1 /* 2 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 /* ***************************************************************************** 12 * Constructs a dictionary using a heuristic based on the following paper: 13 * 14 * Liao, Petri, Moffat, Wirth 15 * Effective Construction of Relative Lempel-Ziv Dictionaries 16 * Published in WWW 2016. 17 * 18 * Adapted from code originally written by @ot (Giuseppe Ottaviano). 19 ******************************************************************************/ 20 21 /*-************************************* 22 * Dependencies 23 ***************************************/ 24 #include <stdio.h> /* fprintf */ 25 #include <stdlib.h> /* malloc, free, qsort */ 26 #include <string.h> /* memset */ 27 #include <time.h> /* clock */ 28 29 #include "mem.h" /* read */ 30 #include "pool.h" 31 #include "threading.h" 32 #include "cover.h" 33 #include "zstd_internal.h" /* includes zstd.h */ 34 #ifndef ZDICT_STATIC_LINKING_ONLY 35 #define ZDICT_STATIC_LINKING_ONLY 36 #endif 37 #include "zdict.h" 38 39 /*-************************************* 40 * Constants 41 ***************************************/ 42 #define COVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB)) 43 #define DEFAULT_SPLITPOINT 1.0 44 45 /*-************************************* 46 * Console display 47 ***************************************/ 48 static int g_displayLevel = 2; 49 #define DISPLAY(...) \ 50 { \ 51 fprintf(stderr, __VA_ARGS__); \ 52 fflush(stderr); \ 53 } 54 #define LOCALDISPLAYLEVEL(displayLevel, l, ...) \ 55 if (displayLevel >= l) { \ 56 DISPLAY(__VA_ARGS__); \ 57 } /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */ 58 #define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__) 59 60 #define LOCALDISPLAYUPDATE(displayLevel, l, ...) \ 61 if (displayLevel >= l) { \ 62 if ((clock() - g_time > refreshRate) || (displayLevel >= 4)) { \ 63 g_time = clock(); \ 64 DISPLAY(__VA_ARGS__); \ 65 } \ 66 } 67 #define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__) 68 static const clock_t refreshRate = CLOCKS_PER_SEC * 15 / 100; 69 static clock_t g_time = 0; 70 71 /*-************************************* 72 * Hash table 73 *************************************** 74 * A small specialized hash map for storing activeDmers. 75 * The map does not resize, so if it becomes full it will loop forever. 76 * Thus, the map must be large enough to store every value. 77 * The map implements linear probing and keeps its load less than 0.5. 78 */ 79 80 #define MAP_EMPTY_VALUE ((U32)-1) 81 typedef struct COVER_map_pair_t_s { 82 U32 key; 83 U32 value; 84 } COVER_map_pair_t; 85 86 typedef struct COVER_map_s { 87 COVER_map_pair_t *data; 88 U32 sizeLog; 89 U32 size; 90 U32 sizeMask; 91 } COVER_map_t; 92 93 /** 94 * Clear the map. 95 */ 96 static void COVER_map_clear(COVER_map_t *map) { 97 memset(map->data, MAP_EMPTY_VALUE, map->size * sizeof(COVER_map_pair_t)); 98 } 99 100 /** 101 * Initializes a map of the given size. 102 * Returns 1 on success and 0 on failure. 103 * The map must be destroyed with COVER_map_destroy(). 104 * The map is only guaranteed to be large enough to hold size elements. 105 */ 106 static int COVER_map_init(COVER_map_t *map, U32 size) { 107 map->sizeLog = ZSTD_highbit32(size) + 2; 108 map->size = (U32)1 << map->sizeLog; 109 map->sizeMask = map->size - 1; 110 map->data = (COVER_map_pair_t *)malloc(map->size * sizeof(COVER_map_pair_t)); 111 if (!map->data) { 112 map->sizeLog = 0; 113 map->size = 0; 114 return 0; 115 } 116 COVER_map_clear(map); 117 return 1; 118 } 119 120 /** 121 * Internal hash function 122 */ 123 static const U32 prime4bytes = 2654435761U; 124 static U32 COVER_map_hash(COVER_map_t *map, U32 key) { 125 return (key * prime4bytes) >> (32 - map->sizeLog); 126 } 127 128 /** 129 * Helper function that returns the index that a key should be placed into. 130 */ 131 static U32 COVER_map_index(COVER_map_t *map, U32 key) { 132 const U32 hash = COVER_map_hash(map, key); 133 U32 i; 134 for (i = hash;; i = (i + 1) & map->sizeMask) { 135 COVER_map_pair_t *pos = &map->data[i]; 136 if (pos->value == MAP_EMPTY_VALUE) { 137 return i; 138 } 139 if (pos->key == key) { 140 return i; 141 } 142 } 143 } 144 145 /** 146 * Returns the pointer to the value for key. 147 * If key is not in the map, it is inserted and the value is set to 0. 148 * The map must not be full. 149 */ 150 static U32 *COVER_map_at(COVER_map_t *map, U32 key) { 151 COVER_map_pair_t *pos = &map->data[COVER_map_index(map, key)]; 152 if (pos->value == MAP_EMPTY_VALUE) { 153 pos->key = key; 154 pos->value = 0; 155 } 156 return &pos->value; 157 } 158 159 /** 160 * Deletes key from the map if present. 161 */ 162 static void COVER_map_remove(COVER_map_t *map, U32 key) { 163 U32 i = COVER_map_index(map, key); 164 COVER_map_pair_t *del = &map->data[i]; 165 U32 shift = 1; 166 if (del->value == MAP_EMPTY_VALUE) { 167 return; 168 } 169 for (i = (i + 1) & map->sizeMask;; i = (i + 1) & map->sizeMask) { 170 COVER_map_pair_t *const pos = &map->data[i]; 171 /* If the position is empty we are done */ 172 if (pos->value == MAP_EMPTY_VALUE) { 173 del->value = MAP_EMPTY_VALUE; 174 return; 175 } 176 /* If pos can be moved to del do so */ 177 if (((i - COVER_map_hash(map, pos->key)) & map->sizeMask) >= shift) { 178 del->key = pos->key; 179 del->value = pos->value; 180 del = pos; 181 shift = 1; 182 } else { 183 ++shift; 184 } 185 } 186 } 187 188 /** 189 * Destroys a map that is inited with COVER_map_init(). 190 */ 191 static void COVER_map_destroy(COVER_map_t *map) { 192 if (map->data) { 193 free(map->data); 194 } 195 map->data = NULL; 196 map->size = 0; 197 } 198 199 /*-************************************* 200 * Context 201 ***************************************/ 202 203 typedef struct { 204 const BYTE *samples; 205 size_t *offsets; 206 const size_t *samplesSizes; 207 size_t nbSamples; 208 size_t nbTrainSamples; 209 size_t nbTestSamples; 210 U32 *suffix; 211 size_t suffixSize; 212 U32 *freqs; 213 U32 *dmerAt; 214 unsigned d; 215 } COVER_ctx_t; 216 217 /* We need a global context for qsort... */ 218 static COVER_ctx_t *g_ctx = NULL; 219 220 /*-************************************* 221 * Helper functions 222 ***************************************/ 223 224 /** 225 * Returns the sum of the sample sizes. 226 */ 227 size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) { 228 size_t sum = 0; 229 unsigned i; 230 for (i = 0; i < nbSamples; ++i) { 231 sum += samplesSizes[i]; 232 } 233 return sum; 234 } 235 236 /** 237 * Returns -1 if the dmer at lp is less than the dmer at rp. 238 * Return 0 if the dmers at lp and rp are equal. 239 * Returns 1 if the dmer at lp is greater than the dmer at rp. 240 */ 241 static int COVER_cmp(COVER_ctx_t *ctx, const void *lp, const void *rp) { 242 U32 const lhs = *(U32 const *)lp; 243 U32 const rhs = *(U32 const *)rp; 244 return memcmp(ctx->samples + lhs, ctx->samples + rhs, ctx->d); 245 } 246 /** 247 * Faster version for d <= 8. 248 */ 249 static int COVER_cmp8(COVER_ctx_t *ctx, const void *lp, const void *rp) { 250 U64 const mask = (ctx->d == 8) ? (U64)-1 : (((U64)1 << (8 * ctx->d)) - 1); 251 U64 const lhs = MEM_readLE64(ctx->samples + *(U32 const *)lp) & mask; 252 U64 const rhs = MEM_readLE64(ctx->samples + *(U32 const *)rp) & mask; 253 if (lhs < rhs) { 254 return -1; 255 } 256 return (lhs > rhs); 257 } 258 259 /** 260 * Same as COVER_cmp() except ties are broken by pointer value 261 * NOTE: g_ctx must be set to call this function. A global is required because 262 * qsort doesn't take an opaque pointer. 263 */ 264 static int COVER_strict_cmp(const void *lp, const void *rp) { 265 int result = COVER_cmp(g_ctx, lp, rp); 266 if (result == 0) { 267 result = lp < rp ? -1 : 1; 268 } 269 return result; 270 } 271 /** 272 * Faster version for d <= 8. 273 */ 274 static int COVER_strict_cmp8(const void *lp, const void *rp) { 275 int result = COVER_cmp8(g_ctx, lp, rp); 276 if (result == 0) { 277 result = lp < rp ? -1 : 1; 278 } 279 return result; 280 } 281 282 /** 283 * Returns the first pointer in [first, last) whose element does not compare 284 * less than value. If no such element exists it returns last. 285 */ 286 static const size_t *COVER_lower_bound(const size_t *first, const size_t *last, 287 size_t value) { 288 size_t count = last - first; 289 while (count != 0) { 290 size_t step = count / 2; 291 const size_t *ptr = first; 292 ptr += step; 293 if (*ptr < value) { 294 first = ++ptr; 295 count -= step + 1; 296 } else { 297 count = step; 298 } 299 } 300 return first; 301 } 302 303 /** 304 * Generic groupBy function. 305 * Groups an array sorted by cmp into groups with equivalent values. 306 * Calls grp for each group. 307 */ 308 static void 309 COVER_groupBy(const void *data, size_t count, size_t size, COVER_ctx_t *ctx, 310 int (*cmp)(COVER_ctx_t *, const void *, const void *), 311 void (*grp)(COVER_ctx_t *, const void *, const void *)) { 312 const BYTE *ptr = (const BYTE *)data; 313 size_t num = 0; 314 while (num < count) { 315 const BYTE *grpEnd = ptr + size; 316 ++num; 317 while (num < count && cmp(ctx, ptr, grpEnd) == 0) { 318 grpEnd += size; 319 ++num; 320 } 321 grp(ctx, ptr, grpEnd); 322 ptr = grpEnd; 323 } 324 } 325 326 /*-************************************* 327 * Cover functions 328 ***************************************/ 329 330 /** 331 * Called on each group of positions with the same dmer. 332 * Counts the frequency of each dmer and saves it in the suffix array. 333 * Fills `ctx->dmerAt`. 334 */ 335 static void COVER_group(COVER_ctx_t *ctx, const void *group, 336 const void *groupEnd) { 337 /* The group consists of all the positions with the same first d bytes. */ 338 const U32 *grpPtr = (const U32 *)group; 339 const U32 *grpEnd = (const U32 *)groupEnd; 340 /* The dmerId is how we will reference this dmer. 341 * This allows us to map the whole dmer space to a much smaller space, the 342 * size of the suffix array. 343 */ 344 const U32 dmerId = (U32)(grpPtr - ctx->suffix); 345 /* Count the number of samples this dmer shows up in */ 346 U32 freq = 0; 347 /* Details */ 348 const size_t *curOffsetPtr = ctx->offsets; 349 const size_t *offsetsEnd = ctx->offsets + ctx->nbSamples; 350 /* Once *grpPtr >= curSampleEnd this occurrence of the dmer is in a 351 * different sample than the last. 352 */ 353 size_t curSampleEnd = ctx->offsets[0]; 354 for (; grpPtr != grpEnd; ++grpPtr) { 355 /* Save the dmerId for this position so we can get back to it. */ 356 ctx->dmerAt[*grpPtr] = dmerId; 357 /* Dictionaries only help for the first reference to the dmer. 358 * After that zstd can reference the match from the previous reference. 359 * So only count each dmer once for each sample it is in. 360 */ 361 if (*grpPtr < curSampleEnd) { 362 continue; 363 } 364 freq += 1; 365 /* Binary search to find the end of the sample *grpPtr is in. 366 * In the common case that grpPtr + 1 == grpEnd we can skip the binary 367 * search because the loop is over. 368 */ 369 if (grpPtr + 1 != grpEnd) { 370 const size_t *sampleEndPtr = 371 COVER_lower_bound(curOffsetPtr, offsetsEnd, *grpPtr); 372 curSampleEnd = *sampleEndPtr; 373 curOffsetPtr = sampleEndPtr + 1; 374 } 375 } 376 /* At this point we are never going to look at this segment of the suffix 377 * array again. We take advantage of this fact to save memory. 378 * We store the frequency of the dmer in the first position of the group, 379 * which is dmerId. 380 */ 381 ctx->suffix[dmerId] = freq; 382 } 383 384 385 /** 386 * Selects the best segment in an epoch. 387 * Segments of are scored according to the function: 388 * 389 * Let F(d) be the frequency of dmer d. 390 * Let S_i be the dmer at position i of segment S which has length k. 391 * 392 * Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1}) 393 * 394 * Once the dmer d is in the dictionay we set F(d) = 0. 395 */ 396 static COVER_segment_t COVER_selectSegment(const COVER_ctx_t *ctx, U32 *freqs, 397 COVER_map_t *activeDmers, U32 begin, 398 U32 end, 399 ZDICT_cover_params_t parameters) { 400 /* Constants */ 401 const U32 k = parameters.k; 402 const U32 d = parameters.d; 403 const U32 dmersInK = k - d + 1; 404 /* Try each segment (activeSegment) and save the best (bestSegment) */ 405 COVER_segment_t bestSegment = {0, 0, 0}; 406 COVER_segment_t activeSegment; 407 /* Reset the activeDmers in the segment */ 408 COVER_map_clear(activeDmers); 409 /* The activeSegment starts at the beginning of the epoch. */ 410 activeSegment.begin = begin; 411 activeSegment.end = begin; 412 activeSegment.score = 0; 413 /* Slide the activeSegment through the whole epoch. 414 * Save the best segment in bestSegment. 415 */ 416 while (activeSegment.end < end) { 417 /* The dmerId for the dmer at the next position */ 418 U32 newDmer = ctx->dmerAt[activeSegment.end]; 419 /* The entry in activeDmers for this dmerId */ 420 U32 *newDmerOcc = COVER_map_at(activeDmers, newDmer); 421 /* If the dmer isn't already present in the segment add its score. */ 422 if (*newDmerOcc == 0) { 423 /* The paper suggest using the L-0.5 norm, but experiments show that it 424 * doesn't help. 425 */ 426 activeSegment.score += freqs[newDmer]; 427 } 428 /* Add the dmer to the segment */ 429 activeSegment.end += 1; 430 *newDmerOcc += 1; 431 432 /* If the window is now too large, drop the first position */ 433 if (activeSegment.end - activeSegment.begin == dmersInK + 1) { 434 U32 delDmer = ctx->dmerAt[activeSegment.begin]; 435 U32 *delDmerOcc = COVER_map_at(activeDmers, delDmer); 436 activeSegment.begin += 1; 437 *delDmerOcc -= 1; 438 /* If this is the last occurence of the dmer, subtract its score */ 439 if (*delDmerOcc == 0) { 440 COVER_map_remove(activeDmers, delDmer); 441 activeSegment.score -= freqs[delDmer]; 442 } 443 } 444 445 /* If this segment is the best so far save it */ 446 if (activeSegment.score > bestSegment.score) { 447 bestSegment = activeSegment; 448 } 449 } 450 { 451 /* Trim off the zero frequency head and tail from the segment. */ 452 U32 newBegin = bestSegment.end; 453 U32 newEnd = bestSegment.begin; 454 U32 pos; 455 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { 456 U32 freq = freqs[ctx->dmerAt[pos]]; 457 if (freq != 0) { 458 newBegin = MIN(newBegin, pos); 459 newEnd = pos + 1; 460 } 461 } 462 bestSegment.begin = newBegin; 463 bestSegment.end = newEnd; 464 } 465 { 466 /* Zero out the frequency of each dmer covered by the chosen segment. */ 467 U32 pos; 468 for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) { 469 freqs[ctx->dmerAt[pos]] = 0; 470 } 471 } 472 return bestSegment; 473 } 474 475 /** 476 * Check the validity of the parameters. 477 * Returns non-zero if the parameters are valid and 0 otherwise. 478 */ 479 static int COVER_checkParameters(ZDICT_cover_params_t parameters, 480 size_t maxDictSize) { 481 /* k and d are required parameters */ 482 if (parameters.d == 0 || parameters.k == 0) { 483 return 0; 484 } 485 /* k <= maxDictSize */ 486 if (parameters.k > maxDictSize) { 487 return 0; 488 } 489 /* d <= k */ 490 if (parameters.d > parameters.k) { 491 return 0; 492 } 493 /* 0 < splitPoint <= 1 */ 494 if (parameters.splitPoint <= 0 || parameters.splitPoint > 1){ 495 return 0; 496 } 497 return 1; 498 } 499 500 /** 501 * Clean up a context initialized with `COVER_ctx_init()`. 502 */ 503 static void COVER_ctx_destroy(COVER_ctx_t *ctx) { 504 if (!ctx) { 505 return; 506 } 507 if (ctx->suffix) { 508 free(ctx->suffix); 509 ctx->suffix = NULL; 510 } 511 if (ctx->freqs) { 512 free(ctx->freqs); 513 ctx->freqs = NULL; 514 } 515 if (ctx->dmerAt) { 516 free(ctx->dmerAt); 517 ctx->dmerAt = NULL; 518 } 519 if (ctx->offsets) { 520 free(ctx->offsets); 521 ctx->offsets = NULL; 522 } 523 } 524 525 /** 526 * Prepare a context for dictionary building. 527 * The context is only dependent on the parameter `d` and can used multiple 528 * times. 529 * Returns 1 on success or zero on error. 530 * The context must be destroyed with `COVER_ctx_destroy()`. 531 */ 532 static int COVER_ctx_init(COVER_ctx_t *ctx, const void *samplesBuffer, 533 const size_t *samplesSizes, unsigned nbSamples, 534 unsigned d, double splitPoint) { 535 const BYTE *const samples = (const BYTE *)samplesBuffer; 536 const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples); 537 /* Split samples into testing and training sets */ 538 const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples; 539 const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples; 540 const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize; 541 const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize; 542 /* Checks */ 543 if (totalSamplesSize < MAX(d, sizeof(U64)) || 544 totalSamplesSize >= (size_t)COVER_MAX_SAMPLES_SIZE) { 545 DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n", 546 (unsigned)(totalSamplesSize>>20), (COVER_MAX_SAMPLES_SIZE >> 20)); 547 return 0; 548 } 549 /* Check if there are at least 5 training samples */ 550 if (nbTrainSamples < 5) { 551 DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid.", nbTrainSamples); 552 return 0; 553 } 554 /* Check if there's testing sample */ 555 if (nbTestSamples < 1) { 556 DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.", nbTestSamples); 557 return 0; 558 } 559 /* Zero the context */ 560 memset(ctx, 0, sizeof(*ctx)); 561 DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples, 562 (unsigned)trainingSamplesSize); 563 DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples, 564 (unsigned)testSamplesSize); 565 ctx->samples = samples; 566 ctx->samplesSizes = samplesSizes; 567 ctx->nbSamples = nbSamples; 568 ctx->nbTrainSamples = nbTrainSamples; 569 ctx->nbTestSamples = nbTestSamples; 570 /* Partial suffix array */ 571 ctx->suffixSize = trainingSamplesSize - MAX(d, sizeof(U64)) + 1; 572 ctx->suffix = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); 573 /* Maps index to the dmerID */ 574 ctx->dmerAt = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); 575 /* The offsets of each file */ 576 ctx->offsets = (size_t *)malloc((nbSamples + 1) * sizeof(size_t)); 577 if (!ctx->suffix || !ctx->dmerAt || !ctx->offsets) { 578 DISPLAYLEVEL(1, "Failed to allocate scratch buffers\n"); 579 COVER_ctx_destroy(ctx); 580 return 0; 581 } 582 ctx->freqs = NULL; 583 ctx->d = d; 584 585 /* Fill offsets from the samplesSizes */ 586 { 587 U32 i; 588 ctx->offsets[0] = 0; 589 for (i = 1; i <= nbSamples; ++i) { 590 ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1]; 591 } 592 } 593 DISPLAYLEVEL(2, "Constructing partial suffix array\n"); 594 { 595 /* suffix is a partial suffix array. 596 * It only sorts suffixes by their first parameters.d bytes. 597 * The sort is stable, so each dmer group is sorted by position in input. 598 */ 599 U32 i; 600 for (i = 0; i < ctx->suffixSize; ++i) { 601 ctx->suffix[i] = i; 602 } 603 /* qsort doesn't take an opaque pointer, so pass as a global. 604 * On OpenBSD qsort() is not guaranteed to be stable, their mergesort() is. 605 */ 606 g_ctx = ctx; 607 #if defined(__OpenBSD__) 608 mergesort(ctx->suffix, ctx->suffixSize, sizeof(U32), 609 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); 610 #else 611 qsort(ctx->suffix, ctx->suffixSize, sizeof(U32), 612 (ctx->d <= 8 ? &COVER_strict_cmp8 : &COVER_strict_cmp)); 613 #endif 614 } 615 DISPLAYLEVEL(2, "Computing frequencies\n"); 616 /* For each dmer group (group of positions with the same first d bytes): 617 * 1. For each position we set dmerAt[position] = dmerID. The dmerID is 618 * (groupBeginPtr - suffix). This allows us to go from position to 619 * dmerID so we can look up values in freq. 620 * 2. We calculate how many samples the dmer occurs in and save it in 621 * freqs[dmerId]. 622 */ 623 COVER_groupBy(ctx->suffix, ctx->suffixSize, sizeof(U32), ctx, 624 (ctx->d <= 8 ? &COVER_cmp8 : &COVER_cmp), &COVER_group); 625 ctx->freqs = ctx->suffix; 626 ctx->suffix = NULL; 627 return 1; 628 } 629 630 /** 631 * Given the prepared context build the dictionary. 632 */ 633 static size_t COVER_buildDictionary(const COVER_ctx_t *ctx, U32 *freqs, 634 COVER_map_t *activeDmers, void *dictBuffer, 635 size_t dictBufferCapacity, 636 ZDICT_cover_params_t parameters) { 637 BYTE *const dict = (BYTE *)dictBuffer; 638 size_t tail = dictBufferCapacity; 639 /* Divide the data up into epochs of equal size. 640 * We will select at least one segment from each epoch. 641 */ 642 const unsigned epochs = MAX(1, (U32)(dictBufferCapacity / parameters.k / 4)); 643 const unsigned epochSize = (U32)(ctx->suffixSize / epochs); 644 size_t epoch; 645 DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n", 646 epochs, epochSize); 647 /* Loop through the epochs until there are no more segments or the dictionary 648 * is full. 649 */ 650 for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs) { 651 const U32 epochBegin = (U32)(epoch * epochSize); 652 const U32 epochEnd = epochBegin + epochSize; 653 size_t segmentSize; 654 /* Select a segment */ 655 COVER_segment_t segment = COVER_selectSegment( 656 ctx, freqs, activeDmers, epochBegin, epochEnd, parameters); 657 /* If the segment covers no dmers, then we are out of content */ 658 if (segment.score == 0) { 659 break; 660 } 661 /* Trim the segment if necessary and if it is too small then we are done */ 662 segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail); 663 if (segmentSize < parameters.d) { 664 break; 665 } 666 /* We fill the dictionary from the back to allow the best segments to be 667 * referenced with the smallest offsets. 668 */ 669 tail -= segmentSize; 670 memcpy(dict + tail, ctx->samples + segment.begin, segmentSize); 671 DISPLAYUPDATE( 672 2, "\r%u%% ", 673 (unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity)); 674 } 675 DISPLAYLEVEL(2, "\r%79s\r", ""); 676 return tail; 677 } 678 679 ZDICTLIB_API size_t ZDICT_trainFromBuffer_cover( 680 void *dictBuffer, size_t dictBufferCapacity, 681 const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples, 682 ZDICT_cover_params_t parameters) 683 { 684 BYTE* const dict = (BYTE*)dictBuffer; 685 COVER_ctx_t ctx; 686 COVER_map_t activeDmers; 687 parameters.splitPoint = 1.0; 688 /* Initialize global data */ 689 g_displayLevel = parameters.zParams.notificationLevel; 690 /* Checks */ 691 if (!COVER_checkParameters(parameters, dictBufferCapacity)) { 692 DISPLAYLEVEL(1, "Cover parameters incorrect\n"); 693 return ERROR(GENERIC); 694 } 695 if (nbSamples == 0) { 696 DISPLAYLEVEL(1, "Cover must have at least one input file\n"); 697 return ERROR(GENERIC); 698 } 699 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { 700 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", 701 ZDICT_DICTSIZE_MIN); 702 return ERROR(dstSize_tooSmall); 703 } 704 /* Initialize context and activeDmers */ 705 if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, 706 parameters.d, parameters.splitPoint)) { 707 return ERROR(GENERIC); 708 } 709 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { 710 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); 711 COVER_ctx_destroy(&ctx); 712 return ERROR(GENERIC); 713 } 714 715 DISPLAYLEVEL(2, "Building dictionary\n"); 716 { 717 const size_t tail = 718 COVER_buildDictionary(&ctx, ctx.freqs, &activeDmers, dictBuffer, 719 dictBufferCapacity, parameters); 720 const size_t dictionarySize = ZDICT_finalizeDictionary( 721 dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, 722 samplesBuffer, samplesSizes, nbSamples, parameters.zParams); 723 if (!ZSTD_isError(dictionarySize)) { 724 DISPLAYLEVEL(2, "Constructed dictionary of size %u\n", 725 (unsigned)dictionarySize); 726 } 727 COVER_ctx_destroy(&ctx); 728 COVER_map_destroy(&activeDmers); 729 return dictionarySize; 730 } 731 } 732 733 734 735 size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters, 736 const size_t *samplesSizes, const BYTE *samples, 737 size_t *offsets, 738 size_t nbTrainSamples, size_t nbSamples, 739 BYTE *const dict, size_t dictBufferCapacity) { 740 size_t totalCompressedSize = ERROR(GENERIC); 741 /* Pointers */ 742 ZSTD_CCtx *cctx; 743 ZSTD_CDict *cdict; 744 void *dst; 745 /* Local variables */ 746 size_t dstCapacity; 747 size_t i; 748 /* Allocate dst with enough space to compress the maximum sized sample */ 749 { 750 size_t maxSampleSize = 0; 751 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; 752 for (; i < nbSamples; ++i) { 753 maxSampleSize = MAX(samplesSizes[i], maxSampleSize); 754 } 755 dstCapacity = ZSTD_compressBound(maxSampleSize); 756 dst = malloc(dstCapacity); 757 } 758 /* Create the cctx and cdict */ 759 cctx = ZSTD_createCCtx(); 760 cdict = ZSTD_createCDict(dict, dictBufferCapacity, 761 parameters.zParams.compressionLevel); 762 if (!dst || !cctx || !cdict) { 763 goto _compressCleanup; 764 } 765 /* Compress each sample and sum their sizes (or error) */ 766 totalCompressedSize = dictBufferCapacity; 767 i = parameters.splitPoint < 1.0 ? nbTrainSamples : 0; 768 for (; i < nbSamples; ++i) { 769 const size_t size = ZSTD_compress_usingCDict( 770 cctx, dst, dstCapacity, samples + offsets[i], 771 samplesSizes[i], cdict); 772 if (ZSTD_isError(size)) { 773 totalCompressedSize = ERROR(GENERIC); 774 goto _compressCleanup; 775 } 776 totalCompressedSize += size; 777 } 778 _compressCleanup: 779 ZSTD_freeCCtx(cctx); 780 ZSTD_freeCDict(cdict); 781 if (dst) { 782 free(dst); 783 } 784 return totalCompressedSize; 785 } 786 787 788 /** 789 * Initialize the `COVER_best_t`. 790 */ 791 void COVER_best_init(COVER_best_t *best) { 792 if (best==NULL) return; /* compatible with init on NULL */ 793 (void)ZSTD_pthread_mutex_init(&best->mutex, NULL); 794 (void)ZSTD_pthread_cond_init(&best->cond, NULL); 795 best->liveJobs = 0; 796 best->dict = NULL; 797 best->dictSize = 0; 798 best->compressedSize = (size_t)-1; 799 memset(&best->parameters, 0, sizeof(best->parameters)); 800 } 801 802 /** 803 * Wait until liveJobs == 0. 804 */ 805 void COVER_best_wait(COVER_best_t *best) { 806 if (!best) { 807 return; 808 } 809 ZSTD_pthread_mutex_lock(&best->mutex); 810 while (best->liveJobs != 0) { 811 ZSTD_pthread_cond_wait(&best->cond, &best->mutex); 812 } 813 ZSTD_pthread_mutex_unlock(&best->mutex); 814 } 815 816 /** 817 * Call COVER_best_wait() and then destroy the COVER_best_t. 818 */ 819 void COVER_best_destroy(COVER_best_t *best) { 820 if (!best) { 821 return; 822 } 823 COVER_best_wait(best); 824 if (best->dict) { 825 free(best->dict); 826 } 827 ZSTD_pthread_mutex_destroy(&best->mutex); 828 ZSTD_pthread_cond_destroy(&best->cond); 829 } 830 831 /** 832 * Called when a thread is about to be launched. 833 * Increments liveJobs. 834 */ 835 void COVER_best_start(COVER_best_t *best) { 836 if (!best) { 837 return; 838 } 839 ZSTD_pthread_mutex_lock(&best->mutex); 840 ++best->liveJobs; 841 ZSTD_pthread_mutex_unlock(&best->mutex); 842 } 843 844 /** 845 * Called when a thread finishes executing, both on error or success. 846 * Decrements liveJobs and signals any waiting threads if liveJobs == 0. 847 * If this dictionary is the best so far save it and its parameters. 848 */ 849 void COVER_best_finish(COVER_best_t *best, size_t compressedSize, 850 ZDICT_cover_params_t parameters, void *dict, 851 size_t dictSize) { 852 if (!best) { 853 return; 854 } 855 { 856 size_t liveJobs; 857 ZSTD_pthread_mutex_lock(&best->mutex); 858 --best->liveJobs; 859 liveJobs = best->liveJobs; 860 /* If the new dictionary is better */ 861 if (compressedSize < best->compressedSize) { 862 /* Allocate space if necessary */ 863 if (!best->dict || best->dictSize < dictSize) { 864 if (best->dict) { 865 free(best->dict); 866 } 867 best->dict = malloc(dictSize); 868 if (!best->dict) { 869 best->compressedSize = ERROR(GENERIC); 870 best->dictSize = 0; 871 ZSTD_pthread_cond_signal(&best->cond); 872 ZSTD_pthread_mutex_unlock(&best->mutex); 873 return; 874 } 875 } 876 /* Save the dictionary, parameters, and size */ 877 memcpy(best->dict, dict, dictSize); 878 best->dictSize = dictSize; 879 best->parameters = parameters; 880 best->compressedSize = compressedSize; 881 } 882 if (liveJobs == 0) { 883 ZSTD_pthread_cond_broadcast(&best->cond); 884 } 885 ZSTD_pthread_mutex_unlock(&best->mutex); 886 } 887 } 888 889 /** 890 * Parameters for COVER_tryParameters(). 891 */ 892 typedef struct COVER_tryParameters_data_s { 893 const COVER_ctx_t *ctx; 894 COVER_best_t *best; 895 size_t dictBufferCapacity; 896 ZDICT_cover_params_t parameters; 897 } COVER_tryParameters_data_t; 898 899 /** 900 * Tries a set of parameters and updates the COVER_best_t with the results. 901 * This function is thread safe if zstd is compiled with multithreaded support. 902 * It takes its parameters as an *OWNING* opaque pointer to support threading. 903 */ 904 static void COVER_tryParameters(void *opaque) { 905 /* Save parameters as local variables */ 906 COVER_tryParameters_data_t *const data = (COVER_tryParameters_data_t *)opaque; 907 const COVER_ctx_t *const ctx = data->ctx; 908 const ZDICT_cover_params_t parameters = data->parameters; 909 size_t dictBufferCapacity = data->dictBufferCapacity; 910 size_t totalCompressedSize = ERROR(GENERIC); 911 /* Allocate space for hash table, dict, and freqs */ 912 COVER_map_t activeDmers; 913 BYTE *const dict = (BYTE * const)malloc(dictBufferCapacity); 914 U32 *freqs = (U32 *)malloc(ctx->suffixSize * sizeof(U32)); 915 if (!COVER_map_init(&activeDmers, parameters.k - parameters.d + 1)) { 916 DISPLAYLEVEL(1, "Failed to allocate dmer map: out of memory\n"); 917 goto _cleanup; 918 } 919 if (!dict || !freqs) { 920 DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n"); 921 goto _cleanup; 922 } 923 /* Copy the frequencies because we need to modify them */ 924 memcpy(freqs, ctx->freqs, ctx->suffixSize * sizeof(U32)); 925 /* Build the dictionary */ 926 { 927 const size_t tail = COVER_buildDictionary(ctx, freqs, &activeDmers, dict, 928 dictBufferCapacity, parameters); 929 dictBufferCapacity = ZDICT_finalizeDictionary( 930 dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail, 931 ctx->samples, ctx->samplesSizes, (unsigned)ctx->nbTrainSamples, 932 parameters.zParams); 933 if (ZDICT_isError(dictBufferCapacity)) { 934 DISPLAYLEVEL(1, "Failed to finalize dictionary\n"); 935 goto _cleanup; 936 } 937 } 938 /* Check total compressed size */ 939 totalCompressedSize = COVER_checkTotalCompressedSize(parameters, ctx->samplesSizes, 940 ctx->samples, ctx->offsets, 941 ctx->nbTrainSamples, ctx->nbSamples, 942 dict, dictBufferCapacity); 943 944 _cleanup: 945 COVER_best_finish(data->best, totalCompressedSize, parameters, dict, 946 dictBufferCapacity); 947 free(data); 948 COVER_map_destroy(&activeDmers); 949 if (dict) { 950 free(dict); 951 } 952 if (freqs) { 953 free(freqs); 954 } 955 } 956 957 ZDICTLIB_API size_t ZDICT_optimizeTrainFromBuffer_cover( 958 void *dictBuffer, size_t dictBufferCapacity, const void *samplesBuffer, 959 const size_t *samplesSizes, unsigned nbSamples, 960 ZDICT_cover_params_t *parameters) { 961 /* constants */ 962 const unsigned nbThreads = parameters->nbThreads; 963 const double splitPoint = 964 parameters->splitPoint <= 0.0 ? DEFAULT_SPLITPOINT : parameters->splitPoint; 965 const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d; 966 const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d; 967 const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k; 968 const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k; 969 const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps; 970 const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1); 971 const unsigned kIterations = 972 (1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize); 973 /* Local variables */ 974 const int displayLevel = parameters->zParams.notificationLevel; 975 unsigned iteration = 1; 976 unsigned d; 977 unsigned k; 978 COVER_best_t best; 979 POOL_ctx *pool = NULL; 980 981 /* Checks */ 982 if (splitPoint <= 0 || splitPoint > 1) { 983 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n"); 984 return ERROR(GENERIC); 985 } 986 if (kMinK < kMaxD || kMaxK < kMinK) { 987 LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect parameters\n"); 988 return ERROR(GENERIC); 989 } 990 if (nbSamples == 0) { 991 DISPLAYLEVEL(1, "Cover must have at least one input file\n"); 992 return ERROR(GENERIC); 993 } 994 if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) { 995 DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n", 996 ZDICT_DICTSIZE_MIN); 997 return ERROR(dstSize_tooSmall); 998 } 999 if (nbThreads > 1) { 1000 pool = POOL_create(nbThreads, 1); 1001 if (!pool) { 1002 return ERROR(memory_allocation); 1003 } 1004 } 1005 /* Initialization */ 1006 COVER_best_init(&best); 1007 /* Turn down global display level to clean up display at level 2 and below */ 1008 g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1; 1009 /* Loop through d first because each new value needs a new context */ 1010 LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n", 1011 kIterations); 1012 for (d = kMinD; d <= kMaxD; d += 2) { 1013 /* Initialize the context for this value of d */ 1014 COVER_ctx_t ctx; 1015 LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d); 1016 if (!COVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint)) { 1017 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n"); 1018 COVER_best_destroy(&best); 1019 POOL_free(pool); 1020 return ERROR(GENERIC); 1021 } 1022 /* Loop through k reusing the same context */ 1023 for (k = kMinK; k <= kMaxK; k += kStepSize) { 1024 /* Prepare the arguments */ 1025 COVER_tryParameters_data_t *data = (COVER_tryParameters_data_t *)malloc( 1026 sizeof(COVER_tryParameters_data_t)); 1027 LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k); 1028 if (!data) { 1029 LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n"); 1030 COVER_best_destroy(&best); 1031 COVER_ctx_destroy(&ctx); 1032 POOL_free(pool); 1033 return ERROR(GENERIC); 1034 } 1035 data->ctx = &ctx; 1036 data->best = &best; 1037 data->dictBufferCapacity = dictBufferCapacity; 1038 data->parameters = *parameters; 1039 data->parameters.k = k; 1040 data->parameters.d = d; 1041 data->parameters.splitPoint = splitPoint; 1042 data->parameters.steps = kSteps; 1043 data->parameters.zParams.notificationLevel = g_displayLevel; 1044 /* Check the parameters */ 1045 if (!COVER_checkParameters(data->parameters, dictBufferCapacity)) { 1046 DISPLAYLEVEL(1, "Cover parameters incorrect\n"); 1047 free(data); 1048 continue; 1049 } 1050 /* Call the function and pass ownership of data to it */ 1051 COVER_best_start(&best); 1052 if (pool) { 1053 POOL_add(pool, &COVER_tryParameters, data); 1054 } else { 1055 COVER_tryParameters(data); 1056 } 1057 /* Print status */ 1058 LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ", 1059 (unsigned)((iteration * 100) / kIterations)); 1060 ++iteration; 1061 } 1062 COVER_best_wait(&best); 1063 COVER_ctx_destroy(&ctx); 1064 } 1065 LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", ""); 1066 /* Fill the output buffer and parameters with output of the best parameters */ 1067 { 1068 const size_t dictSize = best.dictSize; 1069 if (ZSTD_isError(best.compressedSize)) { 1070 const size_t compressedSize = best.compressedSize; 1071 COVER_best_destroy(&best); 1072 POOL_free(pool); 1073 return compressedSize; 1074 } 1075 *parameters = best.parameters; 1076 memcpy(dictBuffer, best.dict, dictSize); 1077 COVER_best_destroy(&best); 1078 POOL_free(pool); 1079 return dictSize; 1080 } 1081 } 1082