xref: /freebsd/sys/contrib/zstd/lib/compress/zstdmt_compress.c (revision 9729f076e4d93c5a37e78d427bfe0f1ab99bbcc6)
1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /* ======   Compiler specifics   ====== */
13 #if defined(_MSC_VER)
14 #  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
15 #endif
16 
17 
18 /* ======   Constants   ====== */
19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0
20 
21 
22 /* ======   Dependencies   ====== */
23 #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
24 #include "../common/mem.h"         /* MEM_STATIC */
25 #include "../common/pool.h"        /* threadpool */
26 #include "../common/threading.h"   /* mutex */
27 #include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
28 #include "zstd_ldm.h"
29 #include "zstdmt_compress.h"
30 
31 /* Guards code to support resizing the SeqPool.
32  * We will want to resize the SeqPool to save memory in the future.
33  * Until then, comment the code out since it is unused.
34  */
35 #define ZSTD_RESIZE_SEQPOOL 0
36 
37 /* ======   Debug   ====== */
38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
39     && !defined(_MSC_VER) \
40     && !defined(__MINGW32__)
41 
42 #  include <stdio.h>
43 #  include <unistd.h>
44 #  include <sys/times.h>
45 
46 #  define DEBUG_PRINTHEX(l,p,n) {            \
47     unsigned debug_u;                        \
48     for (debug_u=0; debug_u<(n); debug_u++)  \
49         RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
50     RAWLOG(l, " \n");                        \
51 }
52 
53 static unsigned long long GetCurrentClockTimeMicroseconds(void)
54 {
55    static clock_t _ticksPerSecond = 0;
56    if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
57 
58    {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
59        return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
60 }  }
61 
62 #define MUTEX_WAIT_TIME_DLEVEL 6
63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
64     if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
65         unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
66         ZSTD_pthread_mutex_lock(mutex);           \
67         {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
68             unsigned long long const elapsedTime = (afterTime-beforeTime); \
69             if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
70                 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
71                    elapsedTime, #mutex);          \
72         }   }                                     \
73     } else {                                      \
74         ZSTD_pthread_mutex_lock(mutex);           \
75     }                                             \
76 }
77 
78 #else
79 
80 #  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
81 #  define DEBUG_PRINTHEX(l,p,n) {}
82 
83 #endif
84 
85 
86 /* =====   Buffer Pool   ===== */
87 /* a single Buffer Pool can be invoked from multiple threads in parallel */
88 
89 typedef struct buffer_s {
90     void* start;
91     size_t capacity;
92 } buffer_t;
93 
94 static const buffer_t g_nullBuffer = { NULL, 0 };
95 
96 typedef struct ZSTDMT_bufferPool_s {
97     ZSTD_pthread_mutex_t poolMutex;
98     size_t bufferSize;
99     unsigned totalBuffers;
100     unsigned nbBuffers;
101     ZSTD_customMem cMem;
102     buffer_t bTable[1];   /* variable size */
103 } ZSTDMT_bufferPool;
104 
105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem)
106 {
107     unsigned const maxNbBuffers = 2*nbWorkers + 3;
108     ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
109         sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
110     if (bufPool==NULL) return NULL;
111     if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
112         ZSTD_customFree(bufPool, cMem);
113         return NULL;
114     }
115     bufPool->bufferSize = 64 KB;
116     bufPool->totalBuffers = maxNbBuffers;
117     bufPool->nbBuffers = 0;
118     bufPool->cMem = cMem;
119     return bufPool;
120 }
121 
122 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
123 {
124     unsigned u;
125     DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
126     if (!bufPool) return;   /* compatibility with free on NULL */
127     for (u=0; u<bufPool->totalBuffers; u++) {
128         DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
129         ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
130     }
131     ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
132     ZSTD_customFree(bufPool, bufPool->cMem);
133 }
134 
135 /* only works at initialization, not during compression */
136 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
137 {
138     size_t const poolSize = sizeof(*bufPool)
139                           + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
140     unsigned u;
141     size_t totalBufferSize = 0;
142     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
143     for (u=0; u<bufPool->totalBuffers; u++)
144         totalBufferSize += bufPool->bTable[u].capacity;
145     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
146 
147     return poolSize + totalBufferSize;
148 }
149 
150 /* ZSTDMT_setBufferSize() :
151  * all future buffers provided by this buffer pool will have _at least_ this size
152  * note : it's better for all buffers to have same size,
153  * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
154 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
155 {
156     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
157     DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
158     bufPool->bufferSize = bSize;
159     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
160 }
161 
162 
163 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers)
164 {
165     unsigned const maxNbBuffers = 2*nbWorkers + 3;
166     if (srcBufPool==NULL) return NULL;
167     if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
168         return srcBufPool;
169     /* need a larger buffer pool */
170     {   ZSTD_customMem const cMem = srcBufPool->cMem;
171         size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
172         ZSTDMT_bufferPool* newBufPool;
173         ZSTDMT_freeBufferPool(srcBufPool);
174         newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
175         if (newBufPool==NULL) return newBufPool;
176         ZSTDMT_setBufferSize(newBufPool, bSize);
177         return newBufPool;
178     }
179 }
180 
181 /** ZSTDMT_getBuffer() :
182  *  assumption : bufPool must be valid
183  * @return : a buffer, with start pointer and size
184  *  note: allocation may fail, in this case, start==NULL and size==0 */
185 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
186 {
187     size_t const bSize = bufPool->bufferSize;
188     DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
189     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
190     if (bufPool->nbBuffers) {   /* try to use an existing buffer */
191         buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
192         size_t const availBufferSize = buf.capacity;
193         bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
194         if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
195             /* large enough, but not too much */
196             DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
197                         bufPool->nbBuffers, (U32)buf.capacity);
198             ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
199             return buf;
200         }
201         /* size conditions not respected : scratch this buffer, create new one */
202         DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
203         ZSTD_customFree(buf.start, bufPool->cMem);
204     }
205     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
206     /* create new buffer */
207     DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
208     {   buffer_t buffer;
209         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
210         buffer.start = start;   /* note : start can be NULL if malloc fails ! */
211         buffer.capacity = (start==NULL) ? 0 : bSize;
212         if (start==NULL) {
213             DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
214         } else {
215             DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
216         }
217         return buffer;
218     }
219 }
220 
221 #if ZSTD_RESIZE_SEQPOOL
222 /** ZSTDMT_resizeBuffer() :
223  * assumption : bufPool must be valid
224  * @return : a buffer that is at least the buffer pool buffer size.
225  *           If a reallocation happens, the data in the input buffer is copied.
226  */
227 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
228 {
229     size_t const bSize = bufPool->bufferSize;
230     if (buffer.capacity < bSize) {
231         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
232         buffer_t newBuffer;
233         newBuffer.start = start;
234         newBuffer.capacity = start == NULL ? 0 : bSize;
235         if (start != NULL) {
236             assert(newBuffer.capacity >= buffer.capacity);
237             ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
238             DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
239             return newBuffer;
240         }
241         DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
242     }
243     return buffer;
244 }
245 #endif
246 
247 /* store buffer for later re-use, up to pool capacity */
248 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
249 {
250     DEBUGLOG(5, "ZSTDMT_releaseBuffer");
251     if (buf.start == NULL) return;   /* compatible with release on NULL */
252     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
253     if (bufPool->nbBuffers < bufPool->totalBuffers) {
254         bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
255         DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
256                     (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
257         ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
258         return;
259     }
260     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
261     /* Reached bufferPool capacity (should not happen) */
262     DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
263     ZSTD_customFree(buf.start, bufPool->cMem);
264 }
265 
266 
267 /* =====   Seq Pool Wrapper   ====== */
268 
269 typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
270 
271 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
272 {
273     return ZSTDMT_sizeof_bufferPool(seqPool);
274 }
275 
276 static rawSeqStore_t bufferToSeq(buffer_t buffer)
277 {
278     rawSeqStore_t seq = kNullRawSeqStore;
279     seq.seq = (rawSeq*)buffer.start;
280     seq.capacity = buffer.capacity / sizeof(rawSeq);
281     return seq;
282 }
283 
284 static buffer_t seqToBuffer(rawSeqStore_t seq)
285 {
286     buffer_t buffer;
287     buffer.start = seq.seq;
288     buffer.capacity = seq.capacity * sizeof(rawSeq);
289     return buffer;
290 }
291 
292 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
293 {
294     if (seqPool->bufferSize == 0) {
295         return kNullRawSeqStore;
296     }
297     return bufferToSeq(ZSTDMT_getBuffer(seqPool));
298 }
299 
300 #if ZSTD_RESIZE_SEQPOOL
301 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
302 {
303   return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
304 }
305 #endif
306 
307 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
308 {
309   ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
310 }
311 
312 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
313 {
314   ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
315 }
316 
317 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
318 {
319     ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
320     if (seqPool == NULL) return NULL;
321     ZSTDMT_setNbSeq(seqPool, 0);
322     return seqPool;
323 }
324 
325 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
326 {
327     ZSTDMT_freeBufferPool(seqPool);
328 }
329 
330 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
331 {
332     return ZSTDMT_expandBufferPool(pool, nbWorkers);
333 }
334 
335 
336 /* =====   CCtx Pool   ===== */
337 /* a single CCtx Pool can be invoked from multiple threads in parallel */
338 
339 typedef struct {
340     ZSTD_pthread_mutex_t poolMutex;
341     int totalCCtx;
342     int availCCtx;
343     ZSTD_customMem cMem;
344     ZSTD_CCtx* cctx[1];   /* variable size */
345 } ZSTDMT_CCtxPool;
346 
347 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
348 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
349 {
350     int cid;
351     for (cid=0; cid<pool->totalCCtx; cid++)
352         ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
353     ZSTD_pthread_mutex_destroy(&pool->poolMutex);
354     ZSTD_customFree(pool, pool->cMem);
355 }
356 
357 /* ZSTDMT_createCCtxPool() :
358  * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
359 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
360                                               ZSTD_customMem cMem)
361 {
362     ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
363         sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
364     assert(nbWorkers > 0);
365     if (!cctxPool) return NULL;
366     if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
367         ZSTD_customFree(cctxPool, cMem);
368         return NULL;
369     }
370     cctxPool->cMem = cMem;
371     cctxPool->totalCCtx = nbWorkers;
372     cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
373     cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
374     if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
375     DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
376     return cctxPool;
377 }
378 
379 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
380                                               int nbWorkers)
381 {
382     if (srcPool==NULL) return NULL;
383     if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
384     /* need a larger cctx pool */
385     {   ZSTD_customMem const cMem = srcPool->cMem;
386         ZSTDMT_freeCCtxPool(srcPool);
387         return ZSTDMT_createCCtxPool(nbWorkers, cMem);
388     }
389 }
390 
391 /* only works during initialization phase, not during compression */
392 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
393 {
394     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
395     {   unsigned const nbWorkers = cctxPool->totalCCtx;
396         size_t const poolSize = sizeof(*cctxPool)
397                                 + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
398         unsigned u;
399         size_t totalCCtxSize = 0;
400         for (u=0; u<nbWorkers; u++) {
401             totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
402         }
403         ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
404         assert(nbWorkers > 0);
405         return poolSize + totalCCtxSize;
406     }
407 }
408 
409 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
410 {
411     DEBUGLOG(5, "ZSTDMT_getCCtx");
412     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
413     if (cctxPool->availCCtx) {
414         cctxPool->availCCtx--;
415         {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
416             ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
417             return cctx;
418     }   }
419     ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
420     DEBUGLOG(5, "create one more CCtx");
421     return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
422 }
423 
424 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
425 {
426     if (cctx==NULL) return;   /* compatibility with release on NULL */
427     ZSTD_pthread_mutex_lock(&pool->poolMutex);
428     if (pool->availCCtx < pool->totalCCtx)
429         pool->cctx[pool->availCCtx++] = cctx;
430     else {
431         /* pool overflow : should not happen, since totalCCtx==nbWorkers */
432         DEBUGLOG(4, "CCtx pool overflow : free cctx");
433         ZSTD_freeCCtx(cctx);
434     }
435     ZSTD_pthread_mutex_unlock(&pool->poolMutex);
436 }
437 
438 /* ====   Serial State   ==== */
439 
440 typedef struct {
441     void const* start;
442     size_t size;
443 } range_t;
444 
445 typedef struct {
446     /* All variables in the struct are protected by mutex. */
447     ZSTD_pthread_mutex_t mutex;
448     ZSTD_pthread_cond_t cond;
449     ZSTD_CCtx_params params;
450     ldmState_t ldmState;
451     XXH64_state_t xxhState;
452     unsigned nextJobID;
453     /* Protects ldmWindow.
454      * Must be acquired after the main mutex when acquiring both.
455      */
456     ZSTD_pthread_mutex_t ldmWindowMutex;
457     ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
458     ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
459 } serialState_t;
460 
461 static int
462 ZSTDMT_serialState_reset(serialState_t* serialState,
463                          ZSTDMT_seqPool* seqPool,
464                          ZSTD_CCtx_params params,
465                          size_t jobSize,
466                          const void* dict, size_t const dictSize,
467                          ZSTD_dictContentType_e dictContentType)
468 {
469     /* Adjust parameters */
470     if (params.ldmParams.enableLdm) {
471         DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
472         ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
473         assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
474         assert(params.ldmParams.hashRateLog < 32);
475         serialState->ldmState.hashPower =
476                 ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength);
477     } else {
478         ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
479     }
480     serialState->nextJobID = 0;
481     if (params.fParams.checksumFlag)
482         XXH64_reset(&serialState->xxhState, 0);
483     if (params.ldmParams.enableLdm) {
484         ZSTD_customMem cMem = params.customMem;
485         unsigned const hashLog = params.ldmParams.hashLog;
486         size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
487         unsigned const bucketLog =
488             params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
489         size_t const bucketSize = (size_t)1 << bucketLog;
490         unsigned const prevBucketLog =
491             serialState->params.ldmParams.hashLog -
492             serialState->params.ldmParams.bucketSizeLog;
493         /* Size the seq pool tables */
494         ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
495         /* Reset the window */
496         ZSTD_window_init(&serialState->ldmState.window);
497         /* Resize tables and output space if necessary. */
498         if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
499             ZSTD_customFree(serialState->ldmState.hashTable, cMem);
500             serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
501         }
502         if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
503             ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
504             serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(bucketSize, cMem);
505         }
506         if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
507             return 1;
508         /* Zero the tables */
509         ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
510         ZSTD_memset(serialState->ldmState.bucketOffsets, 0, bucketSize);
511 
512         /* Update window state and fill hash table with dict */
513         serialState->ldmState.loadedDictEnd = 0;
514         if (dictSize > 0) {
515             if (dictContentType == ZSTD_dct_rawContent) {
516                 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
517                 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize);
518                 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
519                 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
520             } else {
521                 /* don't even load anything */
522             }
523         }
524 
525         /* Initialize serialState's copy of ldmWindow. */
526         serialState->ldmWindow = serialState->ldmState.window;
527     }
528 
529     serialState->params = params;
530     serialState->params.jobSize = (U32)jobSize;
531     return 0;
532 }
533 
534 static int ZSTDMT_serialState_init(serialState_t* serialState)
535 {
536     int initError = 0;
537     ZSTD_memset(serialState, 0, sizeof(*serialState));
538     initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
539     initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
540     initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
541     initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
542     return initError;
543 }
544 
545 static void ZSTDMT_serialState_free(serialState_t* serialState)
546 {
547     ZSTD_customMem cMem = serialState->params.customMem;
548     ZSTD_pthread_mutex_destroy(&serialState->mutex);
549     ZSTD_pthread_cond_destroy(&serialState->cond);
550     ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
551     ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
552     ZSTD_customFree(serialState->ldmState.hashTable, cMem);
553     ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
554 }
555 
556 static void ZSTDMT_serialState_update(serialState_t* serialState,
557                                       ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
558                                       range_t src, unsigned jobID)
559 {
560     /* Wait for our turn */
561     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
562     while (serialState->nextJobID < jobID) {
563         DEBUGLOG(5, "wait for serialState->cond");
564         ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
565     }
566     /* A future job may error and skip our job */
567     if (serialState->nextJobID == jobID) {
568         /* It is now our turn, do any processing necessary */
569         if (serialState->params.ldmParams.enableLdm) {
570             size_t error;
571             assert(seqStore.seq != NULL && seqStore.pos == 0 &&
572                    seqStore.size == 0 && seqStore.capacity > 0);
573             assert(src.size <= serialState->params.jobSize);
574             ZSTD_window_update(&serialState->ldmState.window, src.start, src.size);
575             error = ZSTD_ldm_generateSequences(
576                 &serialState->ldmState, &seqStore,
577                 &serialState->params.ldmParams, src.start, src.size);
578             /* We provide a large enough buffer to never fail. */
579             assert(!ZSTD_isError(error)); (void)error;
580             /* Update ldmWindow to match the ldmState.window and signal the main
581              * thread if it is waiting for a buffer.
582              */
583             ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
584             serialState->ldmWindow = serialState->ldmState.window;
585             ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
586             ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
587         }
588         if (serialState->params.fParams.checksumFlag && src.size > 0)
589             XXH64_update(&serialState->xxhState, src.start, src.size);
590     }
591     /* Now it is the next jobs turn */
592     serialState->nextJobID++;
593     ZSTD_pthread_cond_broadcast(&serialState->cond);
594     ZSTD_pthread_mutex_unlock(&serialState->mutex);
595 
596     if (seqStore.size > 0) {
597         size_t const err = ZSTD_referenceExternalSequences(
598             jobCCtx, seqStore.seq, seqStore.size);
599         assert(serialState->params.ldmParams.enableLdm);
600         assert(!ZSTD_isError(err));
601         (void)err;
602     }
603 }
604 
605 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
606                                               unsigned jobID, size_t cSize)
607 {
608     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
609     if (serialState->nextJobID <= jobID) {
610         assert(ZSTD_isError(cSize)); (void)cSize;
611         DEBUGLOG(5, "Skipping past job %u because of error", jobID);
612         serialState->nextJobID = jobID + 1;
613         ZSTD_pthread_cond_broadcast(&serialState->cond);
614 
615         ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
616         ZSTD_window_clear(&serialState->ldmWindow);
617         ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
618         ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
619     }
620     ZSTD_pthread_mutex_unlock(&serialState->mutex);
621 
622 }
623 
624 
625 /* ------------------------------------------ */
626 /* =====          Worker thread         ===== */
627 /* ------------------------------------------ */
628 
629 static const range_t kNullRange = { NULL, 0 };
630 
631 typedef struct {
632     size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
633     size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
634     ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
635     ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
636     ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
637     ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
638     ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
639     serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
640     buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
641     range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
642     range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
643     unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
644     unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
645     unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
646     ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
647     const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
648     unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
649     size_t   dstFlushed;                 /* used only by mtctx */
650     unsigned frameChecksumNeeded;        /* used only by mtctx */
651 } ZSTDMT_jobDescription;
652 
653 #define JOB_ERROR(e) {                          \
654     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
655     job->cSize = e;                             \
656     ZSTD_pthread_mutex_unlock(&job->job_mutex); \
657     goto _endJob;                               \
658 }
659 
660 /* ZSTDMT_compressionJob() is a POOL_function type */
661 static void ZSTDMT_compressionJob(void* jobDescription)
662 {
663     ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
664     ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
665     ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
666     rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
667     buffer_t dstBuff = job->dstBuff;
668     size_t lastCBlockSize = 0;
669 
670     /* resources */
671     if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
672     if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
673         dstBuff = ZSTDMT_getBuffer(job->bufPool);
674         if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
675         job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
676     }
677     if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL)
678         JOB_ERROR(ERROR(memory_allocation));
679 
680     /* Don't compute the checksum for chunks, since we compute it externally,
681      * but write it in the header.
682      */
683     if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
684     /* Don't run LDM for the chunks, since we handle it externally */
685     jobParams.ldmParams.enableLdm = 0;
686 
687 
688     /* init */
689     if (job->cdict) {
690         size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
691         assert(job->firstJob);  /* only allowed for first job */
692         if (ZSTD_isError(initError)) JOB_ERROR(initError);
693     } else {  /* srcStart points at reloaded section */
694         U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
695         {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
696             if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
697         }
698         {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
699                                         job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
700                                         ZSTD_dtlm_fast,
701                                         NULL, /*cdict*/
702                                         &jobParams, pledgedSrcSize);
703             if (ZSTD_isError(initError)) JOB_ERROR(initError);
704     }   }
705 
706     /* Perform serial step as early as possible, but after CCtx initialization */
707     ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
708 
709     if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
710         size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
711         if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
712         DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
713         ZSTD_invalidateRepCodes(cctx);
714     }
715 
716     /* compress */
717     {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
718         int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
719         const BYTE* ip = (const BYTE*) job->src.start;
720         BYTE* const ostart = (BYTE*)dstBuff.start;
721         BYTE* op = ostart;
722         BYTE* oend = op + dstBuff.capacity;
723         int chunkNb;
724         if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
725         DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
726         assert(job->cSize == 0);
727         for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
728             size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
729             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
730             ip += chunkSize;
731             op += cSize; assert(op < oend);
732             /* stats */
733             ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
734             job->cSize += cSize;
735             job->consumed = chunkSize * chunkNb;
736             DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
737                         (U32)cSize, (U32)job->cSize);
738             ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
739             ZSTD_pthread_mutex_unlock(&job->job_mutex);
740         }
741         /* last block */
742         assert(chunkSize > 0);
743         assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
744         if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
745             size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
746             size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
747             size_t const cSize = (job->lastJob) ?
748                  ZSTD_compressEnd     (cctx, op, oend-op, ip, lastBlockSize) :
749                  ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
750             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
751             lastCBlockSize = cSize;
752     }   }
753 
754 _endJob:
755     ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
756     if (job->prefix.size > 0)
757         DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
758     DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
759     /* release resources */
760     ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
761     ZSTDMT_releaseCCtx(job->cctxPool, cctx);
762     /* report */
763     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
764     if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
765     job->cSize += lastCBlockSize;
766     job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
767     ZSTD_pthread_cond_signal(&job->job_cond);
768     ZSTD_pthread_mutex_unlock(&job->job_mutex);
769 }
770 
771 
772 /* ------------------------------------------ */
773 /* =====   Multi-threaded compression   ===== */
774 /* ------------------------------------------ */
775 
776 typedef struct {
777     range_t prefix;         /* read-only non-owned prefix buffer */
778     buffer_t buffer;
779     size_t filled;
780 } inBuff_t;
781 
782 typedef struct {
783   BYTE* buffer;     /* The round input buffer. All jobs get references
784                      * to pieces of the buffer. ZSTDMT_tryGetInputRange()
785                      * handles handing out job input buffers, and makes
786                      * sure it doesn't overlap with any pieces still in use.
787                      */
788   size_t capacity;  /* The capacity of buffer. */
789   size_t pos;       /* The position of the current inBuff in the round
790                      * buffer. Updated past the end if the inBuff once
791                      * the inBuff is sent to the worker thread.
792                      * pos <= capacity.
793                      */
794 } roundBuff_t;
795 
796 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
797 
798 #define RSYNC_LENGTH 32
799 
800 typedef struct {
801   U64 hash;
802   U64 hitMask;
803   U64 primePower;
804 } rsyncState_t;
805 
806 struct ZSTDMT_CCtx_s {
807     POOL_ctx* factory;
808     ZSTDMT_jobDescription* jobs;
809     ZSTDMT_bufferPool* bufPool;
810     ZSTDMT_CCtxPool* cctxPool;
811     ZSTDMT_seqPool* seqPool;
812     ZSTD_CCtx_params params;
813     size_t targetSectionSize;
814     size_t targetPrefixSize;
815     int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
816     inBuff_t inBuff;
817     roundBuff_t roundBuff;
818     serialState_t serial;
819     rsyncState_t rsync;
820     unsigned jobIDMask;
821     unsigned doneJobID;
822     unsigned nextJobID;
823     unsigned frameEnded;
824     unsigned allJobsCompleted;
825     unsigned long long frameContentSize;
826     unsigned long long consumed;
827     unsigned long long produced;
828     ZSTD_customMem cMem;
829     ZSTD_CDict* cdictLocal;
830     const ZSTD_CDict* cdict;
831     unsigned providedFactory: 1;
832 };
833 
834 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
835 {
836     U32 jobNb;
837     if (jobTable == NULL) return;
838     for (jobNb=0; jobNb<nbJobs; jobNb++) {
839         ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
840         ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
841     }
842     ZSTD_customFree(jobTable, cMem);
843 }
844 
845 /* ZSTDMT_allocJobsTable()
846  * allocate and init a job table.
847  * update *nbJobsPtr to next power of 2 value, as size of table */
848 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
849 {
850     U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
851     U32 const nbJobs = 1 << nbJobsLog2;
852     U32 jobNb;
853     ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
854                 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
855     int initError = 0;
856     if (jobTable==NULL) return NULL;
857     *nbJobsPtr = nbJobs;
858     for (jobNb=0; jobNb<nbJobs; jobNb++) {
859         initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
860         initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
861     }
862     if (initError != 0) {
863         ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
864         return NULL;
865     }
866     return jobTable;
867 }
868 
869 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
870     U32 nbJobs = nbWorkers + 2;
871     if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
872         ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
873         mtctx->jobIDMask = 0;
874         mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
875         if (mtctx->jobs==NULL) return ERROR(memory_allocation);
876         assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
877         mtctx->jobIDMask = nbJobs - 1;
878     }
879     return 0;
880 }
881 
882 
883 /* ZSTDMT_CCtxParam_setNbWorkers():
884  * Internal use only */
885 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
886 {
887     return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
888 }
889 
890 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
891 {
892     ZSTDMT_CCtx* mtctx;
893     U32 nbJobs = nbWorkers + 2;
894     int initError;
895     DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
896 
897     if (nbWorkers < 1) return NULL;
898     nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
899     if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
900         /* invalid custom allocator */
901         return NULL;
902 
903     mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
904     if (!mtctx) return NULL;
905     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
906     mtctx->cMem = cMem;
907     mtctx->allJobsCompleted = 1;
908     if (pool != NULL) {
909       mtctx->factory = pool;
910       mtctx->providedFactory = 1;
911     }
912     else {
913       mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
914       mtctx->providedFactory = 0;
915     }
916     mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
917     assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
918     mtctx->jobIDMask = nbJobs - 1;
919     mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem);
920     mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
921     mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
922     initError = ZSTDMT_serialState_init(&mtctx->serial);
923     mtctx->roundBuff = kNullRoundBuff;
924     if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
925         ZSTDMT_freeCCtx(mtctx);
926         return NULL;
927     }
928     DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
929     return mtctx;
930 }
931 
932 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
933 {
934 #ifdef ZSTD_MULTITHREAD
935     return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
936 #else
937     (void)nbWorkers;
938     (void)cMem;
939     (void)pool;
940     return NULL;
941 #endif
942 }
943 
944 
945 /* ZSTDMT_releaseAllJobResources() :
946  * note : ensure all workers are killed first ! */
947 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
948 {
949     unsigned jobID;
950     DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
951     for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
952         /* Copy the mutex/cond out */
953         ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
954         ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
955 
956         DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
957         ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
958 
959         /* Clear the job description, but keep the mutex/cond */
960         ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
961         mtctx->jobs[jobID].job_mutex = mutex;
962         mtctx->jobs[jobID].job_cond = cond;
963     }
964     mtctx->inBuff.buffer = g_nullBuffer;
965     mtctx->inBuff.filled = 0;
966     mtctx->allJobsCompleted = 1;
967 }
968 
969 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
970 {
971     DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
972     while (mtctx->doneJobID < mtctx->nextJobID) {
973         unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
974         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
975         while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
976             DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
977             ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
978         }
979         ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
980         mtctx->doneJobID++;
981     }
982 }
983 
984 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
985 {
986     if (mtctx==NULL) return 0;   /* compatible with free on NULL */
987     if (!mtctx->providedFactory)
988         POOL_free(mtctx->factory);   /* stop and free worker threads */
989     ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
990     ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
991     ZSTDMT_freeBufferPool(mtctx->bufPool);
992     ZSTDMT_freeCCtxPool(mtctx->cctxPool);
993     ZSTDMT_freeSeqPool(mtctx->seqPool);
994     ZSTDMT_serialState_free(&mtctx->serial);
995     ZSTD_freeCDict(mtctx->cdictLocal);
996     if (mtctx->roundBuff.buffer)
997         ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
998     ZSTD_customFree(mtctx, mtctx->cMem);
999     return 0;
1000 }
1001 
1002 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1003 {
1004     if (mtctx == NULL) return 0;   /* supports sizeof NULL */
1005     return sizeof(*mtctx)
1006             + POOL_sizeof(mtctx->factory)
1007             + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1008             + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1009             + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1010             + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1011             + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1012             + mtctx->roundBuff.capacity;
1013 }
1014 
1015 
1016 /* ZSTDMT_resize() :
1017  * @return : error code if fails, 0 on success */
1018 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1019 {
1020     if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1021     FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1022     mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers);
1023     if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1024     mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1025     if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1026     mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1027     if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1028     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1029     return 0;
1030 }
1031 
1032 
1033 /*! ZSTDMT_updateCParams_whileCompressing() :
1034  *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
1035  *  New parameters will be applied to next compression job. */
1036 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1037 {
1038     U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
1039     int const compressionLevel = cctxParams->compressionLevel;
1040     DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1041                 compressionLevel);
1042     mtctx->params.compressionLevel = compressionLevel;
1043     {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1044         cParams.windowLog = saved_wlog;
1045         mtctx->params.cParams = cParams;
1046     }
1047 }
1048 
1049 /* ZSTDMT_getFrameProgression():
1050  * tells how much data has been consumed (input) and produced (output) for current frame.
1051  * able to count progression inside worker threads.
1052  * Note : mutex will be acquired during statistics collection inside workers. */
1053 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1054 {
1055     ZSTD_frameProgression fps;
1056     DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1057     fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1058     fps.consumed = mtctx->consumed;
1059     fps.produced = fps.flushed = mtctx->produced;
1060     fps.currentJobID = mtctx->nextJobID;
1061     fps.nbActiveWorkers = 0;
1062     {   unsigned jobNb;
1063         unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1064         DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1065                     mtctx->doneJobID, lastJobNb, mtctx->jobReady)
1066         for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1067             unsigned const wJobID = jobNb & mtctx->jobIDMask;
1068             ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1069             ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1070             {   size_t const cResult = jobPtr->cSize;
1071                 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1072                 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1073                 assert(flushed <= produced);
1074                 fps.ingested += jobPtr->src.size;
1075                 fps.consumed += jobPtr->consumed;
1076                 fps.produced += produced;
1077                 fps.flushed  += flushed;
1078                 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1079             }
1080             ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1081         }
1082     }
1083     return fps;
1084 }
1085 
1086 
1087 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1088 {
1089     size_t toFlush;
1090     unsigned const jobID = mtctx->doneJobID;
1091     assert(jobID <= mtctx->nextJobID);
1092     if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
1093 
1094     /* look into oldest non-fully-flushed job */
1095     {   unsigned const wJobID = jobID & mtctx->jobIDMask;
1096         ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1097         ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1098         {   size_t const cResult = jobPtr->cSize;
1099             size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1100             size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1101             assert(flushed <= produced);
1102             assert(jobPtr->consumed <= jobPtr->src.size);
1103             toFlush = produced - flushed;
1104             /* if toFlush==0, nothing is available to flush.
1105              * However, jobID is expected to still be active:
1106              * if jobID was already completed and fully flushed,
1107              * ZSTDMT_flushProduced() should have already moved onto next job.
1108              * Therefore, some input has not yet been consumed. */
1109             if (toFlush==0) {
1110                 assert(jobPtr->consumed < jobPtr->src.size);
1111             }
1112         }
1113         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1114     }
1115 
1116     return toFlush;
1117 }
1118 
1119 
1120 /* ------------------------------------------ */
1121 /* =====   Multi-threaded compression   ===== */
1122 /* ------------------------------------------ */
1123 
1124 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1125 {
1126     unsigned jobLog;
1127     if (params->ldmParams.enableLdm) {
1128         /* In Long Range Mode, the windowLog is typically oversized.
1129          * In which case, it's preferable to determine the jobSize
1130          * based on cycleLog instead. */
1131         jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1132     } else {
1133         jobLog = MAX(20, params->cParams.windowLog + 2);
1134     }
1135     return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1136 }
1137 
1138 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1139 {
1140     switch(strat)
1141     {
1142         case ZSTD_btultra2:
1143             return 9;
1144         case ZSTD_btultra:
1145         case ZSTD_btopt:
1146             return 8;
1147         case ZSTD_btlazy2:
1148         case ZSTD_lazy2:
1149             return 7;
1150         case ZSTD_lazy:
1151         case ZSTD_greedy:
1152         case ZSTD_dfast:
1153         case ZSTD_fast:
1154         default:;
1155     }
1156     return 6;
1157 }
1158 
1159 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1160 {
1161     assert(0 <= ovlog && ovlog <= 9);
1162     if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1163     return ovlog;
1164 }
1165 
1166 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1167 {
1168     int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1169     int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1170     assert(0 <= overlapRLog && overlapRLog <= 8);
1171     if (params->ldmParams.enableLdm) {
1172         /* In Long Range Mode, the windowLog is typically oversized.
1173          * In which case, it's preferable to determine the jobSize
1174          * based on chainLog instead.
1175          * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1176         ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1177                 - overlapRLog;
1178     }
1179     assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1180     DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1181     DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1182     return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1183 }
1184 
1185 /* ====================================== */
1186 /* =======      Streaming API     ======= */
1187 /* ====================================== */
1188 
1189 size_t ZSTDMT_initCStream_internal(
1190         ZSTDMT_CCtx* mtctx,
1191         const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1192         const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1193         unsigned long long pledgedSrcSize)
1194 {
1195     DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1196                 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1197 
1198     /* params supposed partially fully validated at this point */
1199     assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1200     assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
1201 
1202     /* init */
1203     if (params.nbWorkers != mtctx->params.nbWorkers)
1204         FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
1205 
1206     if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1207     if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1208 
1209     DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
1210 
1211     if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
1212         ZSTDMT_waitForAllJobsCompleted(mtctx);
1213         ZSTDMT_releaseAllJobResources(mtctx);
1214         mtctx->allJobsCompleted = 1;
1215     }
1216 
1217     mtctx->params = params;
1218     mtctx->frameContentSize = pledgedSrcSize;
1219     if (dict) {
1220         ZSTD_freeCDict(mtctx->cdictLocal);
1221         mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1222                                                     ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1223                                                     params.cParams, mtctx->cMem);
1224         mtctx->cdict = mtctx->cdictLocal;
1225         if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1226     } else {
1227         ZSTD_freeCDict(mtctx->cdictLocal);
1228         mtctx->cdictLocal = NULL;
1229         mtctx->cdict = cdict;
1230     }
1231 
1232     mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1233     DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1234     mtctx->targetSectionSize = params.jobSize;
1235     if (mtctx->targetSectionSize == 0) {
1236         mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1237     }
1238     assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1239 
1240     if (params.rsyncable) {
1241         /* Aim for the targetsectionSize as the average job size. */
1242         U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20);
1243         U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20;
1244         assert(jobSizeMB >= 1);
1245         DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1246         mtctx->rsync.hash = 0;
1247         mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1248         mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1249     }
1250     if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
1251     DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1252     DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1253     ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1254     {
1255         /* If ldm is enabled we need windowSize space. */
1256         size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0;
1257         /* Two buffers of slack, plus extra space for the overlap
1258          * This is the minimum slack that LDM works with. One extra because
1259          * flush might waste up to targetSectionSize-1 bytes. Another extra
1260          * for the overlap (if > 0), then one to fill which doesn't overlap
1261          * with the LDM window.
1262          */
1263         size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1264         size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1265         /* Compute the total size, and always have enough slack */
1266         size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1267         size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1268         size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1269         if (mtctx->roundBuff.capacity < capacity) {
1270             if (mtctx->roundBuff.buffer)
1271                 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1272             mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1273             if (mtctx->roundBuff.buffer == NULL) {
1274                 mtctx->roundBuff.capacity = 0;
1275                 return ERROR(memory_allocation);
1276             }
1277             mtctx->roundBuff.capacity = capacity;
1278         }
1279     }
1280     DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1281     mtctx->roundBuff.pos = 0;
1282     mtctx->inBuff.buffer = g_nullBuffer;
1283     mtctx->inBuff.filled = 0;
1284     mtctx->inBuff.prefix = kNullRange;
1285     mtctx->doneJobID = 0;
1286     mtctx->nextJobID = 0;
1287     mtctx->frameEnded = 0;
1288     mtctx->allJobsCompleted = 0;
1289     mtctx->consumed = 0;
1290     mtctx->produced = 0;
1291     if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1292                                  dict, dictSize, dictContentType))
1293         return ERROR(memory_allocation);
1294     return 0;
1295 }
1296 
1297 
1298 /* ZSTDMT_writeLastEmptyBlock()
1299  * Write a single empty block with an end-of-frame to finish a frame.
1300  * Job must be created from streaming variant.
1301  * This function is always successful if expected conditions are fulfilled.
1302  */
1303 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1304 {
1305     assert(job->lastJob == 1);
1306     assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
1307     assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
1308     assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1309     job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1310     if (job->dstBuff.start == NULL) {
1311       job->cSize = ERROR(memory_allocation);
1312       return;
1313     }
1314     assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
1315     job->src = kNullRange;
1316     job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1317     assert(!ZSTD_isError(job->cSize));
1318     assert(job->consumed == 0);
1319 }
1320 
1321 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1322 {
1323     unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1324     int const endFrame = (endOp == ZSTD_e_end);
1325 
1326     if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1327         DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1328         assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1329         return 0;
1330     }
1331 
1332     if (!mtctx->jobReady) {
1333         BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1334         DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1335                     mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1336         mtctx->jobs[jobID].src.start = src;
1337         mtctx->jobs[jobID].src.size = srcSize;
1338         assert(mtctx->inBuff.filled >= srcSize);
1339         mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1340         mtctx->jobs[jobID].consumed = 0;
1341         mtctx->jobs[jobID].cSize = 0;
1342         mtctx->jobs[jobID].params = mtctx->params;
1343         mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1344         mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1345         mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1346         mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1347         mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1348         mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1349         mtctx->jobs[jobID].serial = &mtctx->serial;
1350         mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1351         mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1352         mtctx->jobs[jobID].lastJob = endFrame;
1353         mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1354         mtctx->jobs[jobID].dstFlushed = 0;
1355 
1356         /* Update the round buffer pos and clear the input buffer to be reset */
1357         mtctx->roundBuff.pos += srcSize;
1358         mtctx->inBuff.buffer = g_nullBuffer;
1359         mtctx->inBuff.filled = 0;
1360         /* Set the prefix */
1361         if (!endFrame) {
1362             size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1363             mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1364             mtctx->inBuff.prefix.size = newPrefixSize;
1365         } else {   /* endFrame==1 => no need for another input buffer */
1366             mtctx->inBuff.prefix = kNullRange;
1367             mtctx->frameEnded = endFrame;
1368             if (mtctx->nextJobID == 0) {
1369                 /* single job exception : checksum is already calculated directly within worker thread */
1370                 mtctx->params.fParams.checksumFlag = 0;
1371         }   }
1372 
1373         if ( (srcSize == 0)
1374           && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1375             DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1376             assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
1377             ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1378             mtctx->nextJobID++;
1379             return 0;
1380         }
1381     }
1382 
1383     DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
1384                 mtctx->nextJobID,
1385                 (U32)mtctx->jobs[jobID].src.size,
1386                 mtctx->jobs[jobID].lastJob,
1387                 mtctx->nextJobID,
1388                 jobID);
1389     if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1390         mtctx->nextJobID++;
1391         mtctx->jobReady = 0;
1392     } else {
1393         DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1394         mtctx->jobReady = 1;
1395     }
1396     return 0;
1397 }
1398 
1399 
1400 /*! ZSTDMT_flushProduced() :
1401  *  flush whatever data has been produced but not yet flushed in current job.
1402  *  move to next job if current one is fully flushed.
1403  * `output` : `pos` will be updated with amount of data flushed .
1404  * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1405  * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1406 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1407 {
1408     unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1409     DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1410                 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1411     assert(output->size >= output->pos);
1412 
1413     ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1414     if (  blockToFlush
1415       && (mtctx->doneJobID < mtctx->nextJobID) ) {
1416         assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1417         while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
1418             if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1419                 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1420                             mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1421                 break;
1422             }
1423             DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1424                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1425             ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
1426     }   }
1427 
1428     /* try to flush something */
1429     {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
1430         size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
1431         size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1432         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1433         if (ZSTD_isError(cSize)) {
1434             DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1435                         mtctx->doneJobID, ZSTD_getErrorName(cSize));
1436             ZSTDMT_waitForAllJobsCompleted(mtctx);
1437             ZSTDMT_releaseAllJobResources(mtctx);
1438             return cSize;
1439         }
1440         /* add frame checksum if necessary (can only happen once) */
1441         assert(srcConsumed <= srcSize);
1442         if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
1443           && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1444             U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1445             DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1446             MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1447             cSize += 4;
1448             mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
1449             mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1450         }
1451 
1452         if (cSize > 0) {   /* compression is ongoing or completed */
1453             size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1454             DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1455                         (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1456             assert(mtctx->doneJobID < mtctx->nextJobID);
1457             assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1458             assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1459             if (toFlush > 0) {
1460                 ZSTD_memcpy((char*)output->dst + output->pos,
1461                     (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1462                     toFlush);
1463             }
1464             output->pos += toFlush;
1465             mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
1466 
1467             if ( (srcConsumed == srcSize)    /* job is completed */
1468               && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
1469                 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1470                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1471                 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1472                 DEBUGLOG(5, "dstBuffer released");
1473                 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1474                 mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
1475                 mtctx->consumed += srcSize;
1476                 mtctx->produced += cSize;
1477                 mtctx->doneJobID++;
1478         }   }
1479 
1480         /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1481         if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1482         if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
1483     }
1484     if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
1485     if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
1486     if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
1487     mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
1488     if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1489     return 0;   /* internal buffers fully flushed */
1490 }
1491 
1492 /**
1493  * Returns the range of data used by the earliest job that is not yet complete.
1494  * If the data of the first job is broken up into two segments, we cover both
1495  * sections.
1496  */
1497 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1498 {
1499     unsigned const firstJobID = mtctx->doneJobID;
1500     unsigned const lastJobID = mtctx->nextJobID;
1501     unsigned jobID;
1502 
1503     for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1504         unsigned const wJobID = jobID & mtctx->jobIDMask;
1505         size_t consumed;
1506 
1507         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1508         consumed = mtctx->jobs[wJobID].consumed;
1509         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1510 
1511         if (consumed < mtctx->jobs[wJobID].src.size) {
1512             range_t range = mtctx->jobs[wJobID].prefix;
1513             if (range.size == 0) {
1514                 /* Empty prefix */
1515                 range = mtctx->jobs[wJobID].src;
1516             }
1517             /* Job source in multiple segments not supported yet */
1518             assert(range.start <= mtctx->jobs[wJobID].src.start);
1519             return range;
1520         }
1521     }
1522     return kNullRange;
1523 }
1524 
1525 /**
1526  * Returns non-zero iff buffer and range overlap.
1527  */
1528 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
1529 {
1530     BYTE const* const bufferStart = (BYTE const*)buffer.start;
1531     BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1532     BYTE const* const rangeStart = (BYTE const*)range.start;
1533     BYTE const* const rangeEnd = range.size != 0 ? rangeStart + range.size : rangeStart;
1534 
1535     if (rangeStart == NULL || bufferStart == NULL)
1536         return 0;
1537     /* Empty ranges cannot overlap */
1538     if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1539         return 0;
1540 
1541     return bufferStart < rangeEnd && rangeStart < bufferEnd;
1542 }
1543 
1544 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
1545 {
1546     range_t extDict;
1547     range_t prefix;
1548 
1549     DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1550     extDict.start = window.dictBase + window.lowLimit;
1551     extDict.size = window.dictLimit - window.lowLimit;
1552 
1553     prefix.start = window.base + window.dictLimit;
1554     prefix.size = window.nextSrc - (window.base + window.dictLimit);
1555     DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1556                 (size_t)extDict.start,
1557                 (size_t)extDict.start + extDict.size);
1558     DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
1559                 (size_t)prefix.start,
1560                 (size_t)prefix.start + prefix.size);
1561 
1562     return ZSTDMT_isOverlapped(buffer, extDict)
1563         || ZSTDMT_isOverlapped(buffer, prefix);
1564 }
1565 
1566 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
1567 {
1568     if (mtctx->params.ldmParams.enableLdm) {
1569         ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1570         DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1571         DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
1572                     (size_t)buffer.start,
1573                     (size_t)buffer.start + buffer.capacity);
1574         ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1575         while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1576             DEBUGLOG(5, "Waiting for LDM to finish...");
1577             ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1578         }
1579         DEBUGLOG(6, "Done waiting for LDM to finish");
1580         ZSTD_pthread_mutex_unlock(mutex);
1581     }
1582 }
1583 
1584 /**
1585  * Attempts to set the inBuff to the next section to fill.
1586  * If any part of the new section is still in use we give up.
1587  * Returns non-zero if the buffer is filled.
1588  */
1589 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1590 {
1591     range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
1592     size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1593     size_t const target = mtctx->targetSectionSize;
1594     buffer_t buffer;
1595 
1596     DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1597     assert(mtctx->inBuff.buffer.start == NULL);
1598     assert(mtctx->roundBuff.capacity >= target);
1599 
1600     if (spaceLeft < target) {
1601         /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1602          * Simply copy the prefix to the beginning in that case.
1603          */
1604         BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1605         size_t const prefixSize = mtctx->inBuff.prefix.size;
1606 
1607         buffer.start = start;
1608         buffer.capacity = prefixSize;
1609         if (ZSTDMT_isOverlapped(buffer, inUse)) {
1610             DEBUGLOG(5, "Waiting for buffer...");
1611             return 0;
1612         }
1613         ZSTDMT_waitForLdmComplete(mtctx, buffer);
1614         ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1615         mtctx->inBuff.prefix.start = start;
1616         mtctx->roundBuff.pos = prefixSize;
1617     }
1618     buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1619     buffer.capacity = target;
1620 
1621     if (ZSTDMT_isOverlapped(buffer, inUse)) {
1622         DEBUGLOG(5, "Waiting for buffer...");
1623         return 0;
1624     }
1625     assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1626 
1627     ZSTDMT_waitForLdmComplete(mtctx, buffer);
1628 
1629     DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1630                 (size_t)mtctx->inBuff.prefix.start,
1631                 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1632     DEBUGLOG(5, "Using source range [%zx, %zx)",
1633                 (size_t)buffer.start,
1634                 (size_t)buffer.start + buffer.capacity);
1635 
1636 
1637     mtctx->inBuff.buffer = buffer;
1638     mtctx->inBuff.filled = 0;
1639     assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1640     return 1;
1641 }
1642 
1643 typedef struct {
1644   size_t toLoad;  /* The number of bytes to load from the input. */
1645   int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
1646 } syncPoint_t;
1647 
1648 /**
1649  * Searches through the input for a synchronization point. If one is found, we
1650  * will instruct the caller to flush, and return the number of bytes to load.
1651  * Otherwise, we will load as many bytes as possible and instruct the caller
1652  * to continue as normal.
1653  */
1654 static syncPoint_t
1655 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1656 {
1657     BYTE const* const istart = (BYTE const*)input.src + input.pos;
1658     U64 const primePower = mtctx->rsync.primePower;
1659     U64 const hitMask = mtctx->rsync.hitMask;
1660 
1661     syncPoint_t syncPoint;
1662     U64 hash;
1663     BYTE const* prev;
1664     size_t pos;
1665 
1666     syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1667     syncPoint.flush = 0;
1668     if (!mtctx->params.rsyncable)
1669         /* Rsync is disabled. */
1670         return syncPoint;
1671     if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1672         /* Not enough to compute the hash.
1673          * We will miss any synchronization points in this RSYNC_LENGTH byte
1674          * window. However, since it depends only in the internal buffers, if the
1675          * state is already synchronized, we will remain synchronized.
1676          * Additionally, the probability that we miss a synchronization point is
1677          * low: RSYNC_LENGTH / targetSectionSize.
1678          */
1679         return syncPoint;
1680     /* Initialize the loop variables. */
1681     if (mtctx->inBuff.filled >= RSYNC_LENGTH) {
1682         /* We have enough bytes buffered to initialize the hash.
1683          * Start scanning at the beginning of the input.
1684          */
1685         pos = 0;
1686         prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1687         hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1688         if ((hash & hitMask) == hitMask) {
1689             /* We're already at a sync point so don't load any more until
1690              * we're able to flush this sync point.
1691              * This likely happened because the job table was full so we
1692              * couldn't add our job.
1693              */
1694             syncPoint.toLoad = 0;
1695             syncPoint.flush = 1;
1696             return syncPoint;
1697         }
1698     } else {
1699         /* We don't have enough bytes buffered to initialize the hash, but
1700          * we know we have at least RSYNC_LENGTH bytes total.
1701          * Start scanning after the first RSYNC_LENGTH bytes less the bytes
1702          * already buffered.
1703          */
1704         pos = RSYNC_LENGTH - mtctx->inBuff.filled;
1705         prev = (BYTE const*)mtctx->inBuff.buffer.start - pos;
1706         hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled);
1707         hash = ZSTD_rollingHash_append(hash, istart, pos);
1708     }
1709     /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1710      * through the input. If we hit a synchronization point, then cut the
1711      * job off, and tell the compressor to flush the job. Otherwise, load
1712      * all the bytes and continue as normal.
1713      * If we go too long without a synchronization point (targetSectionSize)
1714      * then a block will be emitted anyways, but this is okay, since if we
1715      * are already synchronized we will remain synchronized.
1716      */
1717     for (; pos < syncPoint.toLoad; ++pos) {
1718         BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1719         /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */
1720         hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1721         if ((hash & hitMask) == hitMask) {
1722             syncPoint.toLoad = pos + 1;
1723             syncPoint.flush = 1;
1724             break;
1725         }
1726     }
1727     return syncPoint;
1728 }
1729 
1730 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1731 {
1732     size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1733     if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1734     return hintInSize;
1735 }
1736 
1737 /** ZSTDMT_compressStream_generic() :
1738  *  internal use only - exposed to be invoked from zstd_compress.c
1739  *  assumption : output and input are valid (pos <= size)
1740  * @return : minimum amount of data remaining to flush, 0 if none */
1741 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1742                                      ZSTD_outBuffer* output,
1743                                      ZSTD_inBuffer* input,
1744                                      ZSTD_EndDirective endOp)
1745 {
1746     unsigned forwardInputProgress = 0;
1747     DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1748                 (U32)endOp, (U32)(input->size - input->pos));
1749     assert(output->pos <= output->size);
1750     assert(input->pos  <= input->size);
1751 
1752     if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1753         /* current frame being ended. Only flush/end are allowed */
1754         return ERROR(stage_wrong);
1755     }
1756 
1757     /* fill input buffer */
1758     if ( (!mtctx->jobReady)
1759       && (input->size > input->pos) ) {   /* support NULL input */
1760         if (mtctx->inBuff.buffer.start == NULL) {
1761             assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1762             if (!ZSTDMT_tryGetInputRange(mtctx)) {
1763                 /* It is only possible for this operation to fail if there are
1764                  * still compression jobs ongoing.
1765                  */
1766                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1767                 assert(mtctx->doneJobID != mtctx->nextJobID);
1768             } else
1769                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1770         }
1771         if (mtctx->inBuff.buffer.start != NULL) {
1772             syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
1773             if (syncPoint.flush && endOp == ZSTD_e_continue) {
1774                 endOp = ZSTD_e_flush;
1775             }
1776             assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1777             DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1778                         (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1779             ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1780             input->pos += syncPoint.toLoad;
1781             mtctx->inBuff.filled += syncPoint.toLoad;
1782             forwardInputProgress = syncPoint.toLoad>0;
1783         }
1784     }
1785     if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1786         /* Can't end yet because the input is not fully consumed.
1787             * We are in one of these cases:
1788             * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1789             * - We filled the input buffer: flush this job but don't end the frame.
1790             * - We hit a synchronization point: flush this job but don't end the frame.
1791             */
1792         assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1793         endOp = ZSTD_e_flush;
1794     }
1795 
1796     if ( (mtctx->jobReady)
1797       || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
1798       || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
1799       || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
1800         size_t const jobSize = mtctx->inBuff.filled;
1801         assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1802         FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1803     }
1804 
1805     /* check for potential compressed data ready to be flushed */
1806     {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1807         if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
1808         DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1809         return remainingToFlush;
1810     }
1811 }
1812