1 /* 2 * Copyright (c) Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Compiler specifics ====== */ 13 #if defined(_MSC_VER) 14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 15 #endif 16 17 18 /* ====== Constants ====== */ 19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0 20 21 22 /* ====== Dependencies ====== */ 23 #include "../common/zstd_deps.h" /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */ 24 #include "../common/mem.h" /* MEM_STATIC */ 25 #include "../common/pool.h" /* threadpool */ 26 #include "../common/threading.h" /* mutex */ 27 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ 28 #include "zstd_ldm.h" 29 #include "zstdmt_compress.h" 30 31 /* Guards code to support resizing the SeqPool. 32 * We will want to resize the SeqPool to save memory in the future. 33 * Until then, comment the code out since it is unused. 34 */ 35 #define ZSTD_RESIZE_SEQPOOL 0 36 37 /* ====== Debug ====== */ 38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ 39 && !defined(_MSC_VER) \ 40 && !defined(__MINGW32__) 41 42 # include <stdio.h> 43 # include <unistd.h> 44 # include <sys/times.h> 45 46 # define DEBUG_PRINTHEX(l,p,n) { \ 47 unsigned debug_u; \ 48 for (debug_u=0; debug_u<(n); debug_u++) \ 49 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ 50 RAWLOG(l, " \n"); \ 51 } 52 53 static unsigned long long GetCurrentClockTimeMicroseconds(void) 54 { 55 static clock_t _ticksPerSecond = 0; 56 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); 57 58 { struct tms junk; clock_t newTicks = (clock_t) times(&junk); 59 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); 60 } } 61 62 #define MUTEX_WAIT_TIME_DLEVEL 6 63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ 64 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ 65 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ 66 ZSTD_pthread_mutex_lock(mutex); \ 67 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ 68 unsigned long long const elapsedTime = (afterTime-beforeTime); \ 69 if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ 70 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ 71 elapsedTime, #mutex); \ 72 } } \ 73 } else { \ 74 ZSTD_pthread_mutex_lock(mutex); \ 75 } \ 76 } 77 78 #else 79 80 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) 81 # define DEBUG_PRINTHEX(l,p,n) {} 82 83 #endif 84 85 86 /* ===== Buffer Pool ===== */ 87 /* a single Buffer Pool can be invoked from multiple threads in parallel */ 88 89 typedef struct buffer_s { 90 void* start; 91 size_t capacity; 92 } buffer_t; 93 94 static const buffer_t g_nullBuffer = { NULL, 0 }; 95 96 typedef struct ZSTDMT_bufferPool_s { 97 ZSTD_pthread_mutex_t poolMutex; 98 size_t bufferSize; 99 unsigned totalBuffers; 100 unsigned nbBuffers; 101 ZSTD_customMem cMem; 102 buffer_t bTable[1]; /* variable size */ 103 } ZSTDMT_bufferPool; 104 105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem) 106 { 107 ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc( 108 sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); 109 if (bufPool==NULL) return NULL; 110 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { 111 ZSTD_customFree(bufPool, cMem); 112 return NULL; 113 } 114 bufPool->bufferSize = 64 KB; 115 bufPool->totalBuffers = maxNbBuffers; 116 bufPool->nbBuffers = 0; 117 bufPool->cMem = cMem; 118 return bufPool; 119 } 120 121 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) 122 { 123 unsigned u; 124 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); 125 if (!bufPool) return; /* compatibility with free on NULL */ 126 for (u=0; u<bufPool->totalBuffers; u++) { 127 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); 128 ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem); 129 } 130 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); 131 ZSTD_customFree(bufPool, bufPool->cMem); 132 } 133 134 /* only works at initialization, not during compression */ 135 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) 136 { 137 size_t const poolSize = sizeof(*bufPool) 138 + (bufPool->totalBuffers - 1) * sizeof(buffer_t); 139 unsigned u; 140 size_t totalBufferSize = 0; 141 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 142 for (u=0; u<bufPool->totalBuffers; u++) 143 totalBufferSize += bufPool->bTable[u].capacity; 144 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 145 146 return poolSize + totalBufferSize; 147 } 148 149 /* ZSTDMT_setBufferSize() : 150 * all future buffers provided by this buffer pool will have _at least_ this size 151 * note : it's better for all buffers to have same size, 152 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ 153 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) 154 { 155 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 156 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); 157 bufPool->bufferSize = bSize; 158 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 159 } 160 161 162 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers) 163 { 164 if (srcBufPool==NULL) return NULL; 165 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ 166 return srcBufPool; 167 /* need a larger buffer pool */ 168 { ZSTD_customMem const cMem = srcBufPool->cMem; 169 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ 170 ZSTDMT_bufferPool* newBufPool; 171 ZSTDMT_freeBufferPool(srcBufPool); 172 newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem); 173 if (newBufPool==NULL) return newBufPool; 174 ZSTDMT_setBufferSize(newBufPool, bSize); 175 return newBufPool; 176 } 177 } 178 179 /** ZSTDMT_getBuffer() : 180 * assumption : bufPool must be valid 181 * @return : a buffer, with start pointer and size 182 * note: allocation may fail, in this case, start==NULL and size==0 */ 183 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) 184 { 185 size_t const bSize = bufPool->bufferSize; 186 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); 187 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 188 if (bufPool->nbBuffers) { /* try to use an existing buffer */ 189 buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; 190 size_t const availBufferSize = buf.capacity; 191 bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; 192 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { 193 /* large enough, but not too much */ 194 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", 195 bufPool->nbBuffers, (U32)buf.capacity); 196 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 197 return buf; 198 } 199 /* size conditions not respected : scratch this buffer, create new one */ 200 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); 201 ZSTD_customFree(buf.start, bufPool->cMem); 202 } 203 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 204 /* create new buffer */ 205 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); 206 { buffer_t buffer; 207 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 208 buffer.start = start; /* note : start can be NULL if malloc fails ! */ 209 buffer.capacity = (start==NULL) ? 0 : bSize; 210 if (start==NULL) { 211 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); 212 } else { 213 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); 214 } 215 return buffer; 216 } 217 } 218 219 #if ZSTD_RESIZE_SEQPOOL 220 /** ZSTDMT_resizeBuffer() : 221 * assumption : bufPool must be valid 222 * @return : a buffer that is at least the buffer pool buffer size. 223 * If a reallocation happens, the data in the input buffer is copied. 224 */ 225 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) 226 { 227 size_t const bSize = bufPool->bufferSize; 228 if (buffer.capacity < bSize) { 229 void* const start = ZSTD_customMalloc(bSize, bufPool->cMem); 230 buffer_t newBuffer; 231 newBuffer.start = start; 232 newBuffer.capacity = start == NULL ? 0 : bSize; 233 if (start != NULL) { 234 assert(newBuffer.capacity >= buffer.capacity); 235 ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity); 236 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); 237 return newBuffer; 238 } 239 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); 240 } 241 return buffer; 242 } 243 #endif 244 245 /* store buffer for later re-use, up to pool capacity */ 246 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) 247 { 248 DEBUGLOG(5, "ZSTDMT_releaseBuffer"); 249 if (buf.start == NULL) return; /* compatible with release on NULL */ 250 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 251 if (bufPool->nbBuffers < bufPool->totalBuffers) { 252 bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ 253 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", 254 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); 255 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 256 return; 257 } 258 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 259 /* Reached bufferPool capacity (should not happen) */ 260 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); 261 ZSTD_customFree(buf.start, bufPool->cMem); 262 } 263 264 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released. 265 * The 3 additional buffers are as follows: 266 * 1 buffer for input loading 267 * 1 buffer for "next input" when submitting current one 268 * 1 buffer stuck in queue */ 269 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3 270 271 /* After a worker releases its rawSeqStore, it is immediately ready for reuse. 272 * So we only need one seq buffer per worker. */ 273 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers 274 275 /* ===== Seq Pool Wrapper ====== */ 276 277 typedef ZSTDMT_bufferPool ZSTDMT_seqPool; 278 279 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) 280 { 281 return ZSTDMT_sizeof_bufferPool(seqPool); 282 } 283 284 static rawSeqStore_t bufferToSeq(buffer_t buffer) 285 { 286 rawSeqStore_t seq = kNullRawSeqStore; 287 seq.seq = (rawSeq*)buffer.start; 288 seq.capacity = buffer.capacity / sizeof(rawSeq); 289 return seq; 290 } 291 292 static buffer_t seqToBuffer(rawSeqStore_t seq) 293 { 294 buffer_t buffer; 295 buffer.start = seq.seq; 296 buffer.capacity = seq.capacity * sizeof(rawSeq); 297 return buffer; 298 } 299 300 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) 301 { 302 if (seqPool->bufferSize == 0) { 303 return kNullRawSeqStore; 304 } 305 return bufferToSeq(ZSTDMT_getBuffer(seqPool)); 306 } 307 308 #if ZSTD_RESIZE_SEQPOOL 309 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 310 { 311 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); 312 } 313 #endif 314 315 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 316 { 317 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); 318 } 319 320 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) 321 { 322 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); 323 } 324 325 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) 326 { 327 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); 328 if (seqPool == NULL) return NULL; 329 ZSTDMT_setNbSeq(seqPool, 0); 330 return seqPool; 331 } 332 333 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) 334 { 335 ZSTDMT_freeBufferPool(seqPool); 336 } 337 338 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) 339 { 340 return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers)); 341 } 342 343 344 /* ===== CCtx Pool ===== */ 345 /* a single CCtx Pool can be invoked from multiple threads in parallel */ 346 347 typedef struct { 348 ZSTD_pthread_mutex_t poolMutex; 349 int totalCCtx; 350 int availCCtx; 351 ZSTD_customMem cMem; 352 ZSTD_CCtx* cctx[1]; /* variable size */ 353 } ZSTDMT_CCtxPool; 354 355 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ 356 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) 357 { 358 int cid; 359 for (cid=0; cid<pool->totalCCtx; cid++) 360 ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ 361 ZSTD_pthread_mutex_destroy(&pool->poolMutex); 362 ZSTD_customFree(pool, pool->cMem); 363 } 364 365 /* ZSTDMT_createCCtxPool() : 366 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ 367 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, 368 ZSTD_customMem cMem) 369 { 370 ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc( 371 sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); 372 assert(nbWorkers > 0); 373 if (!cctxPool) return NULL; 374 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { 375 ZSTD_customFree(cctxPool, cMem); 376 return NULL; 377 } 378 cctxPool->cMem = cMem; 379 cctxPool->totalCCtx = nbWorkers; 380 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ 381 cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); 382 if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } 383 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); 384 return cctxPool; 385 } 386 387 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, 388 int nbWorkers) 389 { 390 if (srcPool==NULL) return NULL; 391 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ 392 /* need a larger cctx pool */ 393 { ZSTD_customMem const cMem = srcPool->cMem; 394 ZSTDMT_freeCCtxPool(srcPool); 395 return ZSTDMT_createCCtxPool(nbWorkers, cMem); 396 } 397 } 398 399 /* only works during initialization phase, not during compression */ 400 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) 401 { 402 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 403 { unsigned const nbWorkers = cctxPool->totalCCtx; 404 size_t const poolSize = sizeof(*cctxPool) 405 + (nbWorkers-1) * sizeof(ZSTD_CCtx*); 406 unsigned u; 407 size_t totalCCtxSize = 0; 408 for (u=0; u<nbWorkers; u++) { 409 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); 410 } 411 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 412 assert(nbWorkers > 0); 413 return poolSize + totalCCtxSize; 414 } 415 } 416 417 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) 418 { 419 DEBUGLOG(5, "ZSTDMT_getCCtx"); 420 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 421 if (cctxPool->availCCtx) { 422 cctxPool->availCCtx--; 423 { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; 424 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 425 return cctx; 426 } } 427 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 428 DEBUGLOG(5, "create one more CCtx"); 429 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ 430 } 431 432 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) 433 { 434 if (cctx==NULL) return; /* compatibility with release on NULL */ 435 ZSTD_pthread_mutex_lock(&pool->poolMutex); 436 if (pool->availCCtx < pool->totalCCtx) 437 pool->cctx[pool->availCCtx++] = cctx; 438 else { 439 /* pool overflow : should not happen, since totalCCtx==nbWorkers */ 440 DEBUGLOG(4, "CCtx pool overflow : free cctx"); 441 ZSTD_freeCCtx(cctx); 442 } 443 ZSTD_pthread_mutex_unlock(&pool->poolMutex); 444 } 445 446 /* ==== Serial State ==== */ 447 448 typedef struct { 449 void const* start; 450 size_t size; 451 } range_t; 452 453 typedef struct { 454 /* All variables in the struct are protected by mutex. */ 455 ZSTD_pthread_mutex_t mutex; 456 ZSTD_pthread_cond_t cond; 457 ZSTD_CCtx_params params; 458 ldmState_t ldmState; 459 XXH64_state_t xxhState; 460 unsigned nextJobID; 461 /* Protects ldmWindow. 462 * Must be acquired after the main mutex when acquiring both. 463 */ 464 ZSTD_pthread_mutex_t ldmWindowMutex; 465 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ 466 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ 467 } serialState_t; 468 469 static int 470 ZSTDMT_serialState_reset(serialState_t* serialState, 471 ZSTDMT_seqPool* seqPool, 472 ZSTD_CCtx_params params, 473 size_t jobSize, 474 const void* dict, size_t const dictSize, 475 ZSTD_dictContentType_e dictContentType) 476 { 477 /* Adjust parameters */ 478 if (params.ldmParams.enableLdm == ZSTD_ps_enable) { 479 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); 480 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); 481 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); 482 assert(params.ldmParams.hashRateLog < 32); 483 } else { 484 ZSTD_memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); 485 } 486 serialState->nextJobID = 0; 487 if (params.fParams.checksumFlag) 488 XXH64_reset(&serialState->xxhState, 0); 489 if (params.ldmParams.enableLdm == ZSTD_ps_enable) { 490 ZSTD_customMem cMem = params.customMem; 491 unsigned const hashLog = params.ldmParams.hashLog; 492 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); 493 unsigned const bucketLog = 494 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; 495 unsigned const prevBucketLog = 496 serialState->params.ldmParams.hashLog - 497 serialState->params.ldmParams.bucketSizeLog; 498 size_t const numBuckets = (size_t)1 << bucketLog; 499 /* Size the seq pool tables */ 500 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); 501 /* Reset the window */ 502 ZSTD_window_init(&serialState->ldmState.window); 503 /* Resize tables and output space if necessary. */ 504 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { 505 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 506 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem); 507 } 508 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { 509 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 510 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem); 511 } 512 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) 513 return 1; 514 /* Zero the tables */ 515 ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize); 516 ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets); 517 518 /* Update window state and fill hash table with dict */ 519 serialState->ldmState.loadedDictEnd = 0; 520 if (dictSize > 0) { 521 if (dictContentType == ZSTD_dct_rawContent) { 522 BYTE const* const dictEnd = (const BYTE*)dict + dictSize; 523 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0); 524 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); 525 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); 526 } else { 527 /* don't even load anything */ 528 } 529 } 530 531 /* Initialize serialState's copy of ldmWindow. */ 532 serialState->ldmWindow = serialState->ldmState.window; 533 } 534 535 serialState->params = params; 536 serialState->params.jobSize = (U32)jobSize; 537 return 0; 538 } 539 540 static int ZSTDMT_serialState_init(serialState_t* serialState) 541 { 542 int initError = 0; 543 ZSTD_memset(serialState, 0, sizeof(*serialState)); 544 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); 545 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); 546 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); 547 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); 548 return initError; 549 } 550 551 static void ZSTDMT_serialState_free(serialState_t* serialState) 552 { 553 ZSTD_customMem cMem = serialState->params.customMem; 554 ZSTD_pthread_mutex_destroy(&serialState->mutex); 555 ZSTD_pthread_cond_destroy(&serialState->cond); 556 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); 557 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); 558 ZSTD_customFree(serialState->ldmState.hashTable, cMem); 559 ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem); 560 } 561 562 static void ZSTDMT_serialState_update(serialState_t* serialState, 563 ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, 564 range_t src, unsigned jobID) 565 { 566 /* Wait for our turn */ 567 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 568 while (serialState->nextJobID < jobID) { 569 DEBUGLOG(5, "wait for serialState->cond"); 570 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); 571 } 572 /* A future job may error and skip our job */ 573 if (serialState->nextJobID == jobID) { 574 /* It is now our turn, do any processing necessary */ 575 if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) { 576 size_t error; 577 assert(seqStore.seq != NULL && seqStore.pos == 0 && 578 seqStore.size == 0 && seqStore.capacity > 0); 579 assert(src.size <= serialState->params.jobSize); 580 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0); 581 error = ZSTD_ldm_generateSequences( 582 &serialState->ldmState, &seqStore, 583 &serialState->params.ldmParams, src.start, src.size); 584 /* We provide a large enough buffer to never fail. */ 585 assert(!ZSTD_isError(error)); (void)error; 586 /* Update ldmWindow to match the ldmState.window and signal the main 587 * thread if it is waiting for a buffer. 588 */ 589 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 590 serialState->ldmWindow = serialState->ldmState.window; 591 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 592 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 593 } 594 if (serialState->params.fParams.checksumFlag && src.size > 0) 595 XXH64_update(&serialState->xxhState, src.start, src.size); 596 } 597 /* Now it is the next jobs turn */ 598 serialState->nextJobID++; 599 ZSTD_pthread_cond_broadcast(&serialState->cond); 600 ZSTD_pthread_mutex_unlock(&serialState->mutex); 601 602 if (seqStore.size > 0) { 603 size_t const err = ZSTD_referenceExternalSequences( 604 jobCCtx, seqStore.seq, seqStore.size); 605 assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable); 606 assert(!ZSTD_isError(err)); 607 (void)err; 608 } 609 } 610 611 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, 612 unsigned jobID, size_t cSize) 613 { 614 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 615 if (serialState->nextJobID <= jobID) { 616 assert(ZSTD_isError(cSize)); (void)cSize; 617 DEBUGLOG(5, "Skipping past job %u because of error", jobID); 618 serialState->nextJobID = jobID + 1; 619 ZSTD_pthread_cond_broadcast(&serialState->cond); 620 621 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 622 ZSTD_window_clear(&serialState->ldmWindow); 623 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 624 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 625 } 626 ZSTD_pthread_mutex_unlock(&serialState->mutex); 627 628 } 629 630 631 /* ------------------------------------------ */ 632 /* ===== Worker thread ===== */ 633 /* ------------------------------------------ */ 634 635 static const range_t kNullRange = { NULL, 0 }; 636 637 typedef struct { 638 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ 639 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ 640 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ 641 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ 642 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ 643 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ 644 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ 645 serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ 646 buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ 647 range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ 648 range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ 649 unsigned jobID; /* set by mtctx, then read by worker => no barrier */ 650 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ 651 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ 652 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ 653 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ 654 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ 655 size_t dstFlushed; /* used only by mtctx */ 656 unsigned frameChecksumNeeded; /* used only by mtctx */ 657 } ZSTDMT_jobDescription; 658 659 #define JOB_ERROR(e) { \ 660 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ 661 job->cSize = e; \ 662 ZSTD_pthread_mutex_unlock(&job->job_mutex); \ 663 goto _endJob; \ 664 } 665 666 /* ZSTDMT_compressionJob() is a POOL_function type */ 667 static void ZSTDMT_compressionJob(void* jobDescription) 668 { 669 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; 670 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ 671 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); 672 rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); 673 buffer_t dstBuff = job->dstBuff; 674 size_t lastCBlockSize = 0; 675 676 /* resources */ 677 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); 678 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ 679 dstBuff = ZSTDMT_getBuffer(job->bufPool); 680 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); 681 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ 682 } 683 if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL) 684 JOB_ERROR(ERROR(memory_allocation)); 685 686 /* Don't compute the checksum for chunks, since we compute it externally, 687 * but write it in the header. 688 */ 689 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; 690 /* Don't run LDM for the chunks, since we handle it externally */ 691 jobParams.ldmParams.enableLdm = ZSTD_ps_disable; 692 /* Correct nbWorkers to 0. */ 693 jobParams.nbWorkers = 0; 694 695 696 /* init */ 697 if (job->cdict) { 698 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); 699 assert(job->firstJob); /* only allowed for first job */ 700 if (ZSTD_isError(initError)) JOB_ERROR(initError); 701 } else { /* srcStart points at reloaded section */ 702 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; 703 { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); 704 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); 705 } 706 if (!job->firstJob) { 707 size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0); 708 if (ZSTD_isError(err)) JOB_ERROR(err); 709 } 710 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, 711 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ 712 ZSTD_dtlm_fast, 713 NULL, /*cdict*/ 714 &jobParams, pledgedSrcSize); 715 if (ZSTD_isError(initError)) JOB_ERROR(initError); 716 } } 717 718 /* Perform serial step as early as possible, but after CCtx initialization */ 719 ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); 720 721 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ 722 size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); 723 if (ZSTD_isError(hSize)) JOB_ERROR(hSize); 724 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); 725 ZSTD_invalidateRepCodes(cctx); 726 } 727 728 /* compress */ 729 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; 730 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); 731 const BYTE* ip = (const BYTE*) job->src.start; 732 BYTE* const ostart = (BYTE*)dstBuff.start; 733 BYTE* op = ostart; 734 BYTE* oend = op + dstBuff.capacity; 735 int chunkNb; 736 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ 737 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); 738 assert(job->cSize == 0); 739 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { 740 size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); 741 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 742 ip += chunkSize; 743 op += cSize; assert(op < oend); 744 /* stats */ 745 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 746 job->cSize += cSize; 747 job->consumed = chunkSize * chunkNb; 748 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", 749 (U32)cSize, (U32)job->cSize); 750 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ 751 ZSTD_pthread_mutex_unlock(&job->job_mutex); 752 } 753 /* last block */ 754 assert(chunkSize > 0); 755 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ 756 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { 757 size_t const lastBlockSize1 = job->src.size & (chunkSize-1); 758 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; 759 size_t const cSize = (job->lastJob) ? 760 ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : 761 ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); 762 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 763 lastCBlockSize = cSize; 764 } } 765 if (!job->firstJob) { 766 /* Double check that we don't have an ext-dict, because then our 767 * repcode invalidation doesn't work. 768 */ 769 assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window)); 770 } 771 ZSTD_CCtx_trace(cctx, 0); 772 773 _endJob: 774 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); 775 if (job->prefix.size > 0) 776 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); 777 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); 778 /* release resources */ 779 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); 780 ZSTDMT_releaseCCtx(job->cctxPool, cctx); 781 /* report */ 782 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 783 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); 784 job->cSize += lastCBlockSize; 785 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ 786 ZSTD_pthread_cond_signal(&job->job_cond); 787 ZSTD_pthread_mutex_unlock(&job->job_mutex); 788 } 789 790 791 /* ------------------------------------------ */ 792 /* ===== Multi-threaded compression ===== */ 793 /* ------------------------------------------ */ 794 795 typedef struct { 796 range_t prefix; /* read-only non-owned prefix buffer */ 797 buffer_t buffer; 798 size_t filled; 799 } inBuff_t; 800 801 typedef struct { 802 BYTE* buffer; /* The round input buffer. All jobs get references 803 * to pieces of the buffer. ZSTDMT_tryGetInputRange() 804 * handles handing out job input buffers, and makes 805 * sure it doesn't overlap with any pieces still in use. 806 */ 807 size_t capacity; /* The capacity of buffer. */ 808 size_t pos; /* The position of the current inBuff in the round 809 * buffer. Updated past the end if the inBuff once 810 * the inBuff is sent to the worker thread. 811 * pos <= capacity. 812 */ 813 } roundBuff_t; 814 815 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; 816 817 #define RSYNC_LENGTH 32 818 /* Don't create chunks smaller than the zstd block size. 819 * This stops us from regressing compression ratio too much, 820 * and ensures our output fits in ZSTD_compressBound(). 821 * 822 * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then 823 * ZSTD_COMPRESSBOUND() will need to be updated. 824 */ 825 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX 826 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG) 827 828 typedef struct { 829 U64 hash; 830 U64 hitMask; 831 U64 primePower; 832 } rsyncState_t; 833 834 struct ZSTDMT_CCtx_s { 835 POOL_ctx* factory; 836 ZSTDMT_jobDescription* jobs; 837 ZSTDMT_bufferPool* bufPool; 838 ZSTDMT_CCtxPool* cctxPool; 839 ZSTDMT_seqPool* seqPool; 840 ZSTD_CCtx_params params; 841 size_t targetSectionSize; 842 size_t targetPrefixSize; 843 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ 844 inBuff_t inBuff; 845 roundBuff_t roundBuff; 846 serialState_t serial; 847 rsyncState_t rsync; 848 unsigned jobIDMask; 849 unsigned doneJobID; 850 unsigned nextJobID; 851 unsigned frameEnded; 852 unsigned allJobsCompleted; 853 unsigned long long frameContentSize; 854 unsigned long long consumed; 855 unsigned long long produced; 856 ZSTD_customMem cMem; 857 ZSTD_CDict* cdictLocal; 858 const ZSTD_CDict* cdict; 859 unsigned providedFactory: 1; 860 }; 861 862 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) 863 { 864 U32 jobNb; 865 if (jobTable == NULL) return; 866 for (jobNb=0; jobNb<nbJobs; jobNb++) { 867 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); 868 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); 869 } 870 ZSTD_customFree(jobTable, cMem); 871 } 872 873 /* ZSTDMT_allocJobsTable() 874 * allocate and init a job table. 875 * update *nbJobsPtr to next power of 2 value, as size of table */ 876 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) 877 { 878 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; 879 U32 const nbJobs = 1 << nbJobsLog2; 880 U32 jobNb; 881 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) 882 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); 883 int initError = 0; 884 if (jobTable==NULL) return NULL; 885 *nbJobsPtr = nbJobs; 886 for (jobNb=0; jobNb<nbJobs; jobNb++) { 887 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); 888 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); 889 } 890 if (initError != 0) { 891 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); 892 return NULL; 893 } 894 return jobTable; 895 } 896 897 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { 898 U32 nbJobs = nbWorkers + 2; 899 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ 900 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 901 mtctx->jobIDMask = 0; 902 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); 903 if (mtctx->jobs==NULL) return ERROR(memory_allocation); 904 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ 905 mtctx->jobIDMask = nbJobs - 1; 906 } 907 return 0; 908 } 909 910 911 /* ZSTDMT_CCtxParam_setNbWorkers(): 912 * Internal use only */ 913 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) 914 { 915 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); 916 } 917 918 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 919 { 920 ZSTDMT_CCtx* mtctx; 921 U32 nbJobs = nbWorkers + 2; 922 int initError; 923 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); 924 925 if (nbWorkers < 1) return NULL; 926 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); 927 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) 928 /* invalid custom allocator */ 929 return NULL; 930 931 mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem); 932 if (!mtctx) return NULL; 933 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 934 mtctx->cMem = cMem; 935 mtctx->allJobsCompleted = 1; 936 if (pool != NULL) { 937 mtctx->factory = pool; 938 mtctx->providedFactory = 1; 939 } 940 else { 941 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); 942 mtctx->providedFactory = 0; 943 } 944 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); 945 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ 946 mtctx->jobIDMask = nbJobs - 1; 947 mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem); 948 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); 949 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); 950 initError = ZSTDMT_serialState_init(&mtctx->serial); 951 mtctx->roundBuff = kNullRoundBuff; 952 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { 953 ZSTDMT_freeCCtx(mtctx); 954 return NULL; 955 } 956 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); 957 return mtctx; 958 } 959 960 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool) 961 { 962 #ifdef ZSTD_MULTITHREAD 963 return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool); 964 #else 965 (void)nbWorkers; 966 (void)cMem; 967 (void)pool; 968 return NULL; 969 #endif 970 } 971 972 973 /* ZSTDMT_releaseAllJobResources() : 974 * note : ensure all workers are killed first ! */ 975 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) 976 { 977 unsigned jobID; 978 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); 979 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { 980 /* Copy the mutex/cond out */ 981 ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; 982 ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; 983 984 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); 985 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 986 987 /* Clear the job description, but keep the mutex/cond */ 988 ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); 989 mtctx->jobs[jobID].job_mutex = mutex; 990 mtctx->jobs[jobID].job_cond = cond; 991 } 992 mtctx->inBuff.buffer = g_nullBuffer; 993 mtctx->inBuff.filled = 0; 994 mtctx->allJobsCompleted = 1; 995 } 996 997 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) 998 { 999 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); 1000 while (mtctx->doneJobID < mtctx->nextJobID) { 1001 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; 1002 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 1003 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 1004 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ 1005 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 1006 } 1007 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 1008 mtctx->doneJobID++; 1009 } 1010 } 1011 1012 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) 1013 { 1014 if (mtctx==NULL) return 0; /* compatible with free on NULL */ 1015 if (!mtctx->providedFactory) 1016 POOL_free(mtctx->factory); /* stop and free worker threads */ 1017 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ 1018 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 1019 ZSTDMT_freeBufferPool(mtctx->bufPool); 1020 ZSTDMT_freeCCtxPool(mtctx->cctxPool); 1021 ZSTDMT_freeSeqPool(mtctx->seqPool); 1022 ZSTDMT_serialState_free(&mtctx->serial); 1023 ZSTD_freeCDict(mtctx->cdictLocal); 1024 if (mtctx->roundBuff.buffer) 1025 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 1026 ZSTD_customFree(mtctx, mtctx->cMem); 1027 return 0; 1028 } 1029 1030 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) 1031 { 1032 if (mtctx == NULL) return 0; /* supports sizeof NULL */ 1033 return sizeof(*mtctx) 1034 + POOL_sizeof(mtctx->factory) 1035 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) 1036 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) 1037 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) 1038 + ZSTDMT_sizeof_seqPool(mtctx->seqPool) 1039 + ZSTD_sizeof_CDict(mtctx->cdictLocal) 1040 + mtctx->roundBuff.capacity; 1041 } 1042 1043 1044 /* ZSTDMT_resize() : 1045 * @return : error code if fails, 0 on success */ 1046 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) 1047 { 1048 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); 1049 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); 1050 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers)); 1051 if (mtctx->bufPool == NULL) return ERROR(memory_allocation); 1052 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); 1053 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); 1054 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); 1055 if (mtctx->seqPool == NULL) return ERROR(memory_allocation); 1056 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 1057 return 0; 1058 } 1059 1060 1061 /*! ZSTDMT_updateCParams_whileCompressing() : 1062 * Updates a selected set of compression parameters, remaining compatible with currently active frame. 1063 * New parameters will be applied to next compression job. */ 1064 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) 1065 { 1066 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ 1067 int const compressionLevel = cctxParams->compressionLevel; 1068 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", 1069 compressionLevel); 1070 mtctx->params.compressionLevel = compressionLevel; 1071 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict); 1072 cParams.windowLog = saved_wlog; 1073 mtctx->params.cParams = cParams; 1074 } 1075 } 1076 1077 /* ZSTDMT_getFrameProgression(): 1078 * tells how much data has been consumed (input) and produced (output) for current frame. 1079 * able to count progression inside worker threads. 1080 * Note : mutex will be acquired during statistics collection inside workers. */ 1081 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) 1082 { 1083 ZSTD_frameProgression fps; 1084 DEBUGLOG(5, "ZSTDMT_getFrameProgression"); 1085 fps.ingested = mtctx->consumed + mtctx->inBuff.filled; 1086 fps.consumed = mtctx->consumed; 1087 fps.produced = fps.flushed = mtctx->produced; 1088 fps.currentJobID = mtctx->nextJobID; 1089 fps.nbActiveWorkers = 0; 1090 { unsigned jobNb; 1091 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); 1092 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", 1093 mtctx->doneJobID, lastJobNb, mtctx->jobReady) 1094 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { 1095 unsigned const wJobID = jobNb & mtctx->jobIDMask; 1096 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; 1097 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1098 { size_t const cResult = jobPtr->cSize; 1099 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1100 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1101 assert(flushed <= produced); 1102 fps.ingested += jobPtr->src.size; 1103 fps.consumed += jobPtr->consumed; 1104 fps.produced += produced; 1105 fps.flushed += flushed; 1106 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); 1107 } 1108 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1109 } 1110 } 1111 return fps; 1112 } 1113 1114 1115 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) 1116 { 1117 size_t toFlush; 1118 unsigned const jobID = mtctx->doneJobID; 1119 assert(jobID <= mtctx->nextJobID); 1120 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ 1121 1122 /* look into oldest non-fully-flushed job */ 1123 { unsigned const wJobID = jobID & mtctx->jobIDMask; 1124 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; 1125 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1126 { size_t const cResult = jobPtr->cSize; 1127 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1128 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1129 assert(flushed <= produced); 1130 assert(jobPtr->consumed <= jobPtr->src.size); 1131 toFlush = produced - flushed; 1132 /* if toFlush==0, nothing is available to flush. 1133 * However, jobID is expected to still be active: 1134 * if jobID was already completed and fully flushed, 1135 * ZSTDMT_flushProduced() should have already moved onto next job. 1136 * Therefore, some input has not yet been consumed. */ 1137 if (toFlush==0) { 1138 assert(jobPtr->consumed < jobPtr->src.size); 1139 } 1140 } 1141 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1142 } 1143 1144 return toFlush; 1145 } 1146 1147 1148 /* ------------------------------------------ */ 1149 /* ===== Multi-threaded compression ===== */ 1150 /* ------------------------------------------ */ 1151 1152 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) 1153 { 1154 unsigned jobLog; 1155 if (params->ldmParams.enableLdm == ZSTD_ps_enable) { 1156 /* In Long Range Mode, the windowLog is typically oversized. 1157 * In which case, it's preferable to determine the jobSize 1158 * based on cycleLog instead. */ 1159 jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3); 1160 } else { 1161 jobLog = MAX(20, params->cParams.windowLog + 2); 1162 } 1163 return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); 1164 } 1165 1166 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) 1167 { 1168 switch(strat) 1169 { 1170 case ZSTD_btultra2: 1171 return 9; 1172 case ZSTD_btultra: 1173 case ZSTD_btopt: 1174 return 8; 1175 case ZSTD_btlazy2: 1176 case ZSTD_lazy2: 1177 return 7; 1178 case ZSTD_lazy: 1179 case ZSTD_greedy: 1180 case ZSTD_dfast: 1181 case ZSTD_fast: 1182 default:; 1183 } 1184 return 6; 1185 } 1186 1187 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) 1188 { 1189 assert(0 <= ovlog && ovlog <= 9); 1190 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); 1191 return ovlog; 1192 } 1193 1194 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) 1195 { 1196 int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); 1197 int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); 1198 assert(0 <= overlapRLog && overlapRLog <= 8); 1199 if (params->ldmParams.enableLdm == ZSTD_ps_enable) { 1200 /* In Long Range Mode, the windowLog is typically oversized. 1201 * In which case, it's preferable to determine the jobSize 1202 * based on chainLog instead. 1203 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ 1204 ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) 1205 - overlapRLog; 1206 } 1207 assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); 1208 DEBUGLOG(4, "overlapLog : %i", params->overlapLog); 1209 DEBUGLOG(4, "overlap size : %i", 1 << ovLog); 1210 return (ovLog==0) ? 0 : (size_t)1 << ovLog; 1211 } 1212 1213 /* ====================================== */ 1214 /* ======= Streaming API ======= */ 1215 /* ====================================== */ 1216 1217 size_t ZSTDMT_initCStream_internal( 1218 ZSTDMT_CCtx* mtctx, 1219 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, 1220 const ZSTD_CDict* cdict, ZSTD_CCtx_params params, 1221 unsigned long long pledgedSrcSize) 1222 { 1223 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", 1224 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); 1225 1226 /* params supposed partially fully validated at this point */ 1227 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); 1228 assert(!((dict) && (cdict))); /* either dict or cdict, not both */ 1229 1230 /* init */ 1231 if (params.nbWorkers != mtctx->params.nbWorkers) 1232 FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); 1233 1234 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; 1235 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; 1236 1237 DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); 1238 1239 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ 1240 ZSTDMT_waitForAllJobsCompleted(mtctx); 1241 ZSTDMT_releaseAllJobResources(mtctx); 1242 mtctx->allJobsCompleted = 1; 1243 } 1244 1245 mtctx->params = params; 1246 mtctx->frameContentSize = pledgedSrcSize; 1247 if (dict) { 1248 ZSTD_freeCDict(mtctx->cdictLocal); 1249 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 1250 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ 1251 params.cParams, mtctx->cMem); 1252 mtctx->cdict = mtctx->cdictLocal; 1253 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); 1254 } else { 1255 ZSTD_freeCDict(mtctx->cdictLocal); 1256 mtctx->cdictLocal = NULL; 1257 mtctx->cdict = cdict; 1258 } 1259 1260 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); 1261 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); 1262 mtctx->targetSectionSize = params.jobSize; 1263 if (mtctx->targetSectionSize == 0) { 1264 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); 1265 } 1266 assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); 1267 1268 if (params.rsyncable) { 1269 /* Aim for the targetsectionSize as the average job size. */ 1270 U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10); 1271 U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10); 1272 /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our 1273 * expected job size is at least 4x larger. */ 1274 assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2); 1275 DEBUGLOG(4, "rsyncLog = %u", rsyncBits); 1276 mtctx->rsync.hash = 0; 1277 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; 1278 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); 1279 } 1280 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ 1281 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); 1282 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); 1283 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); 1284 { 1285 /* If ldm is enabled we need windowSize space. */ 1286 size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0; 1287 /* Two buffers of slack, plus extra space for the overlap 1288 * This is the minimum slack that LDM works with. One extra because 1289 * flush might waste up to targetSectionSize-1 bytes. Another extra 1290 * for the overlap (if > 0), then one to fill which doesn't overlap 1291 * with the LDM window. 1292 */ 1293 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); 1294 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; 1295 /* Compute the total size, and always have enough slack */ 1296 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); 1297 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; 1298 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; 1299 if (mtctx->roundBuff.capacity < capacity) { 1300 if (mtctx->roundBuff.buffer) 1301 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem); 1302 mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem); 1303 if (mtctx->roundBuff.buffer == NULL) { 1304 mtctx->roundBuff.capacity = 0; 1305 return ERROR(memory_allocation); 1306 } 1307 mtctx->roundBuff.capacity = capacity; 1308 } 1309 } 1310 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); 1311 mtctx->roundBuff.pos = 0; 1312 mtctx->inBuff.buffer = g_nullBuffer; 1313 mtctx->inBuff.filled = 0; 1314 mtctx->inBuff.prefix = kNullRange; 1315 mtctx->doneJobID = 0; 1316 mtctx->nextJobID = 0; 1317 mtctx->frameEnded = 0; 1318 mtctx->allJobsCompleted = 0; 1319 mtctx->consumed = 0; 1320 mtctx->produced = 0; 1321 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, 1322 dict, dictSize, dictContentType)) 1323 return ERROR(memory_allocation); 1324 return 0; 1325 } 1326 1327 1328 /* ZSTDMT_writeLastEmptyBlock() 1329 * Write a single empty block with an end-of-frame to finish a frame. 1330 * Job must be created from streaming variant. 1331 * This function is always successful if expected conditions are fulfilled. 1332 */ 1333 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) 1334 { 1335 assert(job->lastJob == 1); 1336 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ 1337 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ 1338 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ 1339 job->dstBuff = ZSTDMT_getBuffer(job->bufPool); 1340 if (job->dstBuff.start == NULL) { 1341 job->cSize = ERROR(memory_allocation); 1342 return; 1343 } 1344 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ 1345 job->src = kNullRange; 1346 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); 1347 assert(!ZSTD_isError(job->cSize)); 1348 assert(job->consumed == 0); 1349 } 1350 1351 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) 1352 { 1353 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; 1354 int const endFrame = (endOp == ZSTD_e_end); 1355 1356 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { 1357 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); 1358 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); 1359 return 0; 1360 } 1361 1362 if (!mtctx->jobReady) { 1363 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; 1364 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", 1365 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); 1366 mtctx->jobs[jobID].src.start = src; 1367 mtctx->jobs[jobID].src.size = srcSize; 1368 assert(mtctx->inBuff.filled >= srcSize); 1369 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; 1370 mtctx->jobs[jobID].consumed = 0; 1371 mtctx->jobs[jobID].cSize = 0; 1372 mtctx->jobs[jobID].params = mtctx->params; 1373 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; 1374 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; 1375 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1376 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; 1377 mtctx->jobs[jobID].bufPool = mtctx->bufPool; 1378 mtctx->jobs[jobID].seqPool = mtctx->seqPool; 1379 mtctx->jobs[jobID].serial = &mtctx->serial; 1380 mtctx->jobs[jobID].jobID = mtctx->nextJobID; 1381 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); 1382 mtctx->jobs[jobID].lastJob = endFrame; 1383 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); 1384 mtctx->jobs[jobID].dstFlushed = 0; 1385 1386 /* Update the round buffer pos and clear the input buffer to be reset */ 1387 mtctx->roundBuff.pos += srcSize; 1388 mtctx->inBuff.buffer = g_nullBuffer; 1389 mtctx->inBuff.filled = 0; 1390 /* Set the prefix */ 1391 if (!endFrame) { 1392 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); 1393 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; 1394 mtctx->inBuff.prefix.size = newPrefixSize; 1395 } else { /* endFrame==1 => no need for another input buffer */ 1396 mtctx->inBuff.prefix = kNullRange; 1397 mtctx->frameEnded = endFrame; 1398 if (mtctx->nextJobID == 0) { 1399 /* single job exception : checksum is already calculated directly within worker thread */ 1400 mtctx->params.fParams.checksumFlag = 0; 1401 } } 1402 1403 if ( (srcSize == 0) 1404 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { 1405 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); 1406 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ 1407 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); 1408 mtctx->nextJobID++; 1409 return 0; 1410 } 1411 } 1412 1413 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", 1414 mtctx->nextJobID, 1415 (U32)mtctx->jobs[jobID].src.size, 1416 mtctx->jobs[jobID].lastJob, 1417 mtctx->nextJobID, 1418 jobID); 1419 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { 1420 mtctx->nextJobID++; 1421 mtctx->jobReady = 0; 1422 } else { 1423 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); 1424 mtctx->jobReady = 1; 1425 } 1426 return 0; 1427 } 1428 1429 1430 /*! ZSTDMT_flushProduced() : 1431 * flush whatever data has been produced but not yet flushed in current job. 1432 * move to next job if current one is fully flushed. 1433 * `output` : `pos` will be updated with amount of data flushed . 1434 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . 1435 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ 1436 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) 1437 { 1438 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; 1439 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", 1440 blockToFlush, mtctx->doneJobID, mtctx->nextJobID); 1441 assert(output->size >= output->pos); 1442 1443 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1444 if ( blockToFlush 1445 && (mtctx->doneJobID < mtctx->nextJobID) ) { 1446 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); 1447 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ 1448 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { 1449 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", 1450 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); 1451 break; 1452 } 1453 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", 1454 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1455 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ 1456 } } 1457 1458 /* try to flush something */ 1459 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ 1460 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ 1461 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ 1462 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1463 if (ZSTD_isError(cSize)) { 1464 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", 1465 mtctx->doneJobID, ZSTD_getErrorName(cSize)); 1466 ZSTDMT_waitForAllJobsCompleted(mtctx); 1467 ZSTDMT_releaseAllJobResources(mtctx); 1468 return cSize; 1469 } 1470 /* add frame checksum if necessary (can only happen once) */ 1471 assert(srcConsumed <= srcSize); 1472 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ 1473 && mtctx->jobs[wJobID].frameChecksumNeeded ) { 1474 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1475 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); 1476 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); 1477 cSize += 4; 1478 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ 1479 mtctx->jobs[wJobID].frameChecksumNeeded = 0; 1480 } 1481 1482 if (cSize > 0) { /* compression is ongoing or completed */ 1483 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); 1484 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", 1485 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); 1486 assert(mtctx->doneJobID < mtctx->nextJobID); 1487 assert(cSize >= mtctx->jobs[wJobID].dstFlushed); 1488 assert(mtctx->jobs[wJobID].dstBuff.start != NULL); 1489 if (toFlush > 0) { 1490 ZSTD_memcpy((char*)output->dst + output->pos, 1491 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, 1492 toFlush); 1493 } 1494 output->pos += toFlush; 1495 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ 1496 1497 if ( (srcConsumed == srcSize) /* job is completed */ 1498 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ 1499 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", 1500 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1501 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); 1502 DEBUGLOG(5, "dstBuffer released"); 1503 mtctx->jobs[wJobID].dstBuff = g_nullBuffer; 1504 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ 1505 mtctx->consumed += srcSize; 1506 mtctx->produced += cSize; 1507 mtctx->doneJobID++; 1508 } } 1509 1510 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ 1511 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); 1512 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ 1513 } 1514 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ 1515 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ 1516 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ 1517 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ 1518 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ 1519 return 0; /* internal buffers fully flushed */ 1520 } 1521 1522 /** 1523 * Returns the range of data used by the earliest job that is not yet complete. 1524 * If the data of the first job is broken up into two segments, we cover both 1525 * sections. 1526 */ 1527 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) 1528 { 1529 unsigned const firstJobID = mtctx->doneJobID; 1530 unsigned const lastJobID = mtctx->nextJobID; 1531 unsigned jobID; 1532 1533 for (jobID = firstJobID; jobID < lastJobID; ++jobID) { 1534 unsigned const wJobID = jobID & mtctx->jobIDMask; 1535 size_t consumed; 1536 1537 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1538 consumed = mtctx->jobs[wJobID].consumed; 1539 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1540 1541 if (consumed < mtctx->jobs[wJobID].src.size) { 1542 range_t range = mtctx->jobs[wJobID].prefix; 1543 if (range.size == 0) { 1544 /* Empty prefix */ 1545 range = mtctx->jobs[wJobID].src; 1546 } 1547 /* Job source in multiple segments not supported yet */ 1548 assert(range.start <= mtctx->jobs[wJobID].src.start); 1549 return range; 1550 } 1551 } 1552 return kNullRange; 1553 } 1554 1555 /** 1556 * Returns non-zero iff buffer and range overlap. 1557 */ 1558 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) 1559 { 1560 BYTE const* const bufferStart = (BYTE const*)buffer.start; 1561 BYTE const* const rangeStart = (BYTE const*)range.start; 1562 1563 if (rangeStart == NULL || bufferStart == NULL) 1564 return 0; 1565 1566 { 1567 BYTE const* const bufferEnd = bufferStart + buffer.capacity; 1568 BYTE const* const rangeEnd = rangeStart + range.size; 1569 1570 /* Empty ranges cannot overlap */ 1571 if (bufferStart == bufferEnd || rangeStart == rangeEnd) 1572 return 0; 1573 1574 return bufferStart < rangeEnd && rangeStart < bufferEnd; 1575 } 1576 } 1577 1578 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) 1579 { 1580 range_t extDict; 1581 range_t prefix; 1582 1583 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); 1584 extDict.start = window.dictBase + window.lowLimit; 1585 extDict.size = window.dictLimit - window.lowLimit; 1586 1587 prefix.start = window.base + window.dictLimit; 1588 prefix.size = window.nextSrc - (window.base + window.dictLimit); 1589 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", 1590 (size_t)extDict.start, 1591 (size_t)extDict.start + extDict.size); 1592 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", 1593 (size_t)prefix.start, 1594 (size_t)prefix.start + prefix.size); 1595 1596 return ZSTDMT_isOverlapped(buffer, extDict) 1597 || ZSTDMT_isOverlapped(buffer, prefix); 1598 } 1599 1600 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) 1601 { 1602 if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) { 1603 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; 1604 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); 1605 DEBUGLOG(5, "source [0x%zx, 0x%zx)", 1606 (size_t)buffer.start, 1607 (size_t)buffer.start + buffer.capacity); 1608 ZSTD_PTHREAD_MUTEX_LOCK(mutex); 1609 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { 1610 DEBUGLOG(5, "Waiting for LDM to finish..."); 1611 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); 1612 } 1613 DEBUGLOG(6, "Done waiting for LDM to finish"); 1614 ZSTD_pthread_mutex_unlock(mutex); 1615 } 1616 } 1617 1618 /** 1619 * Attempts to set the inBuff to the next section to fill. 1620 * If any part of the new section is still in use we give up. 1621 * Returns non-zero if the buffer is filled. 1622 */ 1623 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) 1624 { 1625 range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); 1626 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; 1627 size_t const target = mtctx->targetSectionSize; 1628 buffer_t buffer; 1629 1630 DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); 1631 assert(mtctx->inBuff.buffer.start == NULL); 1632 assert(mtctx->roundBuff.capacity >= target); 1633 1634 if (spaceLeft < target) { 1635 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. 1636 * Simply copy the prefix to the beginning in that case. 1637 */ 1638 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; 1639 size_t const prefixSize = mtctx->inBuff.prefix.size; 1640 1641 buffer.start = start; 1642 buffer.capacity = prefixSize; 1643 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1644 DEBUGLOG(5, "Waiting for buffer..."); 1645 return 0; 1646 } 1647 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1648 ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize); 1649 mtctx->inBuff.prefix.start = start; 1650 mtctx->roundBuff.pos = prefixSize; 1651 } 1652 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; 1653 buffer.capacity = target; 1654 1655 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1656 DEBUGLOG(5, "Waiting for buffer..."); 1657 return 0; 1658 } 1659 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); 1660 1661 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1662 1663 DEBUGLOG(5, "Using prefix range [%zx, %zx)", 1664 (size_t)mtctx->inBuff.prefix.start, 1665 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); 1666 DEBUGLOG(5, "Using source range [%zx, %zx)", 1667 (size_t)buffer.start, 1668 (size_t)buffer.start + buffer.capacity); 1669 1670 1671 mtctx->inBuff.buffer = buffer; 1672 mtctx->inBuff.filled = 0; 1673 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); 1674 return 1; 1675 } 1676 1677 typedef struct { 1678 size_t toLoad; /* The number of bytes to load from the input. */ 1679 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ 1680 } syncPoint_t; 1681 1682 /** 1683 * Searches through the input for a synchronization point. If one is found, we 1684 * will instruct the caller to flush, and return the number of bytes to load. 1685 * Otherwise, we will load as many bytes as possible and instruct the caller 1686 * to continue as normal. 1687 */ 1688 static syncPoint_t 1689 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) 1690 { 1691 BYTE const* const istart = (BYTE const*)input.src + input.pos; 1692 U64 const primePower = mtctx->rsync.primePower; 1693 U64 const hitMask = mtctx->rsync.hitMask; 1694 1695 syncPoint_t syncPoint; 1696 U64 hash; 1697 BYTE const* prev; 1698 size_t pos; 1699 1700 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); 1701 syncPoint.flush = 0; 1702 if (!mtctx->params.rsyncable) 1703 /* Rsync is disabled. */ 1704 return syncPoint; 1705 if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE) 1706 /* We don't emit synchronization points if it would produce too small blocks. 1707 * We don't have enough input to find a synchronization point, so don't look. 1708 */ 1709 return syncPoint; 1710 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) 1711 /* Not enough to compute the hash. 1712 * We will miss any synchronization points in this RSYNC_LENGTH byte 1713 * window. However, since it depends only in the internal buffers, if the 1714 * state is already synchronized, we will remain synchronized. 1715 * Additionally, the probability that we miss a synchronization point is 1716 * low: RSYNC_LENGTH / targetSectionSize. 1717 */ 1718 return syncPoint; 1719 /* Initialize the loop variables. */ 1720 if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) { 1721 /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions 1722 * because they can't possibly be a sync point. So we can start 1723 * part way through the input buffer. 1724 */ 1725 pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled; 1726 if (pos >= RSYNC_LENGTH) { 1727 prev = istart + pos - RSYNC_LENGTH; 1728 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1729 } else { 1730 assert(mtctx->inBuff.filled >= RSYNC_LENGTH); 1731 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1732 hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos)); 1733 hash = ZSTD_rollingHash_append(hash, istart, pos); 1734 } 1735 } else { 1736 /* We have enough bytes buffered to initialize the hash, 1737 * and are have processed enough bytes to find a sync point. 1738 * Start scanning at the beginning of the input. 1739 */ 1740 assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE); 1741 assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH); 1742 pos = 0; 1743 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1744 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1745 if ((hash & hitMask) == hitMask) { 1746 /* We're already at a sync point so don't load any more until 1747 * we're able to flush this sync point. 1748 * This likely happened because the job table was full so we 1749 * couldn't add our job. 1750 */ 1751 syncPoint.toLoad = 0; 1752 syncPoint.flush = 1; 1753 return syncPoint; 1754 } 1755 } 1756 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll 1757 * through the input. If we hit a synchronization point, then cut the 1758 * job off, and tell the compressor to flush the job. Otherwise, load 1759 * all the bytes and continue as normal. 1760 * If we go too long without a synchronization point (targetSectionSize) 1761 * then a block will be emitted anyways, but this is okay, since if we 1762 * are already synchronized we will remain synchronized. 1763 */ 1764 for (; pos < syncPoint.toLoad; ++pos) { 1765 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; 1766 assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); 1767 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); 1768 assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE); 1769 if ((hash & hitMask) == hitMask) { 1770 syncPoint.toLoad = pos + 1; 1771 syncPoint.flush = 1; 1772 break; 1773 } 1774 } 1775 return syncPoint; 1776 } 1777 1778 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) 1779 { 1780 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; 1781 if (hintInSize==0) hintInSize = mtctx->targetSectionSize; 1782 return hintInSize; 1783 } 1784 1785 /** ZSTDMT_compressStream_generic() : 1786 * internal use only - exposed to be invoked from zstd_compress.c 1787 * assumption : output and input are valid (pos <= size) 1788 * @return : minimum amount of data remaining to flush, 0 if none */ 1789 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, 1790 ZSTD_outBuffer* output, 1791 ZSTD_inBuffer* input, 1792 ZSTD_EndDirective endOp) 1793 { 1794 unsigned forwardInputProgress = 0; 1795 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", 1796 (U32)endOp, (U32)(input->size - input->pos)); 1797 assert(output->pos <= output->size); 1798 assert(input->pos <= input->size); 1799 1800 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { 1801 /* current frame being ended. Only flush/end are allowed */ 1802 return ERROR(stage_wrong); 1803 } 1804 1805 /* fill input buffer */ 1806 if ( (!mtctx->jobReady) 1807 && (input->size > input->pos) ) { /* support NULL input */ 1808 if (mtctx->inBuff.buffer.start == NULL) { 1809 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ 1810 if (!ZSTDMT_tryGetInputRange(mtctx)) { 1811 /* It is only possible for this operation to fail if there are 1812 * still compression jobs ongoing. 1813 */ 1814 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); 1815 assert(mtctx->doneJobID != mtctx->nextJobID); 1816 } else 1817 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); 1818 } 1819 if (mtctx->inBuff.buffer.start != NULL) { 1820 syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); 1821 if (syncPoint.flush && endOp == ZSTD_e_continue) { 1822 endOp = ZSTD_e_flush; 1823 } 1824 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); 1825 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", 1826 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); 1827 ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); 1828 input->pos += syncPoint.toLoad; 1829 mtctx->inBuff.filled += syncPoint.toLoad; 1830 forwardInputProgress = syncPoint.toLoad>0; 1831 } 1832 } 1833 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) { 1834 /* Can't end yet because the input is not fully consumed. 1835 * We are in one of these cases: 1836 * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job. 1837 * - We filled the input buffer: flush this job but don't end the frame. 1838 * - We hit a synchronization point: flush this job but don't end the frame. 1839 */ 1840 assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable); 1841 endOp = ZSTD_e_flush; 1842 } 1843 1844 if ( (mtctx->jobReady) 1845 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ 1846 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ 1847 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ 1848 size_t const jobSize = mtctx->inBuff.filled; 1849 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); 1850 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); 1851 } 1852 1853 /* check for potential compressed data ready to be flushed */ 1854 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ 1855 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ 1856 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); 1857 return remainingToFlush; 1858 } 1859 } 1860