xref: /freebsd/sys/contrib/zstd/lib/dictBuilder/cover.c (revision afdb42987ca82869eeaecf6dc25c2b6fb7b8370e)
1 /*
2  * Copyright (c) Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 /* *****************************************************************************
12  * Constructs a dictionary using a heuristic based on the following paper:
13  *
14  * Liao, Petri, Moffat, Wirth
15  * Effective Construction of Relative Lempel-Ziv Dictionaries
16  * Published in WWW 2016.
17  *
18  * Adapted from code originally written by @ot (Giuseppe Ottaviano).
19  ******************************************************************************/
20 
21 /*-*************************************
22 *  Dependencies
23 ***************************************/
24 #include <stdio.h>  /* fprintf */
25 #include <stdlib.h> /* malloc, free, qsort */
26 #include <string.h> /* memset */
27 #include <time.h>   /* clock */
28 
29 #ifndef ZDICT_STATIC_LINKING_ONLY
30 #  define ZDICT_STATIC_LINKING_ONLY
31 #endif
32 
33 #include "../common/mem.h" /* read */
34 #include "../common/pool.h"
35 #include "../common/threading.h"
36 #include "../common/zstd_internal.h" /* includes zstd.h */
37 #include "../zdict.h"
38 #include "cover.h"
39 
40 /*-*************************************
41 *  Constants
42 ***************************************/
43 /**
44 * There are 32bit indexes used to ref samples, so limit samples size to 4GB
45 * on 64bit builds.
46 * For 32bit builds we choose 1 GB.
47 * Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
48 * contiguous buffer, so 1GB is already a high limit.
49 */
50 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
51 #define COVER_DEFAULT_SPLITPOINT 1.0
52 
53 /*-*************************************
54 *  Console display
55 ***************************************/
56 #ifndef LOCALDISPLAYLEVEL
57 static int g_displayLevel = 0;
58 #endif
59 #undef  DISPLAY
60 #define DISPLAY(...)                                                           \
61   {                                                                            \
62     fprintf(stderr, __VA_ARGS__);                                              \
63     fflush(stderr);                                                            \
64   }
65 #undef  LOCALDISPLAYLEVEL
66 #define LOCALDISPLAYLEVEL(displayLevel, l, ...)                                \
67   if (displayLevel >= l) {                                                     \
68     DISPLAY(__VA_ARGS__);                                                      \
69   } /* 0 : no display;   1: errors;   2: default;  3: details;  4: debug */
70 #undef  DISPLAYLEVEL
71 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
72 
73 #ifndef LOCALDISPLAYUPDATE
74 static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
75 static clock_t g_time = 0;
76 #endif
77 #undef  LOCALDISPLAYUPDATE
78 #define LOCALDISPLAYUPDATE(displayLevel, l, ...)                               \
79   if (displayLevel >= l) {                                                     \
80     if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) {             \
81       g_time = clock();                                                        \
82       DISPLAY(__VA_ARGS__);                                                    \
83     }                                                                          \
84   }
85 #undef  DISPLAYUPDATE
86 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
87 
88 /*-*************************************
89 * Hash table
90 ***************************************
91 * A small specialized hash map for storing activeDmers.
92 * The map does not resize, so if it becomes full it will loop forever.
93 * Thus, the map must be large enough to store every value.
94 * The map implements linear probing and keeps its load less than 0.5.
95 */
96 
97 #define MAP_EMPTY_VALUE ((U32)-1)
98 typedef struct COVER_map_pair_t_s {
99   U32 key;
100   U32 value;
101 } COVER_map_pair_t;
102 
103 typedef struct COVER_map_s {
104   COVER_map_pair_t *data;
105   U32 sizeLog;
106   U32 size;
107   U32 sizeMask;
108 } COVER_map_t;
109 
110 /**
111  * Clear the map.
112  */
113 static void COVER_map_clear(COVER_map_t *map) {
114   memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t));
115 }
116 
117 /**
118  * Initializes a map of the given size.
119  * Returns 1 on success and 0 on failure.
120  * The map must be destroyed with COVER_map_destroy().
121  * The map is only guaranteed to be large enough to hold size elements.
122  */
123 static int COVER_map_init(COVER_map_t *map, U32 size) {
124   map->sizeLog = ZSTD_highbit32(size) + 2;
125   map->size = (U32)1 << map->sizeLog;
126   map->sizeMask = map->size - 1;
127   map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t));
128   if (!map->data) {
129     map->sizeLog = 0;
130     map->size = 0;
131     return 0;
132   }
133   COVER_map_clear(map);
134   return 1;
135 }
136 
137 /**
138  * Internal hash function
139  */
140 static const U32 COVER_prime4bytes = 2654435761U;
141 static U32 COVER_map_hash(COVER_map_t *map, U32 key) {
142   return (key * COVER_prime4bytes) >> (32 - map->sizeLog);
143 }
144 
145 /**
146  * Helper function that returns the index that a key should be placed into.
147  */
148 static U32 COVER_map_index(COVER_map_t *map, U32 key) {
149   const U32 hash = COVER_map_hash(map, key);
150   U32 i;
151   for (i = hash;; i = (i + 1) & map->sizeMask) {
152     COVER_map_pair_t *pos = &map->data[i];
153     if (pos->value == MAP_EMPTY_VALUE) {
154       return i;
155     }
156     if (pos->key == key) {
157       return i;
158     }
159   }
160 }
161 
162 /**
163  * Returns the pointer to the value for key.
164  * If key is not in the map, it is inserted and the value is set to 0.
165  * The map must not be full.
166  */
167 static U32 *COVER_map_at(COVER_map_t *map, U32 key) {
168   COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)];
169   if (pos->value == MAP_EMPTY_VALUE) {
170     pos->key = key;
171     pos->value = 0;
172   }
173   return &pos->value;
174 }
175 
176 /**
177  * Deletes key from the map if present.
178  */
179 static void COVER_map_remove(COVER_map_t *map, U32 key) {
180   U32 i = COVER_map_index(map, key);
181   COVER_map_pair_t *del = &map->data[i];
182   U32 shift = 1;
183   if (del->value == MAP_EMPTY_VALUE) {
184     return;
185   }
186   for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) {
187     COVER_map_pair_t *const pos = &map->data[i];
188     /* If the position is empty we are done */
189     if (pos->value == MAP_EMPTY_VALUE) {
190       del->value = MAP_EMPTY_VALUE;
191       return;
192     }
193     /* If pos can be moved to del do so */
194     if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) {
195       del->key = pos->key;
196       del->value = pos->value;
197       del = pos;
198       shift = 1;
199     } else {
200       ++shift;
201     }
202   }
203 }
204 
205 /**
206  * Destroys a map that is inited with COVER_map_init().
207  */
208 static void COVER_map_destroy(COVER_map_t *map) {
209   if (map->data) {
210     free(map->data);
211   }
212   map->data = NULL;
213   map->size = 0;
214 }
215 
216 /*-*************************************
217 * Context
218 ***************************************/
219 
220 typedef struct {
221   const BYTE *samples;
222   size_t *offsets;
223   const size_t *samplesSizes;
224   size_t nbSamples;
225   size_t nbTrainSamples;
226   size_t nbTestSamples;
227   U32 *suffix;
228   size_t suffixSize;
229   U32 *freqs;
230   U32 *dmerAt;
231   unsigned d;
232 } COVER_ctx_t;
233 
234 /* We need a global context for qsort... */
235 static COVER_ctx_t *g_coverCtx = NULL;
236 
237 /*-*************************************
238 *  Helper functions
239 ***************************************/
240 
241 /**
242  * Returns the sum of the sample sizes.
243  */
244 size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) {
245   size_t sum = 0;
246   unsigned i;
247   for (i = 0; i < nbSamples; ++i) {
248     sum += samplesSizes[i];
249   }
250   return sum;
251 }
252 
253 /**
254  * Returns -1 if the dmer at lp is less than the dmer at rp.
255  * Return 0 if the dmers at lp and rp are equal.
256  * Returns 1 if the dmer at lp is greater than the dmer at rp.
257  */
258 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) {
259   U32 const lhs = *(U32 const *)lp;
260   U32 const rhs = *(U32 const *)rp;
261   return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d);
262 }
263 /**
264  * Faster version for d <= 8.
265  */
266 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) {
267   U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1);
268   U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask;
269   U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask;
270   if (lhs < rhs) {
271     return -1;
272   }
273   return (lhs > rhs);
274 }
275 
276 /**
277  * Same as COVER_cmp() except ties are broken by pointer value
278  * NOTE: g_coverCtx must be set to call this function.  A global is required because
279  * qsort doesn't take an opaque pointer.
280  */
281 static int WIN_CDECL COVER_strict_cmp(const void *lp, const void *rp) {
282   int result = COVER_cmp(g_coverCtx, lp, rp);
283   if (result == 0) {
284     result = lp < rp ? -1 : 1;
285   }
286   return result;
287 }
288 /**
289  * Faster version for d <= 8.
290  */
291 static int WIN_CDECL COVER_strict_cmp8(const void *lp, const void *rp) {
292   int result = COVER_cmp8(g_coverCtx, lp, rp);
293   if (result == 0) {
294     result = lp < rp ? -1 : 1;
295   }
296   return result;
297 }
298 
299 /**
300  * Returns the first pointer in [first, last) whose element does not compare
301  * less than value.  If no such element exists it returns last.
302  */
303 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last,
304                                        size_t value) {
305   size_t count = last - first;
306   while (count != 0) {
307     size_t step = count / 2;
308     const size_t *ptr = first;
309     ptr += step;
310     if (*ptr < value) {
311       first = ++ptr;
312       count -= step + 1;
313     } else {
314       count = step;
315     }
316   }
317   return first;
318 }
319 
320 /**
321  * Generic groupBy function.
322  * Groups an array sorted by cmp into groups with equivalent values.
323  * Calls grp for each group.
324  */
325 static void
326 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx,
327               int (*cmp)(COVER_ctx_t *, const void *, const void *),
328               void (*grp)(COVER_ctx_t *, const void *, const void *)) {
329   const BYTE *ptr = (const BYTE *)data;
330   size_t num = 0;
331   while (num < count) {
332     const BYTE *grpEnd = ptr + size;
333     ++num;
334     while (num < count && cmp(ctx, ptr, grpEnd) == 0) {
335       grpEnd += size;
336       ++num;
337     }
338     grp(ctx, ptr, grpEnd);
339     ptr = grpEnd;
340   }
341 }
342 
343 /*-*************************************
344 *  Cover functions
345 ***************************************/
346 
347 /**
348  * Called on each group of positions with the same dmer.
349  * Counts the frequency of each dmer and saves it in the suffix array.
350  * Fills `ctx->dmerAt`.
351  */
352 static void COVER_group(COVER_ctx_t *ctx, const void *group,
353                         const void *groupEnd) {
354   /* The group consists of all the positions with the same first d bytes. */
355   const U32 *grpPtr = (const U32 *)group;
356   const U32 *grpEnd = (const U32 *)groupEnd;
357   /* The dmerId is how we will reference this dmer.
358    * This allows us to map the whole dmer space to a much smaller space, the
359    * size of the suffix array.
360    */
361   const U32 dmerId = (U32)(grpPtr - ctx->suffix);
362   /* Count the number of samples this dmer shows up in */
363   U32 freq = 0;
364   /* Details */
365   const size_t *curOffsetPtr = ctx->offsets;
366   const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples;
367   /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a
368    * different sample than the last.
369    */
370   size_t curSampleEnd = ctx->offsets[0];
371   for (; grpPtr != grpEnd; ++grpPtr) {
372     /* Save the dmerId for this position so we can get back to it. */
373     ctx->dmerAt[*grpPtr] = dmerId;
374     /* Dictionaries only help for the first reference to the dmer.
375      * After that zstd can reference the match from the previous reference.
376      * So only count each dmer once for each sample it is in.
377      */
378     if (*grpPtr < curSampleEnd) {
379       continue;
380     }
381     freq += 1;
382     /* Binary search to find the end of the sample *grpPtr is in.
383      * In the common case that grpPtr + 1 == grpEnd we can skip the binary
384      * search because the loop is over.
385      */
386     if (grpPtr + 1 != grpEnd) {
387       const size_t *sampleEndPtr =
388           COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr);
389       curSampleEnd = *sampleEndPtr;
390       curOffsetPtr = sampleEndPtr + 1;
391     }
392   }
393   /* At this point we are never going to look at this segment of the suffix
394    * array again.  We take advantage of this fact to save memory.
395    * We store the frequency of the dmer in the first position of the group,
396    * which is dmerId.
397    */
398   ctx->suffix[dmerId] = freq;
399 }
400 
401 
402 /**
403  * Selects the best segment in an epoch.
404  * Segments of are scored according to the function:
405  *
406  * Let F(d) be the frequency of dmer d.
407  * Let S_i be the dmer at position i of segment S which has length k.
408  *
409  *     Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
410  *
411  * Once the dmer d is in the dictionary we set F(d) = 0.
412  */
413 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs,
414                                            COVER_map_t *activeDmers, U32 begin,
415                                            U32 end,
416                                            ZDICT_cover_params_t parameters) {
417   /* Constants */
418   const U32 k = parameters.k;
419   const U32 d = parameters.d;
420   const U32 dmersInK = k - d + 1;
421   /* Try each segment (activeSegment) and save the best (bestSegment) */
422   COVER_segment_t bestSegment = {0, 0, 0};
423   COVER_segment_t activeSegment;
424   /* Reset the activeDmers in the segment */
425   COVER_map_clear(activeDmers);
426   /* The activeSegment starts at the beginning of the epoch. */
427   activeSegment.begin = begin;
428   activeSegment.end = begin;
429   activeSegment.score = 0;
430   /* Slide the activeSegment through the whole epoch.
431    * Save the best segment in bestSegment.
432    */
433   while (activeSegment.end < end) {
434     /* The dmerId for the dmer at the next position */
435     U32 newDmer = ctx->dmerAt[activeSegment.end];
436     /* The entry in activeDmers for this dmerId */
437     U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer);
438     /* If the dmer isn't already present in the segment add its score. */
439     if (*newDmerOcc == 0) {
440       /* The paper suggest using the L-0.5 norm, but experiments show that it
441        * doesn't help.
442        */
443       activeSegment.score += freqs[newDmer];
444     }
445     /* Add the dmer to the segment */
446     activeSegment.end += 1;
447     *newDmerOcc += 1;
448 
449     /* If the window is now too large, drop the first position */
450     if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
451       U32 delDmer = ctx->dmerAt[activeSegment.begin];
452       U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer);
453       activeSegment.begin += 1;
454       *delDmerOcc -= 1;
455       /* If this is the last occurrence of the dmer, subtract its score */
456       if (*delDmerOcc == 0) {
457         COVER_map_remove(activeDmers, delDmer);
458         activeSegment.score -= freqs[delDmer];
459       }
460     }
461 
462     /* If this segment is the best so far save it */
463     if (activeSegment.score > bestSegment.score) {
464       bestSegment = activeSegment;
465     }
466   }
467   {
468     /* Trim off the zero frequency head and tail from the segment. */
469     U32 newBegin = bestSegment.end;
470     U32 newEnd = bestSegment.begin;
471     U32 pos;
472     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
473       U32 freq = freqs[ctx->dmerAt[pos]];
474       if (freq != 0) {
475         newBegin = MIN(newBegin, pos);
476         newEnd = pos + 1;
477       }
478     }
479     bestSegment.begin = newBegin;
480     bestSegment.end = newEnd;
481   }
482   {
483     /* Zero out the frequency of each dmer covered by the chosen segment. */
484     U32 pos;
485     for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
486       freqs[ctx->dmerAt[pos]] = 0;
487     }
488   }
489   return bestSegment;
490 }
491 
492 /**
493  * Check the validity of the parameters.
494  * Returns non-zero if the parameters are valid and 0 otherwise.
495  */
496 static int COVER_checkParameters(ZDICT_cover_params_t parameters,
497                                  size_t maxDictSize) {
498   /* k and d are required parameters */
499   if (parameters.d == 0 || parameters.k == 0) {
500     return 0;
501   }
502   /* k <= maxDictSize */
503   if (parameters.k > maxDictSize) {
504     return 0;
505   }
506   /* d <= k */
507   if (parameters.d > parameters.k) {
508     return 0;
509   }
510   /* 0 < splitPoint <= 1 */
511   if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){
512     return 0;
513   }
514   return 1;
515 }
516 
517 /**
518  * Clean up a context initialized with `COVER_ctx_init()`.
519  */
520 static void COVER_ctx_destroy(COVER_ctx_t *ctx) {
521   if (!ctx) {
522     return;
523   }
524   if (ctx->suffix) {
525     free(ctx->suffix);
526     ctx->suffix = NULL;
527   }
528   if (ctx->freqs) {
529     free(ctx->freqs);
530     ctx->freqs = NULL;
531   }
532   if (ctx->dmerAt) {
533     free(ctx->dmerAt);
534     ctx->dmerAt = NULL;
535   }
536   if (ctx->offsets) {
537     free(ctx->offsets);
538     ctx->offsets = NULL;
539   }
540 }
541 
542 /**
543  * Prepare a context for dictionary building.
544  * The context is only dependent on the parameter `d` and can used multiple
545  * times.
546  * Returns 0 on success or error code on error.
547  * The context must be destroyed with `COVER_ctx_destroy()`.
548  */
549 static size_t COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer,
550                           const size_t *samplesSizes, unsigned nbSamples,
551                           unsigned d, double splitPoint) {
552   const BYTE *const samples = (const BYTE *)samplesBuffer;
553   const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
554   /* Split samples into testing and training sets */
555   const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
556   const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
557   const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
558   const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
559   /* Checks */
560   if (totalSamplesSize < MAX(d, sizeof(U64)) ||
561       totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) {
562     DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
563                  (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20));
564     return ERROR(srcSize_wrong);
565   }
566   /* Check if there are at least 5 training samples */
567   if (nbTrainSamples < 5) {
568     DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples);
569     return ERROR(srcSize_wrong);
570   }
571   /* Check if there's testing sample */
572   if (nbTestSamples < 1) {
573     DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples);
574     return ERROR(srcSize_wrong);
575   }
576   /* Zero the context */
577   memset(ctx, 0, sizeof(*ctx));
578   DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
579                (unsigned)trainingSamplesSize);
580   DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
581                (unsigned)testSamplesSize);
582   ctx->samples = samples;
583   ctx->samplesSizes = samplesSizes;
584   ctx->nbSamples = nbSamples;
585   ctx->nbTrainSamples = nbTrainSamples;
586   ctx->nbTestSamples = nbTestSamples;
587   /* Partial suffix array */
588   ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
589   ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
590   /* Maps index to the dmerID */
591   ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32));
592   /* The offsets of each file */
593   ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t));
594   if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) {
595     DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n");
596     COVER_ctx_destroy(ctx);
597     return ERROR(memory_allocation);
598   }
599   ctx->freqs = NULL;
600   ctx->d = d;
601 
602   /* Fill offsets from the samplesSizes */
603   {
604     U32 i;
605     ctx->offsets[0] = 0;
606     for (i = 1; i <= nbSamples; ++i) {
607       ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
608     }
609   }
610   DISPLAYLEVEL(2, "Constructing partial suffix array\n");
611   {
612     /* suffix is a partial suffix array.
613      * It only sorts suffixes by their first parameters.d bytes.
614      * The sort is stable, so each dmer group is sorted by position in input.
615      */
616     U32 i;
617     for (i = 0; i < ctx->suffixSize; ++i) {
618       ctx->suffix[i] = i;
619     }
620     /* qsort doesn't take an opaque pointer, so pass as a global.
621      * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is.
622      */
623     g_coverCtx = ctx;
624 #if defined(__OpenBSD__)
625     mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32),
626           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
627 #else
628     qsort(ctx->suffix, ctx->suffixSize, sizeof(U32),
629           (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp));
630 #endif
631   }
632   DISPLAYLEVEL(2, "Computing frequencies\n");
633   /* For each dmer group (group of positions with the same first d bytes):
634    * 1. For each position we set dmerAt[position] = dmerID.  The dmerID is
635    *    (groupBeginPtr - suffix).  This allows us to go from position to
636    *    dmerID so we can look up values in freq.
637    * 2. We calculate how many samples the dmer occurs in and save it in
638    *    freqs[dmerId].
639    */
640   COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx,
641                 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group);
642   ctx->freqs = ctx->suffix;
643   ctx->suffix = NULL;
644   return 0;
645 }
646 
647 void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel)
648 {
649   const double ratio = (double)nbDmers / maxDictSize;
650   if (ratio >= 10) {
651       return;
652   }
653   LOCALDISPLAYLEVEL(displayLevel, 1,
654                     "WARNING: The maximum dictionary size %u is too large "
655                     "compared to the source size %u! "
656                     "size(source)/size(dictionary) = %f, but it should be >= "
657                     "10! This may lead to a subpar dictionary! We recommend "
658                     "training on sources at least 10x, and preferably 100x "
659                     "the size of the dictionary! \n", (U32)maxDictSize,
660                     (U32)nbDmers, ratio);
661 }
662 
663 COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize,
664                                        U32 nbDmers, U32 k, U32 passes)
665 {
666   const U32 minEpochSize = k * 10;
667   COVER_epoch_info_t epochs;
668   epochs.num = MAX(1, maxDictSize / k / passes);
669   epochs.size = nbDmers / epochs.num;
670   if (epochs.size >= minEpochSize) {
671       assert(epochs.size * epochs.num <= nbDmers);
672       return epochs;
673   }
674   epochs.size = MIN(minEpochSize, nbDmers);
675   epochs.num = nbDmers / epochs.size;
676   assert(epochs.size * epochs.num <= nbDmers);
677   return epochs;
678 }
679 
680 /**
681  * Given the prepared context build the dictionary.
682  */
683 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs,
684                                     COVER_map_t *activeDmers, void *dictBuffer,
685                                     size_t dictBufferCapacity,
686                                     ZDICT_cover_params_t parameters) {
687   BYTE *const dict = (BYTE *)dictBuffer;
688   size_t tail = dictBufferCapacity;
689   /* Divide the data into epochs. We will select one segment from each epoch. */
690   const COVER_epoch_info_t epochs = COVER_computeEpochs(
691       (U32)dictBufferCapacity, (U32)ctx->suffixSize, parameters.k, 4);
692   const size_t maxZeroScoreRun = MAX(10, MIN(100, epochs.num >> 3));
693   size_t zeroScoreRun = 0;
694   size_t epoch;
695   DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
696                 (U32)epochs.num, (U32)epochs.size);
697   /* Loop through the epochs until there are no more segments or the dictionary
698    * is full.
699    */
700   for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
701     const U32 epochBegin = (U32)(epoch * epochs.size);
702     const U32 epochEnd = epochBegin + epochs.size;
703     size_t segmentSize;
704     /* Select a segment */
705     COVER_segment_t segment = COVER_selectSegment(
706         ctx, freqs, activeDmers, epochBegin, epochEnd, parameters);
707     /* If the segment covers no dmers, then we are out of content.
708      * There may be new content in other epochs, for continue for some time.
709      */
710     if (segment.score == 0) {
711       if (++zeroScoreRun >= maxZeroScoreRun) {
712           break;
713       }
714       continue;
715     }
716     zeroScoreRun = 0;
717     /* Trim the segment if necessary and if it is too small then we are done */
718     segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
719     if (segmentSize < parameters.d) {
720       break;
721     }
722     /* We fill the dictionary from the back to allow the best segments to be
723      * referenced with the smallest offsets.
724      */
725     tail -= segmentSize;
726     memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
727     DISPLAYUPDATE(
728         2, "\r%u%%       ",
729         (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
730   }
731   DISPLAYLEVEL(2, "\r%79s\r", "");
732   return tail;
733 }
734 
735 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover(
736     void *dictBuffer, size_t dictBufferCapacity,
737     const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
738     ZDICT_cover_params_t parameters)
739 {
740   BYTE* const dict = (BYTE*)dictBuffer;
741   COVER_ctx_t ctx;
742   COVER_map_t activeDmers;
743   parameters.splitPoint = 1.0;
744   /* Initialize global data */
745   g_displayLevel = (int)parameters.zParams.notificationLevel;
746   /* Checks */
747   if (!COVER_checkParameters(parameters, dictBufferCapacity)) {
748     DISPLAYLEVEL(1, "Cover parameters incorrect\n");
749     return ERROR(parameter_outOfBound);
750   }
751   if (nbSamples == 0) {
752     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
753     return ERROR(srcSize_wrong);
754   }
755   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
756     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
757                  ZDICT_DICTSIZE_MIN);
758     return ERROR(dstSize_tooSmall);
759   }
760   /* Initialize context and activeDmers */
761   {
762     size_t const initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
763                       parameters.d, parameters.splitPoint);
764     if (ZSTD_isError(initVal)) {
765       return initVal;
766     }
767   }
768   COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, g_displayLevel);
769   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
770     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
771     COVER_ctx_destroy(&ctx);
772     return ERROR(memory_allocation);
773   }
774 
775   DISPLAYLEVEL(2, "Building dictionary\n");
776   {
777     const size_t tail =
778         COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer,
779                               dictBufferCapacity, parameters);
780     const size_t dictionarySize = ZDICT_finalizeDictionary(
781         dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
782         samplesBuffer, samplesSizes, nbSamples, parameters.zParams);
783     if (!ZSTD_isError(dictionarySize)) {
784       DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
785                    (unsigned)dictionarySize);
786     }
787     COVER_ctx_destroy(&ctx);
788     COVER_map_destroy(&activeDmers);
789     return dictionarySize;
790   }
791 }
792 
793 
794 
795 size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
796                                     const size_t *samplesSizes, const BYTE *samples,
797                                     size_t *offsets,
798                                     size_t nbTrainSamples, size_t nbSamples,
799                                     BYTE *const dict, size_t dictBufferCapacity) {
800   size_t totalCompressedSize = ERROR(GENERIC);
801   /* Pointers */
802   ZSTD_CCtx *cctx;
803   ZSTD_CDict *cdict;
804   void *dst;
805   /* Local variables */
806   size_t dstCapacity;
807   size_t i;
808   /* Allocate dst with enough space to compress the maximum sized sample */
809   {
810     size_t maxSampleSize = 0;
811     i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
812     for (; i < nbSamples; ++i) {
813       maxSampleSize = MAX(samplesSizes[i], maxSampleSize);
814     }
815     dstCapacity = ZSTD_compressBound(maxSampleSize);
816     dst = malloc(dstCapacity);
817   }
818   /* Create the cctx and cdict */
819   cctx = ZSTD_createCCtx();
820   cdict = ZSTD_createCDict(dict, dictBufferCapacity,
821                            parameters.zParams.compressionLevel);
822   if (!dst || !cctx || !cdict) {
823     goto _compressCleanup;
824   }
825   /* Compress each sample and sum their sizes (or error) */
826   totalCompressedSize = dictBufferCapacity;
827   i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0;
828   for (; i < nbSamples; ++i) {
829     const size_t size = ZSTD_compress_usingCDict(
830         cctx, dst, dstCapacity, samples + offsets[i],
831         samplesSizes[i], cdict);
832     if (ZSTD_isError(size)) {
833       totalCompressedSize = size;
834       goto _compressCleanup;
835     }
836     totalCompressedSize += size;
837   }
838 _compressCleanup:
839   ZSTD_freeCCtx(cctx);
840   ZSTD_freeCDict(cdict);
841   if (dst) {
842     free(dst);
843   }
844   return totalCompressedSize;
845 }
846 
847 
848 /**
849  * Initialize the `COVER_best_t`.
850  */
851 void COVER_best_init(COVER_best_t *best) {
852   if (best==NULL) return; /* compatible with init on NULL */
853   (void)ZSTD_pthread_mutex_init(&best->mutex, NULL);
854   (void)ZSTD_pthread_cond_init(&best->cond, NULL);
855   best->liveJobs = 0;
856   best->dict = NULL;
857   best->dictSize = 0;
858   best->compressedSize = (size_t)-1;
859   memset(&best->parameters, 0, sizeof(best->parameters));
860 }
861 
862 /**
863  * Wait until liveJobs == 0.
864  */
865 void COVER_best_wait(COVER_best_t *best) {
866   if (!best) {
867     return;
868   }
869   ZSTD_pthread_mutex_lock(&best->mutex);
870   while (best->liveJobs != 0) {
871     ZSTD_pthread_cond_wait(&best->cond, &best->mutex);
872   }
873   ZSTD_pthread_mutex_unlock(&best->mutex);
874 }
875 
876 /**
877  * Call COVER_best_wait() and then destroy the COVER_best_t.
878  */
879 void COVER_best_destroy(COVER_best_t *best) {
880   if (!best) {
881     return;
882   }
883   COVER_best_wait(best);
884   if (best->dict) {
885     free(best->dict);
886   }
887   ZSTD_pthread_mutex_destroy(&best->mutex);
888   ZSTD_pthread_cond_destroy(&best->cond);
889 }
890 
891 /**
892  * Called when a thread is about to be launched.
893  * Increments liveJobs.
894  */
895 void COVER_best_start(COVER_best_t *best) {
896   if (!best) {
897     return;
898   }
899   ZSTD_pthread_mutex_lock(&best->mutex);
900   ++best->liveJobs;
901   ZSTD_pthread_mutex_unlock(&best->mutex);
902 }
903 
904 /**
905  * Called when a thread finishes executing, both on error or success.
906  * Decrements liveJobs and signals any waiting threads if liveJobs == 0.
907  * If this dictionary is the best so far save it and its parameters.
908  */
909 void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
910                               COVER_dictSelection_t selection) {
911   void* dict = selection.dictContent;
912   size_t compressedSize = selection.totalCompressedSize;
913   size_t dictSize = selection.dictSize;
914   if (!best) {
915     return;
916   }
917   {
918     size_t liveJobs;
919     ZSTD_pthread_mutex_lock(&best->mutex);
920     --best->liveJobs;
921     liveJobs = best->liveJobs;
922     /* If the new dictionary is better */
923     if (compressedSize < best->compressedSize) {
924       /* Allocate space if necessary */
925       if (!best->dict || best->dictSize < dictSize) {
926         if (best->dict) {
927           free(best->dict);
928         }
929         best->dict = malloc(dictSize);
930         if (!best->dict) {
931           best->compressedSize = ERROR(GENERIC);
932           best->dictSize = 0;
933           ZSTD_pthread_cond_signal(&best->cond);
934           ZSTD_pthread_mutex_unlock(&best->mutex);
935           return;
936         }
937       }
938       /* Save the dictionary, parameters, and size */
939       if (dict) {
940         memcpy(best->dict, dict, dictSize);
941         best->dictSize = dictSize;
942         best->parameters = parameters;
943         best->compressedSize = compressedSize;
944       }
945     }
946     if (liveJobs == 0) {
947       ZSTD_pthread_cond_broadcast(&best->cond);
948     }
949     ZSTD_pthread_mutex_unlock(&best->mutex);
950   }
951 }
952 
953 COVER_dictSelection_t COVER_dictSelectionError(size_t error) {
954     COVER_dictSelection_t selection = { NULL, 0, error };
955     return selection;
956 }
957 
958 unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection) {
959   return (ZSTD_isError(selection.totalCompressedSize) || !selection.dictContent);
960 }
961 
962 void COVER_dictSelectionFree(COVER_dictSelection_t selection){
963   free(selection.dictContent);
964 }
965 
966 COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
967         size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
968         size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize) {
969 
970   size_t largestDict = 0;
971   size_t largestCompressed = 0;
972   BYTE* customDictContentEnd = customDictContent + dictContentSize;
973 
974   BYTE * largestDictbuffer = (BYTE *)malloc(dictBufferCapacity);
975   BYTE * candidateDictBuffer = (BYTE *)malloc(dictBufferCapacity);
976   double regressionTolerance = ((double)params.shrinkDictMaxRegression / 100.0) + 1.00;
977 
978   if (!largestDictbuffer || !candidateDictBuffer) {
979     free(largestDictbuffer);
980     free(candidateDictBuffer);
981     return COVER_dictSelectionError(dictContentSize);
982   }
983 
984   /* Initial dictionary size and compressed size */
985   memcpy(largestDictbuffer, customDictContent, dictContentSize);
986   dictContentSize = ZDICT_finalizeDictionary(
987     largestDictbuffer, dictBufferCapacity, customDictContent, dictContentSize,
988     samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
989 
990   if (ZDICT_isError(dictContentSize)) {
991     free(largestDictbuffer);
992     free(candidateDictBuffer);
993     return COVER_dictSelectionError(dictContentSize);
994   }
995 
996   totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
997                                                        samplesBuffer, offsets,
998                                                        nbCheckSamples, nbSamples,
999                                                        largestDictbuffer, dictContentSize);
1000 
1001   if (ZSTD_isError(totalCompressedSize)) {
1002     free(largestDictbuffer);
1003     free(candidateDictBuffer);
1004     return COVER_dictSelectionError(totalCompressedSize);
1005   }
1006 
1007   if (params.shrinkDict == 0) {
1008     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1009     free(candidateDictBuffer);
1010     return selection;
1011   }
1012 
1013   largestDict = dictContentSize;
1014   largestCompressed = totalCompressedSize;
1015   dictContentSize = ZDICT_DICTSIZE_MIN;
1016 
1017   /* Largest dict is initially at least ZDICT_DICTSIZE_MIN */
1018   while (dictContentSize < largestDict) {
1019     memcpy(candidateDictBuffer, largestDictbuffer, largestDict);
1020     dictContentSize = ZDICT_finalizeDictionary(
1021       candidateDictBuffer, dictBufferCapacity, customDictContentEnd - dictContentSize, dictContentSize,
1022       samplesBuffer, samplesSizes, nbFinalizeSamples, params.zParams);
1023 
1024     if (ZDICT_isError(dictContentSize)) {
1025       free(largestDictbuffer);
1026       free(candidateDictBuffer);
1027       return COVER_dictSelectionError(dictContentSize);
1028 
1029     }
1030 
1031     totalCompressedSize = COVER_checkTotalCompressedSize(params, samplesSizes,
1032                                                          samplesBuffer, offsets,
1033                                                          nbCheckSamples, nbSamples,
1034                                                          candidateDictBuffer, dictContentSize);
1035 
1036     if (ZSTD_isError(totalCompressedSize)) {
1037       free(largestDictbuffer);
1038       free(candidateDictBuffer);
1039       return COVER_dictSelectionError(totalCompressedSize);
1040     }
1041 
1042     if (totalCompressedSize <= largestCompressed * regressionTolerance) {
1043       COVER_dictSelection_t selection = { candidateDictBuffer, dictContentSize, totalCompressedSize };
1044       free(largestDictbuffer);
1045       return selection;
1046     }
1047     dictContentSize *= 2;
1048   }
1049   dictContentSize = largestDict;
1050   totalCompressedSize = largestCompressed;
1051   {
1052     COVER_dictSelection_t selection = { largestDictbuffer, dictContentSize, totalCompressedSize };
1053     free(candidateDictBuffer);
1054     return selection;
1055   }
1056 }
1057 
1058 /**
1059  * Parameters for COVER_tryParameters().
1060  */
1061 typedef struct COVER_tryParameters_data_s {
1062   const COVER_ctx_t *ctx;
1063   COVER_best_t *best;
1064   size_t dictBufferCapacity;
1065   ZDICT_cover_params_t parameters;
1066 } COVER_tryParameters_data_t;
1067 
1068 /**
1069  * Tries a set of parameters and updates the COVER_best_t with the results.
1070  * This function is thread safe if zstd is compiled with multithreaded support.
1071  * It takes its parameters as an *OWNING* opaque pointer to support threading.
1072  */
1073 static void COVER_tryParameters(void *opaque)
1074 {
1075   /* Save parameters as local variables */
1076   COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t*)opaque;
1077   const COVER_ctx_t *const ctx = data->ctx;
1078   const ZDICT_cover_params_t parameters = data->parameters;
1079   size_t dictBufferCapacity = data->dictBufferCapacity;
1080   size_t totalCompressedSize = ERROR(GENERIC);
1081   /* Allocate space for hash table, dict, and freqs */
1082   COVER_map_t activeDmers;
1083   BYTE* const dict = (BYTE*)malloc(dictBufferCapacity);
1084   COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
1085   U32* const freqs = (U32*)malloc(ctx->suffixSize * sizeof(U32));
1086   if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) {
1087     DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n");
1088     goto _cleanup;
1089   }
1090   if (!dict || !freqs) {
1091     DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
1092     goto _cleanup;
1093   }
1094   /* Copy the frequencies because we need to modify them */
1095   memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32));
1096   /* Build the dictionary */
1097   {
1098     const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict,
1099                                               dictBufferCapacity, parameters);
1100     selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
1101         ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
1102         totalCompressedSize);
1103 
1104     if (COVER_dictSelectionIsError(selection)) {
1105       DISPLAYLEVEL(1, "Failed to select dictionary\n");
1106       goto _cleanup;
1107     }
1108   }
1109 _cleanup:
1110   free(dict);
1111   COVER_best_finish(data->best, parameters, selection);
1112   free(data);
1113   COVER_map_destroy(&activeDmers);
1114   COVER_dictSelectionFree(selection);
1115   free(freqs);
1116 }
1117 
1118 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover(
1119     void* dictBuffer, size_t dictBufferCapacity, const void* samplesBuffer,
1120     const size_t* samplesSizes, unsigned nbSamples,
1121     ZDICT_cover_params_t* parameters)
1122 {
1123   /* constants */
1124   const unsigned nbThreads = parameters->nbThreads;
1125   const double splitPoint =
1126       parameters->splitPoint <= 0.0 ? COVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
1127   const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
1128   const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
1129   const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
1130   const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
1131   const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
1132   const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
1133   const unsigned kIterations =
1134       (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
1135   const unsigned shrinkDict = 0;
1136   /* Local variables */
1137   const int displayLevel = parameters->zParams.notificationLevel;
1138   unsigned iteration = 1;
1139   unsigned d;
1140   unsigned k;
1141   COVER_best_t best;
1142   POOL_ctx *pool = NULL;
1143   int warned = 0;
1144 
1145   /* Checks */
1146   if (splitPoint <= 0 || splitPoint > 1) {
1147     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1148     return ERROR(parameter_outOfBound);
1149   }
1150   if (kMinK < kMaxD || kMaxK < kMinK) {
1151     LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n");
1152     return ERROR(parameter_outOfBound);
1153   }
1154   if (nbSamples == 0) {
1155     DISPLAYLEVEL(1, "Cover must have at least one input file\n");
1156     return ERROR(srcSize_wrong);
1157   }
1158   if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
1159     DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
1160                  ZDICT_DICTSIZE_MIN);
1161     return ERROR(dstSize_tooSmall);
1162   }
1163   if (nbThreads > 1) {
1164     pool = POOL_create(nbThreads, 1);
1165     if (!pool) {
1166       return ERROR(memory_allocation);
1167     }
1168   }
1169   /* Initialization */
1170   COVER_best_init(&best);
1171   /* Turn down global display level to clean up display at level 2 and below */
1172   g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
1173   /* Loop through d first because each new value needs a new context */
1174   LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
1175                     kIterations);
1176   for (d = kMinD; d <= kMaxD; d += 2) {
1177     /* Initialize the context for this value of d */
1178     COVER_ctx_t ctx;
1179     LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
1180     {
1181       const size_t initVal = COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint);
1182       if (ZSTD_isError(initVal)) {
1183         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
1184         COVER_best_destroy(&best);
1185         POOL_free(pool);
1186         return initVal;
1187       }
1188     }
1189     if (!warned) {
1190       COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.suffixSize, displayLevel);
1191       warned = 1;
1192     }
1193     /* Loop through k reusing the same context */
1194     for (k = kMinK; k <= kMaxK; k += kStepSize) {
1195       /* Prepare the arguments */
1196       COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc(
1197           sizeof(COVER_tryParameters_data_t));
1198       LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
1199       if (!data) {
1200         LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
1201         COVER_best_destroy(&best);
1202         COVER_ctx_destroy(&ctx);
1203         POOL_free(pool);
1204         return ERROR(memory_allocation);
1205       }
1206       data->ctx = &ctx;
1207       data->best = &best;
1208       data->dictBufferCapacity = dictBufferCapacity;
1209       data->parameters = *parameters;
1210       data->parameters.k = k;
1211       data->parameters.d = d;
1212       data->parameters.splitPoint = splitPoint;
1213       data->parameters.steps = kSteps;
1214       data->parameters.shrinkDict = shrinkDict;
1215       data->parameters.zParams.notificationLevel = g_displayLevel;
1216       /* Check the parameters */
1217       if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) {
1218         DISPLAYLEVEL(1, "Cover parameters incorrect\n");
1219         free(data);
1220         continue;
1221       }
1222       /* Call the function and pass ownership of data to it */
1223       COVER_best_start(&best);
1224       if (pool) {
1225         POOL_add(pool, &COVER_tryParameters, data);
1226       } else {
1227         COVER_tryParameters(data);
1228       }
1229       /* Print status */
1230       LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%%       ",
1231                          (unsigned)((iteration * 100) / kIterations));
1232       ++iteration;
1233     }
1234     COVER_best_wait(&best);
1235     COVER_ctx_destroy(&ctx);
1236   }
1237   LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
1238   /* Fill the output buffer and parameters with output of the best parameters */
1239   {
1240     const size_t dictSize = best.dictSize;
1241     if (ZSTD_isError(best.compressedSize)) {
1242       const size_t compressedSize = best.compressedSize;
1243       COVER_best_destroy(&best);
1244       POOL_free(pool);
1245       return compressedSize;
1246     }
1247     *parameters = best.parameters;
1248     memcpy(dictBuffer, best.dict, dictSize);
1249     COVER_best_destroy(&best);
1250     POOL_free(pool);
1251     return dictSize;
1252   }
1253 }
1254