1 /* 2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Compiler specifics ====== */ 13 #if defined(_MSC_VER) 14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 15 #endif 16 17 18 /* ====== Constants ====== */ 19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0 20 21 22 /* ====== Dependencies ====== */ 23 #include <string.h> /* memcpy, memset */ 24 #include <limits.h> /* INT_MAX, UINT_MAX */ 25 #include "../common/mem.h" /* MEM_STATIC */ 26 #include "../common/pool.h" /* threadpool */ 27 #include "../common/threading.h" /* mutex */ 28 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ 29 #include "zstd_ldm.h" 30 #include "zstdmt_compress.h" 31 32 /* Guards code to support resizing the SeqPool. 33 * We will want to resize the SeqPool to save memory in the future. 34 * Until then, comment the code out since it is unused. 35 */ 36 #define ZSTD_RESIZE_SEQPOOL 0 37 38 /* ====== Debug ====== */ 39 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ 40 && !defined(_MSC_VER) \ 41 && !defined(__MINGW32__) 42 43 # include <stdio.h> 44 # include <unistd.h> 45 # include <sys/times.h> 46 47 # define DEBUG_PRINTHEX(l,p,n) { \ 48 unsigned debug_u; \ 49 for (debug_u=0; debug_u<(n); debug_u++) \ 50 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ 51 RAWLOG(l, " \n"); \ 52 } 53 54 static unsigned long long GetCurrentClockTimeMicroseconds(void) 55 { 56 static clock_t _ticksPerSecond = 0; 57 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); 58 59 { struct tms junk; clock_t newTicks = (clock_t) times(&junk); 60 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); 61 } } 62 63 #define MUTEX_WAIT_TIME_DLEVEL 6 64 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ 65 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ 66 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ 67 ZSTD_pthread_mutex_lock(mutex); \ 68 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ 69 unsigned long long const elapsedTime = (afterTime-beforeTime); \ 70 if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ 71 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ 72 elapsedTime, #mutex); \ 73 } } \ 74 } else { \ 75 ZSTD_pthread_mutex_lock(mutex); \ 76 } \ 77 } 78 79 #else 80 81 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) 82 # define DEBUG_PRINTHEX(l,p,n) {} 83 84 #endif 85 86 87 /* ===== Buffer Pool ===== */ 88 /* a single Buffer Pool can be invoked from multiple threads in parallel */ 89 90 typedef struct buffer_s { 91 void* start; 92 size_t capacity; 93 } buffer_t; 94 95 static const buffer_t g_nullBuffer = { NULL, 0 }; 96 97 typedef struct ZSTDMT_bufferPool_s { 98 ZSTD_pthread_mutex_t poolMutex; 99 size_t bufferSize; 100 unsigned totalBuffers; 101 unsigned nbBuffers; 102 ZSTD_customMem cMem; 103 buffer_t bTable[1]; /* variable size */ 104 } ZSTDMT_bufferPool; 105 106 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem) 107 { 108 unsigned const maxNbBuffers = 2*nbWorkers + 3; 109 ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc( 110 sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); 111 if (bufPool==NULL) return NULL; 112 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { 113 ZSTD_free(bufPool, cMem); 114 return NULL; 115 } 116 bufPool->bufferSize = 64 KB; 117 bufPool->totalBuffers = maxNbBuffers; 118 bufPool->nbBuffers = 0; 119 bufPool->cMem = cMem; 120 return bufPool; 121 } 122 123 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) 124 { 125 unsigned u; 126 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); 127 if (!bufPool) return; /* compatibility with free on NULL */ 128 for (u=0; u<bufPool->totalBuffers; u++) { 129 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); 130 ZSTD_free(bufPool->bTable[u].start, bufPool->cMem); 131 } 132 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); 133 ZSTD_free(bufPool, bufPool->cMem); 134 } 135 136 /* only works at initialization, not during compression */ 137 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) 138 { 139 size_t const poolSize = sizeof(*bufPool) 140 + (bufPool->totalBuffers - 1) * sizeof(buffer_t); 141 unsigned u; 142 size_t totalBufferSize = 0; 143 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 144 for (u=0; u<bufPool->totalBuffers; u++) 145 totalBufferSize += bufPool->bTable[u].capacity; 146 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 147 148 return poolSize + totalBufferSize; 149 } 150 151 /* ZSTDMT_setBufferSize() : 152 * all future buffers provided by this buffer pool will have _at least_ this size 153 * note : it's better for all buffers to have same size, 154 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ 155 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) 156 { 157 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 158 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); 159 bufPool->bufferSize = bSize; 160 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 161 } 162 163 164 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers) 165 { 166 unsigned const maxNbBuffers = 2*nbWorkers + 3; 167 if (srcBufPool==NULL) return NULL; 168 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ 169 return srcBufPool; 170 /* need a larger buffer pool */ 171 { ZSTD_customMem const cMem = srcBufPool->cMem; 172 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ 173 ZSTDMT_bufferPool* newBufPool; 174 ZSTDMT_freeBufferPool(srcBufPool); 175 newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 176 if (newBufPool==NULL) return newBufPool; 177 ZSTDMT_setBufferSize(newBufPool, bSize); 178 return newBufPool; 179 } 180 } 181 182 /** ZSTDMT_getBuffer() : 183 * assumption : bufPool must be valid 184 * @return : a buffer, with start pointer and size 185 * note: allocation may fail, in this case, start==NULL and size==0 */ 186 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) 187 { 188 size_t const bSize = bufPool->bufferSize; 189 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); 190 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 191 if (bufPool->nbBuffers) { /* try to use an existing buffer */ 192 buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; 193 size_t const availBufferSize = buf.capacity; 194 bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; 195 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { 196 /* large enough, but not too much */ 197 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", 198 bufPool->nbBuffers, (U32)buf.capacity); 199 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 200 return buf; 201 } 202 /* size conditions not respected : scratch this buffer, create new one */ 203 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); 204 ZSTD_free(buf.start, bufPool->cMem); 205 } 206 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 207 /* create new buffer */ 208 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); 209 { buffer_t buffer; 210 void* const start = ZSTD_malloc(bSize, bufPool->cMem); 211 buffer.start = start; /* note : start can be NULL if malloc fails ! */ 212 buffer.capacity = (start==NULL) ? 0 : bSize; 213 if (start==NULL) { 214 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); 215 } else { 216 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); 217 } 218 return buffer; 219 } 220 } 221 222 #if ZSTD_RESIZE_SEQPOOL 223 /** ZSTDMT_resizeBuffer() : 224 * assumption : bufPool must be valid 225 * @return : a buffer that is at least the buffer pool buffer size. 226 * If a reallocation happens, the data in the input buffer is copied. 227 */ 228 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) 229 { 230 size_t const bSize = bufPool->bufferSize; 231 if (buffer.capacity < bSize) { 232 void* const start = ZSTD_malloc(bSize, bufPool->cMem); 233 buffer_t newBuffer; 234 newBuffer.start = start; 235 newBuffer.capacity = start == NULL ? 0 : bSize; 236 if (start != NULL) { 237 assert(newBuffer.capacity >= buffer.capacity); 238 memcpy(newBuffer.start, buffer.start, buffer.capacity); 239 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); 240 return newBuffer; 241 } 242 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); 243 } 244 return buffer; 245 } 246 #endif 247 248 /* store buffer for later re-use, up to pool capacity */ 249 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) 250 { 251 DEBUGLOG(5, "ZSTDMT_releaseBuffer"); 252 if (buf.start == NULL) return; /* compatible with release on NULL */ 253 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 254 if (bufPool->nbBuffers < bufPool->totalBuffers) { 255 bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ 256 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", 257 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); 258 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 259 return; 260 } 261 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 262 /* Reached bufferPool capacity (should not happen) */ 263 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); 264 ZSTD_free(buf.start, bufPool->cMem); 265 } 266 267 268 /* ===== Seq Pool Wrapper ====== */ 269 270 static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0}; 271 272 typedef ZSTDMT_bufferPool ZSTDMT_seqPool; 273 274 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) 275 { 276 return ZSTDMT_sizeof_bufferPool(seqPool); 277 } 278 279 static rawSeqStore_t bufferToSeq(buffer_t buffer) 280 { 281 rawSeqStore_t seq = {NULL, 0, 0, 0}; 282 seq.seq = (rawSeq*)buffer.start; 283 seq.capacity = buffer.capacity / sizeof(rawSeq); 284 return seq; 285 } 286 287 static buffer_t seqToBuffer(rawSeqStore_t seq) 288 { 289 buffer_t buffer; 290 buffer.start = seq.seq; 291 buffer.capacity = seq.capacity * sizeof(rawSeq); 292 return buffer; 293 } 294 295 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) 296 { 297 if (seqPool->bufferSize == 0) { 298 return kNullRawSeqStore; 299 } 300 return bufferToSeq(ZSTDMT_getBuffer(seqPool)); 301 } 302 303 #if ZSTD_RESIZE_SEQPOOL 304 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 305 { 306 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); 307 } 308 #endif 309 310 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 311 { 312 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); 313 } 314 315 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) 316 { 317 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); 318 } 319 320 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) 321 { 322 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 323 if (seqPool == NULL) return NULL; 324 ZSTDMT_setNbSeq(seqPool, 0); 325 return seqPool; 326 } 327 328 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) 329 { 330 ZSTDMT_freeBufferPool(seqPool); 331 } 332 333 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) 334 { 335 return ZSTDMT_expandBufferPool(pool, nbWorkers); 336 } 337 338 339 /* ===== CCtx Pool ===== */ 340 /* a single CCtx Pool can be invoked from multiple threads in parallel */ 341 342 typedef struct { 343 ZSTD_pthread_mutex_t poolMutex; 344 int totalCCtx; 345 int availCCtx; 346 ZSTD_customMem cMem; 347 ZSTD_CCtx* cctx[1]; /* variable size */ 348 } ZSTDMT_CCtxPool; 349 350 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ 351 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) 352 { 353 int cid; 354 for (cid=0; cid<pool->totalCCtx; cid++) 355 ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ 356 ZSTD_pthread_mutex_destroy(&pool->poolMutex); 357 ZSTD_free(pool, pool->cMem); 358 } 359 360 /* ZSTDMT_createCCtxPool() : 361 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ 362 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, 363 ZSTD_customMem cMem) 364 { 365 ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc( 366 sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); 367 assert(nbWorkers > 0); 368 if (!cctxPool) return NULL; 369 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { 370 ZSTD_free(cctxPool, cMem); 371 return NULL; 372 } 373 cctxPool->cMem = cMem; 374 cctxPool->totalCCtx = nbWorkers; 375 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ 376 cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); 377 if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } 378 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); 379 return cctxPool; 380 } 381 382 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, 383 int nbWorkers) 384 { 385 if (srcPool==NULL) return NULL; 386 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ 387 /* need a larger cctx pool */ 388 { ZSTD_customMem const cMem = srcPool->cMem; 389 ZSTDMT_freeCCtxPool(srcPool); 390 return ZSTDMT_createCCtxPool(nbWorkers, cMem); 391 } 392 } 393 394 /* only works during initialization phase, not during compression */ 395 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) 396 { 397 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 398 { unsigned const nbWorkers = cctxPool->totalCCtx; 399 size_t const poolSize = sizeof(*cctxPool) 400 + (nbWorkers-1) * sizeof(ZSTD_CCtx*); 401 unsigned u; 402 size_t totalCCtxSize = 0; 403 for (u=0; u<nbWorkers; u++) { 404 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); 405 } 406 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 407 assert(nbWorkers > 0); 408 return poolSize + totalCCtxSize; 409 } 410 } 411 412 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) 413 { 414 DEBUGLOG(5, "ZSTDMT_getCCtx"); 415 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 416 if (cctxPool->availCCtx) { 417 cctxPool->availCCtx--; 418 { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; 419 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 420 return cctx; 421 } } 422 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 423 DEBUGLOG(5, "create one more CCtx"); 424 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ 425 } 426 427 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) 428 { 429 if (cctx==NULL) return; /* compatibility with release on NULL */ 430 ZSTD_pthread_mutex_lock(&pool->poolMutex); 431 if (pool->availCCtx < pool->totalCCtx) 432 pool->cctx[pool->availCCtx++] = cctx; 433 else { 434 /* pool overflow : should not happen, since totalCCtx==nbWorkers */ 435 DEBUGLOG(4, "CCtx pool overflow : free cctx"); 436 ZSTD_freeCCtx(cctx); 437 } 438 ZSTD_pthread_mutex_unlock(&pool->poolMutex); 439 } 440 441 /* ==== Serial State ==== */ 442 443 typedef struct { 444 void const* start; 445 size_t size; 446 } range_t; 447 448 typedef struct { 449 /* All variables in the struct are protected by mutex. */ 450 ZSTD_pthread_mutex_t mutex; 451 ZSTD_pthread_cond_t cond; 452 ZSTD_CCtx_params params; 453 ldmState_t ldmState; 454 XXH64_state_t xxhState; 455 unsigned nextJobID; 456 /* Protects ldmWindow. 457 * Must be acquired after the main mutex when acquiring both. 458 */ 459 ZSTD_pthread_mutex_t ldmWindowMutex; 460 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is updated */ 461 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ 462 } serialState_t; 463 464 static int 465 ZSTDMT_serialState_reset(serialState_t* serialState, 466 ZSTDMT_seqPool* seqPool, 467 ZSTD_CCtx_params params, 468 size_t jobSize, 469 const void* dict, size_t const dictSize, 470 ZSTD_dictContentType_e dictContentType) 471 { 472 /* Adjust parameters */ 473 if (params.ldmParams.enableLdm) { 474 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); 475 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); 476 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); 477 assert(params.ldmParams.hashRateLog < 32); 478 serialState->ldmState.hashPower = 479 ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); 480 } else { 481 memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); 482 } 483 serialState->nextJobID = 0; 484 if (params.fParams.checksumFlag) 485 XXH64_reset(&serialState->xxhState, 0); 486 if (params.ldmParams.enableLdm) { 487 ZSTD_customMem cMem = params.customMem; 488 unsigned const hashLog = params.ldmParams.hashLog; 489 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); 490 unsigned const bucketLog = 491 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; 492 size_t const bucketSize = (size_t)1 << bucketLog; 493 unsigned const prevBucketLog = 494 serialState->params.ldmParams.hashLog - 495 serialState->params.ldmParams.bucketSizeLog; 496 /* Size the seq pool tables */ 497 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); 498 /* Reset the window */ 499 ZSTD_window_init(&serialState->ldmState.window); 500 /* Resize tables and output space if necessary. */ 501 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { 502 ZSTD_free(serialState->ldmState.hashTable, cMem); 503 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem); 504 } 505 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { 506 ZSTD_free(serialState->ldmState.bucketOffsets, cMem); 507 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem); 508 } 509 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) 510 return 1; 511 /* Zero the tables */ 512 memset(serialState->ldmState.hashTable, 0, hashSize); 513 memset(serialState->ldmState.bucketOffsets, 0, bucketSize); 514 515 /* Update window state and fill hash table with dict */ 516 serialState->ldmState.loadedDictEnd = 0; 517 if (dictSize > 0) { 518 if (dictContentType == ZSTD_dct_rawContent) { 519 BYTE const* const dictEnd = (const BYTE*)dict + dictSize; 520 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize); 521 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, ¶ms.ldmParams); 522 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base); 523 } else { 524 /* don't even load anything */ 525 } 526 } 527 528 /* Initialize serialState's copy of ldmWindow. */ 529 serialState->ldmWindow = serialState->ldmState.window; 530 } 531 532 serialState->params = params; 533 serialState->params.jobSize = (U32)jobSize; 534 return 0; 535 } 536 537 static int ZSTDMT_serialState_init(serialState_t* serialState) 538 { 539 int initError = 0; 540 memset(serialState, 0, sizeof(*serialState)); 541 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); 542 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); 543 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); 544 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); 545 return initError; 546 } 547 548 static void ZSTDMT_serialState_free(serialState_t* serialState) 549 { 550 ZSTD_customMem cMem = serialState->params.customMem; 551 ZSTD_pthread_mutex_destroy(&serialState->mutex); 552 ZSTD_pthread_cond_destroy(&serialState->cond); 553 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); 554 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); 555 ZSTD_free(serialState->ldmState.hashTable, cMem); 556 ZSTD_free(serialState->ldmState.bucketOffsets, cMem); 557 } 558 559 static void ZSTDMT_serialState_update(serialState_t* serialState, 560 ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, 561 range_t src, unsigned jobID) 562 { 563 /* Wait for our turn */ 564 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 565 while (serialState->nextJobID < jobID) { 566 DEBUGLOG(5, "wait for serialState->cond"); 567 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); 568 } 569 /* A future job may error and skip our job */ 570 if (serialState->nextJobID == jobID) { 571 /* It is now our turn, do any processing necessary */ 572 if (serialState->params.ldmParams.enableLdm) { 573 size_t error; 574 assert(seqStore.seq != NULL && seqStore.pos == 0 && 575 seqStore.size == 0 && seqStore.capacity > 0); 576 assert(src.size <= serialState->params.jobSize); 577 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size); 578 error = ZSTD_ldm_generateSequences( 579 &serialState->ldmState, &seqStore, 580 &serialState->params.ldmParams, src.start, src.size); 581 /* We provide a large enough buffer to never fail. */ 582 assert(!ZSTD_isError(error)); (void)error; 583 /* Update ldmWindow to match the ldmState.window and signal the main 584 * thread if it is waiting for a buffer. 585 */ 586 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 587 serialState->ldmWindow = serialState->ldmState.window; 588 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 589 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 590 } 591 if (serialState->params.fParams.checksumFlag && src.size > 0) 592 XXH64_update(&serialState->xxhState, src.start, src.size); 593 } 594 /* Now it is the next jobs turn */ 595 serialState->nextJobID++; 596 ZSTD_pthread_cond_broadcast(&serialState->cond); 597 ZSTD_pthread_mutex_unlock(&serialState->mutex); 598 599 if (seqStore.size > 0) { 600 size_t const err = ZSTD_referenceExternalSequences( 601 jobCCtx, seqStore.seq, seqStore.size); 602 assert(serialState->params.ldmParams.enableLdm); 603 assert(!ZSTD_isError(err)); 604 (void)err; 605 } 606 } 607 608 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, 609 unsigned jobID, size_t cSize) 610 { 611 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 612 if (serialState->nextJobID <= jobID) { 613 assert(ZSTD_isError(cSize)); (void)cSize; 614 DEBUGLOG(5, "Skipping past job %u because of error", jobID); 615 serialState->nextJobID = jobID + 1; 616 ZSTD_pthread_cond_broadcast(&serialState->cond); 617 618 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 619 ZSTD_window_clear(&serialState->ldmWindow); 620 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 621 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 622 } 623 ZSTD_pthread_mutex_unlock(&serialState->mutex); 624 625 } 626 627 628 /* ------------------------------------------ */ 629 /* ===== Worker thread ===== */ 630 /* ------------------------------------------ */ 631 632 static const range_t kNullRange = { NULL, 0 }; 633 634 typedef struct { 635 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ 636 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ 637 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ 638 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ 639 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ 640 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ 641 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ 642 serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ 643 buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ 644 range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ 645 range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ 646 unsigned jobID; /* set by mtctx, then read by worker => no barrier */ 647 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ 648 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ 649 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ 650 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ 651 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ 652 size_t dstFlushed; /* used only by mtctx */ 653 unsigned frameChecksumNeeded; /* used only by mtctx */ 654 } ZSTDMT_jobDescription; 655 656 #define JOB_ERROR(e) { \ 657 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ 658 job->cSize = e; \ 659 ZSTD_pthread_mutex_unlock(&job->job_mutex); \ 660 goto _endJob; \ 661 } 662 663 /* ZSTDMT_compressionJob() is a POOL_function type */ 664 static void ZSTDMT_compressionJob(void* jobDescription) 665 { 666 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; 667 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ 668 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); 669 rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); 670 buffer_t dstBuff = job->dstBuff; 671 size_t lastCBlockSize = 0; 672 673 /* resources */ 674 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); 675 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ 676 dstBuff = ZSTDMT_getBuffer(job->bufPool); 677 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); 678 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ 679 } 680 if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL) 681 JOB_ERROR(ERROR(memory_allocation)); 682 683 /* Don't compute the checksum for chunks, since we compute it externally, 684 * but write it in the header. 685 */ 686 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; 687 /* Don't run LDM for the chunks, since we handle it externally */ 688 jobParams.ldmParams.enableLdm = 0; 689 690 691 /* init */ 692 if (job->cdict) { 693 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize); 694 assert(job->firstJob); /* only allowed for first job */ 695 if (ZSTD_isError(initError)) JOB_ERROR(initError); 696 } else { /* srcStart points at reloaded section */ 697 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; 698 { size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); 699 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); 700 } 701 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, 702 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ 703 ZSTD_dtlm_fast, 704 NULL, /*cdict*/ 705 &jobParams, pledgedSrcSize); 706 if (ZSTD_isError(initError)) JOB_ERROR(initError); 707 } } 708 709 /* Perform serial step as early as possible, but after CCtx initialization */ 710 ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); 711 712 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ 713 size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); 714 if (ZSTD_isError(hSize)) JOB_ERROR(hSize); 715 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); 716 ZSTD_invalidateRepCodes(cctx); 717 } 718 719 /* compress */ 720 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; 721 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); 722 const BYTE* ip = (const BYTE*) job->src.start; 723 BYTE* const ostart = (BYTE*)dstBuff.start; 724 BYTE* op = ostart; 725 BYTE* oend = op + dstBuff.capacity; 726 int chunkNb; 727 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ 728 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); 729 assert(job->cSize == 0); 730 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { 731 size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); 732 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 733 ip += chunkSize; 734 op += cSize; assert(op < oend); 735 /* stats */ 736 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 737 job->cSize += cSize; 738 job->consumed = chunkSize * chunkNb; 739 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", 740 (U32)cSize, (U32)job->cSize); 741 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ 742 ZSTD_pthread_mutex_unlock(&job->job_mutex); 743 } 744 /* last block */ 745 assert(chunkSize > 0); 746 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ 747 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { 748 size_t const lastBlockSize1 = job->src.size & (chunkSize-1); 749 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; 750 size_t const cSize = (job->lastJob) ? 751 ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : 752 ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); 753 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 754 lastCBlockSize = cSize; 755 } } 756 757 _endJob: 758 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); 759 if (job->prefix.size > 0) 760 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); 761 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); 762 /* release resources */ 763 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); 764 ZSTDMT_releaseCCtx(job->cctxPool, cctx); 765 /* report */ 766 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 767 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); 768 job->cSize += lastCBlockSize; 769 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ 770 ZSTD_pthread_cond_signal(&job->job_cond); 771 ZSTD_pthread_mutex_unlock(&job->job_mutex); 772 } 773 774 775 /* ------------------------------------------ */ 776 /* ===== Multi-threaded compression ===== */ 777 /* ------------------------------------------ */ 778 779 typedef struct { 780 range_t prefix; /* read-only non-owned prefix buffer */ 781 buffer_t buffer; 782 size_t filled; 783 } inBuff_t; 784 785 typedef struct { 786 BYTE* buffer; /* The round input buffer. All jobs get references 787 * to pieces of the buffer. ZSTDMT_tryGetInputRange() 788 * handles handing out job input buffers, and makes 789 * sure it doesn't overlap with any pieces still in use. 790 */ 791 size_t capacity; /* The capacity of buffer. */ 792 size_t pos; /* The position of the current inBuff in the round 793 * buffer. Updated past the end if the inBuff once 794 * the inBuff is sent to the worker thread. 795 * pos <= capacity. 796 */ 797 } roundBuff_t; 798 799 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; 800 801 #define RSYNC_LENGTH 32 802 803 typedef struct { 804 U64 hash; 805 U64 hitMask; 806 U64 primePower; 807 } rsyncState_t; 808 809 struct ZSTDMT_CCtx_s { 810 POOL_ctx* factory; 811 ZSTDMT_jobDescription* jobs; 812 ZSTDMT_bufferPool* bufPool; 813 ZSTDMT_CCtxPool* cctxPool; 814 ZSTDMT_seqPool* seqPool; 815 ZSTD_CCtx_params params; 816 size_t targetSectionSize; 817 size_t targetPrefixSize; 818 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ 819 inBuff_t inBuff; 820 roundBuff_t roundBuff; 821 serialState_t serial; 822 rsyncState_t rsync; 823 unsigned singleBlockingThread; 824 unsigned jobIDMask; 825 unsigned doneJobID; 826 unsigned nextJobID; 827 unsigned frameEnded; 828 unsigned allJobsCompleted; 829 unsigned long long frameContentSize; 830 unsigned long long consumed; 831 unsigned long long produced; 832 ZSTD_customMem cMem; 833 ZSTD_CDict* cdictLocal; 834 const ZSTD_CDict* cdict; 835 }; 836 837 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) 838 { 839 U32 jobNb; 840 if (jobTable == NULL) return; 841 for (jobNb=0; jobNb<nbJobs; jobNb++) { 842 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); 843 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); 844 } 845 ZSTD_free(jobTable, cMem); 846 } 847 848 /* ZSTDMT_allocJobsTable() 849 * allocate and init a job table. 850 * update *nbJobsPtr to next power of 2 value, as size of table */ 851 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) 852 { 853 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; 854 U32 const nbJobs = 1 << nbJobsLog2; 855 U32 jobNb; 856 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) 857 ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); 858 int initError = 0; 859 if (jobTable==NULL) return NULL; 860 *nbJobsPtr = nbJobs; 861 for (jobNb=0; jobNb<nbJobs; jobNb++) { 862 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); 863 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); 864 } 865 if (initError != 0) { 866 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); 867 return NULL; 868 } 869 return jobTable; 870 } 871 872 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { 873 U32 nbJobs = nbWorkers + 2; 874 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ 875 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 876 mtctx->jobIDMask = 0; 877 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); 878 if (mtctx->jobs==NULL) return ERROR(memory_allocation); 879 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ 880 mtctx->jobIDMask = nbJobs - 1; 881 } 882 return 0; 883 } 884 885 886 /* ZSTDMT_CCtxParam_setNbWorkers(): 887 * Internal use only */ 888 size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) 889 { 890 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers); 891 } 892 893 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem) 894 { 895 ZSTDMT_CCtx* mtctx; 896 U32 nbJobs = nbWorkers + 2; 897 int initError; 898 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); 899 900 if (nbWorkers < 1) return NULL; 901 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); 902 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) 903 /* invalid custom allocator */ 904 return NULL; 905 906 mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem); 907 if (!mtctx) return NULL; 908 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 909 mtctx->cMem = cMem; 910 mtctx->allJobsCompleted = 1; 911 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); 912 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); 913 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ 914 mtctx->jobIDMask = nbJobs - 1; 915 mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 916 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); 917 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); 918 initError = ZSTDMT_serialState_init(&mtctx->serial); 919 mtctx->roundBuff = kNullRoundBuff; 920 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { 921 ZSTDMT_freeCCtx(mtctx); 922 return NULL; 923 } 924 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); 925 return mtctx; 926 } 927 928 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem) 929 { 930 #ifdef ZSTD_MULTITHREAD 931 return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem); 932 #else 933 (void)nbWorkers; 934 (void)cMem; 935 return NULL; 936 #endif 937 } 938 939 ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers) 940 { 941 return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem); 942 } 943 944 945 /* ZSTDMT_releaseAllJobResources() : 946 * note : ensure all workers are killed first ! */ 947 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) 948 { 949 unsigned jobID; 950 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); 951 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { 952 /* Copy the mutex/cond out */ 953 ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex; 954 ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond; 955 956 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); 957 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 958 959 /* Clear the job description, but keep the mutex/cond */ 960 memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID])); 961 mtctx->jobs[jobID].job_mutex = mutex; 962 mtctx->jobs[jobID].job_cond = cond; 963 } 964 mtctx->inBuff.buffer = g_nullBuffer; 965 mtctx->inBuff.filled = 0; 966 mtctx->allJobsCompleted = 1; 967 } 968 969 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) 970 { 971 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); 972 while (mtctx->doneJobID < mtctx->nextJobID) { 973 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; 974 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 975 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 976 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ 977 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 978 } 979 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 980 mtctx->doneJobID++; 981 } 982 } 983 984 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) 985 { 986 if (mtctx==NULL) return 0; /* compatible with free on NULL */ 987 POOL_free(mtctx->factory); /* stop and free worker threads */ 988 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ 989 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 990 ZSTDMT_freeBufferPool(mtctx->bufPool); 991 ZSTDMT_freeCCtxPool(mtctx->cctxPool); 992 ZSTDMT_freeSeqPool(mtctx->seqPool); 993 ZSTDMT_serialState_free(&mtctx->serial); 994 ZSTD_freeCDict(mtctx->cdictLocal); 995 if (mtctx->roundBuff.buffer) 996 ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); 997 ZSTD_free(mtctx, mtctx->cMem); 998 return 0; 999 } 1000 1001 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) 1002 { 1003 if (mtctx == NULL) return 0; /* supports sizeof NULL */ 1004 return sizeof(*mtctx) 1005 + POOL_sizeof(mtctx->factory) 1006 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) 1007 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) 1008 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) 1009 + ZSTDMT_sizeof_seqPool(mtctx->seqPool) 1010 + ZSTD_sizeof_CDict(mtctx->cdictLocal) 1011 + mtctx->roundBuff.capacity; 1012 } 1013 1014 /* Internal only */ 1015 size_t 1016 ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, 1017 ZSTDMT_parameter parameter, 1018 int value) 1019 { 1020 DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter"); 1021 switch(parameter) 1022 { 1023 case ZSTDMT_p_jobSize : 1024 DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value); 1025 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_jobSize, value); 1026 case ZSTDMT_p_overlapLog : 1027 DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value); 1028 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_overlapLog, value); 1029 case ZSTDMT_p_rsyncable : 1030 DEBUGLOG(4, "ZSTD_p_rsyncable : %i", value); 1031 return ZSTD_CCtxParams_setParameter(params, ZSTD_c_rsyncable, value); 1032 default : 1033 return ERROR(parameter_unsupported); 1034 } 1035 } 1036 1037 size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value) 1038 { 1039 DEBUGLOG(4, "ZSTDMT_setMTCtxParameter"); 1040 return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value); 1041 } 1042 1043 size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value) 1044 { 1045 switch (parameter) { 1046 case ZSTDMT_p_jobSize: 1047 return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_jobSize, value); 1048 case ZSTDMT_p_overlapLog: 1049 return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_overlapLog, value); 1050 case ZSTDMT_p_rsyncable: 1051 return ZSTD_CCtxParams_getParameter(&mtctx->params, ZSTD_c_rsyncable, value); 1052 default: 1053 return ERROR(parameter_unsupported); 1054 } 1055 } 1056 1057 /* Sets parameters relevant to the compression job, 1058 * initializing others to default values. */ 1059 static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(const ZSTD_CCtx_params* params) 1060 { 1061 ZSTD_CCtx_params jobParams = *params; 1062 /* Clear parameters related to multithreading */ 1063 jobParams.forceWindow = 0; 1064 jobParams.nbWorkers = 0; 1065 jobParams.jobSize = 0; 1066 jobParams.overlapLog = 0; 1067 jobParams.rsyncable = 0; 1068 memset(&jobParams.ldmParams, 0, sizeof(ldmParams_t)); 1069 memset(&jobParams.customMem, 0, sizeof(ZSTD_customMem)); 1070 return jobParams; 1071 } 1072 1073 1074 /* ZSTDMT_resize() : 1075 * @return : error code if fails, 0 on success */ 1076 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) 1077 { 1078 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); 1079 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , ""); 1080 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers); 1081 if (mtctx->bufPool == NULL) return ERROR(memory_allocation); 1082 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); 1083 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); 1084 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); 1085 if (mtctx->seqPool == NULL) return ERROR(memory_allocation); 1086 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 1087 return 0; 1088 } 1089 1090 1091 /*! ZSTDMT_updateCParams_whileCompressing() : 1092 * Updates a selected set of compression parameters, remaining compatible with currently active frame. 1093 * New parameters will be applied to next compression job. */ 1094 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) 1095 { 1096 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ 1097 int const compressionLevel = cctxParams->compressionLevel; 1098 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", 1099 compressionLevel); 1100 mtctx->params.compressionLevel = compressionLevel; 1101 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0); 1102 cParams.windowLog = saved_wlog; 1103 mtctx->params.cParams = cParams; 1104 } 1105 } 1106 1107 /* ZSTDMT_getFrameProgression(): 1108 * tells how much data has been consumed (input) and produced (output) for current frame. 1109 * able to count progression inside worker threads. 1110 * Note : mutex will be acquired during statistics collection inside workers. */ 1111 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) 1112 { 1113 ZSTD_frameProgression fps; 1114 DEBUGLOG(5, "ZSTDMT_getFrameProgression"); 1115 fps.ingested = mtctx->consumed + mtctx->inBuff.filled; 1116 fps.consumed = mtctx->consumed; 1117 fps.produced = fps.flushed = mtctx->produced; 1118 fps.currentJobID = mtctx->nextJobID; 1119 fps.nbActiveWorkers = 0; 1120 { unsigned jobNb; 1121 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); 1122 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", 1123 mtctx->doneJobID, lastJobNb, mtctx->jobReady) 1124 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { 1125 unsigned const wJobID = jobNb & mtctx->jobIDMask; 1126 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; 1127 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1128 { size_t const cResult = jobPtr->cSize; 1129 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1130 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1131 assert(flushed <= produced); 1132 fps.ingested += jobPtr->src.size; 1133 fps.consumed += jobPtr->consumed; 1134 fps.produced += produced; 1135 fps.flushed += flushed; 1136 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); 1137 } 1138 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1139 } 1140 } 1141 return fps; 1142 } 1143 1144 1145 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) 1146 { 1147 size_t toFlush; 1148 unsigned const jobID = mtctx->doneJobID; 1149 assert(jobID <= mtctx->nextJobID); 1150 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ 1151 1152 /* look into oldest non-fully-flushed job */ 1153 { unsigned const wJobID = jobID & mtctx->jobIDMask; 1154 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; 1155 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1156 { size_t const cResult = jobPtr->cSize; 1157 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1158 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1159 assert(flushed <= produced); 1160 assert(jobPtr->consumed <= jobPtr->src.size); 1161 toFlush = produced - flushed; 1162 /* if toFlush==0, nothing is available to flush. 1163 * However, jobID is expected to still be active: 1164 * if jobID was already completed and fully flushed, 1165 * ZSTDMT_flushProduced() should have already moved onto next job. 1166 * Therefore, some input has not yet been consumed. */ 1167 if (toFlush==0) { 1168 assert(jobPtr->consumed < jobPtr->src.size); 1169 } 1170 } 1171 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1172 } 1173 1174 return toFlush; 1175 } 1176 1177 1178 /* ------------------------------------------ */ 1179 /* ===== Multi-threaded compression ===== */ 1180 /* ------------------------------------------ */ 1181 1182 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params) 1183 { 1184 unsigned jobLog; 1185 if (params->ldmParams.enableLdm) { 1186 /* In Long Range Mode, the windowLog is typically oversized. 1187 * In which case, it's preferable to determine the jobSize 1188 * based on chainLog instead. */ 1189 jobLog = MAX(21, params->cParams.chainLog + 4); 1190 } else { 1191 jobLog = MAX(20, params->cParams.windowLog + 2); 1192 } 1193 return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX); 1194 } 1195 1196 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) 1197 { 1198 switch(strat) 1199 { 1200 case ZSTD_btultra2: 1201 return 9; 1202 case ZSTD_btultra: 1203 case ZSTD_btopt: 1204 return 8; 1205 case ZSTD_btlazy2: 1206 case ZSTD_lazy2: 1207 return 7; 1208 case ZSTD_lazy: 1209 case ZSTD_greedy: 1210 case ZSTD_dfast: 1211 case ZSTD_fast: 1212 default:; 1213 } 1214 return 6; 1215 } 1216 1217 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) 1218 { 1219 assert(0 <= ovlog && ovlog <= 9); 1220 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); 1221 return ovlog; 1222 } 1223 1224 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params) 1225 { 1226 int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy); 1227 int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog); 1228 assert(0 <= overlapRLog && overlapRLog <= 8); 1229 if (params->ldmParams.enableLdm) { 1230 /* In Long Range Mode, the windowLog is typically oversized. 1231 * In which case, it's preferable to determine the jobSize 1232 * based on chainLog instead. 1233 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ 1234 ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) 1235 - overlapRLog; 1236 } 1237 assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX); 1238 DEBUGLOG(4, "overlapLog : %i", params->overlapLog); 1239 DEBUGLOG(4, "overlap size : %i", 1 << ovLog); 1240 return (ovLog==0) ? 0 : (size_t)1 << ovLog; 1241 } 1242 1243 static unsigned 1244 ZSTDMT_computeNbJobs(const ZSTD_CCtx_params* params, size_t srcSize, unsigned nbWorkers) 1245 { 1246 assert(nbWorkers>0); 1247 { size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params); 1248 size_t const jobMaxSize = jobSizeTarget << 2; 1249 size_t const passSizeMax = jobMaxSize * nbWorkers; 1250 unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1; 1251 unsigned const nbJobsLarge = multiplier * nbWorkers; 1252 unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1; 1253 unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers); 1254 return (multiplier>1) ? nbJobsLarge : nbJobsSmall; 1255 } } 1256 1257 /* ZSTDMT_compress_advanced_internal() : 1258 * This is a blocking function : it will only give back control to caller after finishing its compression job. 1259 */ 1260 static size_t 1261 ZSTDMT_compress_advanced_internal( 1262 ZSTDMT_CCtx* mtctx, 1263 void* dst, size_t dstCapacity, 1264 const void* src, size_t srcSize, 1265 const ZSTD_CDict* cdict, 1266 ZSTD_CCtx_params params) 1267 { 1268 ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(¶ms); 1269 size_t const overlapSize = ZSTDMT_computeOverlapSize(¶ms); 1270 unsigned const nbJobs = ZSTDMT_computeNbJobs(¶ms, srcSize, params.nbWorkers); 1271 size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs; 1272 size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */ 1273 const char* const srcStart = (const char*)src; 1274 size_t remainingSrcSize = srcSize; 1275 unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize)); /* presumes avgJobSize >= 256 KB, which should be the case */ 1276 size_t frameStartPos = 0, dstBufferPos = 0; 1277 assert(jobParams.nbWorkers == 0); 1278 assert(mtctx->cctxPool->totalCCtx == params.nbWorkers); 1279 1280 params.jobSize = (U32)avgJobSize; 1281 DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ", 1282 nbJobs, (U32)proposedJobSize, (U32)avgJobSize); 1283 1284 if ((nbJobs==1) | (params.nbWorkers<=1)) { /* fallback to single-thread mode : this is a blocking invocation anyway */ 1285 ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0]; 1286 DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode"); 1287 if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams); 1288 return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, &jobParams); 1289 } 1290 1291 assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */ 1292 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) ); 1293 /* LDM doesn't even try to load the dictionary in single-ingestion mode */ 1294 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize, NULL, 0, ZSTD_dct_auto)) 1295 return ERROR(memory_allocation); 1296 1297 FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbJobs) , ""); /* only expands if necessary */ 1298 1299 { unsigned u; 1300 for (u=0; u<nbJobs; u++) { 1301 size_t const jobSize = MIN(remainingSrcSize, avgJobSize); 1302 size_t const dstBufferCapacity = ZSTD_compressBound(jobSize); 1303 buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity }; 1304 buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer; 1305 size_t dictSize = u ? overlapSize : 0; 1306 1307 mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize; 1308 mtctx->jobs[u].prefix.size = dictSize; 1309 mtctx->jobs[u].src.start = srcStart + frameStartPos; 1310 mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0); /* avoid job.src.size == 0 */ 1311 mtctx->jobs[u].consumed = 0; 1312 mtctx->jobs[u].cSize = 0; 1313 mtctx->jobs[u].cdict = (u==0) ? cdict : NULL; 1314 mtctx->jobs[u].fullFrameSize = srcSize; 1315 mtctx->jobs[u].params = jobParams; 1316 /* do not calculate checksum within sections, but write it in header for first section */ 1317 mtctx->jobs[u].dstBuff = dstBuffer; 1318 mtctx->jobs[u].cctxPool = mtctx->cctxPool; 1319 mtctx->jobs[u].bufPool = mtctx->bufPool; 1320 mtctx->jobs[u].seqPool = mtctx->seqPool; 1321 mtctx->jobs[u].serial = &mtctx->serial; 1322 mtctx->jobs[u].jobID = u; 1323 mtctx->jobs[u].firstJob = (u==0); 1324 mtctx->jobs[u].lastJob = (u==nbJobs-1); 1325 1326 DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u (%u bytes)", u, (U32)jobSize); 1327 DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12); 1328 POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]); 1329 1330 frameStartPos += jobSize; 1331 dstBufferPos += dstBufferCapacity; 1332 remainingSrcSize -= jobSize; 1333 } } 1334 1335 /* collect result */ 1336 { size_t error = 0, dstPos = 0; 1337 unsigned jobID; 1338 for (jobID=0; jobID<nbJobs; jobID++) { 1339 DEBUGLOG(5, "waiting for job %u ", jobID); 1340 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 1341 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 1342 DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID); 1343 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 1344 } 1345 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 1346 DEBUGLOG(5, "ready to write job %u ", jobID); 1347 1348 { size_t const cSize = mtctx->jobs[jobID].cSize; 1349 if (ZSTD_isError(cSize)) error = cSize; 1350 if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); 1351 if (jobID) { /* note : job 0 is written directly at dst, which is correct position */ 1352 if (!error) 1353 memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize); /* may overlap when job compressed within dst */ 1354 if (jobID >= compressWithinDst) { /* job compressed into its own buffer, which must be released */ 1355 DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst); 1356 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 1357 } } 1358 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1359 mtctx->jobs[jobID].cSize = 0; 1360 dstPos += cSize ; 1361 } 1362 } /* for (jobID=0; jobID<nbJobs; jobID++) */ 1363 1364 DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag); 1365 if (params.fParams.checksumFlag) { 1366 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1367 if (dstPos + 4 > dstCapacity) { 1368 error = ERROR(dstSize_tooSmall); 1369 } else { 1370 DEBUGLOG(4, "writing checksum : %08X \n", checksum); 1371 MEM_writeLE32((char*)dst + dstPos, checksum); 1372 dstPos += 4; 1373 } } 1374 1375 if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos); 1376 return error ? error : dstPos; 1377 } 1378 } 1379 1380 size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx, 1381 void* dst, size_t dstCapacity, 1382 const void* src, size_t srcSize, 1383 const ZSTD_CDict* cdict, 1384 ZSTD_parameters params, 1385 int overlapLog) 1386 { 1387 ZSTD_CCtx_params cctxParams = mtctx->params; 1388 cctxParams.cParams = params.cParams; 1389 cctxParams.fParams = params.fParams; 1390 assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX); 1391 cctxParams.overlapLog = overlapLog; 1392 return ZSTDMT_compress_advanced_internal(mtctx, 1393 dst, dstCapacity, 1394 src, srcSize, 1395 cdict, cctxParams); 1396 } 1397 1398 1399 size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, 1400 void* dst, size_t dstCapacity, 1401 const void* src, size_t srcSize, 1402 int compressionLevel) 1403 { 1404 ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); 1405 int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy); 1406 params.fParams.contentSizeFlag = 1; 1407 return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog); 1408 } 1409 1410 1411 /* ====================================== */ 1412 /* ======= Streaming API ======= */ 1413 /* ====================================== */ 1414 1415 size_t ZSTDMT_initCStream_internal( 1416 ZSTDMT_CCtx* mtctx, 1417 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, 1418 const ZSTD_CDict* cdict, ZSTD_CCtx_params params, 1419 unsigned long long pledgedSrcSize) 1420 { 1421 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", 1422 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); 1423 1424 /* params supposed partially fully validated at this point */ 1425 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); 1426 assert(!((dict) && (cdict))); /* either dict or cdict, not both */ 1427 1428 /* init */ 1429 if (params.nbWorkers != mtctx->params.nbWorkers) 1430 FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , ""); 1431 1432 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; 1433 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX; 1434 1435 mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */ 1436 if (mtctx->singleBlockingThread) { 1437 ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(¶ms); 1438 DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode"); 1439 assert(singleThreadParams.nbWorkers == 0); 1440 return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0], 1441 dict, dictSize, cdict, 1442 &singleThreadParams, pledgedSrcSize); 1443 } 1444 1445 DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); 1446 1447 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ 1448 ZSTDMT_waitForAllJobsCompleted(mtctx); 1449 ZSTDMT_releaseAllJobResources(mtctx); 1450 mtctx->allJobsCompleted = 1; 1451 } 1452 1453 mtctx->params = params; 1454 mtctx->frameContentSize = pledgedSrcSize; 1455 if (dict) { 1456 ZSTD_freeCDict(mtctx->cdictLocal); 1457 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 1458 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ 1459 params.cParams, mtctx->cMem); 1460 mtctx->cdict = mtctx->cdictLocal; 1461 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); 1462 } else { 1463 ZSTD_freeCDict(mtctx->cdictLocal); 1464 mtctx->cdictLocal = NULL; 1465 mtctx->cdict = cdict; 1466 } 1467 1468 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(¶ms); 1469 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); 1470 mtctx->targetSectionSize = params.jobSize; 1471 if (mtctx->targetSectionSize == 0) { 1472 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(¶ms); 1473 } 1474 assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX); 1475 1476 if (params.rsyncable) { 1477 /* Aim for the targetsectionSize as the average job size. */ 1478 U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20); 1479 U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20; 1480 assert(jobSizeMB >= 1); 1481 DEBUGLOG(4, "rsyncLog = %u", rsyncBits); 1482 mtctx->rsync.hash = 0; 1483 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; 1484 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); 1485 } 1486 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ 1487 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); 1488 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); 1489 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); 1490 { 1491 /* If ldm is enabled we need windowSize space. */ 1492 size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0; 1493 /* Two buffers of slack, plus extra space for the overlap 1494 * This is the minimum slack that LDM works with. One extra because 1495 * flush might waste up to targetSectionSize-1 bytes. Another extra 1496 * for the overlap (if > 0), then one to fill which doesn't overlap 1497 * with the LDM window. 1498 */ 1499 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); 1500 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; 1501 /* Compute the total size, and always have enough slack */ 1502 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); 1503 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; 1504 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; 1505 if (mtctx->roundBuff.capacity < capacity) { 1506 if (mtctx->roundBuff.buffer) 1507 ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); 1508 mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem); 1509 if (mtctx->roundBuff.buffer == NULL) { 1510 mtctx->roundBuff.capacity = 0; 1511 return ERROR(memory_allocation); 1512 } 1513 mtctx->roundBuff.capacity = capacity; 1514 } 1515 } 1516 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); 1517 mtctx->roundBuff.pos = 0; 1518 mtctx->inBuff.buffer = g_nullBuffer; 1519 mtctx->inBuff.filled = 0; 1520 mtctx->inBuff.prefix = kNullRange; 1521 mtctx->doneJobID = 0; 1522 mtctx->nextJobID = 0; 1523 mtctx->frameEnded = 0; 1524 mtctx->allJobsCompleted = 0; 1525 mtctx->consumed = 0; 1526 mtctx->produced = 0; 1527 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize, 1528 dict, dictSize, dictContentType)) 1529 return ERROR(memory_allocation); 1530 return 0; 1531 } 1532 1533 size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx, 1534 const void* dict, size_t dictSize, 1535 ZSTD_parameters params, 1536 unsigned long long pledgedSrcSize) 1537 { 1538 ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ 1539 DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize); 1540 cctxParams.cParams = params.cParams; 1541 cctxParams.fParams = params.fParams; 1542 return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL, 1543 cctxParams, pledgedSrcSize); 1544 } 1545 1546 size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx, 1547 const ZSTD_CDict* cdict, 1548 ZSTD_frameParameters fParams, 1549 unsigned long long pledgedSrcSize) 1550 { 1551 ZSTD_CCtx_params cctxParams = mtctx->params; 1552 if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */ 1553 cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict); 1554 cctxParams.fParams = fParams; 1555 return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict, 1556 cctxParams, pledgedSrcSize); 1557 } 1558 1559 1560 /* ZSTDMT_resetCStream() : 1561 * pledgedSrcSize can be zero == unknown (for the time being) 1562 * prefer using ZSTD_CONTENTSIZE_UNKNOWN, 1563 * as `0` might mean "empty" in the future */ 1564 size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize) 1565 { 1566 if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; 1567 return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params, 1568 pledgedSrcSize); 1569 } 1570 1571 size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) { 1572 ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0); 1573 ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ 1574 DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel); 1575 cctxParams.cParams = params.cParams; 1576 cctxParams.fParams = params.fParams; 1577 return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN); 1578 } 1579 1580 1581 /* ZSTDMT_writeLastEmptyBlock() 1582 * Write a single empty block with an end-of-frame to finish a frame. 1583 * Job must be created from streaming variant. 1584 * This function is always successful if expected conditions are fulfilled. 1585 */ 1586 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) 1587 { 1588 assert(job->lastJob == 1); 1589 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ 1590 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ 1591 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ 1592 job->dstBuff = ZSTDMT_getBuffer(job->bufPool); 1593 if (job->dstBuff.start == NULL) { 1594 job->cSize = ERROR(memory_allocation); 1595 return; 1596 } 1597 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ 1598 job->src = kNullRange; 1599 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); 1600 assert(!ZSTD_isError(job->cSize)); 1601 assert(job->consumed == 0); 1602 } 1603 1604 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) 1605 { 1606 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; 1607 int const endFrame = (endOp == ZSTD_e_end); 1608 1609 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { 1610 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); 1611 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); 1612 return 0; 1613 } 1614 1615 if (!mtctx->jobReady) { 1616 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; 1617 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", 1618 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); 1619 mtctx->jobs[jobID].src.start = src; 1620 mtctx->jobs[jobID].src.size = srcSize; 1621 assert(mtctx->inBuff.filled >= srcSize); 1622 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; 1623 mtctx->jobs[jobID].consumed = 0; 1624 mtctx->jobs[jobID].cSize = 0; 1625 mtctx->jobs[jobID].params = mtctx->params; 1626 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; 1627 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; 1628 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1629 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; 1630 mtctx->jobs[jobID].bufPool = mtctx->bufPool; 1631 mtctx->jobs[jobID].seqPool = mtctx->seqPool; 1632 mtctx->jobs[jobID].serial = &mtctx->serial; 1633 mtctx->jobs[jobID].jobID = mtctx->nextJobID; 1634 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); 1635 mtctx->jobs[jobID].lastJob = endFrame; 1636 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); 1637 mtctx->jobs[jobID].dstFlushed = 0; 1638 1639 /* Update the round buffer pos and clear the input buffer to be reset */ 1640 mtctx->roundBuff.pos += srcSize; 1641 mtctx->inBuff.buffer = g_nullBuffer; 1642 mtctx->inBuff.filled = 0; 1643 /* Set the prefix */ 1644 if (!endFrame) { 1645 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); 1646 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; 1647 mtctx->inBuff.prefix.size = newPrefixSize; 1648 } else { /* endFrame==1 => no need for another input buffer */ 1649 mtctx->inBuff.prefix = kNullRange; 1650 mtctx->frameEnded = endFrame; 1651 if (mtctx->nextJobID == 0) { 1652 /* single job exception : checksum is already calculated directly within worker thread */ 1653 mtctx->params.fParams.checksumFlag = 0; 1654 } } 1655 1656 if ( (srcSize == 0) 1657 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { 1658 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); 1659 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ 1660 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); 1661 mtctx->nextJobID++; 1662 return 0; 1663 } 1664 } 1665 1666 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", 1667 mtctx->nextJobID, 1668 (U32)mtctx->jobs[jobID].src.size, 1669 mtctx->jobs[jobID].lastJob, 1670 mtctx->nextJobID, 1671 jobID); 1672 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { 1673 mtctx->nextJobID++; 1674 mtctx->jobReady = 0; 1675 } else { 1676 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); 1677 mtctx->jobReady = 1; 1678 } 1679 return 0; 1680 } 1681 1682 1683 /*! ZSTDMT_flushProduced() : 1684 * flush whatever data has been produced but not yet flushed in current job. 1685 * move to next job if current one is fully flushed. 1686 * `output` : `pos` will be updated with amount of data flushed . 1687 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . 1688 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ 1689 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) 1690 { 1691 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; 1692 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", 1693 blockToFlush, mtctx->doneJobID, mtctx->nextJobID); 1694 assert(output->size >= output->pos); 1695 1696 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1697 if ( blockToFlush 1698 && (mtctx->doneJobID < mtctx->nextJobID) ) { 1699 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); 1700 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ 1701 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { 1702 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", 1703 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); 1704 break; 1705 } 1706 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", 1707 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1708 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ 1709 } } 1710 1711 /* try to flush something */ 1712 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ 1713 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ 1714 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ 1715 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1716 if (ZSTD_isError(cSize)) { 1717 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", 1718 mtctx->doneJobID, ZSTD_getErrorName(cSize)); 1719 ZSTDMT_waitForAllJobsCompleted(mtctx); 1720 ZSTDMT_releaseAllJobResources(mtctx); 1721 return cSize; 1722 } 1723 /* add frame checksum if necessary (can only happen once) */ 1724 assert(srcConsumed <= srcSize); 1725 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ 1726 && mtctx->jobs[wJobID].frameChecksumNeeded ) { 1727 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1728 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); 1729 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); 1730 cSize += 4; 1731 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ 1732 mtctx->jobs[wJobID].frameChecksumNeeded = 0; 1733 } 1734 1735 if (cSize > 0) { /* compression is ongoing or completed */ 1736 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); 1737 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", 1738 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); 1739 assert(mtctx->doneJobID < mtctx->nextJobID); 1740 assert(cSize >= mtctx->jobs[wJobID].dstFlushed); 1741 assert(mtctx->jobs[wJobID].dstBuff.start != NULL); 1742 if (toFlush > 0) { 1743 memcpy((char*)output->dst + output->pos, 1744 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, 1745 toFlush); 1746 } 1747 output->pos += toFlush; 1748 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ 1749 1750 if ( (srcConsumed == srcSize) /* job is completed */ 1751 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ 1752 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", 1753 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1754 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); 1755 DEBUGLOG(5, "dstBuffer released"); 1756 mtctx->jobs[wJobID].dstBuff = g_nullBuffer; 1757 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ 1758 mtctx->consumed += srcSize; 1759 mtctx->produced += cSize; 1760 mtctx->doneJobID++; 1761 } } 1762 1763 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ 1764 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); 1765 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ 1766 } 1767 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ 1768 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ 1769 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ 1770 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ 1771 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ 1772 return 0; /* internal buffers fully flushed */ 1773 } 1774 1775 /** 1776 * Returns the range of data used by the earliest job that is not yet complete. 1777 * If the data of the first job is broken up into two segments, we cover both 1778 * sections. 1779 */ 1780 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) 1781 { 1782 unsigned const firstJobID = mtctx->doneJobID; 1783 unsigned const lastJobID = mtctx->nextJobID; 1784 unsigned jobID; 1785 1786 for (jobID = firstJobID; jobID < lastJobID; ++jobID) { 1787 unsigned const wJobID = jobID & mtctx->jobIDMask; 1788 size_t consumed; 1789 1790 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1791 consumed = mtctx->jobs[wJobID].consumed; 1792 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1793 1794 if (consumed < mtctx->jobs[wJobID].src.size) { 1795 range_t range = mtctx->jobs[wJobID].prefix; 1796 if (range.size == 0) { 1797 /* Empty prefix */ 1798 range = mtctx->jobs[wJobID].src; 1799 } 1800 /* Job source in multiple segments not supported yet */ 1801 assert(range.start <= mtctx->jobs[wJobID].src.start); 1802 return range; 1803 } 1804 } 1805 return kNullRange; 1806 } 1807 1808 /** 1809 * Returns non-zero iff buffer and range overlap. 1810 */ 1811 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) 1812 { 1813 BYTE const* const bufferStart = (BYTE const*)buffer.start; 1814 BYTE const* const bufferEnd = bufferStart + buffer.capacity; 1815 BYTE const* const rangeStart = (BYTE const*)range.start; 1816 BYTE const* const rangeEnd = range.size != 0 ? rangeStart + range.size : rangeStart; 1817 1818 if (rangeStart == NULL || bufferStart == NULL) 1819 return 0; 1820 /* Empty ranges cannot overlap */ 1821 if (bufferStart == bufferEnd || rangeStart == rangeEnd) 1822 return 0; 1823 1824 return bufferStart < rangeEnd && rangeStart < bufferEnd; 1825 } 1826 1827 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) 1828 { 1829 range_t extDict; 1830 range_t prefix; 1831 1832 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); 1833 extDict.start = window.dictBase + window.lowLimit; 1834 extDict.size = window.dictLimit - window.lowLimit; 1835 1836 prefix.start = window.base + window.dictLimit; 1837 prefix.size = window.nextSrc - (window.base + window.dictLimit); 1838 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", 1839 (size_t)extDict.start, 1840 (size_t)extDict.start + extDict.size); 1841 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", 1842 (size_t)prefix.start, 1843 (size_t)prefix.start + prefix.size); 1844 1845 return ZSTDMT_isOverlapped(buffer, extDict) 1846 || ZSTDMT_isOverlapped(buffer, prefix); 1847 } 1848 1849 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) 1850 { 1851 if (mtctx->params.ldmParams.enableLdm) { 1852 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; 1853 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); 1854 DEBUGLOG(5, "source [0x%zx, 0x%zx)", 1855 (size_t)buffer.start, 1856 (size_t)buffer.start + buffer.capacity); 1857 ZSTD_PTHREAD_MUTEX_LOCK(mutex); 1858 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { 1859 DEBUGLOG(5, "Waiting for LDM to finish..."); 1860 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); 1861 } 1862 DEBUGLOG(6, "Done waiting for LDM to finish"); 1863 ZSTD_pthread_mutex_unlock(mutex); 1864 } 1865 } 1866 1867 /** 1868 * Attempts to set the inBuff to the next section to fill. 1869 * If any part of the new section is still in use we give up. 1870 * Returns non-zero if the buffer is filled. 1871 */ 1872 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) 1873 { 1874 range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); 1875 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; 1876 size_t const target = mtctx->targetSectionSize; 1877 buffer_t buffer; 1878 1879 DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); 1880 assert(mtctx->inBuff.buffer.start == NULL); 1881 assert(mtctx->roundBuff.capacity >= target); 1882 1883 if (spaceLeft < target) { 1884 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. 1885 * Simply copy the prefix to the beginning in that case. 1886 */ 1887 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; 1888 size_t const prefixSize = mtctx->inBuff.prefix.size; 1889 1890 buffer.start = start; 1891 buffer.capacity = prefixSize; 1892 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1893 DEBUGLOG(5, "Waiting for buffer..."); 1894 return 0; 1895 } 1896 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1897 memmove(start, mtctx->inBuff.prefix.start, prefixSize); 1898 mtctx->inBuff.prefix.start = start; 1899 mtctx->roundBuff.pos = prefixSize; 1900 } 1901 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; 1902 buffer.capacity = target; 1903 1904 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1905 DEBUGLOG(5, "Waiting for buffer..."); 1906 return 0; 1907 } 1908 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); 1909 1910 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1911 1912 DEBUGLOG(5, "Using prefix range [%zx, %zx)", 1913 (size_t)mtctx->inBuff.prefix.start, 1914 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); 1915 DEBUGLOG(5, "Using source range [%zx, %zx)", 1916 (size_t)buffer.start, 1917 (size_t)buffer.start + buffer.capacity); 1918 1919 1920 mtctx->inBuff.buffer = buffer; 1921 mtctx->inBuff.filled = 0; 1922 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); 1923 return 1; 1924 } 1925 1926 typedef struct { 1927 size_t toLoad; /* The number of bytes to load from the input. */ 1928 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ 1929 } syncPoint_t; 1930 1931 /** 1932 * Searches through the input for a synchronization point. If one is found, we 1933 * will instruct the caller to flush, and return the number of bytes to load. 1934 * Otherwise, we will load as many bytes as possible and instruct the caller 1935 * to continue as normal. 1936 */ 1937 static syncPoint_t 1938 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) 1939 { 1940 BYTE const* const istart = (BYTE const*)input.src + input.pos; 1941 U64 const primePower = mtctx->rsync.primePower; 1942 U64 const hitMask = mtctx->rsync.hitMask; 1943 1944 syncPoint_t syncPoint; 1945 U64 hash; 1946 BYTE const* prev; 1947 size_t pos; 1948 1949 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); 1950 syncPoint.flush = 0; 1951 if (!mtctx->params.rsyncable) 1952 /* Rsync is disabled. */ 1953 return syncPoint; 1954 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) 1955 /* Not enough to compute the hash. 1956 * We will miss any synchronization points in this RSYNC_LENGTH byte 1957 * window. However, since it depends only in the internal buffers, if the 1958 * state is already synchronized, we will remain synchronized. 1959 * Additionally, the probability that we miss a synchronization point is 1960 * low: RSYNC_LENGTH / targetSectionSize. 1961 */ 1962 return syncPoint; 1963 /* Initialize the loop variables. */ 1964 if (mtctx->inBuff.filled >= RSYNC_LENGTH) { 1965 /* We have enough bytes buffered to initialize the hash. 1966 * Start scanning at the beginning of the input. 1967 */ 1968 pos = 0; 1969 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1970 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1971 } else { 1972 /* We don't have enough bytes buffered to initialize the hash, but 1973 * we know we have at least RSYNC_LENGTH bytes total. 1974 * Start scanning after the first RSYNC_LENGTH bytes less the bytes 1975 * already buffered. 1976 */ 1977 pos = RSYNC_LENGTH - mtctx->inBuff.filled; 1978 prev = (BYTE const*)mtctx->inBuff.buffer.start - pos; 1979 hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled); 1980 hash = ZSTD_rollingHash_append(hash, istart, pos); 1981 } 1982 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll 1983 * through the input. If we hit a synchronization point, then cut the 1984 * job off, and tell the compressor to flush the job. Otherwise, load 1985 * all the bytes and continue as normal. 1986 * If we go too long without a synchronization point (targetSectionSize) 1987 * then a block will be emitted anyways, but this is okay, since if we 1988 * are already synchronized we will remain synchronized. 1989 */ 1990 for (; pos < syncPoint.toLoad; ++pos) { 1991 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; 1992 /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */ 1993 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); 1994 if ((hash & hitMask) == hitMask) { 1995 syncPoint.toLoad = pos + 1; 1996 syncPoint.flush = 1; 1997 break; 1998 } 1999 } 2000 return syncPoint; 2001 } 2002 2003 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) 2004 { 2005 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; 2006 if (hintInSize==0) hintInSize = mtctx->targetSectionSize; 2007 return hintInSize; 2008 } 2009 2010 /** ZSTDMT_compressStream_generic() : 2011 * internal use only - exposed to be invoked from zstd_compress.c 2012 * assumption : output and input are valid (pos <= size) 2013 * @return : minimum amount of data remaining to flush, 0 if none */ 2014 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, 2015 ZSTD_outBuffer* output, 2016 ZSTD_inBuffer* input, 2017 ZSTD_EndDirective endOp) 2018 { 2019 unsigned forwardInputProgress = 0; 2020 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", 2021 (U32)endOp, (U32)(input->size - input->pos)); 2022 assert(output->pos <= output->size); 2023 assert(input->pos <= input->size); 2024 2025 if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */ 2026 return ZSTD_compressStream2(mtctx->cctxPool->cctx[0], output, input, endOp); 2027 } 2028 2029 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { 2030 /* current frame being ended. Only flush/end are allowed */ 2031 return ERROR(stage_wrong); 2032 } 2033 2034 /* single-pass shortcut (note : synchronous-mode) */ 2035 if ( (!mtctx->params.rsyncable) /* rsyncable mode is disabled */ 2036 && (mtctx->nextJobID == 0) /* just started */ 2037 && (mtctx->inBuff.filled == 0) /* nothing buffered */ 2038 && (!mtctx->jobReady) /* no job already created */ 2039 && (endOp == ZSTD_e_end) /* end order */ 2040 && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */ 2041 size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx, 2042 (char*)output->dst + output->pos, output->size - output->pos, 2043 (const char*)input->src + input->pos, input->size - input->pos, 2044 mtctx->cdict, mtctx->params); 2045 if (ZSTD_isError(cSize)) return cSize; 2046 input->pos = input->size; 2047 output->pos += cSize; 2048 mtctx->allJobsCompleted = 1; 2049 mtctx->frameEnded = 1; 2050 return 0; 2051 } 2052 2053 /* fill input buffer */ 2054 if ( (!mtctx->jobReady) 2055 && (input->size > input->pos) ) { /* support NULL input */ 2056 if (mtctx->inBuff.buffer.start == NULL) { 2057 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ 2058 if (!ZSTDMT_tryGetInputRange(mtctx)) { 2059 /* It is only possible for this operation to fail if there are 2060 * still compression jobs ongoing. 2061 */ 2062 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); 2063 assert(mtctx->doneJobID != mtctx->nextJobID); 2064 } else 2065 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); 2066 } 2067 if (mtctx->inBuff.buffer.start != NULL) { 2068 syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); 2069 if (syncPoint.flush && endOp == ZSTD_e_continue) { 2070 endOp = ZSTD_e_flush; 2071 } 2072 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); 2073 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", 2074 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); 2075 memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); 2076 input->pos += syncPoint.toLoad; 2077 mtctx->inBuff.filled += syncPoint.toLoad; 2078 forwardInputProgress = syncPoint.toLoad>0; 2079 } 2080 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) 2081 endOp = ZSTD_e_flush; /* can't end now : not all input consumed */ 2082 } 2083 2084 if ( (mtctx->jobReady) 2085 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ 2086 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ 2087 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ 2088 size_t const jobSize = mtctx->inBuff.filled; 2089 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); 2090 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , ""); 2091 } 2092 2093 /* check for potential compressed data ready to be flushed */ 2094 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ 2095 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ 2096 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); 2097 return remainingToFlush; 2098 } 2099 } 2100 2101 2102 size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input) 2103 { 2104 FORWARD_IF_ERROR( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) , ""); 2105 2106 /* recommended next input size : fill current input buffer */ 2107 return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */ 2108 } 2109 2110 2111 static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame) 2112 { 2113 size_t const srcSize = mtctx->inBuff.filled; 2114 DEBUGLOG(5, "ZSTDMT_flushStream_internal"); 2115 2116 if ( mtctx->jobReady /* one job ready for a worker to pick up */ 2117 || (srcSize > 0) /* still some data within input buffer */ 2118 || ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */ 2119 DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)", 2120 (U32)srcSize, (U32)endFrame); 2121 FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) , ""); 2122 } 2123 2124 /* check if there is any data available to flush */ 2125 return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame); 2126 } 2127 2128 2129 size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) 2130 { 2131 DEBUGLOG(5, "ZSTDMT_flushStream"); 2132 if (mtctx->singleBlockingThread) 2133 return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output); 2134 return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush); 2135 } 2136 2137 size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) 2138 { 2139 DEBUGLOG(4, "ZSTDMT_endStream"); 2140 if (mtctx->singleBlockingThread) 2141 return ZSTD_endStream(mtctx->cctxPool->cctx[0], output); 2142 return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end); 2143 } 2144