xref: /freebsd/sys/contrib/zstd/lib/dictBuilder/cover.c (revision f0cfa1b168014f56c02b83e5f28412cc5f78d117)
1 /*
2  * Copyright (c) 2016-present, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 /* *****************************************************************************
12  * Constructs a dictionary using a heuristic based on the following paper:
13  *
14  * Liao, Petri, Moffat, Wirth
15  * Effective Construction of Relative Lempel-Ziv Dictionaries
16  * Published in WWW 2016.
17  *
18  * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19  ******************************************************************************/
20 
21 /*-*************************************
22 *  Dependencies
23 ***************************************/
24 #include <stdio.h>  /* fprintf */
25 #include <stdlib.h> /* malloc, free, qsort */
26 #include <string.h> /* memset */
27 #include <time.h>   /* clock */
28 
29 #include "mem.h" /* read */
30 #include "pool.h"
31 #include "threading.h"
32 #include "zstd_internal.h" /* includes zstd.h */
33 #ifndef ZDICT_STATIC_LINKING_ONLY
34 #define ZDICT_STATIC_LINKING_ONLY
35 #endif
36 #include "zdict.h"
37 
38 /*-*************************************
39 *  Constants
40 ***************************************/
41 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((U32)-1) : ((U32)1 GB))
42 
43 /*-*************************************
44 *  Console display
45 ***************************************/
46 static int g_displayLevel = 2;
47 #define DISPLAY(...)                                                           \
48   {                                                                            \
49     fprintf(stderr, __VA_ARGS__);                                              \
50     fflush(stderr);                                                            \
51   }
52 #define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
53   if (displayLevel >= l) {                                                     \
54     DISPLAY(__VA_ARGS__);                                                      \
55   } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
56 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
57 
58 #define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
59   if (displayLevel >= l) {                                                     \
60     if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) {             \
61       g_time = clock();                                                        \
62       DISPLAY(__VA_ARGS__);                                                    \
63     }                                                                          \
64   }
65 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
66 static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100;
67 static clock_t g_time = 0;
68 
69 /*-*************************************
70 * Hash table
71 ***************************************
72 * A small specialized hash map for storing activeDmers.
73 * The map does not resize, so if it becomes full it will loop forever.
74 * Thus, the map must be large enough to store every value.
75 * The map implements linear probing and keeps its load less than 0.5.
76 */
77 
78 #define MAP_EMPTY_VALUE ((U32)-1)
79 typedef struct COVER_map_pair_t_s {
80   U32 key;
81   U32 value;
82 } COVER_map_pair_t;
83 
84 typedef struct COVER_map_s {
85   COVER_map_pair_t *data;
86   U32 sizeLog;
87   U32 size;
88   U32 sizeMask;
89 } COVER_map_t;
90 
91 /**
92  * Clear the map.
93  */
94 static void COVER_map_clear(COVER_map_t *map) {
95   memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
96 }
97 
98 /**
99  * Initializes a map of the given size.
100  * Returns 1 on success and 0 on failure.
101  * The map must be destroyed with COVER_map_destroy().
102  * The map is only guaranteed to be large enough to hold size elements.
103  */
104 static int COVER_map_init(COVER_map_t *map, U32 size) {
105   map->sizeLog = ZSTD_highbit32(size) + 2;
106   map->size = (U32)1 << map->sizeLog;
107   map->sizeMask = map->size - 1;
108   map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
109   if (!map->data) {
110     map->sizeLog = 0;
111     map->size = 0;
112     return 0;
113   }
114   COVER_map_clear(map);
115   return 1;
116 }
117 
118 /**
119  * Internal hash function
120  */
121 static const U32 prime4bytes = 2654435761U;
122 static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
123   return (key * prime4bytes) >> (32 - map->sizeLog);
124 }
125 
126 /**
127  * Helper function that returns the index that a key should be placed into.
128  */
129 static U32 COVER_map_index(COVER_map_t *map, U32 key) {
130   const U32 hash = COVER_map_hash(map, key);
131   U32 i;
132   for (i = hash;; i = (i + 1) & map->sizeMask) {
133     COVER_map_pair_t *pos = &map->data[i];
134     if (pos->value == MAP_EMPTY_VALUE) {
135       return i;
136     }
137     if (pos->key == key) {
138       return i;
139     }
140   }
141 }
142 
143 /**
144  * Returns the pointer to the value for key.
145  * If key is not in the map, it is inserted and the value is set to 0.
146  * The map must not be full.
147  */
148 static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
149   COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
150   if (pos->value == MAP_EMPTY_VALUE) {
151     pos->key = key;
152     pos->value = 0;
153   }
154   return &pos->value;
155 }
156 
157 /**
158  * Deletes key from the map if present.
159  */
160 static void COVER_map_remove(COVER_map_t *map, U32 key) {
161   U32 i = COVER_map_index(map, key);
162   COVER_map_pair_t *del = &map->data[i];
163   U32 shift = 1;
164   if (del->value == MAP_EMPTY_VALUE) {
165     return;
166   }
167   for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
168     COVER_map_pair_t *const pos = &map->data[i];
169     /* If the position is empty we are done */
170     if (pos->value == MAP_EMPTY_VALUE) {
171       del->value = MAP_EMPTY_VALUE;
172       return;
173     }
174     /* If pos can be moved to del do so */
175     if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
176       del->key = pos->key;
177       del->value = pos->value;
178       del = pos;
179       shift = 1;
180     } else {
181       ++shift;
182     }
183   }
184 }
185 
186 /**
187  * Destroyes a map that is inited with COVER_map_init().
188  */
189 static void COVER_map_destroy(COVER_map_t *map) {
190   if (map->data) {
191     free(map->data);
192   }
193   map->data = NULL;
194   map->size = 0;
195 }
196 
197 /*-*************************************
198 * Context
199 ***************************************/
200 
201 typedef struct {
202   const BYTE *samples;
203   size_t *offsets;
204   const size_t *samplesSizes;
205   size_t nbSamples;
206   U32 *suffix;
207   size_t suffixSize;
208   U32 *freqs;
209   U32 *dmerAt;
210   unsigned d;
211 } COVER_ctx_t;
212 
213 /* We need a global context for qsort... */
214 static COVER_ctx_t *g_ctx = NULL;
215 
216 /*-*************************************
217 *  Helper functions
218 ***************************************/
219 
220 /**
221  * Returns the sum of the sample sizes.
222  */
223 static size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
224   size_t sum = 0;
225   size_t i;
226   for (i = 0; i < nbSamples; ++i) {
227     sum += samplesSizes[i];
228   }
229   return sum;
230 }
231 
232 /**
233  * Returns -1 if the dmer at lp is less than the dmer at rp.
234  * Return 0 if the dmers at lp and rp are equal.
235  * Returns 1 if the dmer at lp is greater than the dmer at rp.
236  */
237 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
238   U32 const lhs = *(U32 const *)lp;
239   U32 const rhs = *(U32 const *)rp;
240   return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
241 }
242 /**
243  * Faster version for d <= 8.
244  */
245 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
246   U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
247   U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
248   U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
249   if (lhs < rhs) {
250     return -1;
251   }
252   return (lhs > rhs);
253 }
254 
255 /**
256  * Same as COVER_cmp() except ties are broken by pointer value
257  * NOTE: g_ctx must be set to call this function.  A global is required because
258  * qsort doesn't take an opaque pointer.
259  */
260 static int COVER_strict_cmp(const void *lp, const void *rp) {
261   int result = COVER_cmp(g_ctx, lp, rp);
262   if (result == 0) {
263     result = lp < rp ? -1 : 1;
264   }
265   return result;
266 }
267 /**
268  * Faster version for d <= 8.
269  */
270 static int COVER_strict_cmp8(const void *lp, const void *rp) {
271   int result = COVER_cmp8(g_ctx, lp, rp);
272   if (result == 0) {
273     result = lp < rp ? -1 : 1;
274   }
275   return result;
276 }
277 
278 /**
279  * Returns the first pointer in [first, last) whose element does not compare
280  * less than value.  If no such element exists it returns last.
281  */
282 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
283                                        size_t value) {
284   size_t count = last - first;
285   while (count != 0) {
286     size_t step = count / 2;
287     const size_t *ptr = first;
288     ptr += step;
289     if (*ptr < value) {
290       first = ++ptr;
291       count -= step + 1;
292     } else {
293       count = step;
294     }
295   }
296   return first;
297 }
298 
299 /**
300  * Generic groupBy function.
301  * Groups an array sorted by cmp into groups with equivalent values.
302  * Calls grp for each group.
303  */
304 static void
305 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
306               int (*cmp)(COVER_ctx_t *, const void *, const void *),
307               void (*grp)(COVER_ctx_t *, const void *, const void *)) {
308   const BYTE *ptr = (const BYTE *)data;
309   size_t num = 0;
310   while (num < count) {
311     const BYTE *grpEnd = ptr + size;
312     ++num;
313     while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
314       grpEnd += size;
315       ++num;
316     }
317     grp(ctx, ptr, grpEnd);
318     ptr = grpEnd;
319   }
320 }
321 
322 /*-*************************************
323 *  Cover functions
324 ***************************************/
325 
326 /**
327  * Called on each group of positions with the same dmer.
328  * Counts the frequency of each dmer and saves it in the suffix array.
329  * Fills `ctx->dmerAt`.
330  */
331 static void COVER_group(COVER_ctx_t *ctx, const void *group,
332                         const void *groupEnd) {
333   /* The group consists of all the positions with the same first d bytes. */
334   const U32 *grpPtr = (const U32 *)group;
335   const U32 *grpEnd = (const U32 *)groupEnd;
336   /* The dmerId is how we will reference this dmer.
337    * This allows us to map the whole dmer space to a much smaller space, the
338    * size of the suffix array.
339    */
340   const U32 dmerId = (U32)(grpPtr - ctx->suffix);
341   /* Count the number of samples this dmer shows up in */
342   U32 freq = 0;
343   /* Details */
344   const size_t *curOffsetPtr = ctx->offsets;
345   const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
346   /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
347    * different sample than the last.
348    */
349   size_t curSampleEnd = ctx->offsets[0];
350   for (; grpPtr != grpEnd; ++grpPtr) {
351     /* Save the dmerId for this position so we can get back to it. */
352     ctx->dmerAt[*grpPtr] = dmerId;
353     /* Dictionaries only help for the first reference to the dmer.
354      * After that zstd can reference the match from the previous reference.
355      * So only count each dmer once for each sample it is in.
356      */
357     if (*grpPtr < curSampleEnd) {
358       continue;
359     }
360     freq += 1;
361     /* Binary search to find the end of the sample *grpPtr is in.
362      * In the common case that grpPtr + 1 == grpEnd we can skip the binary
363      * search because the loop is over.
364      */
365     if (grpPtr + 1 != grpEnd) {
366       const size_t *sampleEndPtr =
367           COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
368       curSampleEnd = *sampleEndPtr;
369       curOffsetPtr = sampleEndPtr + 1;
370     }
371   }
372   /* At this point we are never going to look at this segment of the suffix
373    * array again.  We take advantage of this fact to save memory.
374    * We store the frequency of the dmer in the first position of the group,
375    * which is dmerId.
376    */
377   ctx->suffix[dmerId] = freq;
378 }
379 
380 /**
381  * A segment is a range in the source as well as the score of the segment.
382  */
383 typedef struct {
384   U32 begin;
385   U32 end;
386   U32 score;
387 } COVER_segment_t;
388 
389 /**
390  * Selects the best segment in an epoch.
391  * Segments of are scored according to the function:
392  *
393  * Let F(d) be the frequency of dmer d.
394  * Let S_i be the dmer at position i of segment S which has length k.
395  *
396  *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
397  *
398  * Once the dmer d is in the dictionay we set F(d) = 0.
399  */
400 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
401                                            COVER_map_t *activeDmers, U32 begin,
402                                            U32 end,
403                                            ZDICT_cover_params_t parameters) {
404   /* Constants */
405   const U32 k = parameters.k;
406   const U32 d = parameters.d;
407   const U32 dmersInK = k - d + 1;
408   /* Try each segment (activeSegment) and save the best (bestSegment) */
409   COVER_segment_t bestSegment = {0, 0, 0};
410   COVER_segment_t activeSegment;
411   /* Reset the activeDmers in the segment */
412   COVER_map_clear(activeDmers);
413   /* The activeSegment starts at the beginning of the epoch. */
414   activeSegment.begin = begin;
415   activeSegment.end = begin;
416   activeSegment.score = 0;
417   /* Slide the activeSegment through the whole epoch.
418    * Save the best segment in bestSegment.
419    */
420   while (activeSegment.end < end) {
421     /* The dmerId for the dmer at the next position */
422     U32 newDmer = ctx->dmerAt[activeSegment.end];
423     /* The entry in activeDmers for this dmerId */
424     U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
425     /* If the dmer isn't already present in the segment add its score. */
426     if (*newDmerOcc == 0) {
427       /* The paper suggest using the L-0.5 norm, but experiments show that it
428        * doesn't help.
429        */
430       activeSegment.score += freqs[newDmer];
431     }
432     /* Add the dmer to the segment */
433     activeSegment.end += 1;
434     *newDmerOcc += 1;
435 
436     /* If the window is now too large, drop the first position */
437     if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
438       U32 delDmer = ctx->dmerAt[activeSegment.begin];
439       U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
440       activeSegment.begin += 1;
441       *delDmerOcc -= 1;
442       /* If this is the last occurence of the dmer, subtract its score */
443       if (*delDmerOcc == 0) {
444         COVER_map_remove(activeDmers, delDmer);
445         activeSegment.score -= freqs[delDmer];
446       }
447     }
448 
449     /* If this segment is the best so far save it */
450     if (activeSegment.score > bestSegment.score) {
451       bestSegment = activeSegment;
452     }
453   }
454   {
455     /* Trim off the zero frequency head and tail from the segment. */
456     U32 newBegin = bestSegment.end;
457     U32 newEnd = bestSegment.begin;
458     U32 pos;
459     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
460       U32 freq = freqs[ctx->dmerAt[pos]];
461       if (freq != 0) {
462         newBegin = MIN(newBegin, pos);
463         newEnd = pos + 1;
464       }
465     }
466     bestSegment.begin = newBegin;
467     bestSegment.end = newEnd;
468   }
469   {
470     /* Zero out the frequency of each dmer covered by the chosen segment. */
471     U32 pos;
472     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
473       freqs[ctx->dmerAt[pos]] = 0;
474     }
475   }
476   return bestSegment;
477 }
478 
479 /**
480  * Check the validity of the parameters.
481  * Returns non-zero if the parameters are valid and 0 otherwise.
482  */
483 static int COVER_checkParameters(ZDICT_cover_params_t parameters,
484                                  size_t maxDictSize) {
485   /* k and d are required parameters */
486   if (parameters.d == 0 || parameters.k == 0) {
487     return 0;
488   }
489   /* k <= maxDictSize */
490   if (parameters.k > maxDictSize) {
491     return 0;
492   }
493   /* d <= k */
494   if (parameters.d > parameters.k) {
495     return 0;
496   }
497   return 1;
498 }
499 
500 /**
501  * Clean up a context initialized with `COVER_ctx_init()`.
502  */
503 static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
504   if (!ctx) {
505     return;
506   }
507   if (ctx->suffix) {
508     free(ctx->suffix);
509     ctx->suffix = NULL;
510   }
511   if (ctx->freqs) {
512     free(ctx->freqs);
513     ctx->freqs = NULL;
514   }
515   if (ctx->dmerAt) {
516     free(ctx->dmerAt);
517     ctx->dmerAt = NULL;
518   }
519   if (ctx->offsets) {
520     free(ctx->offsets);
521     ctx->offsets = NULL;
522   }
523 }
524 
525 /**
526  * Prepare a context for dictionary building.
527  * The context is only dependent on the parameter `d` and can used multiple
528  * times.
529  * Returns 1 on success or zero on error.
530  * The context must be destroyed with `COVER_ctx_destroy()`.
531  */
532 static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
533                           const size_t *samplesSizes, unsigned nbSamples,
534                           unsigned d) {
535   const BYTE *const samples = (const BYTE *)samplesBuffer;
536   const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
537   /* Checks */
538   if (totalSamplesSize < MAX(d, sizeof(U64)) ||
539       totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
540     DISPLAYLEVEL(1, "Total samples size is too large, maximum size is %u MB\n",
541                  (COVER_MAX_SAMPLES_SIZE >> 20));
542     return 0;
543   }
544   /* Zero the context */
545   memset(ctx, 0, sizeof(*ctx));
546   DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbSamples,
547                (U32)totalSamplesSize);
548   ctx->samples = samples;
549   ctx->samplesSizes = samplesSizes;
550   ctx->nbSamples = nbSamples;
551   /* Partial suffix array */
552   ctx->suffixSize = totalSamplesSize - MAX(d, sizeof(U64)) + 1;
553   ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
554   /* Maps index to the dmerID */
555   ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
556   /* The offsets of each file */
557   ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
558   if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
559     DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
560     COVER_ctx_destroy(ctx);
561     return 0;
562   }
563   ctx->freqs = NULL;
564   ctx->d = d;
565 
566   /* Fill offsets from the samlesSizes */
567   {
568     U32 i;
569     ctx->offsets[0] = 0;
570     for (i = 1; i <= nbSamples; ++i) {
571       ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
572     }
573   }
574   DISPLAYLEVEL(2, "Constructing partial suffix array\n");
575   {
576     /* suffix is a partial suffix array.
577      * It only sorts suffixes by their first parameters.d bytes.
578      * The sort is stable, so each dmer group is sorted by position in input.
579      */
580     U32 i;
581     for (i = 0; i < ctx->suffixSize; ++i) {
582       ctx->suffix[i] = i;
583     }
584     /* qsort doesn't take an opaque pointer, so pass as a global */
585     g_ctx = ctx;
586     qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
587           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
588   }
589   DISPLAYLEVEL(2, "Computing frequencies\n");
590   /* For each dmer group (group of positions with the same first d bytes):
591    * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
592    *    (groupBeginPtr - suffix).  This allows us to go from position to
593    *    dmerID so we can look up values in freq.
594    * 2. We calculate how many samples the dmer occurs in and save it in
595    *    freqs[dmerId].
596    */
597   COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
598                 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
599   ctx->freqs = ctx->suffix;
600   ctx->suffix = NULL;
601   return 1;
602 }
603 
604 /**
605  * Given the prepared context build the dictionary.
606  */
607 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
608                                     COVER_map_t *activeDmers, void *dictBuffer,
609                                     size_t dictBufferCapacity,
610                                     ZDICT_cover_params_t parameters) {
611   BYTE *const dict = (BYTE *)dictBuffer;
612   size_t tail = dictBufferCapacity;
613   /* Divide the data up into epochs of equal size.
614    * We will select at least one segment from each epoch.
615    */
616   const U32 epochs = (U32)(dictBufferCapacity / parameters.k);
617   const U32 epochSize = (U32)(ctx->suffixSize / epochs);
618   size_t epoch;
619   DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", epochs,
620                epochSize);
621   /* Loop through the epochs until there are no more segments or the dictionary
622    * is full.
623    */
624   for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) {
625     const U32 epochBegin = (U32)(epoch * epochSize);
626     const U32 epochEnd = epochBegin + epochSize;
627     size_t segmentSize;
628     /* Select a segment */
629     COVER_segment_t segment = COVER_selectSegment(
630         ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
631     /* If the segment covers no dmers, then we are out of content */
632     if (segment.score == 0) {
633       break;
634     }
635     /* Trim the segment if necessary and if it is too small then we are done */
636     segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
637     if (segmentSize < parameters.d) {
638       break;
639     }
640     /* We fill the dictionary from the back to allow the best segments to be
641      * referenced with the smallest offsets.
642      */
643     tail -= segmentSize;
644     memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
645     DISPLAYUPDATE(
646         2, "\r%u%%       ",
647         (U32)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
648   }
649   DISPLAYLEVEL(2, "\r%79s\r", "");
650   return tail;
651 }
652 
653 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
654     void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
655     const size_t *samplesSizes, unsigned nbSamples,
656     ZDICT_cover_params_t parameters) {
657   BYTE *const dict = (BYTE *)dictBuffer;
658   COVER_ctx_t ctx;
659   COVER_map_t activeDmers;
660   /* Checks */
661   if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
662     DISPLAYLEVEL(1, "Cover parameters incorrect\n");
663     return ERROR(GENERIC);
664   }
665   if (nbSamples == 0) {
666     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
667     return ERROR(GENERIC);
668   }
669   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
670     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
671                  ZDICT_DICTSIZE_MIN);
672     return ERROR(dstSize_tooSmall);
673   }
674   /* Initialize global data */
675   g_displayLevel = parameters.zParams.notificationLevel;
676   /* Initialize context and activeDmers */
677   if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
678                       parameters.d)) {
679     return ERROR(GENERIC);
680   }
681   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
682     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
683     COVER_ctx_destroy(&ctx);
684     return ERROR(GENERIC);
685   }
686 
687   DISPLAYLEVEL(2, "Building dictionary\n");
688   {
689     const size_t tail =
690         COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
691                               dictBufferCapacity, parameters);
692     const size_t dictionarySize = ZDICT_finalizeDictionary(
693         dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
694         samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
695     if (!ZSTD_isError(dictionarySize)) {
696       DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
697                    (U32)dictionarySize);
698     }
699     COVER_ctx_destroy(&ctx);
700     COVER_map_destroy(&activeDmers);
701     return dictionarySize;
702   }
703 }
704 
705 /**
706  * COVER_best_t is used for two purposes:
707  * 1. Synchronizing threads.
708  * 2. Saving the best parameters and dictionary.
709  *
710  * All of the methods except COVER_best_init() are thread safe if zstd is
711  * compiled with multithreaded support.
712  */
713 typedef struct COVER_best_s {
714   ZSTD_pthread_mutex_t mutex;
715   ZSTD_pthread_cond_t cond;
716   size_t liveJobs;
717   void *dict;
718   size_t dictSize;
719   ZDICT_cover_params_t parameters;
720   size_t compressedSize;
721 } COVER_best_t;
722 
723 /**
724  * Initialize the `COVER_best_t`.
725  */
726 static void COVER_best_init(COVER_best_t *best) {
727   if (best==NULL) return; /* compatible with init on NULL */
728   (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
729   (void)ZSTD_pthread_cond_init(&best->cond, NULL);
730   best->liveJobs = 0;
731   best->dict = NULL;
732   best->dictSize = 0;
733   best->compressedSize = (size_t)-1;
734   memset(&best->parameters, 0, sizeof(best->parameters));
735 }
736 
737 /**
738  * Wait until liveJobs == 0.
739  */
740 static void COVER_best_wait(COVER_best_t *best) {
741   if (!best) {
742     return;
743   }
744   ZSTD_pthread_mutex_lock(&best->mutex);
745   while (best->liveJobs != 0) {
746     ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
747   }
748   ZSTD_pthread_mutex_unlock(&best->mutex);
749 }
750 
751 /**
752  * Call COVER_best_wait() and then destroy the COVER_best_t.
753  */
754 static void COVER_best_destroy(COVER_best_t *best) {
755   if (!best) {
756     return;
757   }
758   COVER_best_wait(best);
759   if (best->dict) {
760     free(best->dict);
761   }
762   ZSTD_pthread_mutex_destroy(&best->mutex);
763   ZSTD_pthread_cond_destroy(&best->cond);
764 }
765 
766 /**
767  * Called when a thread is about to be launched.
768  * Increments liveJobs.
769  */
770 static void COVER_best_start(COVER_best_t *best) {
771   if (!best) {
772     return;
773   }
774   ZSTD_pthread_mutex_lock(&best->mutex);
775   ++best->liveJobs;
776   ZSTD_pthread_mutex_unlock(&best->mutex);
777 }
778 
779 /**
780  * Called when a thread finishes executing, both on error or success.
781  * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
782  * If this dictionary is the best so far save it and its parameters.
783  */
784 static void COVER_best_finish(COVER_best_t *best, size_t compressedSize,
785                               ZDICT_cover_params_t parameters, void *dict,
786                               size_t dictSize) {
787   if (!best) {
788     return;
789   }
790   {
791     size_t liveJobs;
792     ZSTD_pthread_mutex_lock(&best->mutex);
793     --best->liveJobs;
794     liveJobs = best->liveJobs;
795     /* If the new dictionary is better */
796     if (compressedSize < best->compressedSize) {
797       /* Allocate space if necessary */
798       if (!best->dict || best->dictSize < dictSize) {
799         if (best->dict) {
800           free(best->dict);
801         }
802         best->dict = malloc(dictSize);
803         if (!best->dict) {
804           best->compressedSize = ERROR(GENERIC);
805           best->dictSize = 0;
806           return;
807         }
808       }
809       /* Save the dictionary, parameters, and size */
810       memcpy(best->dict, dict, dictSize);
811       best->dictSize = dictSize;
812       best->parameters = parameters;
813       best->compressedSize = compressedSize;
814     }
815     ZSTD_pthread_mutex_unlock(&best->mutex);
816     if (liveJobs == 0) {
817       ZSTD_pthread_cond_broadcast(&best->cond);
818     }
819   }
820 }
821 
822 /**
823  * Parameters for COVER_tryParameters().
824  */
825 typedef struct COVER_tryParameters_data_s {
826   const COVER_ctx_t *ctx;
827   COVER_best_t *best;
828   size_t dictBufferCapacity;
829   ZDICT_cover_params_t parameters;
830 } COVER_tryParameters_data_t;
831 
832 /**
833  * Tries a set of parameters and upates the COVER_best_t with the results.
834  * This function is thread safe if zstd is compiled with multithreaded support.
835  * It takes its parameters as an *OWNING* opaque pointer to support threading.
836  */
837 static void COVER_tryParameters(void *opaque) {
838   /* Save parameters as local variables */
839   COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque;
840   const COVER_ctx_t *const ctx = data->ctx;
841   const ZDICT_cover_params_t parameters = data->parameters;
842   size_t dictBufferCapacity = data->dictBufferCapacity;
843   size_t totalCompressedSize = ERROR(GENERIC);
844   /* Allocate space for hash table, dict, and freqs */
845   COVER_map_t activeDmers;
846   BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity);
847   U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
848   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
849     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
850     goto _cleanup;
851   }
852   if (!dict || !freqs) {
853     DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
854     goto _cleanup;
855   }
856   /* Copy the frequencies because we need to modify them */
857   memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
858   /* Build the dictionary */
859   {
860     const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
861                                               dictBufferCapacity, parameters);
862     dictBufferCapacity = ZDICT_finalizeDictionary(
863         dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
864         ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbSamples,
865         parameters.zParams);
866     if (ZDICT_isError(dictBufferCapacity)) {
867       DISPLAYLEVEL(1, "Failed to finalize dictionary\n");
868       goto _cleanup;
869     }
870   }
871   /* Check total compressed size */
872   {
873     /* Pointers */
874     ZSTD_CCtx *cctx;
875     ZSTD_CDict *cdict;
876     void *dst;
877     /* Local variables */
878     size_t dstCapacity;
879     size_t i;
880     /* Allocate dst with enough space to compress the maximum sized sample */
881     {
882       size_t maxSampleSize = 0;
883       for (i = 0; i < ctx->nbSamples; ++i) {
884         maxSampleSize = MAX(ctx->samplesSizes[i], maxSampleSize);
885       }
886       dstCapacity = ZSTD_compressBound(maxSampleSize);
887       dst = malloc(dstCapacity);
888     }
889     /* Create the cctx and cdict */
890     cctx = ZSTD_createCCtx();
891     cdict = ZSTD_createCDict(dict, dictBufferCapacity,
892                              parameters.zParams.compressionLevel);
893     if (!dst || !cctx || !cdict) {
894       goto _compressCleanup;
895     }
896     /* Compress each sample and sum their sizes (or error) */
897     totalCompressedSize = dictBufferCapacity;
898     for (i = 0; i < ctx->nbSamples; ++i) {
899       const size_t size = ZSTD_compress_usingCDict(
900           cctx, dst, dstCapacity, ctx->samples + ctx->offsets[i],
901           ctx->samplesSizes[i], cdict);
902       if (ZSTD_isError(size)) {
903         totalCompressedSize = ERROR(GENERIC);
904         goto _compressCleanup;
905       }
906       totalCompressedSize += size;
907     }
908   _compressCleanup:
909     ZSTD_freeCCtx(cctx);
910     ZSTD_freeCDict(cdict);
911     if (dst) {
912       free(dst);
913     }
914   }
915 
916 _cleanup:
917   COVER_best_finish(data->best, totalCompressedSize, parameters, dict,
918                     dictBufferCapacity);
919   free(data);
920   COVER_map_destroy(&activeDmers);
921   if (dict) {
922     free(dict);
923   }
924   if (freqs) {
925     free(freqs);
926   }
927 }
928 
929 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
930     void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer,
931     const size_t *samplesSizes, unsigned nbSamples,
932     ZDICT_cover_params_t *parameters) {
933   /* constants */
934   const unsigned nbThreads = parameters->nbThreads;
935   const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
936   const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
937   const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
938   const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
939   const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
940   const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
941   const unsigned kIterations =
942       (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
943   /* Local variables */
944   const int displayLevel = parameters->zParams.notificationLevel;
945   unsigned iteration = 1;
946   unsigned d;
947   unsigned k;
948   COVER_best_t best;
949   POOL_ctx *pool = NULL;
950   /* Checks */
951   if (kMinK < kMaxD || kMaxK < kMinK) {
952     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
953     return ERROR(GENERIC);
954   }
955   if (nbSamples == 0) {
956     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
957     return ERROR(GENERIC);
958   }
959   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
960     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
961                  ZDICT_DICTSIZE_MIN);
962     return ERROR(dstSize_tooSmall);
963   }
964   if (nbThreads > 1) {
965     pool = POOL_create(nbThreads, 1);
966     if (!pool) {
967       return ERROR(memory_allocation);
968     }
969   }
970   /* Initialization */
971   COVER_best_init(&best);
972   /* Turn down global display level to clean up display at level 2 and below */
973   g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
974   /* Loop through d first because each new value needs a new context */
975   LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
976                     kIterations);
977   for (d = kMinD; d <= kMaxD; d += 2) {
978     /* Initialize the context for this value of d */
979     COVER_ctx_t ctx;
980     LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
981     if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d)) {
982       LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
983       COVER_best_destroy(&best);
984       POOL_free(pool);
985       return ERROR(GENERIC);
986     }
987     /* Loop through k reusing the same context */
988     for (k = kMinK; k <= kMaxK; k += kStepSize) {
989       /* Prepare the arguments */
990       COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
991           sizeof(COVER_tryParameters_data_t));
992       LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
993       if (!data) {
994         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
995         COVER_best_destroy(&best);
996         COVER_ctx_destroy(&ctx);
997         POOL_free(pool);
998         return ERROR(GENERIC);
999       }
1000       data->ctx = &ctx;
1001       data->best = &best;
1002       data->dictBufferCapacity = dictBufferCapacity;
1003       data->parameters = *parameters;
1004       data->parameters.k = k;
1005       data->parameters.d = d;
1006       data->parameters.steps = kSteps;
1007       data->parameters.zParams.notificationLevel = g_displayLevel;
1008       /* Check the parameters */
1009       if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1010         DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1011         free(data);
1012         continue;
1013       }
1014       /* Call the function and pass ownership of data to it */
1015       COVER_best_start(&best);
1016       if (pool) {
1017         POOL_add(pool, &COVER_tryParameters, data);
1018       } else {
1019         COVER_tryParameters(data);
1020       }
1021       /* Print status */
1022       LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
1023                          (U32)((iteration * 100) / kIterations));
1024       ++iteration;
1025     }
1026     COVER_best_wait(&best);
1027     COVER_ctx_destroy(&ctx);
1028   }
1029   LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1030   /* Fill the output buffer and parameters with output of the best parameters */
1031   {
1032     const size_t dictSize = best.dictSize;
1033     if (ZSTD_isError(best.compressedSize)) {
1034       const size_t compressedSize = best.compressedSize;
1035       COVER_best_destroy(&best);
1036       POOL_free(pool);
1037       return compressedSize;
1038     }
1039     *parameters = best.parameters;
1040     memcpy(dictBuffer, best.dict, dictSize);
1041     COVER_best_destroy(&best);
1042     POOL_free(pool);
1043     return dictSize;
1044   }
1045 }
1046