = (BYTE*)dst;
398     BYTE* const oend = op + length;
399     do
400         COPY8(op, ip)
401     while (op < oend);
402 }
403 
404 
405 
406 /* ******************************************************************
407    FSE : Finite State Entropy coder
408    header file
409 ****************************************************************** */
410 #ifndef FSE_H
411 #define FSE_H
412 
413 #if defined (__cplusplus)
414 extern "C" {
415 #endif
416 
417 
418 /* *****************************************
419 *  Includes
420 ******************************************/
421 #include <stddef.h>    /* size_t, ptrdiff_t */
422 
423 
424 /* *****************************************
425 *  FSE simple functions
426 ******************************************/
427 static size_t FSE_decompress(void* dst,  size_t maxDstSize,
428                 const void* cSrc, size_t cSrcSize);
429 /*!
430 FSE_decompress():
431     Decompress FSE data from buffer 'cSrc', of size 'cSrcSize',
432     into already allocated destination buffer 'dst', of size 'maxDstSize'.
433     return : size of regenerated data (<= maxDstSize)
434              or an error code, which can be tested using FSE_isError()
435 
436     ** Important ** : FSE_decompress() doesn't decompress non-compressible nor RLE data !!!
437     Why ? : making this distinction requires a header.
438     Header management is intentionally delegated to the user layer, which can better manage special cases.
439 */
440 
441 
442 /* *****************************************
443 *  Tool functions
444 ******************************************/
445 /* Error Management */
446 static unsigned    FSE_isError(size_t code);        /* tells if a return value is an error code */
447 
448 
449 
450 /* *****************************************
451 *  FSE detailed API
452 ******************************************/
453 /*!
454 FSE_compress() does the following:
455 1. count symbol occurrence from source[] into table count[]
456 2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
457 3. save normalized counters to memory buffer using writeNCount()
458 4. build encoding table 'CTable' from normalized counters
459 5. encode the data stream using encoding table 'CTable'
460 
461 FSE_decompress() does the following:
462 1. read normalized counters with readNCount()
463 2. build decoding table 'DTable' from normalized counters
464 3. decode the data stream using decoding table 'DTable'
465 
466 The following API allows targeting specific sub-functions for advanced tasks.
467 For example, it's possible to compress several blocks using the same 'CTable',
468 or to save and provide normalized distribution using external method.
469 */
470 
471 
472 /* *** DECOMPRESSION *** */
473 
474 /*!
475 FSE_readNCount():
476    Read compactly saved 'normalizedCounter' from 'rBuffer'.
477    return : size read from 'rBuffer'
478             or an errorCode, which can be tested using FSE_isError()
479             maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
480 static  size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSymbolValuePtr, unsigned* tableLogPtr, const void* rBuffer, size_t rBuffSize);
481 
482 /*!
483 Constructor and Destructor of type FSE_DTable
484     Note that its size depends on 'tableLog' */
485 typedef unsigned FSE_DTable;   /* don't allocate that. It's just a way to be more restrictive than void* */
486 
487 /*!
488 FSE_buildDTable():
489    Builds 'dt', which must be already allocated, using FSE_createDTable()
490    return : 0,
491             or an errorCode, which can be tested using FSE_isError() */
492 static size_t FSE_buildDTable ( FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
493 
494 /*!
495 FSE_decompress_usingDTable():
496    Decompress compressed source 'cSrc' of size 'cSrcSize' using 'dt'
497    into 'dst' which must be already allocated.
498    return : size of regenerated data (necessarily <= maxDstSize)
499             or an errorCode, which can be tested using FSE_isError() */
500 static  size_t FSE_decompress_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const FSE_DTable* dt);
501 
502 /*!
503 Tutorial :
504 ----------
505 (Note : these functions only decompress FSE-compressed blocks.
506  If block is uncompressed, use memcpy() instead
507  If block is a single repeated byte, use memset() instead )
508 
509 The first step is to obtain the normalized frequencies of symbols.
510 This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
511 'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
512 In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
513 or size the table to handle worst case situations (typically 256).
514 FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
515 The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
516 Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
517 If there is an error, the function will return an error code, which can be tested using FSE_isError().
518 
519 The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
520 This is performed by the function FSE_buildDTable().
521 The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
522 If there is an error, the function will return an error code, which can be tested using FSE_isError().
523 
524 'FSE_DTable' can then be used to decompress 'cSrc', with FSE_decompress_usingDTable().
525 'cSrcSize' must be strictly correct, otherwise decompression will fail.
526 FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=maxDstSize).
527 If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
528 */
529 
530 
531 #if defined (__cplusplus)
532 }
533 #endif
534 
535 #endif  /* FSE_H */
536 
537 
538 /* ******************************************************************
539    bitstream
540    Part of NewGen Entropy library
541    header file (to include)
542    Copyright (C) 2013-2015, Yann Collet.
543 
544    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
545 
546    Redistribution and use in source and binary forms, with or without
547    modification, are permitted provided that the following conditions are
548    met:
549 
550        * Redistributions of source code must retain the above copyright
551    notice, this list of conditions and the following disclaimer.
552        * Redistributions in binary form must reproduce the above
553    copyright notice, this list of conditions and the following disclaimer
554    in the documentation and/or other materials provided with the
555    distribution.
556 
557    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
558    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
559    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
560    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
561    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
562    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
563    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
564    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
565    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
566    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
567    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
568 
569    You can contact the author at :
570    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
571    - Public forum : https://groups.google.com/forum/#!forum/lz4c
572 ****************************************************************** */
573 #ifndef BITSTREAM_H_MODULE
574 #define BITSTREAM_H_MODULE
575 
576 #if defined (__cplusplus)
577 extern "C" {
578 #endif
579 
580 
581 /*
582 *  This API consists of small unitary functions, which highly benefit from being inlined.
583 *  Since link-time-optimization is not available for all compilers,
584 *  these functions are defined into a .h to be included.
585 */
586 
587 /**********************************************
588 *  bitStream decompression API (read backward)
589 **********************************************/
590 typedef struct
591 {
592     size_t   bitContainer;
593     unsigned bitsConsumed;
594     const char* ptr;
595     const char* start;
596 } BIT_DStream_t;
597 
598 typedef enum { BIT_DStream_unfinished = 0,
599                BIT_DStream_endOfBuffer = 1,
600                BIT_DStream_completed = 2,
601                BIT_DStream_overflow = 3 } BIT_DStream_status;  /* result of BIT_reloadDStream() */
602                /* 1,2,4,8 would be better for bitmap combinations, but slows down performance a bit ... :( */
603 
604 MEM_STATIC size_t   BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
605 MEM_STATIC size_t   BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
606 MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
607 MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
608 
609 
610 
611 
612 /******************************************
613 *  unsafe API
614 ******************************************/
615 MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
616 /* faster, but works only if nbBits >= 1 */
617 
618 
619 
620 /****************************************************************
621 *  Helper functions
622 ****************************************************************/
623 MEM_STATIC unsigned BIT_highbit32 (U32 val)
624 {
625 #   if defined(_MSC_VER)   /* Visual */
626     unsigned long r=0;
627     _BitScanReverse ( &r, val );
628     return (unsigned) r;
629 #   elif defined(__GNUC__) && (__GNUC__ >= 3)   /* Use GCC Intrinsic */
630     return __builtin_clz (val) ^ 31;
631 #   else   /* Software version */
632     static const unsigned DeBruijnClz[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 };
633     U32 v = val;
634     unsigned r;
635     v |= v >> 1;
636     v |= v >> 2;
637     v |= v >> 4;
638     v |= v >> 8;
639     v |= v >> 16;
640     r = DeBruijnClz[ (U32) (v * 0x07C4ACDDU) >> 27];
641     return r;
642 #   endif
643 }
644 
645 
646 /**********************************************************
647 * bitStream decoding
648 **********************************************************/
649 
650 /*!BIT_initDStream
651 *  Initialize a BIT_DStream_t.
652 *  @bitD : a pointer to an already allocated BIT_DStream_t structure
653 *  @srcBuffer must point at the beginning of a bitStream
654 *  @srcSize must be the exact size of the bitStream
655 *  @result : size of stream (== srcSize) or an errorCode if a problem is detected
656 */
657 MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
658 {
659     if (srcSize < 1) { memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
660 
661     if (srcSize >=  sizeof(size_t))   /* normal case */
662     {
663         U32 contain32;
664         bitD->start = (const char*)srcBuffer;
665         bitD->ptr   = (const char*)srcBuffer + srcSize - sizeof(size_t);
666         bitD->bitContainer = MEM_readLEST(bitD->ptr);
667         contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
668         if (contain32 == 0) return ERROR(GENERIC);   /* endMark not present */
669         bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
670     }
671     else
672     {
673         U32 contain32;
674         bitD->start = (const char*)srcBuffer;
675         bitD->ptr   = bitD->start;
676         bitD->bitContainer = *(const BYTE*)(bitD->start);
677         switch(srcSize)
678         {
679             case 7: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[6]) << (sizeof(size_t)*8 - 16);/* fall-through */
680             case 6: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[5]) << (sizeof(size_t)*8 - 24);/* fall-through */
681             case 5: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[4]) << (sizeof(size_t)*8 - 32);/* fall-through */
682             case 4: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[3]) << 24; /* fall-through */
683             case 3: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[2]) << 16; /* fall-through */
684             case 2: bitD->bitContainer += (size_t)(((const BYTE*)(bitD->start))[1]) <<  8; /* fall-through */
685             default: break;
686         }
687         contain32 = ((const BYTE*)srcBuffer)[srcSize-1];
688         if (contain32 == 0) return ERROR(GENERIC);   /* endMark not present */
689         bitD->bitsConsumed = 8 - BIT_highbit32(contain32);
690         bitD->bitsConsumed += (U32)(sizeof(size_t) - srcSize)*8;
691     }
692 
693     return srcSize;
694 }
695 
696 MEM_STATIC size_t BIT_lookBits(BIT_DStream_t* bitD, U32 nbBits)
697 {
698     const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
699     return ((bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> 1) >> ((bitMask-nbBits) & bitMask);
700 }
701 
702 /*! BIT_lookBitsFast :
703 *   unsafe version; only works only if nbBits >= 1 */
704 MEM_STATIC size_t BIT_lookBitsFast(BIT_DStream_t* bitD, U32 nbBits)
705 {
706     const U32 bitMask = sizeof(bitD->bitContainer)*8 - 1;
707     return (bitD->bitContainer << (bitD->bitsConsumed & bitMask)) >> (((bitMask+1)-nbBits) & bitMask);
708 }
709 
710 MEM_STATIC void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
711 {
712     bitD->bitsConsumed += nbBits;
713 }
714 
715 MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, U32 nbBits)
716 {
717     size_t value = BIT_lookBits(bitD, nbBits);
718     BIT_skipBits(bitD, nbBits);
719     return value;
720 }
721 
722 /*!BIT_readBitsFast :
723 *  unsafe version; only works only if nbBits >= 1 */
724 MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, U32 nbBits)
725 {
726     size_t value = BIT_lookBitsFast(bitD, nbBits);
727     BIT_skipBits(bitD, nbBits);
728     return value;
729 }
730 
731 MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
732 {
733     if (bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))  /* should never happen */
734         return BIT_DStream_overflow;
735 
736     if (bitD->ptr >= bitD->start + sizeof(bitD->bitContainer))
737     {
738         bitD->ptr -= bitD->bitsConsumed >> 3;
739         bitD->bitsConsumed &= 7;
740         bitD->bitContainer = MEM_readLEST(bitD->ptr);
741         return BIT_DStream_unfinished;
742     }
743     if (bitD->ptr == bitD->start)
744     {
745         if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
746         return BIT_DStream_completed;
747     }
748     {
749         U32 nbBytes = bitD->bitsConsumed >> 3;
750         BIT_DStream_status result = BIT_DStream_unfinished;
751         if (bitD->ptr - nbBytes < bitD->start)
752         {
753             nbBytes = (U32)(bitD->ptr - bitD->start);  /* ptr > start */
754             result = BIT_DStream_endOfBuffer;
755         }
756         bitD->ptr -= nbBytes;
757         bitD->bitsConsumed -= nbBytes*8;
758         bitD->bitContainer = MEM_readLEST(bitD->ptr);   /* reminder : srcSize > sizeof(bitD) */
759         return result;
760     }
761 }
762 
763 /*! BIT_endOfDStream
764 *   @return Tells if DStream has reached its exact end
765 */
766 MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
767 {
768     return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
769 }
770 
771 #if defined (__cplusplus)
772 }
773 #endif
774 
775 #endif /* BITSTREAM_H_MODULE */
776 
777 
778 
779 /* ******************************************************************
780    FSE : Finite State Entropy coder
781    header file for static linking (only)
782    Copyright (C) 2013-2015, Yann Collet
783 
784    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
785 
786    Redistribution and use in source and binary forms, with or without
787    modification, are permitted provided that the following conditions are
788    met:
789 
790        * Redistributions of source code must retain the above copyright
791    notice, this list of conditions and the following disclaimer.
792        * Redistributions in binary form must reproduce the above
793    copyright notice, this list of conditions and the following disclaimer
794    in the documentation and/or other materials provided with the
795    distribution.
796 
797    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
798    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
799    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
800    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
801    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
802    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
803    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
804    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
805    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
806    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
807    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
808 
809    You can contact the author at :
810    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
811    - Public forum : https://groups.google.com/forum/#!forum/lz4c
812 ****************************************************************** */
813 #ifndef FSE_STATIC_H
814 #define FSE_STATIC_H
815 
816 #if defined (__cplusplus)
817 extern "C" {
818 #endif
819 
820 
821 /* *****************************************
822 *  Static allocation
823 *******************************************/
824 /* FSE buffer bounds */
825 #define FSE_NCOUNTBOUND 512
826 #define FSE_BLOCKBOUND(size) (size + (size>>7))
827 #define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size))   /* Macro version, useful for static allocation */
828 
829 /* It is possible to statically allocate FSE CTable/DTable as a table of unsigned using below macros */
830 #define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue)   (1 + (1<<(maxTableLog-1)) + ((maxSymbolValue+1)*2))
831 #define FSE_DTABLE_SIZE_U32(maxTableLog)                   (1 + (1<<maxTableLog))
832 
833 
834 /* *****************************************
835 *  FSE advanced API
836 *******************************************/
837 static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits);
838 /* build a fake FSE_DTable, designed to read an uncompressed bitstream where each symbol uses nbBits */
839 
840 static size_t FSE_buildDTable_rle (FSE_DTable* dt, unsigned char symbolValue);
841 /* build a fake FSE_DTable, designed to always generate the same symbolValue */
842 
843 
844 
845 /* *****************************************
846 *  FSE symbol decompression API
847 *******************************************/
848 typedef struct
849 {
850     size_t      state;
851     const void* table;   /* precise table may vary, depending on U16 */
852 } FSE_DState_t;
853 
854 
855 static void     FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
856 
857 static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
858 
859 static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
860 
861 
862 /* *****************************************
863 *  FSE unsafe API
864 *******************************************/
865 static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
866 /* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
867 
868 
869 /* *****************************************
870 *  Implementation of inlined functions
871 *******************************************/
872 /* decompression */
873 
874 typedef struct {
875     U16 tableLog;
876     U16 fastMode;
877 } FSE_DTableHeader;   /* sizeof U32 */
878 
879 typedef struct
880 {
881     unsigned short newState;
882     unsigned char  symbol;
883     unsigned char  nbBits;
884 } FSE_decode_t;   /* size == U32 */
885 
886 MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
887 {
888     FSE_DTableHeader DTableH;
889     memcpy(&DTableH, dt, sizeof(DTableH));
890     DStatePtr->state = BIT_readBits(bitD, DTableH.tableLog);
891     BIT_reloadDStream(bitD);
892     DStatePtr->table = dt + 1;
893 }
894 
895 MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
896 {
897     const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
898     const U32  nbBits = DInfo.nbBits;
899     BYTE symbol = DInfo.symbol;
900     size_t lowBits = BIT_readBits(bitD, nbBits);
901 
902     DStatePtr->state = DInfo.newState + lowBits;
903     return symbol;
904 }
905 
906 MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
907 {
908     const FSE_decode_t DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
909     const U32 nbBits = DInfo.nbBits;
910     BYTE symbol = DInfo.symbol;
911     size_t lowBits = BIT_readBitsFast(bitD, nbBits);
912 
913     DStatePtr->state = DInfo.newState + lowBits;
914     return symbol;
915 }
916 
917 MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
918 {
919     return DStatePtr->state == 0;
920 }
921 
922 
923 #if defined (__cplusplus)
924 }
925 #endif
926 
927 #endif  /* FSE_STATIC_H */
928 
929 /* ******************************************************************
930    FSE : Finite State Entropy coder
931    Copyright (C) 2013-2015, Yann Collet.
932 
933    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
934 
935    Redistribution and use in source and binary forms, with or without
936    modification, are permitted provided that the following conditions are
937    met:
938 
939        * Redistributions of source code must retain the above copyright
940    notice, this list of conditions and the following disclaimer.
941        * Redistributions in binary form must reproduce the above
942    copyright notice, this list of conditions and the following disclaimer
943    in the documentation and/or other materials provided with the
944    distribution.
945 
946    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
947    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
948    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
949    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
950    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
951    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
952    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
953    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
954    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
955    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
956    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
957 
958     You can contact the author at :
959     - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
960     - Public forum : https://groups.google.com/forum/#!forum/lz4c
961 ****************************************************************** */
962 
963 #ifndef FSE_COMMONDEFS_ONLY
964 
965 /* **************************************************************
966 *  Tuning parameters
967 ****************************************************************/
968 /*!MEMORY_USAGE :
969 *  Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
970 *  Increasing memory usage improves compression ratio
971 *  Reduced memory usage can improve speed, due to cache effect
972 *  Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
973 #define FSE_MAX_MEMORY_USAGE 14
974 #define FSE_DEFAULT_MEMORY_USAGE 13
975 
976 /*!FSE_MAX_SYMBOL_VALUE :
977 *  Maximum symbol value authorized.
978 *  Required for proper stack allocation */
979 #define FSE_MAX_SYMBOL_VALUE 255
980 
981 
982 /* **************************************************************
983 *  template functions type & suffix
984 ****************************************************************/
985 #define FSE_FUNCTION_TYPE BYTE
986 #define FSE_FUNCTION_EXTENSION
987 #define FSE_DECODE_TYPE FSE_decode_t
988 
989 
990 #endif   /* !FSE_COMMONDEFS_ONLY */
991 
992 /* **************************************************************
993 *  Compiler specifics
994 ****************************************************************/
995 #ifdef _MSC_VER    /* Visual Studio */
996 #  define FORCE_INLINE static __forceinline
997 #  include <intrin.h>                    /* For Visual 2005 */
998 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
999 #  pragma warning(disable : 4214)        /* disable: C4214: non-int bitfields */
1000 #else
1001 #  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
1002 #    ifdef __GNUC__
1003 #      define FORCE_INLINE static inline __attribute__((always_inline))
1004 #    else
1005 #      define FORCE_INLINE static inline
1006 #    endif
1007 #  else
1008 #    define FORCE_INLINE static
1009 #  endif /* __STDC_VERSION__ */
1010 #endif
1011 
1012 
1013 /* **************************************************************
1014 *  Dependencies
1015 ****************************************************************/
1016 #include <stdlib.h>     /* malloc, free, qsort */
1017 #include <string.h>     /* memcpy, memset */
1018 #include <stdio.h>      /* printf (debug) */
1019 
1020 
1021 /* ***************************************************************
1022 *  Constants
1023 *****************************************************************/
1024 #define FSE_MAX_TABLELOG  (FSE_MAX_MEMORY_USAGE-2)
1025 #define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
1026 #define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
1027 #define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
1028 #define FSE_MIN_TABLELOG 5
1029 
1030 #define FSE_TABLELOG_ABSOLUTE_MAX 15
1031 #if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
1032 #error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
1033 #endif
1034 
1035 
1036 /* **************************************************************
1037 *  Error Management
1038 ****************************************************************/
1039 #define FSE_STATIC_ASSERT(c) { enum { FSE_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
1040 
1041 
1042 /* **************************************************************
1043 *  Complex types
1044 ****************************************************************/
1045 typedef U32 DTable_max_t[FSE_DTABLE_SIZE_U32(FSE_MAX_TABLELOG)];
1046 
1047 
1048 /*-**************************************************************
1049 *  Templates
1050 ****************************************************************/
1051 /*
1052   designed to be included
1053   for type-specific functions (template emulation in C)
1054   Objective is to write these functions only once, for improved maintenance
1055 */
1056 
1057 /* safety checks */
1058 #ifndef FSE_FUNCTION_EXTENSION
1059 #  error "FSE_FUNCTION_EXTENSION must be defined"
1060 #endif
1061 #ifndef FSE_FUNCTION_TYPE
1062 #  error "FSE_FUNCTION_TYPE must be defined"
1063 #endif
1064 
1065 /* Function names */
1066 #define FSE_CAT(X,Y) X##Y
1067 #define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
1068 #define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
1069 
1070 static U32 FSE_tableStep(U32 tableSize) { return (tableSize>>1) + (tableSize>>3) + 3; }
1071 
1072 
1073 static size_t FSE_buildDTable(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
1074 {
1075     FSE_DTableHeader DTableH;
1076     void* const tdPtr = dt+1;   /* because dt is unsigned, 32-bits aligned on 32-bits */
1077     FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
1078     const U32 tableSize = 1 << tableLog;
1079     const U32 tableMask = tableSize-1;
1080     const U32 step = FSE_tableStep(tableSize);
1081     U16 symbolNext[FSE_MAX_SYMBOL_VALUE+1];
1082     U32 position = 0;
1083     U32 highThreshold = tableSize-1;
1084     const S16 largeLimit= (S16)(1 << (tableLog-1));
1085     U32 noLarge = 1;
1086     U32 s;
1087 
1088     /* Sanity Checks */
1089     if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
1090     if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
1091 
1092     /* Init, lay down lowprob symbols */
1093     memset(tableDecode, 0, sizeof(FSE_DECODE_TYPE) * (maxSymbolValue+1) );   /* useless init, but keep static analyzer happy, and we don't need to performance optimize legacy decoders */
1094     DTableH.tableLog = (U16)tableLog;
1095     for (s=0; s<=maxSymbolValue; s++)
1096     {
1097         if (normalizedCounter[s]==-1)
1098         {
1099             tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
1100             symbolNext[s] = 1;
1101         }
1102         else
1103         {
1104             if (normalizedCounter[s] >= largeLimit) noLarge=0;
1105             symbolNext[s] = normalizedCounter[s];
1106         }
1107     }
1108 
1109     /* Spread symbols */
1110     for (s=0; s<=maxSymbolValue; s++)
1111     {
1112         int i;
1113         for (i=0; i<normalizedCounter[s]; i++)
1114         {
1115             tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
1116             position = (position + step) & tableMask;
1117             while (position > highThreshold) position = (position + step) & tableMask;   /* lowprob area */
1118         }
1119     }
1120 
1121     if (position!=0) return ERROR(GENERIC);   /* position must reach all cells once, otherwise normalizedCounter is incorrect */
1122 
1123     /* Build Decoding table */
1124     {
1125         U32 i;
1126         for (i=0; i<tableSize; i++)
1127         {
1128             FSE_FUNCTION_TYPE symbol = (FSE_FUNCTION_TYPE)(tableDecode[i].symbol);
1129             U16 nextState = symbolNext[symbol]++;
1130             tableDecode[i].nbBits = (BYTE) (tableLog - BIT_highbit32 ((U32)nextState) );
1131             tableDecode[i].newState = (U16) ( (nextState << tableDecode[i].nbBits) - tableSize);
1132         }
1133     }
1134 
1135     DTableH.fastMode = (U16)noLarge;
1136     memcpy(dt, &DTableH, sizeof(DTableH));
1137     return 0;
1138 }
1139 
1140 
1141 #ifndef FSE_COMMONDEFS_ONLY
1142 /******************************************
1143 *  FSE helper functions
1144 ******************************************/
1145 static unsigned FSE_isError(size_t code) { return ERR_isError(code); }
1146 
1147 
1148 /****************************************************************
1149 *  FSE NCount encoding-decoding
1150 ****************************************************************/
1151 static short FSE_abs(short a)
1152 {
1153     return a<0 ? -a : a;
1154 }
1155 
1156 static size_t FSE_readNCount (short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
1157                  const void* headerBuffer, size_t hbSize)
1158 {
1159     const BYTE* const istart = (const BYTE*) headerBuffer;
1160     const BYTE* const iend = istart + hbSize;
1161     const BYTE* ip = istart;
1162     int nbBits;
1163     int remaining;
1164     int threshold;
1165     U32 bitStream;
1166     int bitCount;
1167     unsigned charnum = 0;
1168     int previous0 = 0;
1169 
1170     if (hbSize < 4) return ERROR(srcSize_wrong);
1171     bitStream = MEM_readLE32(ip);
1172     nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG;   /* extract tableLog */
1173     if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
1174     bitStream >>= 4;
1175     bitCount = 4;
1176     *tableLogPtr = nbBits;
1177     remaining = (1<<nbBits)+1;
1178     threshold = 1<<nbBits;
1179     nbBits++;
1180 
1181     while ((remaining>1) && (charnum<=*maxSVPtr))
1182     {
1183         if (previous0)
1184         {
1185             unsigned n0 = charnum;
1186             while ((bitStream & 0xFFFF) == 0xFFFF)
1187             {
1188                 n0+=24;
1189                 if (ip < iend-5)
1190                 {
1191                     ip+=2;
1192                     bitStream = MEM_readLE32(ip) >> bitCount;
1193                 }
1194                 else
1195                 {
1196                     bitStream >>= 16;
1197                     bitCount+=16;
1198                 }
1199             }
1200             while ((bitStream & 3) == 3)
1201             {
1202                 n0+=3;
1203                 bitStream>>=2;
1204                 bitCount+=2;
1205             }
1206             n0 += bitStream & 3;
1207             bitCount += 2;
1208             if (n0 > *maxSVPtr) return ERROR(maxSymbolValue_tooSmall);
1209             while (charnum < n0) normalizedCounter[charnum++] = 0;
1210             if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
1211             {
1212                 ip += bitCount>>3;
1213                 bitCount &= 7;
1214                 bitStream = MEM_readLE32(ip) >> bitCount;
1215             }
1216             else
1217                 bitStream >>= 2;
1218         }
1219         {
1220             const short max = (short)((2*threshold-1)-remaining);
1221             short count;
1222 
1223             if ((bitStream & (threshold-1)) < (U32)max)
1224             {
1225                 count = (short)(bitStream & (threshold-1));
1226                 bitCount   += nbBits-1;
1227             }
1228             else
1229             {
1230                 count = (short)(bitStream & (2*threshold-1));
1231                 if (count >= threshold) count -= max;
1232                 bitCount   += nbBits;
1233             }
1234 
1235             count--;   /* extra accuracy */
1236             remaining -= FSE_abs(count);
1237             normalizedCounter[charnum++] = count;
1238             previous0 = !count;
1239             while (remaining < threshold)
1240             {
1241                 nbBits--;
1242                 threshold >>= 1;
1243             }
1244 
1245             {
1246                 if ((ip <= iend-7) || (ip + (bitCount>>3) <= iend-4))
1247                 {
1248                     ip += bitCount>>3;
1249                     bitCount &= 7;
1250                 }
1251                 else
1252                 {
1253                     bitCount -= (int)(8 * (iend - 4 - ip));
1254                     ip = iend - 4;
1255                 }
1256                 bitStream = MEM_readLE32(ip) >> (bitCount & 31);
1257             }
1258         }
1259     }
1260     if (remaining != 1) return ERROR(GENERIC);
1261     *maxSVPtr = charnum-1;
1262 
1263     ip += (bitCount+7)>>3;
1264     if ((size_t)(ip-istart) > hbSize) return ERROR(srcSize_wrong);
1265     return ip-istart;
1266 }
1267 
1268 
1269 /*********************************************************
1270 *  Decompression (Byte symbols)
1271 *********************************************************/
1272 static size_t FSE_buildDTable_rle (FSE_DTable* dt, BYTE symbolValue)
1273 {
1274     void* ptr = dt;
1275     FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
1276     void* dPtr = dt + 1;
1277     FSE_decode_t* const cell = (FSE_decode_t*)dPtr;
1278 
1279     DTableH->tableLog = 0;
1280     DTableH->fastMode = 0;
1281 
1282     cell->newState = 0;
1283     cell->symbol = symbolValue;
1284     cell->nbBits = 0;
1285 
1286     return 0;
1287 }
1288 
1289 
1290 static size_t FSE_buildDTable_raw (FSE_DTable* dt, unsigned nbBits)
1291 {
1292     void* ptr = dt;
1293     FSE_DTableHeader* const DTableH = (FSE_DTableHeader*)ptr;
1294     void* dPtr = dt + 1;
1295     FSE_decode_t* const dinfo = (FSE_decode_t*)dPtr;
1296     const unsigned tableSize = 1 << nbBits;
1297     const unsigned tableMask = tableSize - 1;
1298     const unsigned maxSymbolValue = tableMask;
1299     unsigned s;
1300 
1301     /* Sanity checks */
1302     if (nbBits < 1) return ERROR(GENERIC);         /* min size */
1303 
1304     /* Build Decoding Table */
1305     DTableH->tableLog = (U16)nbBits;
1306     DTableH->fastMode = 1;
1307     for (s=0; s<=maxSymbolValue; s++)
1308     {
1309         dinfo[s].newState = 0;
1310         dinfo[s].symbol = (BYTE)s;
1311         dinfo[s].nbBits = (BYTE)nbBits;
1312     }
1313 
1314     return 0;
1315 }
1316 
1317 FORCE_INLINE size_t FSE_decompress_usingDTable_generic(
1318           void* dst, size_t maxDstSize,
1319     const void* cSrc, size_t cSrcSize,
1320     const FSE_DTable* dt, const unsigned fast)
1321 {
1322     BYTE* const ostart = (BYTE*) dst;
1323     BYTE* op = ostart;
1324     BYTE* const omax = op + maxDstSize;
1325     BYTE* const olimit = omax-3;
1326 
1327     BIT_DStream_t bitD;
1328     FSE_DState_t state1;
1329     FSE_DState_t state2;
1330     size_t errorCode;
1331 
1332     /* Init */
1333     errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);   /* replaced last arg by maxCompressed Size */
1334     if (FSE_isError(errorCode)) return errorCode;
1335 
1336     FSE_initDState(&state1, &bitD, dt);
1337     FSE_initDState(&state2, &bitD, dt);
1338 
1339 #define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
1340 
1341     /* 4 symbols per loop */
1342     for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) && (op<olimit) ; op+=4)
1343     {
1344         op[0] = FSE_GETSYMBOL(&state1);
1345 
1346         if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
1347             BIT_reloadDStream(&bitD);
1348 
1349         op[1] = FSE_GETSYMBOL(&state2);
1350 
1351         if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
1352             { if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
1353 
1354         op[2] = FSE_GETSYMBOL(&state1);
1355 
1356         if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8)    /* This test must be static */
1357             BIT_reloadDStream(&bitD);
1358 
1359         op[3] = FSE_GETSYMBOL(&state2);
1360     }
1361 
1362     /* tail */
1363     /* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
1364     while (1)
1365     {
1366         if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state1))) )
1367             break;
1368 
1369         *op++ = FSE_GETSYMBOL(&state1);
1370 
1371         if ( (BIT_reloadDStream(&bitD)>BIT_DStream_completed) || (op==omax) || (BIT_endOfDStream(&bitD) && (fast || FSE_endOfDState(&state2))) )
1372             break;
1373 
1374         *op++ = FSE_GETSYMBOL(&state2);
1375     }
1376 
1377     /* end ? */
1378     if (BIT_endOfDStream(&bitD) && FSE_endOfDState(&state1) && FSE_endOfDState(&state2))
1379         return op-ostart;
1380 
1381     if (op==omax) return ERROR(dstSize_tooSmall);   /* dst buffer is full, but cSrc unfinished */
1382 
1383     return ERROR(corruption_detected);
1384 }
1385 
1386 
1387 static size_t FSE_decompress_usingDTable(void* dst, size_t originalSize,
1388                             const void* cSrc, size_t cSrcSize,
1389                             const FSE_DTable* dt)
1390 {
1391     FSE_DTableHeader DTableH;
1392     U32 fastMode;
1393 
1394     memcpy(&DTableH, dt, sizeof(DTableH));
1395     fastMode = DTableH.fastMode;
1396 
1397     /* select fast mode (static) */
1398     if (fastMode) return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 1);
1399     return FSE_decompress_usingDTable_generic(dst, originalSize, cSrc, cSrcSize, dt, 0);
1400 }
1401 
1402 
1403 static size_t FSE_decompress(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize)
1404 {
1405     const BYTE* const istart = (const BYTE*)cSrc;
1406     const BYTE* ip = istart;
1407     short counting[FSE_MAX_SYMBOL_VALUE+1];
1408     DTable_max_t dt;   /* Static analyzer seems unable to understand this table will be properly initialized later */
1409     unsigned tableLog;
1410     unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
1411     size_t errorCode;
1412 
1413     if (cSrcSize<2) return ERROR(srcSize_wrong);   /* too small input size */
1414 
1415     /* normal FSE decoding mode */
1416     errorCode = FSE_readNCount (counting, &maxSymbolValue, &tableLog, istart, cSrcSize);
1417     if (FSE_isError(errorCode)) return errorCode;
1418     if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);   /* too small input size */
1419     ip += errorCode;
1420     cSrcSize -= errorCode;
1421 
1422     errorCode = FSE_buildDTable (dt, counting, maxSymbolValue, tableLog);
1423     if (FSE_isError(errorCode)) return errorCode;
1424 
1425     /* always return, even if it is an error code */
1426     return FSE_decompress_usingDTable (dst, maxDstSize, ip, cSrcSize, dt);
1427 }
1428 
1429 
1430 
1431 #endif   /* FSE_COMMONDEFS_ONLY */
1432 
1433 
1434 /* ******************************************************************
1435    Huff0 : Huffman coder, part of New Generation Entropy library
1436    header file
1437    Copyright (C) 2013-2015, Yann Collet.
1438 
1439    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
1440 
1441    Redistribution and use in source and binary forms, with or without
1442    modification, are permitted provided that the following conditions are
1443    met:
1444 
1445        * Redistributions of source code must retain the above copyright
1446    notice, this list of conditions and the following disclaimer.
1447        * Redistributions in binary form must reproduce the above
1448    copyright notice, this list of conditions and the following disclaimer
1449    in the documentation and/or other materials provided with the
1450    distribution.
1451 
1452    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1453    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1454    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1455    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1456    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1457    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1458    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1459    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1460    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1461    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1462    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1463 
1464    You can contact the author at :
1465    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
1466    - Public forum : https://groups.google.com/forum/#!forum/lz4c
1467 ****************************************************************** */
1468 #ifndef HUFF0_H
1469 #define HUFF0_H
1470 
1471 #if defined (__cplusplus)
1472 extern "C" {
1473 #endif
1474 
1475 
1476 /* ****************************************
1477 *  Dependency
1478 ******************************************/
1479 #include <stddef.h>    /* size_t */
1480 
1481 
1482 /* ****************************************
1483 *  Huff0 simple functions
1484 ******************************************/
1485 static size_t HUF_decompress(void* dst,  size_t dstSize,
1486                 const void* cSrc, size_t cSrcSize);
1487 /*!
1488 HUF_decompress():
1489     Decompress Huff0 data from buffer 'cSrc', of size 'cSrcSize',
1490     into already allocated destination buffer 'dst', of size 'dstSize'.
1491     'dstSize' must be the exact size of original (uncompressed) data.
1492     Note : in contrast with FSE, HUF_decompress can regenerate RLE (cSrcSize==1) and uncompressed (cSrcSize==dstSize) data, because it knows size to regenerate.
1493     @return : size of regenerated data (== dstSize)
1494               or an error code, which can be tested using HUF_isError()
1495 */
1496 
1497 
1498 /* ****************************************
1499 *  Tool functions
1500 ******************************************/
1501 /* Error Management */
1502 static unsigned    HUF_isError(size_t code);        /* tells if a return value is an error code */
1503 
1504 
1505 #if defined (__cplusplus)
1506 }
1507 #endif
1508 
1509 #endif   /* HUFF0_H */
1510 
1511 
1512 /* ******************************************************************
1513    Huff0 : Huffman coder, part of New Generation Entropy library
1514    header file for static linking (only)
1515    Copyright (C) 2013-2015, Yann Collet
1516 
1517    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
1518 
1519    Redistribution and use in source and binary forms, with or without
1520    modification, are permitted provided that the following conditions are
1521    met:
1522 
1523        * Redistributions of source code must retain the above copyright
1524    notice, this list of conditions and the following disclaimer.
1525        * Redistributions in binary form must reproduce the above
1526    copyright notice, this list of conditions and the following disclaimer
1527    in the documentation and/or other materials provided with the
1528    distribution.
1529 
1530    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1531    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1532    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1533    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1534    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1535    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1536    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1537    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1538    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1539    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1540    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1541 
1542    You can contact the author at :
1543    - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
1544    - Public forum : https://groups.google.com/forum/#!forum/lz4c
1545 ****************************************************************** */
1546 #ifndef HUFF0_STATIC_H
1547 #define HUFF0_STATIC_H
1548 
1549 #if defined (__cplusplus)
1550 extern "C" {
1551 #endif
1552 
1553 
1554 
1555 /* ****************************************
1556 *  Static allocation macros
1557 ******************************************/
1558 /* static allocation of Huff0's DTable */
1559 #define HUF_DTABLE_SIZE(maxTableLog)   (1 + (1<<maxTableLog))  /* nb Cells; use unsigned short for X2, unsigned int for X4 */
1560 #define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
1561         unsigned short DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
1562 #define HUF_CREATE_STATIC_DTABLEX4(DTable, maxTableLog) \
1563         unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog)] = { maxTableLog }
1564 #define HUF_CREATE_STATIC_DTABLEX6(DTable, maxTableLog) \
1565         unsigned int DTable[HUF_DTABLE_SIZE(maxTableLog) * 3 / 2] = { maxTableLog }
1566 
1567 
1568 /* ****************************************
1569 *  Advanced decompression functions
1570 ******************************************/
1571 static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* single-symbol decoder */
1572 static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);   /* double-symbols decoder */
1573 
1574 
1575 /* ****************************************
1576 *  Huff0 detailed API
1577 ******************************************/
1578 /*!
1579 HUF_decompress() does the following:
1580 1. select the decompression algorithm (X2, X4, X6) based on pre-computed heuristics
1581 2. build Huffman table from save, using HUF_readDTableXn()
1582 3. decode 1 or 4 segments in parallel using HUF_decompressSXn_usingDTable
1583 
1584 */
1585 static size_t HUF_readDTableX2 (unsigned short* DTable, const void* src, size_t srcSize);
1586 static size_t HUF_readDTableX4 (unsigned* DTable, const void* src, size_t srcSize);
1587 
1588 static size_t HUF_decompress4X2_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned short* DTable);
1589 static size_t HUF_decompress4X4_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const unsigned* DTable);
1590 
1591 
1592 #if defined (__cplusplus)
1593 }
1594 #endif
1595 
1596 #endif /* HUFF0_STATIC_H */
1597 
1598 
1599 
1600 /* ******************************************************************
1601    Huff0 : Huffman coder, part of New Generation Entropy library
1602    Copyright (C) 2013-2015, Yann Collet.
1603 
1604    BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
1605 
1606    Redistribution and use in source and binary forms, with or without
1607    modification, are permitted provided that the following conditions are
1608    met:
1609 
1610        * Redistributions of source code must retain the above copyright
1611    notice, this list of conditions and the following disclaimer.
1612        * Redistributions in binary form must reproduce the above
1613    copyright notice, this list of conditions and the following disclaimer
1614    in the documentation and/or other materials provided with the
1615    distribution.
1616 
1617    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1618    "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1619    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1620    A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
1621    OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
1622    SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
1623    LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
1624    DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
1625    THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
1626    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
1627    OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
1628 
1629     You can contact the author at :
1630     - FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
1631 ****************************************************************** */
1632 
1633 /* **************************************************************
1634 *  Compiler specifics
1635 ****************************************************************/
1636 #if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
1637 /* inline is defined */
1638 #elif defined(_MSC_VER)
1639 #  define inline __inline
1640 #else
1641 #  define inline /* disable inline */
1642 #endif
1643 
1644 
1645 #ifdef _MSC_VER    /* Visual Studio */
1646 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
1647 #endif
1648 
1649 
1650 /* **************************************************************
1651 *  Includes
1652 ****************************************************************/
1653 #include <stdlib.h>     /* malloc, free, qsort */
1654 #include <string.h>     /* memcpy, memset */
1655 #include <stdio.h>      /* printf (debug) */
1656 
1657 
1658 /* **************************************************************
1659 *  Constants
1660 ****************************************************************/
1661 #define HUF_ABSOLUTEMAX_TABLELOG  16   /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
1662 #define HUF_MAX_TABLELOG  12           /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
1663 #define HUF_DEFAULT_TABLELOG  HUF_MAX_TABLELOG   /* tableLog by default, when not specified */
1664 #define HUF_MAX_SYMBOL_VALUE 255
1665 #if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
1666 #  error "HUF_MAX_TABLELOG is too large !"
1667 #endif
1668 
1669 
1670 /* **************************************************************
1671 *  Error Management
1672 ****************************************************************/
1673 static unsigned HUF_isError(size_t code) { return ERR_isError(code); }
1674 #define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; }   /* use only *after* variable declarations */
1675 
1676 
1677 
1678 /*-*******************************************************
1679 *  Huff0 : Huffman block decompression
1680 *********************************************************/
1681 typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2;   /* single-symbol decoding */
1682 
1683 typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4;  /* double-symbols decoding */
1684 
1685 typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
1686 
1687 /*! HUF_readStats
1688     Read compact Huffman tree, saved by HUF_writeCTable
1689     @huffWeight : destination buffer
1690     @return : size read from `src`
1691 */
1692 static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
1693                             U32* nbSymbolsPtr, U32* tableLogPtr,
1694                             const void* src, size_t srcSize)
1695 {
1696     U32 weightTotal;
1697     U32 tableLog;
1698     const BYTE* ip = (const BYTE*) src;
1699     size_t iSize;
1700     size_t oSize;
1701     U32 n;
1702 
1703     if (!srcSize) return ERROR(srcSize_wrong);
1704     iSize = ip[0];
1705     //memset(huffWeight, 0, hwSize);   /* is not necessary, even though some analyzer complain ... */
1706 
1707     if (iSize >= 128)  /* special header */
1708     {
1709         if (iSize >= (242))   /* RLE */
1710         {
1711             static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
1712             oSize = l[iSize-242];
1713             memset(huffWeight, 1, hwSize);
1714             iSize = 0;
1715         }
1716         else   /* Incompressible */
1717         {
1718             oSize = iSize - 127;
1719             iSize = ((oSize+1)/2);
1720             if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
1721             if (oSize >= hwSize) return ERROR(corruption_detected);
1722             ip += 1;
1723             for (n=0; n<oSize; n+=2)
1724             {
1725                 huffWeight[n]   = ip[n/2] >> 4;
1726                 huffWeight[n+1] = ip[n/2] & 15;
1727             }
1728         }
1729     }
1730     else  /* header compressed with FSE (normal case) */
1731     {
1732         if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
1733         oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize);   /* max (hwSize-1) values decoded, as last one is implied */
1734         if (FSE_isError(oSize)) return oSize;
1735     }
1736 
1737     /* collect weight stats */
1738     memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
1739     weightTotal = 0;
1740     for (n=0; n<oSize; n++)
1741     {
1742         if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
1743         rankStats[huffWeight[n]]++;
1744         weightTotal += (1 << huffWeight[n]) >> 1;
1745     }
1746     if (weightTotal == 0) return ERROR(corruption_detected);
1747 
1748     /* get last non-null symbol weight (implied, total must be 2^n) */
1749     tableLog = BIT_highbit32(weightTotal) + 1;
1750     if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
1751     {
1752         U32 total = 1 << tableLog;
1753         U32 rest = total - weightTotal;
1754         U32 verif = 1 << BIT_highbit32(rest);
1755         U32 lastWeight = BIT_highbit32(rest) + 1;
1756         if (verif != rest) return ERROR(corruption_detected);    /* last value must be a clean power of 2 */
1757         huffWeight[oSize] = (BYTE)lastWeight;
1758         rankStats[lastWeight]++;
1759     }
1760 
1761     /* check tree construction validity */
1762     if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected);   /* by construction : at least 2 elts of rank 1, must be even */
1763 
1764     /* results */
1765     *nbSymbolsPtr = (U32)(oSize+1);
1766     *tableLogPtr = tableLog;
1767     return iSize+1;
1768 }
1769 
1770 
1771 /**************************/
1772 /* single-symbol decoding */
1773 /**************************/
1774 
1775 static size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
1776 {
1777     BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
1778     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];   /* large enough for values from 0 to 16 */
1779     U32 tableLog = 0;
1780     size_t iSize;
1781     U32 nbSymbols = 0;
1782     U32 n;
1783     U32 nextRankStart;
1784     void* const dtPtr = DTable + 1;
1785     HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
1786 
1787     HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16));   /* if compilation fails here, assertion is false */
1788     //memset(huffWeight, 0, sizeof(huffWeight));   /* is not necessary, even though some analyzer complain ... */
1789 
1790     iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
1791     if (HUF_isError(iSize)) return iSize;
1792 
1793     /* check result */
1794     if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge);   /* DTable is too small */
1795     DTable[0] = (U16)tableLog;   /* maybe should separate sizeof DTable, as allocated, from used size of DTable, in case of DTable re-use */
1796 
1797     /* Prepare ranks */
1798     nextRankStart = 0;
1799     for (n=1; n<=tableLog; n++)
1800     {
1801         U32 current = nextRankStart;
1802         nextRankStart += (rankVal[n] << (n-1));
1803         rankVal[n] = current;
1804     }
1805 
1806     /* fill DTable */
1807     for (n=0; n<nbSymbols; n++)
1808     {
1809         const U32 w = huffWeight[n];
1810         const U32 length = (1 << w) >> 1;
1811         U32 i;
1812         HUF_DEltX2 D;
1813         D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
1814         for (i = rankVal[w]; i < rankVal[w] + length; i++)
1815             dt[i] = D;
1816         rankVal[w] += length;
1817     }
1818 
1819     return iSize;
1820 }
1821 
1822 static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
1823 {
1824         const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
1825         const BYTE c = dt[val].byte;
1826         BIT_skipBits(Dstream, dt[val].nbBits);
1827         return c;
1828 }
1829 
1830 #define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
1831     *ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
1832 
1833 #define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
1834     if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
1835         HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
1836 
1837 #define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
1838     if (MEM_64bits()) \
1839         HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
1840 
1841 static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
1842 {
1843     BYTE* const pStart = p;
1844 
1845     /* up to 4 symbols at a time */
1846     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
1847     {
1848         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1849         HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
1850         HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
1851         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1852     }
1853 
1854     /* closer to the end */
1855     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
1856         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1857 
1858     /* no more data to retrieve from bitstream, hence no need to reload */
1859     while (p < pEnd)
1860         HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
1861 
1862     return pEnd-pStart;
1863 }
1864 
1865 
1866 static size_t HUF_decompress4X2_usingDTable(
1867           void* dst,  size_t dstSize,
1868     const void* cSrc, size_t cSrcSize,
1869     const U16* DTable)
1870 {
1871     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
1872 
1873     {
1874         const BYTE* const istart = (const BYTE*) cSrc;
1875         BYTE* const ostart = (BYTE*) dst;
1876         BYTE* const oend = ostart + dstSize;
1877         const void* const dtPtr = DTable;
1878         const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
1879         const U32 dtLog = DTable[0];
1880         size_t errorCode;
1881 
1882         /* Init */
1883         BIT_DStream_t bitD1;
1884         BIT_DStream_t bitD2;
1885         BIT_DStream_t bitD3;
1886         BIT_DStream_t bitD4;
1887         const size_t length1 = MEM_readLE16(istart);
1888         const size_t length2 = MEM_readLE16(istart+2);
1889         const size_t length3 = MEM_readLE16(istart+4);
1890         size_t length4;
1891         const BYTE* const istart1 = istart + 6;  /* jumpTable */
1892         const BYTE* const istart2 = istart1 + length1;
1893         const BYTE* const istart3 = istart2 + length2;
1894         const BYTE* const istart4 = istart3 + length3;
1895         const size_t segmentSize = (dstSize+3) / 4;
1896         BYTE* const opStart2 = ostart + segmentSize;
1897         BYTE* const opStart3 = opStart2 + segmentSize;
1898         BYTE* const opStart4 = opStart3 + segmentSize;
1899         BYTE* op1 = ostart;
1900         BYTE* op2 = opStart2;
1901         BYTE* op3 = opStart3;
1902         BYTE* op4 = opStart4;
1903         U32 endSignal;
1904 
1905         length4 = cSrcSize - (length1 + length2 + length3 + 6);
1906         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
1907         errorCode = BIT_initDStream(&bitD1, istart1, length1);
1908         if (HUF_isError(errorCode)) return errorCode;
1909         errorCode = BIT_initDStream(&bitD2, istart2, length2);
1910         if (HUF_isError(errorCode)) return errorCode;
1911         errorCode = BIT_initDStream(&bitD3, istart3, length3);
1912         if (HUF_isError(errorCode)) return errorCode;
1913         errorCode = BIT_initDStream(&bitD4, istart4, length4);
1914         if (HUF_isError(errorCode)) return errorCode;
1915 
1916         /* 16-32 symbols per loop (4-8 symbols per stream) */
1917         endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
1918         for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
1919         {
1920             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1921             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1922             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1923             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1924             HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
1925             HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
1926             HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
1927             HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
1928             HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
1929             HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
1930             HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
1931             HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
1932             HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
1933             HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
1934             HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
1935             HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
1936 
1937             endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
1938         }
1939 
1940         /* check corruption */
1941         if (op1 > opStart2) return ERROR(corruption_detected);
1942         if (op2 > opStart3) return ERROR(corruption_detected);
1943         if (op3 > opStart4) return ERROR(corruption_detected);
1944         /* note : op4 supposed already verified within main loop */
1945 
1946         /* finish bitStreams one by one */
1947         HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
1948         HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
1949         HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
1950         HUF_decodeStreamX2(op4, &bitD4, oend,     dt, dtLog);
1951 
1952         /* check */
1953         endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
1954         if (!endSignal) return ERROR(corruption_detected);
1955 
1956         /* decoded size */
1957         return dstSize;
1958     }
1959 }
1960 
1961 
1962 static size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
1963 {
1964     HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
1965     const BYTE* ip = (const BYTE*) cSrc;
1966     size_t errorCode;
1967 
1968     errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
1969     if (HUF_isError(errorCode)) return errorCode;
1970     if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
1971     ip += errorCode;
1972     cSrcSize -= errorCode;
1973 
1974     return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
1975 }
1976 
1977 
1978 /***************************/
1979 /* double-symbols decoding */
1980 /***************************/
1981 
1982 static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
1983                            const U32* rankValOrigin, const int minWeight,
1984                            const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
1985                            U32 nbBitsBaseline, U16 baseSeq)
1986 {
1987     HUF_DEltX4 DElt;
1988     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
1989     U32 s;
1990 
1991     /* get pre-calculated rankVal */
1992     memcpy(rankVal, rankValOrigin, sizeof(rankVal));
1993 
1994     /* fill skipped values */
1995     if (minWeight>1)
1996     {
1997         U32 i, skipSize = rankVal[minWeight];
1998         MEM_writeLE16(&(DElt.sequence), baseSeq);
1999         DElt.nbBits   = (BYTE)(consumed);
2000         DElt.length   = 1;
2001         for (i = 0; i < skipSize; i++)
2002             DTable[i] = DElt;
2003     }
2004 
2005     /* fill DTable */
2006     for (s=0; s<sortedListSize; s++)   /* note : sortedSymbols already skipped */
2007     {
2008         const U32 symbol = sortedSymbols[s].symbol;
2009         const U32 weight = sortedSymbols[s].weight;
2010         const U32 nbBits = nbBitsBaseline - weight;
2011         const U32 length = 1 << (sizeLog-nbBits);
2012         const U32 start = rankVal[weight];
2013         U32 i = start;
2014         const U32 end = start + length;
2015 
2016         MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
2017         DElt.nbBits = (BYTE)(nbBits + consumed);
2018         DElt.length = 2;
2019         do { DTable[i++] = DElt; } while (i<end);   /* since length >= 1 */
2020 
2021         rankVal[weight] += length;
2022     }
2023 }
2024 
2025 typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
2026 
2027 static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
2028                            const sortedSymbol_t* sortedList, const U32 sortedListSize,
2029                            const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
2030                            const U32 nbBitsBaseline)
2031 {
2032     U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
2033     const int scaleLog = nbBitsBaseline - targetLog;   /* note : targetLog >= srcLog, hence scaleLog <= 1 */
2034     const U32 minBits  = nbBitsBaseline - maxWeight;
2035     U32 s;
2036 
2037     memcpy(rankVal, rankValOrigin, sizeof(rankVal));
2038 
2039     /* fill DTable */
2040     for (s=0; s<sortedListSize; s++)
2041     {
2042         const U16 symbol = sortedList[s].symbol;
2043         const U32 weight = sortedList[s].weight;
2044         const U32 nbBits = nbBitsBaseline - weight;
2045         const U32 start = rankVal[weight];
2046         const U32 length = 1 << (targetLog-nbBits);
2047 
2048         if (targetLog-nbBits >= minBits)   /* enough room for a second symbol */
2049         {
2050             U32 sortedRank;
2051             int minWeight = nbBits + scaleLog;
2052             if (minWeight < 1) minWeight = 1;
2053             sortedRank = rankStart[minWeight];
2054             HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
2055                            rankValOrigin[nbBits], minWeight,
2056                            sortedList+sortedRank, sortedListSize-sortedRank,
2057                            nbBitsBaseline, symbol);
2058         }
2059         else
2060         {
2061             U32 i;
2062             const U32 end = start + length;
2063             HUF_DEltX4 DElt;
2064 
2065             MEM_writeLE16(&(DElt.sequence), symbol);
2066             DElt.nbBits   = (BYTE)(nbBits);
2067             DElt.length   = 1;
2068             for (i = start; i < end; i++)
2069                 DTable[i] = DElt;
2070         }
2071         rankVal[weight] += length;
2072     }
2073 }
2074 
2075 static size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
2076 {
2077     BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
2078     sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
2079     U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
2080     U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
2081     U32* const rankStart = rankStart0+1;
2082     rankVal_t rankVal;
2083     U32 tableLog, maxW, sizeOfSort, nbSymbols;
2084     const U32 memLog = DTable[0];
2085     size_t iSize;
2086     void* dtPtr = DTable;
2087     HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;
2088 
2089     HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32));   /* if compilation fails here, assertion is false */
2090     if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
2091     //memset(weightList, 0, sizeof(weightList));   /* is not necessary, even though some analyzer complain ... */
2092 
2093     iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
2094     if (HUF_isError(iSize)) return iSize;
2095 
2096     /* check result */
2097     if (tableLog > memLog) return ERROR(tableLog_tooLarge);   /* DTable can't fit code depth */
2098 
2099     /* find maxWeight */
2100     for (maxW = tableLog; rankStats[maxW]==0; maxW--)
2101         { if (!maxW) return ERROR(GENERIC); }  /* necessarily finds a solution before maxW==0 */
2102 
2103     /* Get start index of each weight */
2104     {
2105         U32 w, nextRankStart = 0;
2106         for (w=1; w<=maxW; w++)
2107         {
2108             U32 current = nextRankStart;
2109             nextRankStart += rankStats[w];
2110             rankStart[w] = current;
2111         }
2112         rankStart[0] = nextRankStart;   /* put all 0w symbols at the end of sorted list*/
2113         sizeOfSort = nextRankStart;
2114     }
2115 
2116     /* sort symbols by weight */
2117     {
2118         U32 s;
2119         for (s=0; s<nbSymbols; s++)
2120         {
2121             U32 w = weightList[s];
2122             U32 r = rankStart[w]++;
2123             sortedSymbol[r].symbol = (BYTE)s;
2124             sortedSymbol[r].weight = (BYTE)w;
2125         }
2126         rankStart[0] = 0;   /* forget 0w symbols; this is beginning of weight(1) */
2127     }
2128 
2129     /* Build rankVal */
2130     {
2131         const U32 minBits = tableLog+1 - maxW;
2132         U32 nextRankVal = 0;
2133         U32 w, consumed;
2134         const int rescale = (memLog-tableLog) - 1;   /* tableLog <= memLog */
2135         U32* rankVal0 = rankVal[0];
2136         for (w=1; w<=maxW; w++)
2137         {
2138             U32 current = nextRankVal;
2139             nextRankVal += rankStats[w] << (w+rescale);
2140             rankVal0[w] = current;
2141         }
2142         for (consumed = minBits; consumed <= memLog - minBits; consumed++)
2143         {
2144             U32* rankValPtr = rankVal[consumed];
2145             for (w = 1; w <= maxW; w++)
2146             {
2147                 rankValPtr[w] = rankVal0[w] >> consumed;
2148             }
2149         }
2150     }
2151 
2152     HUF_fillDTableX4(dt, memLog,
2153                    sortedSymbol, sizeOfSort,
2154                    rankStart0, rankVal, maxW,
2155                    tableLog+1);
2156 
2157     return iSize;
2158 }
2159 
2160 
2161 static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
2162 {
2163     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
2164     memcpy(op, dt+val, 2);
2165     BIT_skipBits(DStream, dt[val].nbBits);
2166     return dt[val].length;
2167 }
2168 
2169 static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
2170 {
2171     const size_t val = BIT_lookBitsFast(DStream, dtLog);   /* note : dtLog >= 1 */
2172     memcpy(op, dt+val, 1);
2173     if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
2174     else
2175     {
2176         if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8))
2177         {
2178             BIT_skipBits(DStream, dt[val].nbBits);
2179             if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
2180                 DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8);   /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
2181         }
2182     }
2183     return 1;
2184 }
2185 
2186 
2187 #define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
2188     ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
2189 
2190 #define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
2191     if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
2192         ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
2193 
2194 #define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
2195     if (MEM_64bits()) \
2196         ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
2197 
2198 static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
2199 {
2200     BYTE* const pStart = p;
2201 
2202     /* up to 8 symbols at a time */
2203     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7))
2204     {
2205         HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
2206         HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
2207         HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
2208         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
2209     }
2210 
2211     /* closer to the end */
2212     while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
2213         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
2214 
2215     while (p <= pEnd-2)
2216         HUF_DECODE_SYMBOLX4_0(p, bitDPtr);   /* no need to reload : reached the end of DStream */
2217 
2218     if (p < pEnd)
2219         p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
2220 
2221     return p-pStart;
2222 }
2223 
2224 static size_t HUF_decompress4X4_usingDTable(
2225           void* dst,  size_t dstSize,
2226     const void* cSrc, size_t cSrcSize,
2227     const U32* DTable)
2228 {
2229     if (cSrcSize < 10) return ERROR(corruption_detected);   /* strict minimum : jump table + 1 byte per stream */
2230 
2231     {
2232         const BYTE* const istart = (const BYTE*) cSrc;
2233         BYTE* const ostart = (BYTE*) dst;
2234         BYTE* const oend = ostart + dstSize;
2235         const void* const dtPtr = DTable;
2236         const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
2237         const U32 dtLog = DTable[0];
2238         size_t errorCode;
2239 
2240         /* Init */
2241         BIT_DStream_t bitD1;
2242         BIT_DStream_t bitD2;
2243         BIT_DStream_t bitD3;
2244         BIT_DStream_t bitD4;
2245         const size_t length1 = MEM_readLE16(istart);
2246         const size_t length2 = MEM_readLE16(istart+2);
2247         const size_t length3 = MEM_readLE16(istart+4);
2248         size_t length4;
2249         const BYTE* const istart1 = istart + 6;  /* jumpTable */
2250         const BYTE* const istart2 = istart1 + length1;
2251         const BYTE* const istart3 = istart2 + length2;
2252         const BYTE* const istart4 = istart3 + length3;
2253         const size_t segmentSize = (dstSize+3) / 4;
2254         BYTE* const opStart2 = ostart + segmentSize;
2255         BYTE* const opStart3 = opStart2 + segmentSize;
2256         BYTE* const opStart4 = opStart3 + segmentSize;
2257         BYTE* op1 = ostart;
2258         BYTE* op2 = opStart2;
2259         BYTE* op3 = opStart3;
2260         BYTE* op4 = opStart4;
2261         U32 endSignal;
2262 
2263         length4 = cSrcSize - (length1 + length2 + length3 + 6);
2264         if (length4 > cSrcSize) return ERROR(corruption_detected);   /* overflow */
2265         errorCode = BIT_initDStream(&bitD1, istart1, length1);
2266         if (HUF_isError(errorCode)) return errorCode;
2267         errorCode = BIT_initDStream(&bitD2, istart2, length2);
2268         if (HUF_isError(errorCode)) return errorCode;
2269         errorCode = BIT_initDStream(&bitD3, istart3, length3);
2270         if (HUF_isError(errorCode)) return errorCode;
2271         errorCode = BIT_initDStream(&bitD4, istart4, length4);
2272         if (HUF_isError(errorCode)) return errorCode;
2273 
2274         /* 16-32 symbols per loop (4-8 symbols per stream) */
2275         endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
2276         for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; )
2277         {
2278             HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
2279             HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
2280             HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
2281             HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
2282             HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
2283             HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
2284             HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
2285             HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
2286             HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
2287             HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
2288             HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
2289             HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
2290             HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
2291             HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
2292             HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
2293             HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
2294 
2295             endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
2296         }
2297 
2298         /* check corruption */
2299         if (op1 > opStart2) return ERROR(corruption_detected);
2300         if (op2 > opStart3) return ERROR(corruption_detected);
2301         if (op3 > opStart4) return ERROR(corruption_detected);
2302         /* note : op4 supposed already verified within main loop */
2303 
2304         /* finish bitStreams one by one */
2305         HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
2306         HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
2307         HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
2308         HUF_decodeStreamX4(op4, &bitD4, oend,     dt, dtLog);
2309 
2310         /* check */
2311         endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
2312         if (!endSignal) return ERROR(corruption_detected);
2313 
2314         /* decoded size */
2315         return dstSize;
2316     }
2317 }
2318 
2319 
2320 static size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
2321 {
2322     HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
2323     const BYTE* ip = (const BYTE*) cSrc;
2324 
2325     size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
2326     if (HUF_isError(hSize)) return hSize;
2327     if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
2328     ip += hSize;
2329     cSrcSize -= hSize;
2330 
2331     return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
2332 }
2333 
2334 
2335 /**********************************/
2336 /* Generic decompression selector */
2337 /**********************************/
2338 
2339 typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
2340 static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
2341 {
2342     /* single, double, quad */
2343     {{0,0}, {1,1}, {2,2}},  /* Q==0 : impossible */
2344     {{0,0}, {1,1}, {2,2}},  /* Q==1 : impossible */
2345     {{  38,130}, {1313, 74}, {2151, 38}},   /* Q == 2 : 12-18% */
2346     {{ 448,128}, {1353, 74}, {2238, 41}},   /* Q == 3 : 18-25% */
2347     {{ 556,128}, {1353, 74}, {2238, 47}},   /* Q == 4 : 25-32% */
2348     {{ 714,128}, {1418, 74}, {2436, 53}},   /* Q == 5 : 32-38% */
2349     {{ 883,128}, {1437, 74}, {2464, 61}},   /* Q == 6 : 38-44% */
2350     {{ 897,128}, {1515, 75}, {2622, 68}},   /* Q == 7 : 44-50% */
2351     {{ 926,128}, {1613, 75}, {2730, 75}},   /* Q == 8 : 50-56% */
2352     {{ 947,128}, {1729, 77}, {3359, 77}},   /* Q == 9 : 56-62% */
2353     {{1107,128}, {2083, 81}, {4006, 84}},   /* Q ==10 : 62-69% */
2354     {{1177,128}, {2379, 87}, {4785, 88}},   /* Q ==11 : 69-75% */
2355     {{1242,128}, {2415, 93}, {5155, 84}},   /* Q ==12 : 75-81% */
2356     {{1349,128}, {2644,106}, {5260,106}},   /* Q ==13 : 81-87% */
2357     {{1455,128}, {2422,124}, {4174,124}},   /* Q ==14 : 87-93% */
2358     {{ 722,128}, {1891,145}, {1936,146}},   /* Q ==15 : 93-99% */
2359 };
2360 
2361 typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
2362 
2363 static size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
2364 {
2365     static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, NULL };
2366     /* estimate decompression time */
2367     U32 Q;
2368     const U32 D256 = (U32)(dstSize >> 8);
2369     U32 Dtime[3];
2370     U32 algoNb = 0;
2371     int n;
2372 
2373     /* validation checks */
2374     if (dstSize == 0) return ERROR(dstSize_tooSmall);
2375     if (cSrcSize > dstSize) return ERROR(corruption_detected);   /* invalid */
2376     if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; }   /* not compressed */
2377     if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; }   /* RLE */
2378 
2379     /* decoder timing evaluation */
2380     Q = (U32)(cSrcSize * 16 / dstSize);   /* Q < 16 since dstSize > cSrcSize */
2381     for (n=0; n<3; n++)
2382         Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
2383 
2384     Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
2385 
2386     if (Dtime[1] < Dtime[0]) algoNb = 1;
2387 
2388     return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
2389 
2390     //return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize);   /* multi-streams single-symbol decoding */
2391     //return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize);   /* multi-streams double-symbols decoding */
2392     //return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize);   /* multi-streams quad-symbols decoding */
2393 }
2394 
2395 
2396 
2397 #endif   /* ZSTD_CCOMMON_H_MODULE */
2398 
2399 
2400 /*
2401     zstd - decompression module fo v0.4 legacy format
2402     Copyright (C) 2015-2016, Yann Collet.
2403 
2404     BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
2405 
2406     Redistribution and use in source and binary forms, with or without
2407     modification, are permitted provided that the following conditions are
2408     met:
2409     * Redistributions of source code must retain the above copyright
2410     notice, this list of conditions and the following disclaimer.
2411     * Redistributions in binary form must reproduce the above
2412     copyright notice, this list of conditions and the following disclaimer
2413     in the documentation and/or other materials provided with the
2414     distribution.
2415     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
2416     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
2417     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
2418     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2419     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2420     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2421     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2422     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2423     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2424     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2425     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2426 
2427     You can contact the author at :
2428     - zstd source repository : https://github.com/Cyan4973/zstd
2429     - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
2430 */
2431 
2432 /* ***************************************************************
2433 *  Tuning parameters
2434 *****************************************************************/
2435 /*!
2436  * HEAPMODE :
2437  * Select how default decompression function ZSTD_decompress() will allocate memory,
2438  * in memory stack (0), or in memory heap (1, requires malloc())
2439  */
2440 #ifndef ZSTD_HEAPMODE
2441 #  define ZSTD_HEAPMODE 1
2442 #endif
2443 
2444 
2445 /* *******************************************************
2446 *  Includes
2447 *********************************************************/
2448 #include <stdlib.h>      /* calloc */
2449 #include <string.h>      /* memcpy, memmove */
2450 #include <stdio.h>       /* debug : printf */
2451 
2452 
2453 /* *******************************************************
2454 *  Compiler specifics
2455 *********************************************************/
2456 #ifdef _MSC_VER    /* Visual Studio */
2457 #  include <intrin.h>                    /* For Visual 2005 */
2458 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
2459 #  pragma warning(disable : 4324)        /* disable: C4324: padded structure */
2460 #endif
2461 
2462 
2463 /* *************************************
2464 *  Local types
2465 ***************************************/
2466 typedef struct
2467 {
2468     blockType_t blockType;
2469     U32 origSize;
2470 } blockProperties_t;
2471 
2472 
2473 /* *******************************************************
2474 *  Memory operations
2475 **********************************************************/
2476 static void ZSTD_copy4(void* dst, const void* src) { memcpy(dst, src, 4); }
2477 
2478 
2479 /* *************************************
2480 *  Error Management
2481 ***************************************/
2482 
2483 /*! ZSTD_isError
2484 *   tells if a return value is an error code */
2485 static unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
2486 
2487 
2488 /* *************************************************************
2489 *   Context management
2490 ***************************************************************/
2491 typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
2492                ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock } ZSTD_dStage;
2493 
2494 struct ZSTDv04_Dctx_s
2495 {
2496     U32 LLTable[FSE_DTABLE_SIZE_U32(LLFSELog)];
2497     U32 OffTable[FSE_DTABLE_SIZE_U32(OffFSELog)];
2498     U32 MLTable[FSE_DTABLE_SIZE_U32(MLFSELog)];
2499     const void* previousDstEnd;
2500     const void* base;
2501     const void* vBase;
2502     const void* dictEnd;
2503     size_t expected;
2504     size_t headerSize;
2505     ZSTD_parameters params;
2506     blockType_t bType;
2507     ZSTD_dStage stage;
2508     const BYTE* litPtr;
2509     size_t litSize;
2510     BYTE litBuffer[BLOCKSIZE + 8 /* margin for wildcopy */];
2511     BYTE headerBuffer[ZSTD_frameHeaderSize_max];
2512 };  /* typedef'd to ZSTD_DCtx within "zstd_static.h" */
2513 
2514 static size_t ZSTD_resetDCtx(ZSTD_DCtx* dctx)
2515 {
2516     dctx->expected = ZSTD_frameHeaderSize_min;
2517     dctx->stage = ZSTDds_getFrameHeaderSize;
2518     dctx->previousDstEnd = NULL;
2519     dctx->base = NULL;
2520     dctx->vBase = NULL;
2521     dctx->dictEnd = NULL;
2522     return 0;
2523 }
2524 
2525 static ZSTD_DCtx* ZSTD_createDCtx(void)
2526 {
2527     ZSTD_DCtx* dctx = (ZSTD_DCtx*)malloc(sizeof(ZSTD_DCtx));
2528     if (dctx==NULL) return NULL;
2529     ZSTD_resetDCtx(dctx);
2530     return dctx;
2531 }
2532 
2533 static size_t ZSTD_freeDCtx(ZSTD_DCtx* dctx)
2534 {
2535     free(dctx);
2536     return 0;
2537 }
2538 
2539 
2540 /* *************************************************************
2541 *   Decompression section
2542 ***************************************************************/
2543 /** ZSTD_decodeFrameHeader_Part1
2544 *   decode the 1st part of the Frame Header, which tells Frame Header size.
2545 *   srcSize must be == ZSTD_frameHeaderSize_min
2546 *   @return : the full size of the Frame Header */
2547 static size_t ZSTD_decodeFrameHeader_Part1(ZSTD_DCtx* zc, const void* src, size_t srcSize)
2548 {
2549     U32 magicNumber;
2550     if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);
2551     magicNumber = MEM_readLE32(src);
2552     if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
2553     zc->headerSize = ZSTD_frameHeaderSize_min;
2554     return zc->headerSize;
2555 }
2556 
2557 
2558 static size_t ZSTD_getFrameParams(ZSTD_parameters* params, const void* src, size_t srcSize)
2559 {
2560     U32 magicNumber;
2561     if (srcSize < ZSTD_frameHeaderSize_min) return ZSTD_frameHeaderSize_max;
2562     magicNumber = MEM_readLE32(src);
2563     if (magicNumber != ZSTD_MAGICNUMBER) return ERROR(prefix_unknown);
2564     memset(params, 0, sizeof(*params));
2565     params->windowLog = (((const BYTE*)src)[4] & 15) + ZSTD_WINDOWLOG_ABSOLUTEMIN;
2566     if ((((const BYTE*)src)[4] >> 4) != 0) return ERROR(frameParameter_unsupported);   /* reserved bits */
2567     return 0;
2568 }
2569 
2570 /** ZSTD_decodeFrameHeader_Part2
2571 *   decode the full Frame Header
2572 *   srcSize must be the size provided by ZSTD_decodeFrameHeader_Part1
2573 *   @return : 0, or an error code, which can be tested using ZSTD_isError() */
2574 static size_t ZSTD_decodeFrameHeader_Part2(ZSTD_DCtx* zc, const void* src, size_t srcSize)
2575 {
2576     size_t result;
2577     if (srcSize != zc->headerSize) return ERROR(srcSize_wrong);
2578     result = ZSTD_getFrameParams(&(zc->params), src, srcSize);
2579     if ((MEM_32bits()) && (zc->params.windowLog > 25)) return ERROR(frameParameter_unsupported);
2580     return result;
2581 }
2582 
2583 
2584 static size_t ZSTD_getcBlockSize(const void* src, size_t srcSize, blockProperties_t* bpPtr)
2585 {
2586     const BYTE* const in = (const BYTE* const)src;
2587     BYTE headerFlags;
2588     U32 cSize;
2589 
2590     if (srcSize < 3) return ERROR(srcSize_wrong);
2591 
2592     headerFlags = *in;
2593     cSize = in[2] + (in[1]<<8) + ((in[0] & 7)<<16);
2594 
2595     bpPtr->blockType = (blockType_t)(headerFlags >> 6);
2596     bpPtr->origSize = (bpPtr->blockType == bt_rle) ? cSize : 0;
2597 
2598     if (bpPtr->blockType == bt_end) return 0;
2599     if (bpPtr->blockType == bt_rle) return 1;
2600     return cSize;
2601 }
2602 
2603 static size_t ZSTD_copyRawBlock(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
2604 {
2605     if (srcSize > maxDstSize) return ERROR(dstSize_tooSmall);
2606     memcpy(dst, src, srcSize);
2607     return srcSize;
2608 }
2609 
2610 
2611 /** ZSTD_decompressLiterals
2612     @return : nb of bytes read from src, or an error code*/
2613 static size_t ZSTD_decompressLiterals(void* dst, size_t* maxDstSizePtr,
2614                                 const void* src, size_t srcSize)
2615 {
2616     const BYTE* ip = (const BYTE*)src;
2617 
2618     const size_t litSize = (MEM_readLE32(src) & 0x1FFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
2619     const size_t litCSize = (MEM_readLE32(ip+2) & 0xFFFFFF) >> 5;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
2620 
2621     if (litSize > *maxDstSizePtr) return ERROR(corruption_detected);
2622     if (litCSize + 5 > srcSize) return ERROR(corruption_detected);
2623 
2624     if (HUF_isError(HUF_decompress(dst, litSize, ip+5, litCSize))) return ERROR(corruption_detected);
2625 
2626     *maxDstSizePtr = litSize;
2627     return litCSize + 5;
2628 }
2629 
2630 
2631 /** ZSTD_decodeLiteralsBlock
2632     @return : nb of bytes read from src (< srcSize ) */
2633 static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
2634                           const void* src, size_t srcSize)   /* note : srcSize < BLOCKSIZE */
2635 {
2636     const BYTE* const istart = (const BYTE*) src;
2637 
2638     /* any compressed block with literals segment must be at least this size */
2639     if (srcSize < MIN_CBLOCK_SIZE) return ERROR(corruption_detected);
2640 
2641     switch(*istart & 3)
2642     {
2643     /* compressed */
2644     case 0:
2645         {
2646             size_t litSize = BLOCKSIZE;
2647             const size_t readSize = ZSTD_decompressLiterals(dctx->litBuffer, &litSize, src, srcSize);
2648             dctx->litPtr = dctx->litBuffer;
2649             dctx->litSize = litSize;
2650             memset(dctx->litBuffer + dctx->litSize, 0, 8);
2651             return readSize;   /* works if it's an error too */
2652         }
2653     case IS_RAW:
2654         {
2655             const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
2656             if (litSize > srcSize-11)   /* risk of reading too far with wildcopy */
2657             {
2658                 if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
2659                 if (litSize > srcSize-3) return ERROR(corruption_detected);
2660                 memcpy(dctx->litBuffer, istart, litSize);
2661                 dctx->litPtr = dctx->litBuffer;
2662                 dctx->litSize = litSize;
2663                 memset(dctx->litBuffer + dctx->litSize, 0, 8);
2664                 return litSize+3;
2665             }
2666             /* direct reference into compressed stream */
2667             dctx->litPtr = istart+3;
2668             dctx->litSize = litSize;
2669             return litSize+3;        }
2670     case IS_RLE:
2671         {
2672             const size_t litSize = (MEM_readLE32(istart) & 0xFFFFFF) >> 2;   /* no buffer issue : srcSize >= MIN_CBLOCK_SIZE */
2673             if (litSize > BLOCKSIZE) return ERROR(corruption_detected);
2674             memset(dctx->litBuffer, istart[3], litSize + 8);
2675             dctx->litPtr = dctx->litBuffer;
2676             dctx->litSize = litSize;
2677             return 4;
2678         }
2679     default:
2680         return ERROR(corruption_detected);   /* forbidden nominal case */
2681     }
2682 }
2683 
2684 
2685 static size_t ZSTD_decodeSeqHeaders(int* nbSeq, const BYTE** dumpsPtr, size_t* dumpsLengthPtr,
2686                          FSE_DTable* DTableLL, FSE_DTable* DTableML, FSE_DTable* DTableOffb,
2687                          const void* src, size_t srcSize)
2688 {
2689     const BYTE* const istart = (const BYTE* const)src;
2690     const BYTE* ip = istart;
2691     const BYTE* const iend = istart + srcSize;
2692     U32 LLtype, Offtype, MLtype;
2693     U32 LLlog, Offlog, MLlog;
2694     size_t dumpsLength;
2695 
2696     /* check */
2697     if (srcSize < 5) return ERROR(srcSize_wrong);
2698 
2699     /* SeqHead */
2700     *nbSeq = MEM_readLE16(ip); ip+=2;
2701     LLtype  = *ip >> 6;
2702     Offtype = (*ip >> 4) & 3;
2703     MLtype  = (*ip >> 2) & 3;
2704     if (*ip & 2)
2705     {
2706         dumpsLength  = ip[2];
2707         dumpsLength += ip[1] << 8;
2708         ip += 3;
2709     }
2710     else
2711     {
2712         dumpsLength  = ip[1];
2713         dumpsLength += (ip[0] & 1) << 8;
2714         ip += 2;
2715     }
2716     *dumpsPtr = ip;
2717     ip += dumpsLength;
2718     *dumpsLengthPtr = dumpsLength;
2719 
2720     /* check */
2721     if (ip > iend-3) return ERROR(srcSize_wrong); /* min : all 3 are "raw", hence no header, but at least xxLog bits per type */
2722 
2723     /* sequences */
2724     {
2725         S16 norm[MaxML+1];    /* assumption : MaxML >= MaxLL >= MaxOff */
2726         size_t headerSize;
2727 
2728         /* Build DTables */
2729         switch(LLtype)
2730         {
2731         case bt_rle :
2732             LLlog = 0;
2733             FSE_buildDTable_rle(DTableLL, *ip++); break;
2734         case bt_raw :
2735             LLlog = LLbits;
2736             FSE_buildDTable_raw(DTableLL, LLbits); break;
2737         default :
2738             {   U32 max = MaxLL;
2739                 headerSize = FSE_readNCount(norm, &max, &LLlog, ip, iend-ip);
2740                 if (FSE_isError(headerSize)) return ERROR(GENERIC);
2741                 if (LLlog > LLFSELog) return ERROR(corruption_detected);
2742                 ip += headerSize;
2743                 FSE_buildDTable(DTableLL, norm, max, LLlog);
2744         }   }
2745 
2746         switch(Offtype)
2747         {
2748         case bt_rle :
2749             Offlog = 0;
2750             if (ip > iend-2) return ERROR(srcSize_wrong);   /* min : "raw", hence no header, but at least xxLog bits */
2751             FSE_buildDTable_rle(DTableOffb, *ip++ & MaxOff); /* if *ip > MaxOff, data is corrupted */
2752             break;
2753         case bt_raw :
2754             Offlog = Offbits;
2755             FSE_buildDTable_raw(DTableOffb, Offbits); break;
2756         default :
2757             {   U32 max = MaxOff;
2758                 headerSize = FSE_readNCount(norm, &max, &Offlog, ip, iend-ip);
2759                 if (FSE_isError(headerSize)) return ERROR(GENERIC);
2760                 if (Offlog > OffFSELog) return ERROR(corruption_detected);
2761                 ip += headerSize;
2762                 FSE_buildDTable(DTableOffb, norm, max, Offlog);
2763         }   }
2764 
2765         switch(MLtype)
2766         {
2767         case bt_rle :
2768             MLlog = 0;
2769             if (ip > iend-2) return ERROR(srcSize_wrong); /* min : "raw", hence no header, but at least xxLog bits */
2770             FSE_buildDTable_rle(DTableML, *ip++); break;
2771         case bt_raw :
2772             MLlog = MLbits;
2773             FSE_buildDTable_raw(DTableML, MLbits); break;
2774         default :
2775             {   U32 max = MaxML;
2776                 headerSize = FSE_readNCount(norm, &max, &MLlog, ip, iend-ip);
2777                 if (FSE_isError(headerSize)) return ERROR(GENERIC);
2778                 if (MLlog > MLFSELog) return ERROR(corruption_detected);
2779                 ip += headerSize;
2780                 FSE_buildDTable(DTableML, norm, max, MLlog);
2781     }   }   }
2782 
2783     return ip-istart;
2784 }
2785 
2786 
2787 typedef struct {
2788     size_t litLength;
2789     size_t offset;
2790     size_t matchLength;
2791 } seq_t;
2792 
2793 typedef struct {
2794     BIT_DStream_t DStream;
2795     FSE_DState_t stateLL;
2796     FSE_DState_t stateOffb;
2797     FSE_DState_t stateML;
2798     size_t prevOffset;
2799     const BYTE* dumps;
2800     const BYTE* dumpsEnd;
2801 } seqState_t;
2802 
2803 
2804 static void ZSTD_decodeSequence(seq_t* seq, seqState_t* seqState)
2805 {
2806     size_t litLength;
2807     size_t prevOffset;
2808     size_t offset;
2809     size_t matchLength;
2810     const BYTE* dumps = seqState->dumps;
2811     const BYTE* const de = seqState->dumpsEnd;
2812 
2813     /* Literal length */
2814     litLength = FSE_decodeSymbol(&(seqState->stateLL), &(seqState->DStream));
2815     prevOffset = litLength ? seq->offset : seqState->prevOffset;
2816     if (litLength == MaxLL) {
2817         const U32 add = dumps<de ? *dumps++ : 0;
2818         if (add < 255) litLength += add;
2819         else if (dumps + 3 <= de) {
2820             litLength = MEM_readLE24(dumps);
2821             dumps += 3;
2822         }
2823         if (dumps >= de) { dumps = de-1; }  /* late correction, to avoid read overflow (data is now corrupted anyway) */
2824     }
2825 
2826     /* Offset */
2827     {   static const U32 offsetPrefix[MaxOff+1] = {
2828                 1 /*fake*/, 1, 2, 4, 8, 16, 32, 64, 128, 256,
2829                 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144,
2830                 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, /*fake*/ 1, 1, 1, 1, 1 };
2831         U32 offsetCode, nbBits;
2832         offsetCode = FSE_decodeSymbol(&(seqState->stateOffb), &(seqState->DStream));   /* <= maxOff, by table construction */
2833         if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
2834         nbBits = offsetCode - 1;
2835         if (offsetCode==0) nbBits = 0;   /* cmove */
2836         offset = offsetPrefix[offsetCode] + BIT_readBits(&(seqState->DStream), nbBits);
2837         if (MEM_32bits()) BIT_reloadDStream(&(seqState->DStream));
2838         if (offsetCode==0) offset = prevOffset;   /* cmove */
2839         if (offsetCode | !litLength) seqState->prevOffset = seq->offset;   /* cmove */
2840     }
2841 
2842     /* MatchLength */
2843     matchLength = FSE_decodeSymbol(&(seqState->stateML), &(seqState->DStream));
2844     if (matchLength == MaxML) {
2845         const U32 add = dumps<de ? *dumps++ : 0;
2846         if (add < 255) matchLength += add;
2847         else if (dumps + 3 <= de){
2848             matchLength = MEM_readLE24(dumps);
2849             dumps += 3;
2850         }
2851         if (dumps >= de) { dumps = de-1; }  /* late correction, to avoid read overflow (data is now corrupted anyway) */
2852     }
2853     matchLength += MINMATCH;
2854 
2855     /* save result */
2856     seq->litLength = litLength;
2857     seq->offset = offset;
2858     seq->matchLength = matchLength;
2859     seqState->dumps = dumps;
2860 }
2861 
2862 
2863 static size_t ZSTD_execSequence(BYTE* op,
2864                                 BYTE* const oend, seq_t sequence,
2865                                 const BYTE** litPtr, const BYTE* const litLimit,
2866                                 const BYTE* const base, const BYTE* const vBase, const BYTE* const dictEnd)
2867 {
2868     static const int dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
2869     static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
2870     BYTE* const oLitEnd = op + sequence.litLength;
2871     const size_t sequenceLength = sequence.litLength + sequence.matchLength;
2872     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
2873     BYTE* const oend_8 = oend-8;
2874     const BYTE* const litEnd = *litPtr + sequence.litLength;
2875     const BYTE* match = oLitEnd - sequence.offset;
2876 
2877     /* check */
2878     if (oLitEnd > oend_8) return ERROR(dstSize_tooSmall);   /* last match must start at a minimum distance of 8 from oend */
2879     if (oMatchEnd > oend) return ERROR(dstSize_tooSmall);   /* overwrite beyond dst buffer */
2880     if (litEnd > litLimit) return ERROR(corruption_detected);   /* risk read beyond lit buffer */
2881 
2882     /* copy Literals */
2883     ZSTD_wildcopy(op, *litPtr, sequence.litLength);   /* note : oLitEnd <= oend-8 : no risk of overwrite beyond oend */
2884     op = oLitEnd;
2885     *litPtr = litEnd;   /* update for next sequence */
2886 
2887     /* copy Match */
2888     if (sequence.offset > (size_t)(oLitEnd - base))
2889     {
2890         /* offset beyond prefix */
2891         if (sequence.offset > (size_t)(oLitEnd - vBase))
2892             return ERROR(corruption_detected);
2893         match = dictEnd - (base-match);
2894         if (match + sequence.matchLength <= dictEnd)
2895         {
2896             memmove(oLitEnd, match, sequence.matchLength);
2897             return sequenceLength;
2898         }
2899         /* span extDict & currentPrefixSegment */
2900         {
2901             size_t length1 = dictEnd - match;
2902             memmove(oLitEnd, match, length1);
2903             op = oLitEnd + length1;
2904             sequence.matchLength -= length1;
2905             match = base;
2906             if (op > oend_8 || sequence.matchLength < MINMATCH) {
2907               while (op < oMatchEnd) *op++ = *match++;
2908               return sequenceLength;
2909             }
2910         }
2911     }
2912     /* Requirement: op <= oend_8 */
2913 
2914     /* match within prefix */
2915     if (sequence.offset < 8) {
2916         /* close range match, overlap */
2917         const int sub2 = dec64table[sequence.offset];
2918         op[0] = match[0];
2919         op[1] = match[1];
2920         op[2] = match[2];
2921         op[3] = match[3];
2922         match += dec32table[sequence.offset];
2923         ZSTD_copy4(op+4, match);
2924         match -= sub2;
2925     } else {
2926         ZSTD_copy8(op, match);
2927     }
2928     op += 8; match += 8;
2929 
2930     if (oMatchEnd > oend-(16-MINMATCH))
2931     {
2932         if (op < oend_8)
2933         {
2934             ZSTD_wildcopy(op, match, oend_8 - op);
2935             match += oend_8 - op;
2936             op = oend_8;
2937         }
2938         while (op < oMatchEnd) *op++ = *match++;
2939     }
2940     else
2941     {
2942         ZSTD_wildcopy(op, match, (ptrdiff_t)sequence.matchLength-8);   /* works even if matchLength < 8, but must be signed */
2943     }
2944     return sequenceLength;
2945 }
2946 
2947 
2948 static size_t ZSTD_decompressSequences(
2949                                ZSTD_DCtx* dctx,
2950                                void* dst, size_t maxDstSize,
2951                          const void* seqStart, size_t seqSize)
2952 {
2953     const BYTE* ip = (const BYTE*)seqStart;
2954     const BYTE* const iend = ip + seqSize;
2955     BYTE* const ostart = (BYTE* const)dst;
2956     BYTE* op = ostart;
2957     BYTE* const oend = ostart + maxDstSize;
2958     size_t errorCode, dumpsLength;
2959     const BYTE* litPtr = dctx->litPtr;
2960     const BYTE* const litEnd = litPtr + dctx->litSize;
2961     int nbSeq;
2962     const BYTE* dumps;
2963     U32* DTableLL = dctx->LLTable;
2964     U32* DTableML = dctx->MLTable;
2965     U32* DTableOffb = dctx->OffTable;
2966     const BYTE* const base = (const BYTE*) (dctx->base);
2967     const BYTE* const vBase = (const BYTE*) (dctx->vBase);
2968     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
2969 
2970     /* Build Decoding Tables */
2971     errorCode = ZSTD_decodeSeqHeaders(&nbSeq, &dumps, &dumpsLength,
2972                                       DTableLL, DTableML, DTableOffb,
2973                                       ip, iend-ip);
2974     if (ZSTD_isError(errorCode)) return errorCode;
2975     ip += errorCode;
2976 
2977     /* Regen sequences */
2978     {
2979         seq_t sequence;
2980         seqState_t seqState;
2981 
2982         memset(&sequence, 0, sizeof(sequence));
2983         sequence.offset = 4;
2984         seqState.dumps = dumps;
2985         seqState.dumpsEnd = dumps + dumpsLength;
2986         seqState.prevOffset = 4;
2987         errorCode = BIT_initDStream(&(seqState.DStream), ip, iend-ip);
2988         if (ERR_isError(errorCode)) return ERROR(corruption_detected);
2989         FSE_initDState(&(seqState.stateLL), &(seqState.DStream), DTableLL);
2990         FSE_initDState(&(seqState.stateOffb), &(seqState.DStream), DTableOffb);
2991         FSE_initDState(&(seqState.stateML), &(seqState.DStream), DTableML);
2992 
2993         for ( ; (BIT_reloadDStream(&(seqState.DStream)) <= BIT_DStream_completed) && nbSeq ; )
2994         {
2995             size_t oneSeqSize;
2996             nbSeq--;
2997             ZSTD_decodeSequence(&sequence, &seqState);
2998             oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, base, vBase, dictEnd);
2999             if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
3000             op += oneSeqSize;
3001         }
3002 
3003         /* check if reached exact end */
3004         if ( !BIT_endOfDStream(&(seqState.DStream)) ) return ERROR(corruption_detected);   /* DStream should be entirely and exactly consumed; otherwise data is corrupted */
3005 
3006         /* last literal segment */
3007         {
3008             size_t lastLLSize = litEnd - litPtr;
3009             if (litPtr > litEnd) return ERROR(corruption_detected);
3010             if (op+lastLLSize > oend) return ERROR(dstSize_tooSmall);
3011             if (op != litPtr) memcpy(op, litPtr, lastLLSize);
3012             op += lastLLSize;
3013         }
3014     }
3015 
3016     return op-ostart;
3017 }
3018 
3019 
3020 static void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst)
3021 {
3022     if (dst != dctx->previousDstEnd)   /* not contiguous */
3023     {
3024         dctx->dictEnd = dctx->previousDstEnd;
3025         dctx->vBase = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->base));
3026         dctx->base = dst;
3027         dctx->previousDstEnd = dst;
3028     }
3029 }
3030 
3031 
3032 static size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
3033                             void* dst, size_t maxDstSize,
3034                       const void* src, size_t srcSize)
3035 {
3036     /* blockType == blockCompressed */
3037     const BYTE* ip = (const BYTE*)src;
3038     size_t litCSize;
3039 
3040     if (srcSize > BLOCKSIZE) return ERROR(corruption_detected);
3041 
3042     /* Decode literals sub-block */
3043     litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize);
3044     if (ZSTD_isError(litCSize)) return litCSize;
3045     ip += litCSize;
3046     srcSize -= litCSize;
3047 
3048     return ZSTD_decompressSequences(dctx, dst, maxDstSize, ip, srcSize);
3049 }
3050 
3051 
3052 static size_t ZSTD_decompress_usingDict(ZSTD_DCtx* ctx,
3053                                  void* dst, size_t maxDstSize,
3054                                  const void* src, size_t srcSize,
3055                                  const void* dict, size_t dictSize)
3056 {
3057     const BYTE* ip = (const BYTE*)src;
3058     const BYTE* iend = ip + srcSize;
3059     BYTE* const ostart = (BYTE* const)dst;
3060     BYTE* op = ostart;
3061     BYTE* const oend = ostart + maxDstSize;
3062     size_t remainingSize = srcSize;
3063     blockProperties_t blockProperties;
3064 
3065     /* init */
3066     ZSTD_resetDCtx(ctx);
3067     if (dict)
3068     {
3069         ZSTD_decompress_insertDictionary(ctx, dict, dictSize);
3070         ctx->dictEnd = ctx->previousDstEnd;
3071         ctx->vBase = (const char*)dst - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
3072         ctx->base = dst;
3073     }
3074     else
3075     {
3076         ctx->vBase = ctx->base = ctx->dictEnd = dst;
3077     }
3078 
3079     /* Frame Header */
3080     {
3081         size_t frameHeaderSize;
3082         if (srcSize < ZSTD_frameHeaderSize_min+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
3083         frameHeaderSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
3084         if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
3085         if (srcSize < frameHeaderSize+ZSTD_blockHeaderSize) return ERROR(srcSize_wrong);
3086         ip += frameHeaderSize; remainingSize -= frameHeaderSize;
3087         frameHeaderSize = ZSTD_decodeFrameHeader_Part2(ctx, src, frameHeaderSize);
3088         if (ZSTD_isError(frameHeaderSize)) return frameHeaderSize;
3089     }
3090 
3091     /* Loop on each block */
3092     while (1)
3093     {
3094         size_t decodedSize=0;
3095         size_t cBlockSize = ZSTD_getcBlockSize(ip, iend-ip, &blockProperties);
3096         if (ZSTD_isError(cBlockSize)) return cBlockSize;
3097 
3098         ip += ZSTD_blockHeaderSize;
3099         remainingSize -= ZSTD_blockHeaderSize;
3100         if (cBlockSize > remainingSize) return ERROR(srcSize_wrong);
3101 
3102         switch(blockProperties.blockType)
3103         {
3104         case bt_compressed:
3105             decodedSize = ZSTD_decompressBlock_internal(ctx, op, oend-op, ip, cBlockSize);
3106             break;
3107         case bt_raw :
3108             decodedSize = ZSTD_copyRawBlock(op, oend-op, ip, cBlockSize);
3109             break;
3110         case bt_rle :
3111             return ERROR(GENERIC);   /* not yet supported */
3112             break;
3113         case bt_end :
3114             /* end of frame */
3115             if (remainingSize) return ERROR(srcSize_wrong);
3116             break;
3117         default:
3118             return ERROR(GENERIC);   /* impossible */
3119         }
3120         if (cBlockSize == 0) break;   /* bt_end */
3121 
3122         if (ZSTD_isError(decodedSize)) return decodedSize;
3123         op += decodedSize;
3124         ip += cBlockSize;
3125         remainingSize -= cBlockSize;
3126     }
3127 
3128     return op-ostart;
3129 }
3130 
3131 /* ZSTD_errorFrameSizeInfoLegacy() :
3132    assumes `cSize` and `dBound` are _not_ NULL */
3133 static void ZSTD_errorFrameSizeInfoLegacy(size_t* cSize, unsigned long long* dBound, size_t ret)
3134 {
3135     *cSize = ret;
3136     *dBound = ZSTD_CONTENTSIZE_ERROR;
3137 }
3138 
3139 void ZSTDv04_findFrameSizeInfoLegacy(const void *src, size_t srcSize, size_t* cSize, unsigned long long* dBound)
3140 {
3141     const BYTE* ip = (const BYTE*)src;
3142     size_t remainingSize = srcSize;
3143     size_t nbBlocks = 0;
3144     blockProperties_t blockProperties;
3145 
3146     /* Frame Header */
3147     if (srcSize < ZSTD_frameHeaderSize_min) {
3148         ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
3149         return;
3150     }
3151     if (MEM_readLE32(src) != ZSTD_MAGICNUMBER) {
3152         ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(prefix_unknown));
3153         return;
3154     }
3155     ip += ZSTD_frameHeaderSize_min; remainingSize -= ZSTD_frameHeaderSize_min;
3156 
3157     /* Loop on each block */
3158     while (1)
3159     {
3160         size_t cBlockSize = ZSTD_getcBlockSize(ip, remainingSize, &blockProperties);
3161         if (ZSTD_isError(cBlockSize)) {
3162             ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, cBlockSize);
3163             return;
3164         }
3165 
3166         ip += ZSTD_blockHeaderSize;
3167         remainingSize -= ZSTD_blockHeaderSize;
3168         if (cBlockSize > remainingSize) {
3169             ZSTD_errorFrameSizeInfoLegacy(cSize, dBound, ERROR(srcSize_wrong));
3170             return;
3171         }
3172 
3173         if (cBlockSize == 0) break;   /* bt_end */
3174 
3175         ip += cBlockSize;
3176         remainingSize -= cBlockSize;
3177         nbBlocks++;
3178     }
3179 
3180     *cSize = ip - (const BYTE*)src;
3181     *dBound = nbBlocks * BLOCKSIZE;
3182 }
3183 
3184 /* ******************************
3185 *  Streaming Decompression API
3186 ********************************/
3187 static size_t ZSTD_nextSrcSizeToDecompress(ZSTD_DCtx* dctx)
3188 {
3189     return dctx->expected;
3190 }
3191 
3192 static size_t ZSTD_decompressContinue(ZSTD_DCtx* ctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
3193 {
3194     /* Sanity check */
3195     if (srcSize != ctx->expected) return ERROR(srcSize_wrong);
3196     ZSTD_checkContinuity(ctx, dst);
3197 
3198     /* Decompress : frame header; part 1 */
3199     switch (ctx->stage)
3200     {
3201     case ZSTDds_getFrameHeaderSize :
3202         /* get frame header size */
3203         if (srcSize != ZSTD_frameHeaderSize_min) return ERROR(srcSize_wrong);   /* impossible */
3204         ctx->headerSize = ZSTD_decodeFrameHeader_Part1(ctx, src, ZSTD_frameHeaderSize_min);
3205         if (ZSTD_isError(ctx->headerSize)) return ctx->headerSize;
3206         memcpy(ctx->headerBuffer, src, ZSTD_frameHeaderSize_min);
3207         if (ctx->headerSize > ZSTD_frameHeaderSize_min) return ERROR(GENERIC);   /* impossible */
3208         ctx->expected = 0;   /* not necessary to copy more */
3209         /* fallthrough */
3210     case ZSTDds_decodeFrameHeader:
3211         /* get frame header */
3212         {   size_t const result = ZSTD_decodeFrameHeader_Part2(ctx, ctx->headerBuffer, ctx->headerSize);
3213             if (ZSTD_isError(result)) return result;
3214             ctx->expected = ZSTD_blockHeaderSize;
3215             ctx->stage = ZSTDds_decodeBlockHeader;
3216             return 0;
3217         }
3218     case ZSTDds_decodeBlockHeader:
3219         /* Decode block header */
3220         {   blockProperties_t bp;
3221             size_t const blockSize = ZSTD_getcBlockSize(src, ZSTD_blockHeaderSize, &bp);
3222             if (ZSTD_isError(blockSize)) return blockSize;
3223             if (bp.blockType == bt_end)
3224             {
3225                 ctx->expected = 0;
3226                 ctx->stage = ZSTDds_getFrameHeaderSize;
3227             }
3228             else
3229             {
3230                 ctx->expected = blockSize;
3231                 ctx->bType = bp.blockType;
3232                 ctx->stage = ZSTDds_decompressBlock;
3233             }
3234             return 0;
3235         }
3236     case ZSTDds_decompressBlock:
3237         {
3238             /* Decompress : block content */
3239             size_t rSize;
3240             switch(ctx->bType)
3241             {
3242             case bt_compressed:
3243                 rSize = ZSTD_decompressBlock_internal(ctx, dst, maxDstSize, src, srcSize);
3244                 break;
3245             case bt_raw :
3246                 rSize = ZSTD_copyRawBlock(dst, maxDstSize, src, srcSize);
3247                 break;
3248             case bt_rle :
3249                 return ERROR(GENERIC);   /* not yet handled */
3250                 break;
3251             case bt_end :   /* should never happen (filtered at phase 1) */
3252                 rSize = 0;
3253                 break;
3254             default:
3255                 return ERROR(GENERIC);
3256             }
3257             ctx->stage = ZSTDds_decodeBlockHeader;
3258             ctx->expected = ZSTD_blockHeaderSize;
3259             ctx->previousDstEnd = (char*)dst + rSize;
3260             return rSize;
3261         }
3262     default:
3263         return ERROR(GENERIC);   /* impossible */
3264     }
3265 }
3266 
3267 
3268 static void ZSTD_decompress_insertDictionary(ZSTD_DCtx* ctx, const void* dict, size_t dictSize)
3269 {
3270     ctx->dictEnd = ctx->previousDstEnd;
3271     ctx->vBase = (const char*)dict - ((const char*)(ctx->previousDstEnd) - (const char*)(ctx->base));
3272     ctx->base = dict;
3273     ctx->previousDstEnd = (const char*)dict + dictSize;
3274 }
3275 
3276 
3277 
3278 /*
3279     Buffered version of Zstd compression library
3280     Copyright (C) 2015, Yann Collet.
3281 
3282     BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
3283 
3284     Redistribution and use in source and binary forms, with or without
3285     modification, are permitted provided that the following conditions are
3286     met:
3287     * Redistributions of source code must retain the above copyright
3288     notice, this list of conditions and the following disclaimer.
3289     * Redistributions in binary form must reproduce the above
3290     copyright notice, this list of conditions and the following disclaimer
3291     in the documentation and/or other materials provided with the
3292     distribution.
3293     THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
3294     "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
3295     LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
3296     A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
3297     OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
3298     SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
3299     LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
3300     DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
3301     THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
3302     (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
3303     OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
3304 
3305     You can contact the author at :
3306     - zstd source repository : https://github.com/Cyan4973/zstd
3307     - ztsd public forum : https://groups.google.com/forum/#!forum/lz4c
3308 */
3309 
3310 /* The objects defined into this file should be considered experimental.
3311  * They are not labelled stable, as their prototype may change in the future.
3312  * You can use them for tests, provide feedback, or if you can endure risk of future changes.
3313  */
3314 
3315 /* *************************************
3316 *  Includes
3317 ***************************************/
3318 #include <stdlib.h>
3319 
3320 
3321 /** ************************************************
3322 *  Streaming decompression
3323 *
3324 *  A ZBUFF_DCtx object is required to track streaming operation.
3325 *  Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
3326 *  Use ZBUFF_decompressInit() to start a new decompression operation.
3327 *  ZBUFF_DCtx objects can be reused multiple times.
3328 *
3329 *  Use ZBUFF_decompressContinue() repetitively to consume your input.
3330 *  *srcSizePtr and *maxDstSizePtr can be any size.
3331 *  The function will report how many bytes were read or written by modifying *srcSizePtr and *maxDstSizePtr.
3332 *  Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
3333 *  The content of dst will be overwritten (up to *maxDstSizePtr) at each function call, so save its content if it matters or change dst .
3334 *  return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
3335 *            or 0 when a frame is completely decoded
3336 *            or an error code, which can be tested using ZBUFF_isError().
3337 *
3338 *  Hint : recommended buffer sizes (not compulsory)
3339 *  output : 128 KB block size is the internal unit, it ensures it's always possible to write a full block when it's decoded.
3340 *  input : just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
3341 * **************************************************/
3342 
3343 typedef enum { ZBUFFds_init, ZBUFFds_readHeader, ZBUFFds_loadHeader, ZBUFFds_decodeHeader,
3344                ZBUFFds_read, ZBUFFds_load, ZBUFFds_flush } ZBUFF_dStage;
3345 
3346 /* *** Resource management *** */
3347 
3348 #define ZSTD_frameHeaderSize_max 5   /* too magical, should come from reference */
3349 struct ZBUFFv04_DCtx_s {
3350     ZSTD_DCtx* zc;
3351     ZSTD_parameters params;
3352     char* inBuff;
3353     size_t inBuffSize;
3354     size_t inPos;
3355     char* outBuff;
3356     size_t outBuffSize;
3357     size_t outStart;
3358     size_t outEnd;
3359     size_t hPos;
3360     const char* dict;
3361     size_t dictSize;
3362     ZBUFF_dStage stage;
3363     unsigned char headerBuffer[ZSTD_frameHeaderSize_max];
3364 };   /* typedef'd to ZBUFF_DCtx within "zstd_buffered.h" */
3365 
3366 typedef ZBUFFv04_DCtx ZBUFF_DCtx;
3367 
3368 
3369 static ZBUFF_DCtx* ZBUFF_createDCtx(void)
3370 {
3371     ZBUFF_DCtx* zbc = (ZBUFF_DCtx*)malloc(sizeof(ZBUFF_DCtx));
3372     if (zbc==NULL) return NULL;
3373     memset(zbc, 0, sizeof(*zbc));
3374     zbc->zc = ZSTD_createDCtx();
3375     zbc->stage = ZBUFFds_init;
3376     return zbc;
3377 }
3378 
3379 static size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbc)
3380 {
3381     if (zbc==NULL) return 0;   /* support free on null */
3382     ZSTD_freeDCtx(zbc->zc);
3383     free(zbc->inBuff);
3384     free(zbc->outBuff);
3385     free(zbc);
3386     return 0;
3387 }
3388 
3389 
3390 /* *** Initialization *** */
3391 
3392 static size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbc)
3393 {
3394     zbc->stage = ZBUFFds_readHeader;
3395     zbc->hPos = zbc->inPos = zbc->outStart = zbc->outEnd = zbc->dictSize = 0;
3396     return ZSTD_resetDCtx(zbc->zc);
3397 }
3398 
3399 
3400 static size_t ZBUFF_decompressWithDictionary(ZBUFF_DCtx* zbc, const void* src, size_t srcSize)
3401 {
3402     zbc->dict = (const char*)src;
3403     zbc->dictSize = srcSize;
3404     return 0;
3405 }
3406 
3407 static size_t ZBUFF_limitCopy(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
3408 {
3409     size_t length = MIN(maxDstSize, srcSize);
3410     memcpy(dst, src, length);
3411     return length;
3412 }
3413 
3414 /* *** Decompression *** */
3415 
3416 static size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbc, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
3417 {
3418     const char* const istart = (const char*)src;
3419     const char* ip = istart;
3420     const char* const iend = istart + *srcSizePtr;
3421     char* const ostart = (char*)dst;
3422     char* op = ostart;
3423     char* const oend = ostart + *maxDstSizePtr;
3424     U32 notDone = 1;
3425 
3426     DEBUGLOG(5, "ZBUFF_decompressContinue");
3427     while (notDone)
3428     {
3429         switch(zbc->stage)
3430         {
3431 
3432         case ZBUFFds_init :
3433             DEBUGLOG(5, "ZBUFF_decompressContinue: stage==ZBUFFds_init => ERROR(init_missing)");
3434             return ERROR(init_missing);
3435 
3436         case ZBUFFds_readHeader :
3437             /* read header from src */
3438             {   size_t const headerSize = ZSTD_getFrameParams(&(zbc->params), src, *srcSizePtr);
3439                 if (ZSTD_isError(headerSize)) return headerSize;
3440                 if (headerSize) {
3441                     /* not enough input to decode header : tell how many bytes would be necessary */
3442                     memcpy(zbc->headerBuffer+zbc->hPos, src, *srcSizePtr);
3443                     zbc->hPos += *srcSizePtr;
3444                     *maxDstSizePtr = 0;
3445                     zbc->stage = ZBUFFds_loadHeader;
3446                     return headerSize - zbc->hPos;
3447                 }
3448                 zbc->stage = ZBUFFds_decodeHeader;
3449                 break;
3450             }
3451 
3452         case ZBUFFds_loadHeader:
3453             /* complete header from src */
3454             {   size_t headerSize = ZBUFF_limitCopy(
3455                     zbc->headerBuffer + zbc->hPos, ZSTD_frameHeaderSize_max - zbc->hPos,
3456                     src, *srcSizePtr);
3457                 zbc->hPos += headerSize;
3458                 ip += headerSize;
3459                 headerSize = ZSTD_getFrameParams(&(zbc->params), zbc->headerBuffer, zbc->hPos);
3460                 if (ZSTD_isError(headerSize)) return headerSize;
3461                 if (headerSize) {
3462                     /* not enough input to decode header : tell how many bytes would be necessary */
3463                     *maxDstSizePtr = 0;
3464                     return headerSize - zbc->hPos;
3465             }   }
3466             /* intentional fallthrough */
3467 
3468         case ZBUFFds_decodeHeader:
3469                 /* apply header to create / resize buffers */
3470                 {   size_t const neededOutSize = (size_t)1 << zbc->params.windowLog;
3471                     size_t const neededInSize = BLOCKSIZE;   /* a block is never > BLOCKSIZE */
3472                     if (zbc->inBuffSize < neededInSize) {
3473                         free(zbc->inBuff);
3474                         zbc->inBuffSize = neededInSize;
3475                         zbc->inBuff = (char*)malloc(neededInSize);
3476                         if (zbc->inBuff == NULL) return ERROR(memory_allocation);
3477                     }
3478                     if (zbc->outBuffSize < neededOutSize) {
3479                         free(zbc->outBuff);
3480                         zbc->outBuffSize = neededOutSize;
3481                         zbc->outBuff = (char*)malloc(neededOutSize);
3482                         if (zbc->outBuff == NULL) return ERROR(memory_allocation);
3483                 }   }
3484                 if (zbc->dictSize)
3485                     ZSTD_decompress_insertDictionary(zbc->zc, zbc->dict, zbc->dictSize);
3486                 if (zbc->hPos) {
3487                     /* some data already loaded into headerBuffer : transfer into inBuff */
3488                     memcpy(zbc->inBuff, zbc->headerBuffer, zbc->hPos);
3489                     zbc->inPos = zbc->hPos;
3490                     zbc->hPos = 0;
3491                     zbc->stage = ZBUFFds_load;
3492                     break;
3493                 }
3494                 zbc->stage = ZBUFFds_read;
3495 		/* fall-through */
3496         case ZBUFFds_read:
3497             {
3498                 size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
3499                 if (neededInSize==0)   /* end of frame */
3500                 {
3501                     zbc->stage = ZBUFFds_init;
3502                     notDone = 0;
3503                     break;
3504                 }
3505                 if ((size_t)(iend-ip) >= neededInSize)
3506                 {
3507                     /* directly decode from src */
3508                     size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
3509                         zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
3510                         ip, neededInSize);
3511                     if (ZSTD_isError(decodedSize)) return decodedSize;
3512                     ip += neededInSize;
3513                     if (!decodedSize) break;   /* this was just a header */
3514                     zbc->outEnd = zbc->outStart +  decodedSize;
3515                     zbc->stage = ZBUFFds_flush;
3516                     break;
3517                 }
3518                 if (ip==iend) { notDone = 0; break; }   /* no more input */
3519                 zbc->stage = ZBUFFds_load;
3520             }
3521 	    /* fall-through */
3522         case ZBUFFds_load:
3523             {
3524                 size_t neededInSize = ZSTD_nextSrcSizeToDecompress(zbc->zc);
3525                 size_t toLoad = neededInSize - zbc->inPos;   /* should always be <= remaining space within inBuff */
3526                 size_t loadedSize;
3527                 if (toLoad > zbc->inBuffSize - zbc->inPos) return ERROR(corruption_detected);   /* should never happen */
3528                 loadedSize = ZBUFF_limitCopy(zbc->inBuff + zbc->inPos, toLoad, ip, iend-ip);
3529                 ip += loadedSize;
3530                 zbc->inPos += loadedSize;
3531                 if (loadedSize < toLoad) { notDone = 0; break; }   /* not enough input, wait for more */
3532                 {
3533                     size_t decodedSize = ZSTD_decompressContinue(zbc->zc,
3534                         zbc->outBuff + zbc->outStart, zbc->outBuffSize - zbc->outStart,
3535                         zbc->inBuff, neededInSize);
3536                     if (ZSTD_isError(decodedSize)) return decodedSize;
3537                     zbc->inPos = 0;   /* input is consumed */
3538                     if (!decodedSize) { zbc->stage = ZBUFFds_read; break; }   /* this was just a header */
3539                     zbc->outEnd = zbc->outStart +  decodedSize;
3540                     zbc->stage = ZBUFFds_flush;
3541                     /* ZBUFFds_flush follows */
3542                 }
3543             }
3544 	    /* fall-through */
3545         case ZBUFFds_flush:
3546             {
3547                 size_t toFlushSize = zbc->outEnd - zbc->outStart;
3548                 size_t flushedSize = ZBUFF_limitCopy(op, oend-op, zbc->outBuff + zbc->outStart, toFlushSize);
3549                 op += flushedSize;
3550                 zbc->outStart += flushedSize;
3551                 if (flushedSize == toFlushSize)
3552                 {
3553                     zbc->stage = ZBUFFds_read;
3554                     if (zbc->outStart + BLOCKSIZE > zbc->outBuffSize)
3555                         zbc->outStart = zbc->outEnd = 0;
3556                     break;
3557                 }
3558                 /* cannot flush everything */
3559                 notDone = 0;
3560                 break;
3561             }
3562         default: return ERROR(GENERIC);   /* impossible */
3563         }
3564     }
3565 
3566     *srcSizePtr = ip-istart;
3567     *maxDstSizePtr = op-ostart;
3568 
3569     {
3570         size_t nextSrcSizeHint = ZSTD_nextSrcSizeToDecompress(zbc->zc);
3571         if (nextSrcSizeHint > 3) nextSrcSizeHint+= 3;   /* get the next block header while at it */
3572         nextSrcSizeHint -= zbc->inPos;   /* already loaded*/
3573         return nextSrcSizeHint;
3574     }
3575 }
3576 
3577 
3578 /* *************************************
3579 *  Tool functions
3580 ***************************************/
3581 unsigned ZBUFFv04_isError(size_t errorCode) { return ERR_isError(errorCode); }
3582 const char* ZBUFFv04_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
3583 
3584 size_t ZBUFFv04_recommendedDInSize()  { return BLOCKSIZE + 3; }
3585 size_t ZBUFFv04_recommendedDOutSize() { return BLOCKSIZE; }
3586 
3587 
3588 
3589 /*- ========================================================================= -*/
3590 
3591 /* final wrapping stage */
3592 
3593 size_t ZSTDv04_decompressDCtx(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
3594 {
3595     return ZSTD_decompress_usingDict(dctx, dst, maxDstSize, src, srcSize, NULL, 0);
3596 }
3597 
3598 size_t ZSTDv04_decompress(void* dst, size_t maxDstSize, const void* src, size_t srcSize)
3599 {
3600 #if defined(ZSTD_HEAPMODE) && (ZSTD_HEAPMODE==1)
3601     size_t regenSize;
3602     ZSTD_DCtx* dctx = ZSTD_createDCtx();
3603     if (dctx==NULL) return ERROR(memory_allocation);
3604     regenSize = ZSTDv04_decompressDCtx(dctx, dst, maxDstSize, src, srcSize);
3605     ZSTD_freeDCtx(dctx);
3606     return regenSize;
3607 #else
3608     ZSTD_DCtx dctx;
3609     return ZSTDv04_decompressDCtx(&dctx, dst, maxDstSize, src, srcSize);
3610 #endif
3611 }
3612 
3613 size_t ZSTDv04_resetDCtx(ZSTDv04_Dctx* dctx) { return ZSTD_resetDCtx(dctx); }
3614 
3615 size_t ZSTDv04_nextSrcSizeToDecompress(ZSTDv04_Dctx* dctx)
3616 {
3617     return ZSTD_nextSrcSizeToDecompress(dctx);
3618 }
3619 
3620 size_t ZSTDv04_decompressContinue(ZSTDv04_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize)
3621 {
3622     return ZSTD_decompressContinue(dctx, dst, maxDstSize, src, srcSize);
3623 }
3624 
3625 
3626 
3627 ZBUFFv04_DCtx* ZBUFFv04_createDCtx(void) { return ZBUFF_createDCtx(); }
3628 size_t ZBUFFv04_freeDCtx(ZBUFFv04_DCtx* dctx) { return ZBUFF_freeDCtx(dctx); }
3629 
3630 size_t ZBUFFv04_decompressInit(ZBUFFv04_DCtx* dctx) { return ZBUFF_decompressInit(dctx); }
3631 size_t ZBUFFv04_decompressWithDictionary(ZBUFFv04_DCtx* dctx, const void* src, size_t srcSize)
3632 { return ZBUFF_decompressWithDictionary(dctx, src, srcSize); }
3633 
3634 size_t ZBUFFv04_decompressContinue(ZBUFFv04_DCtx* dctx, void* dst, size_t* maxDstSizePtr, const void* src, size_t* srcSizePtr)
3635 {
3636     DEBUGLOG(5, "ZBUFFv04_decompressContinue");
3637     return ZBUFF_decompressContinue(dctx, dst, maxDstSizePtr, src, srcSizePtr);
3638 }
3639 
3640 ZSTD_DCtx* ZSTDv04_createDCtx(void) { return ZSTD_createDCtx(); }
3641 size_t ZSTDv04_freeDCtx(ZSTD_DCtx* dctx) { return ZSTD_freeDCtx(dctx); }
3642