1 /* 2 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Compiler specifics ====== */ 13 #if defined(_MSC_VER) 14 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 15 #endif 16 17 18 /* ====== Constants ====== */ 19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0 20 21 22 /* ====== Dependencies ====== */ 23 #include <string.h> /* memcpy, memset */ 24 #include <limits.h> /* INT_MAX, UINT_MAX */ 25 #include "pool.h" /* threadpool */ 26 #include "threading.h" /* mutex */ 27 #include "zstd_compress_internal.h" /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */ 28 #include "zstd_ldm.h" 29 #include "zstdmt_compress.h" 30 31 /* Guards code to support resizing the SeqPool. 32 * We will want to resize the SeqPool to save memory in the future. 33 * Until then, comment the code out since it is unused. 34 */ 35 #define ZSTD_RESIZE_SEQPOOL 0 36 37 /* ====== Debug ====== */ 38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \ 39 && !defined(_MSC_VER) \ 40 && !defined(__MINGW32__) 41 42 # include <stdio.h> 43 # include <unistd.h> 44 # include <sys/times.h> 45 46 # define DEBUG_PRINTHEX(l,p,n) { \ 47 unsigned debug_u; \ 48 for (debug_u=0; debug_u<(n); debug_u++) \ 49 RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \ 50 RAWLOG(l, " \n"); \ 51 } 52 53 static unsigned long long GetCurrentClockTimeMicroseconds(void) 54 { 55 static clock_t _ticksPerSecond = 0; 56 if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK); 57 58 { struct tms junk; clock_t newTicks = (clock_t) times(&junk); 59 return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond); 60 } } 61 62 #define MUTEX_WAIT_TIME_DLEVEL 6 63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) { \ 64 if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) { \ 65 unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \ 66 ZSTD_pthread_mutex_lock(mutex); \ 67 { unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \ 68 unsigned long long const elapsedTime = (afterTime-beforeTime); \ 69 if (elapsedTime > 1000) { /* or whatever threshold you like; I'm using 1 millisecond here */ \ 70 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \ 71 elapsedTime, #mutex); \ 72 } } \ 73 } else { \ 74 ZSTD_pthread_mutex_lock(mutex); \ 75 } \ 76 } 77 78 #else 79 80 # define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m) 81 # define DEBUG_PRINTHEX(l,p,n) {} 82 83 #endif 84 85 86 /* ===== Buffer Pool ===== */ 87 /* a single Buffer Pool can be invoked from multiple threads in parallel */ 88 89 typedef struct buffer_s { 90 void* start; 91 size_t capacity; 92 } buffer_t; 93 94 static const buffer_t g_nullBuffer = { NULL, 0 }; 95 96 typedef struct ZSTDMT_bufferPool_s { 97 ZSTD_pthread_mutex_t poolMutex; 98 size_t bufferSize; 99 unsigned totalBuffers; 100 unsigned nbBuffers; 101 ZSTD_customMem cMem; 102 buffer_t bTable[1]; /* variable size */ 103 } ZSTDMT_bufferPool; 104 105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned nbWorkers, ZSTD_customMem cMem) 106 { 107 unsigned const maxNbBuffers = 2*nbWorkers + 3; 108 ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_calloc( 109 sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem); 110 if (bufPool==NULL) return NULL; 111 if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) { 112 ZSTD_free(bufPool, cMem); 113 return NULL; 114 } 115 bufPool->bufferSize = 64 KB; 116 bufPool->totalBuffers = maxNbBuffers; 117 bufPool->nbBuffers = 0; 118 bufPool->cMem = cMem; 119 return bufPool; 120 } 121 122 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool) 123 { 124 unsigned u; 125 DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool); 126 if (!bufPool) return; /* compatibility with free on NULL */ 127 for (u=0; u<bufPool->totalBuffers; u++) { 128 DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start); 129 ZSTD_free(bufPool->bTable[u].start, bufPool->cMem); 130 } 131 ZSTD_pthread_mutex_destroy(&bufPool->poolMutex); 132 ZSTD_free(bufPool, bufPool->cMem); 133 } 134 135 /* only works at initialization, not during compression */ 136 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool) 137 { 138 size_t const poolSize = sizeof(*bufPool) 139 + (bufPool->totalBuffers - 1) * sizeof(buffer_t); 140 unsigned u; 141 size_t totalBufferSize = 0; 142 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 143 for (u=0; u<bufPool->totalBuffers; u++) 144 totalBufferSize += bufPool->bTable[u].capacity; 145 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 146 147 return poolSize + totalBufferSize; 148 } 149 150 /* ZSTDMT_setBufferSize() : 151 * all future buffers provided by this buffer pool will have _at least_ this size 152 * note : it's better for all buffers to have same size, 153 * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */ 154 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize) 155 { 156 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 157 DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize); 158 bufPool->bufferSize = bSize; 159 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 160 } 161 162 163 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, U32 nbWorkers) 164 { 165 unsigned const maxNbBuffers = 2*nbWorkers + 3; 166 if (srcBufPool==NULL) return NULL; 167 if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */ 168 return srcBufPool; 169 /* need a larger buffer pool */ 170 { ZSTD_customMem const cMem = srcBufPool->cMem; 171 size_t const bSize = srcBufPool->bufferSize; /* forward parameters */ 172 ZSTDMT_bufferPool* newBufPool; 173 ZSTDMT_freeBufferPool(srcBufPool); 174 newBufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 175 if (newBufPool==NULL) return newBufPool; 176 ZSTDMT_setBufferSize(newBufPool, bSize); 177 return newBufPool; 178 } 179 } 180 181 /** ZSTDMT_getBuffer() : 182 * assumption : bufPool must be valid 183 * @return : a buffer, with start pointer and size 184 * note: allocation may fail, in this case, start==NULL and size==0 */ 185 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool) 186 { 187 size_t const bSize = bufPool->bufferSize; 188 DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize); 189 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 190 if (bufPool->nbBuffers) { /* try to use an existing buffer */ 191 buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)]; 192 size_t const availBufferSize = buf.capacity; 193 bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer; 194 if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) { 195 /* large enough, but not too much */ 196 DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u", 197 bufPool->nbBuffers, (U32)buf.capacity); 198 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 199 return buf; 200 } 201 /* size conditions not respected : scratch this buffer, create new one */ 202 DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing"); 203 ZSTD_free(buf.start, bufPool->cMem); 204 } 205 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 206 /* create new buffer */ 207 DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer"); 208 { buffer_t buffer; 209 void* const start = ZSTD_malloc(bSize, bufPool->cMem); 210 buffer.start = start; /* note : start can be NULL if malloc fails ! */ 211 buffer.capacity = (start==NULL) ? 0 : bSize; 212 if (start==NULL) { 213 DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!"); 214 } else { 215 DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize); 216 } 217 return buffer; 218 } 219 } 220 221 #if ZSTD_RESIZE_SEQPOOL 222 /** ZSTDMT_resizeBuffer() : 223 * assumption : bufPool must be valid 224 * @return : a buffer that is at least the buffer pool buffer size. 225 * If a reallocation happens, the data in the input buffer is copied. 226 */ 227 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer) 228 { 229 size_t const bSize = bufPool->bufferSize; 230 if (buffer.capacity < bSize) { 231 void* const start = ZSTD_malloc(bSize, bufPool->cMem); 232 buffer_t newBuffer; 233 newBuffer.start = start; 234 newBuffer.capacity = start == NULL ? 0 : bSize; 235 if (start != NULL) { 236 assert(newBuffer.capacity >= buffer.capacity); 237 memcpy(newBuffer.start, buffer.start, buffer.capacity); 238 DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize); 239 return newBuffer; 240 } 241 DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!"); 242 } 243 return buffer; 244 } 245 #endif 246 247 /* store buffer for later re-use, up to pool capacity */ 248 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf) 249 { 250 DEBUGLOG(5, "ZSTDMT_releaseBuffer"); 251 if (buf.start == NULL) return; /* compatible with release on NULL */ 252 ZSTD_pthread_mutex_lock(&bufPool->poolMutex); 253 if (bufPool->nbBuffers < bufPool->totalBuffers) { 254 bufPool->bTable[bufPool->nbBuffers++] = buf; /* stored for later use */ 255 DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u", 256 (U32)buf.capacity, (U32)(bufPool->nbBuffers-1)); 257 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 258 return; 259 } 260 ZSTD_pthread_mutex_unlock(&bufPool->poolMutex); 261 /* Reached bufferPool capacity (should not happen) */ 262 DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing "); 263 ZSTD_free(buf.start, bufPool->cMem); 264 } 265 266 267 /* ===== Seq Pool Wrapper ====== */ 268 269 static rawSeqStore_t kNullRawSeqStore = {NULL, 0, 0, 0}; 270 271 typedef ZSTDMT_bufferPool ZSTDMT_seqPool; 272 273 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool) 274 { 275 return ZSTDMT_sizeof_bufferPool(seqPool); 276 } 277 278 static rawSeqStore_t bufferToSeq(buffer_t buffer) 279 { 280 rawSeqStore_t seq = {NULL, 0, 0, 0}; 281 seq.seq = (rawSeq*)buffer.start; 282 seq.capacity = buffer.capacity / sizeof(rawSeq); 283 return seq; 284 } 285 286 static buffer_t seqToBuffer(rawSeqStore_t seq) 287 { 288 buffer_t buffer; 289 buffer.start = seq.seq; 290 buffer.capacity = seq.capacity * sizeof(rawSeq); 291 return buffer; 292 } 293 294 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool) 295 { 296 if (seqPool->bufferSize == 0) { 297 return kNullRawSeqStore; 298 } 299 return bufferToSeq(ZSTDMT_getBuffer(seqPool)); 300 } 301 302 #if ZSTD_RESIZE_SEQPOOL 303 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 304 { 305 return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq))); 306 } 307 #endif 308 309 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq) 310 { 311 ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq)); 312 } 313 314 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq) 315 { 316 ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq)); 317 } 318 319 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem) 320 { 321 ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 322 if (seqPool == NULL) return NULL; 323 ZSTDMT_setNbSeq(seqPool, 0); 324 return seqPool; 325 } 326 327 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool) 328 { 329 ZSTDMT_freeBufferPool(seqPool); 330 } 331 332 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers) 333 { 334 return ZSTDMT_expandBufferPool(pool, nbWorkers); 335 } 336 337 338 /* ===== CCtx Pool ===== */ 339 /* a single CCtx Pool can be invoked from multiple threads in parallel */ 340 341 typedef struct { 342 ZSTD_pthread_mutex_t poolMutex; 343 int totalCCtx; 344 int availCCtx; 345 ZSTD_customMem cMem; 346 ZSTD_CCtx* cctx[1]; /* variable size */ 347 } ZSTDMT_CCtxPool; 348 349 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */ 350 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool) 351 { 352 int cid; 353 for (cid=0; cid<pool->totalCCtx; cid++) 354 ZSTD_freeCCtx(pool->cctx[cid]); /* note : compatible with free on NULL */ 355 ZSTD_pthread_mutex_destroy(&pool->poolMutex); 356 ZSTD_free(pool, pool->cMem); 357 } 358 359 /* ZSTDMT_createCCtxPool() : 360 * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */ 361 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers, 362 ZSTD_customMem cMem) 363 { 364 ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_calloc( 365 sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem); 366 assert(nbWorkers > 0); 367 if (!cctxPool) return NULL; 368 if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) { 369 ZSTD_free(cctxPool, cMem); 370 return NULL; 371 } 372 cctxPool->cMem = cMem; 373 cctxPool->totalCCtx = nbWorkers; 374 cctxPool->availCCtx = 1; /* at least one cctx for single-thread mode */ 375 cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem); 376 if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; } 377 DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers); 378 return cctxPool; 379 } 380 381 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool, 382 int nbWorkers) 383 { 384 if (srcPool==NULL) return NULL; 385 if (nbWorkers <= srcPool->totalCCtx) return srcPool; /* good enough */ 386 /* need a larger cctx pool */ 387 { ZSTD_customMem const cMem = srcPool->cMem; 388 ZSTDMT_freeCCtxPool(srcPool); 389 return ZSTDMT_createCCtxPool(nbWorkers, cMem); 390 } 391 } 392 393 /* only works during initialization phase, not during compression */ 394 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool) 395 { 396 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 397 { unsigned const nbWorkers = cctxPool->totalCCtx; 398 size_t const poolSize = sizeof(*cctxPool) 399 + (nbWorkers-1) * sizeof(ZSTD_CCtx*); 400 unsigned u; 401 size_t totalCCtxSize = 0; 402 for (u=0; u<nbWorkers; u++) { 403 totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]); 404 } 405 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 406 assert(nbWorkers > 0); 407 return poolSize + totalCCtxSize; 408 } 409 } 410 411 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool) 412 { 413 DEBUGLOG(5, "ZSTDMT_getCCtx"); 414 ZSTD_pthread_mutex_lock(&cctxPool->poolMutex); 415 if (cctxPool->availCCtx) { 416 cctxPool->availCCtx--; 417 { ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx]; 418 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 419 return cctx; 420 } } 421 ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex); 422 DEBUGLOG(5, "create one more CCtx"); 423 return ZSTD_createCCtx_advanced(cctxPool->cMem); /* note : can be NULL, when creation fails ! */ 424 } 425 426 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx) 427 { 428 if (cctx==NULL) return; /* compatibility with release on NULL */ 429 ZSTD_pthread_mutex_lock(&pool->poolMutex); 430 if (pool->availCCtx < pool->totalCCtx) 431 pool->cctx[pool->availCCtx++] = cctx; 432 else { 433 /* pool overflow : should not happen, since totalCCtx==nbWorkers */ 434 DEBUGLOG(4, "CCtx pool overflow : free cctx"); 435 ZSTD_freeCCtx(cctx); 436 } 437 ZSTD_pthread_mutex_unlock(&pool->poolMutex); 438 } 439 440 /* ==== Serial State ==== */ 441 442 typedef struct { 443 void const* start; 444 size_t size; 445 } range_t; 446 447 typedef struct { 448 /* All variables in the struct are protected by mutex. */ 449 ZSTD_pthread_mutex_t mutex; 450 ZSTD_pthread_cond_t cond; 451 ZSTD_CCtx_params params; 452 ldmState_t ldmState; 453 XXH64_state_t xxhState; 454 unsigned nextJobID; 455 /* Protects ldmWindow. 456 * Must be acquired after the main mutex when acquiring both. 457 */ 458 ZSTD_pthread_mutex_t ldmWindowMutex; 459 ZSTD_pthread_cond_t ldmWindowCond; /* Signaled when ldmWindow is udpated */ 460 ZSTD_window_t ldmWindow; /* A thread-safe copy of ldmState.window */ 461 } serialState_t; 462 463 static int ZSTDMT_serialState_reset(serialState_t* serialState, ZSTDMT_seqPool* seqPool, ZSTD_CCtx_params params, size_t jobSize) 464 { 465 /* Adjust parameters */ 466 if (params.ldmParams.enableLdm) { 467 DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10); 468 ZSTD_ldm_adjustParameters(¶ms.ldmParams, ¶ms.cParams); 469 assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog); 470 assert(params.ldmParams.hashRateLog < 32); 471 serialState->ldmState.hashPower = 472 ZSTD_rollingHash_primePower(params.ldmParams.minMatchLength); 473 } else { 474 memset(¶ms.ldmParams, 0, sizeof(params.ldmParams)); 475 } 476 serialState->nextJobID = 0; 477 if (params.fParams.checksumFlag) 478 XXH64_reset(&serialState->xxhState, 0); 479 if (params.ldmParams.enableLdm) { 480 ZSTD_customMem cMem = params.customMem; 481 unsigned const hashLog = params.ldmParams.hashLog; 482 size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t); 483 unsigned const bucketLog = 484 params.ldmParams.hashLog - params.ldmParams.bucketSizeLog; 485 size_t const bucketSize = (size_t)1 << bucketLog; 486 unsigned const prevBucketLog = 487 serialState->params.ldmParams.hashLog - 488 serialState->params.ldmParams.bucketSizeLog; 489 /* Size the seq pool tables */ 490 ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize)); 491 /* Reset the window */ 492 ZSTD_window_clear(&serialState->ldmState.window); 493 serialState->ldmWindow = serialState->ldmState.window; 494 /* Resize tables and output space if necessary. */ 495 if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) { 496 ZSTD_free(serialState->ldmState.hashTable, cMem); 497 serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_malloc(hashSize, cMem); 498 } 499 if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) { 500 ZSTD_free(serialState->ldmState.bucketOffsets, cMem); 501 serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_malloc(bucketSize, cMem); 502 } 503 if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets) 504 return 1; 505 /* Zero the tables */ 506 memset(serialState->ldmState.hashTable, 0, hashSize); 507 memset(serialState->ldmState.bucketOffsets, 0, bucketSize); 508 } 509 serialState->params = params; 510 serialState->params.jobSize = (U32)jobSize; 511 return 0; 512 } 513 514 static int ZSTDMT_serialState_init(serialState_t* serialState) 515 { 516 int initError = 0; 517 memset(serialState, 0, sizeof(*serialState)); 518 initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL); 519 initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL); 520 initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL); 521 initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL); 522 return initError; 523 } 524 525 static void ZSTDMT_serialState_free(serialState_t* serialState) 526 { 527 ZSTD_customMem cMem = serialState->params.customMem; 528 ZSTD_pthread_mutex_destroy(&serialState->mutex); 529 ZSTD_pthread_cond_destroy(&serialState->cond); 530 ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex); 531 ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond); 532 ZSTD_free(serialState->ldmState.hashTable, cMem); 533 ZSTD_free(serialState->ldmState.bucketOffsets, cMem); 534 } 535 536 static void ZSTDMT_serialState_update(serialState_t* serialState, 537 ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore, 538 range_t src, unsigned jobID) 539 { 540 /* Wait for our turn */ 541 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 542 while (serialState->nextJobID < jobID) { 543 DEBUGLOG(5, "wait for serialState->cond"); 544 ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex); 545 } 546 /* A future job may error and skip our job */ 547 if (serialState->nextJobID == jobID) { 548 /* It is now our turn, do any processing necessary */ 549 if (serialState->params.ldmParams.enableLdm) { 550 size_t error; 551 assert(seqStore.seq != NULL && seqStore.pos == 0 && 552 seqStore.size == 0 && seqStore.capacity > 0); 553 assert(src.size <= serialState->params.jobSize); 554 ZSTD_window_update(&serialState->ldmState.window, src.start, src.size); 555 error = ZSTD_ldm_generateSequences( 556 &serialState->ldmState, &seqStore, 557 &serialState->params.ldmParams, src.start, src.size); 558 /* We provide a large enough buffer to never fail. */ 559 assert(!ZSTD_isError(error)); (void)error; 560 /* Update ldmWindow to match the ldmState.window and signal the main 561 * thread if it is waiting for a buffer. 562 */ 563 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 564 serialState->ldmWindow = serialState->ldmState.window; 565 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 566 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 567 } 568 if (serialState->params.fParams.checksumFlag && src.size > 0) 569 XXH64_update(&serialState->xxhState, src.start, src.size); 570 } 571 /* Now it is the next jobs turn */ 572 serialState->nextJobID++; 573 ZSTD_pthread_cond_broadcast(&serialState->cond); 574 ZSTD_pthread_mutex_unlock(&serialState->mutex); 575 576 if (seqStore.size > 0) { 577 size_t const err = ZSTD_referenceExternalSequences( 578 jobCCtx, seqStore.seq, seqStore.size); 579 assert(serialState->params.ldmParams.enableLdm); 580 assert(!ZSTD_isError(err)); 581 (void)err; 582 } 583 } 584 585 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState, 586 unsigned jobID, size_t cSize) 587 { 588 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex); 589 if (serialState->nextJobID <= jobID) { 590 assert(ZSTD_isError(cSize)); (void)cSize; 591 DEBUGLOG(5, "Skipping past job %u because of error", jobID); 592 serialState->nextJobID = jobID + 1; 593 ZSTD_pthread_cond_broadcast(&serialState->cond); 594 595 ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex); 596 ZSTD_window_clear(&serialState->ldmWindow); 597 ZSTD_pthread_cond_signal(&serialState->ldmWindowCond); 598 ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex); 599 } 600 ZSTD_pthread_mutex_unlock(&serialState->mutex); 601 602 } 603 604 605 /* ------------------------------------------ */ 606 /* ===== Worker thread ===== */ 607 /* ------------------------------------------ */ 608 609 static const range_t kNullRange = { NULL, 0 }; 610 611 typedef struct { 612 size_t consumed; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */ 613 size_t cSize; /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */ 614 ZSTD_pthread_mutex_t job_mutex; /* Thread-safe - used by mtctx and worker */ 615 ZSTD_pthread_cond_t job_cond; /* Thread-safe - used by mtctx and worker */ 616 ZSTDMT_CCtxPool* cctxPool; /* Thread-safe - used by mtctx and (all) workers */ 617 ZSTDMT_bufferPool* bufPool; /* Thread-safe - used by mtctx and (all) workers */ 618 ZSTDMT_seqPool* seqPool; /* Thread-safe - used by mtctx and (all) workers */ 619 serialState_t* serial; /* Thread-safe - used by mtctx and (all) workers */ 620 buffer_t dstBuff; /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */ 621 range_t prefix; /* set by mtctx, then read by worker & mtctx => no barrier */ 622 range_t src; /* set by mtctx, then read by worker & mtctx => no barrier */ 623 unsigned jobID; /* set by mtctx, then read by worker => no barrier */ 624 unsigned firstJob; /* set by mtctx, then read by worker => no barrier */ 625 unsigned lastJob; /* set by mtctx, then read by worker => no barrier */ 626 ZSTD_CCtx_params params; /* set by mtctx, then read by worker => no barrier */ 627 const ZSTD_CDict* cdict; /* set by mtctx, then read by worker => no barrier */ 628 unsigned long long fullFrameSize; /* set by mtctx, then read by worker => no barrier */ 629 size_t dstFlushed; /* used only by mtctx */ 630 unsigned frameChecksumNeeded; /* used only by mtctx */ 631 } ZSTDMT_jobDescription; 632 633 #define JOB_ERROR(e) { \ 634 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); \ 635 job->cSize = e; \ 636 ZSTD_pthread_mutex_unlock(&job->job_mutex); \ 637 goto _endJob; \ 638 } 639 640 /* ZSTDMT_compressionJob() is a POOL_function type */ 641 static void ZSTDMT_compressionJob(void* jobDescription) 642 { 643 ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription; 644 ZSTD_CCtx_params jobParams = job->params; /* do not modify job->params ! copy it, modify the copy */ 645 ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool); 646 rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool); 647 buffer_t dstBuff = job->dstBuff; 648 size_t lastCBlockSize = 0; 649 650 /* ressources */ 651 if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation)); 652 if (dstBuff.start == NULL) { /* streaming job : doesn't provide a dstBuffer */ 653 dstBuff = ZSTDMT_getBuffer(job->bufPool); 654 if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation)); 655 job->dstBuff = dstBuff; /* this value can be read in ZSTDMT_flush, when it copies the whole job */ 656 } 657 if (jobParams.ldmParams.enableLdm && rawSeqStore.seq == NULL) 658 JOB_ERROR(ERROR(memory_allocation)); 659 660 /* Don't compute the checksum for chunks, since we compute it externally, 661 * but write it in the header. 662 */ 663 if (job->jobID != 0) jobParams.fParams.checksumFlag = 0; 664 /* Don't run LDM for the chunks, since we handle it externally */ 665 jobParams.ldmParams.enableLdm = 0; 666 667 668 /* init */ 669 if (job->cdict) { 670 size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, jobParams, job->fullFrameSize); 671 assert(job->firstJob); /* only allowed for first job */ 672 if (ZSTD_isError(initError)) JOB_ERROR(initError); 673 } else { /* srcStart points at reloaded section */ 674 U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size; 675 { size_t const forceWindowError = ZSTD_CCtxParam_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob); 676 if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError); 677 } 678 { size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, 679 job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */ 680 ZSTD_dtlm_fast, 681 NULL, /*cdict*/ 682 jobParams, pledgedSrcSize); 683 if (ZSTD_isError(initError)) JOB_ERROR(initError); 684 } } 685 686 /* Perform serial step as early as possible, but after CCtx initialization */ 687 ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID); 688 689 if (!job->firstJob) { /* flush and overwrite frame header when it's not first job */ 690 size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0); 691 if (ZSTD_isError(hSize)) JOB_ERROR(hSize); 692 DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize); 693 ZSTD_invalidateRepCodes(cctx); 694 } 695 696 /* compress */ 697 { size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX; 698 int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize); 699 const BYTE* ip = (const BYTE*) job->src.start; 700 BYTE* const ostart = (BYTE*)dstBuff.start; 701 BYTE* op = ostart; 702 BYTE* oend = op + dstBuff.capacity; 703 int chunkNb; 704 if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize); /* check overflow */ 705 DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks); 706 assert(job->cSize == 0); 707 for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) { 708 size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize); 709 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 710 ip += chunkSize; 711 op += cSize; assert(op < oend); 712 /* stats */ 713 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 714 job->cSize += cSize; 715 job->consumed = chunkSize * chunkNb; 716 DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)", 717 (U32)cSize, (U32)job->cSize); 718 ZSTD_pthread_cond_signal(&job->job_cond); /* warns some more data is ready to be flushed */ 719 ZSTD_pthread_mutex_unlock(&job->job_mutex); 720 } 721 /* last block */ 722 assert(chunkSize > 0); 723 assert((chunkSize & (chunkSize - 1)) == 0); /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */ 724 if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) { 725 size_t const lastBlockSize1 = job->src.size & (chunkSize-1); 726 size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1; 727 size_t const cSize = (job->lastJob) ? 728 ZSTD_compressEnd (cctx, op, oend-op, ip, lastBlockSize) : 729 ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize); 730 if (ZSTD_isError(cSize)) JOB_ERROR(cSize); 731 lastCBlockSize = cSize; 732 } } 733 734 _endJob: 735 ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize); 736 if (job->prefix.size > 0) 737 DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start); 738 DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start); 739 /* release resources */ 740 ZSTDMT_releaseSeq(job->seqPool, rawSeqStore); 741 ZSTDMT_releaseCCtx(job->cctxPool, cctx); 742 /* report */ 743 ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex); 744 if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0); 745 job->cSize += lastCBlockSize; 746 job->consumed = job->src.size; /* when job->consumed == job->src.size , compression job is presumed completed */ 747 ZSTD_pthread_cond_signal(&job->job_cond); 748 ZSTD_pthread_mutex_unlock(&job->job_mutex); 749 } 750 751 752 /* ------------------------------------------ */ 753 /* ===== Multi-threaded compression ===== */ 754 /* ------------------------------------------ */ 755 756 typedef struct { 757 range_t prefix; /* read-only non-owned prefix buffer */ 758 buffer_t buffer; 759 size_t filled; 760 } inBuff_t; 761 762 typedef struct { 763 BYTE* buffer; /* The round input buffer. All jobs get references 764 * to pieces of the buffer. ZSTDMT_tryGetInputRange() 765 * handles handing out job input buffers, and makes 766 * sure it doesn't overlap with any pieces still in use. 767 */ 768 size_t capacity; /* The capacity of buffer. */ 769 size_t pos; /* The position of the current inBuff in the round 770 * buffer. Updated past the end if the inBuff once 771 * the inBuff is sent to the worker thread. 772 * pos <= capacity. 773 */ 774 } roundBuff_t; 775 776 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0}; 777 778 #define RSYNC_LENGTH 32 779 780 typedef struct { 781 U64 hash; 782 U64 hitMask; 783 U64 primePower; 784 } rsyncState_t; 785 786 struct ZSTDMT_CCtx_s { 787 POOL_ctx* factory; 788 ZSTDMT_jobDescription* jobs; 789 ZSTDMT_bufferPool* bufPool; 790 ZSTDMT_CCtxPool* cctxPool; 791 ZSTDMT_seqPool* seqPool; 792 ZSTD_CCtx_params params; 793 size_t targetSectionSize; 794 size_t targetPrefixSize; 795 int jobReady; /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */ 796 inBuff_t inBuff; 797 roundBuff_t roundBuff; 798 serialState_t serial; 799 rsyncState_t rsync; 800 unsigned singleBlockingThread; 801 unsigned jobIDMask; 802 unsigned doneJobID; 803 unsigned nextJobID; 804 unsigned frameEnded; 805 unsigned allJobsCompleted; 806 unsigned long long frameContentSize; 807 unsigned long long consumed; 808 unsigned long long produced; 809 ZSTD_customMem cMem; 810 ZSTD_CDict* cdictLocal; 811 const ZSTD_CDict* cdict; 812 }; 813 814 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem) 815 { 816 U32 jobNb; 817 if (jobTable == NULL) return; 818 for (jobNb=0; jobNb<nbJobs; jobNb++) { 819 ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex); 820 ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond); 821 } 822 ZSTD_free(jobTable, cMem); 823 } 824 825 /* ZSTDMT_allocJobsTable() 826 * allocate and init a job table. 827 * update *nbJobsPtr to next power of 2 value, as size of table */ 828 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem) 829 { 830 U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1; 831 U32 const nbJobs = 1 << nbJobsLog2; 832 U32 jobNb; 833 ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*) 834 ZSTD_calloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem); 835 int initError = 0; 836 if (jobTable==NULL) return NULL; 837 *nbJobsPtr = nbJobs; 838 for (jobNb=0; jobNb<nbJobs; jobNb++) { 839 initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL); 840 initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL); 841 } 842 if (initError != 0) { 843 ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem); 844 return NULL; 845 } 846 return jobTable; 847 } 848 849 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) { 850 U32 nbJobs = nbWorkers + 2; 851 if (nbJobs > mtctx->jobIDMask+1) { /* need more job capacity */ 852 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 853 mtctx->jobIDMask = 0; 854 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem); 855 if (mtctx->jobs==NULL) return ERROR(memory_allocation); 856 assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0)); /* ensure nbJobs is a power of 2 */ 857 mtctx->jobIDMask = nbJobs - 1; 858 } 859 return 0; 860 } 861 862 863 /* ZSTDMT_CCtxParam_setNbWorkers(): 864 * Internal use only */ 865 size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers) 866 { 867 if (nbWorkers > ZSTDMT_NBWORKERS_MAX) nbWorkers = ZSTDMT_NBWORKERS_MAX; 868 params->nbWorkers = nbWorkers; 869 params->overlapLog = ZSTDMT_OVERLAPLOG_DEFAULT; 870 params->jobSize = 0; 871 return nbWorkers; 872 } 873 874 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem) 875 { 876 ZSTDMT_CCtx* mtctx; 877 U32 nbJobs = nbWorkers + 2; 878 int initError; 879 DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers); 880 881 if (nbWorkers < 1) return NULL; 882 nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX); 883 if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL)) 884 /* invalid custom allocator */ 885 return NULL; 886 887 mtctx = (ZSTDMT_CCtx*) ZSTD_calloc(sizeof(ZSTDMT_CCtx), cMem); 888 if (!mtctx) return NULL; 889 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 890 mtctx->cMem = cMem; 891 mtctx->allJobsCompleted = 1; 892 mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem); 893 mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem); 894 assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0); /* ensure nbJobs is a power of 2 */ 895 mtctx->jobIDMask = nbJobs - 1; 896 mtctx->bufPool = ZSTDMT_createBufferPool(nbWorkers, cMem); 897 mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem); 898 mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem); 899 initError = ZSTDMT_serialState_init(&mtctx->serial); 900 mtctx->roundBuff = kNullRoundBuff; 901 if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) { 902 ZSTDMT_freeCCtx(mtctx); 903 return NULL; 904 } 905 DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers); 906 return mtctx; 907 } 908 909 ZSTDMT_CCtx* ZSTDMT_createCCtx(unsigned nbWorkers) 910 { 911 return ZSTDMT_createCCtx_advanced(nbWorkers, ZSTD_defaultCMem); 912 } 913 914 915 /* ZSTDMT_releaseAllJobResources() : 916 * note : ensure all workers are killed first ! */ 917 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx) 918 { 919 unsigned jobID; 920 DEBUGLOG(3, "ZSTDMT_releaseAllJobResources"); 921 for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) { 922 DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start); 923 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 924 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 925 mtctx->jobs[jobID].cSize = 0; 926 } 927 memset(mtctx->jobs, 0, (mtctx->jobIDMask+1)*sizeof(ZSTDMT_jobDescription)); 928 mtctx->inBuff.buffer = g_nullBuffer; 929 mtctx->inBuff.filled = 0; 930 mtctx->allJobsCompleted = 1; 931 } 932 933 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx) 934 { 935 DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted"); 936 while (mtctx->doneJobID < mtctx->nextJobID) { 937 unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask; 938 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 939 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 940 DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID); /* we want to block when waiting for data to flush */ 941 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 942 } 943 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 944 mtctx->doneJobID++; 945 } 946 } 947 948 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx) 949 { 950 if (mtctx==NULL) return 0; /* compatible with free on NULL */ 951 POOL_free(mtctx->factory); /* stop and free worker threads */ 952 ZSTDMT_releaseAllJobResources(mtctx); /* release job resources into pools first */ 953 ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem); 954 ZSTDMT_freeBufferPool(mtctx->bufPool); 955 ZSTDMT_freeCCtxPool(mtctx->cctxPool); 956 ZSTDMT_freeSeqPool(mtctx->seqPool); 957 ZSTDMT_serialState_free(&mtctx->serial); 958 ZSTD_freeCDict(mtctx->cdictLocal); 959 if (mtctx->roundBuff.buffer) 960 ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); 961 ZSTD_free(mtctx, mtctx->cMem); 962 return 0; 963 } 964 965 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx) 966 { 967 if (mtctx == NULL) return 0; /* supports sizeof NULL */ 968 return sizeof(*mtctx) 969 + POOL_sizeof(mtctx->factory) 970 + ZSTDMT_sizeof_bufferPool(mtctx->bufPool) 971 + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription) 972 + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool) 973 + ZSTDMT_sizeof_seqPool(mtctx->seqPool) 974 + ZSTD_sizeof_CDict(mtctx->cdictLocal) 975 + mtctx->roundBuff.capacity; 976 } 977 978 /* Internal only */ 979 size_t 980 ZSTDMT_CCtxParam_setMTCtxParameter(ZSTD_CCtx_params* params, 981 ZSTDMT_parameter parameter, 982 int value) 983 { 984 DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter"); 985 switch(parameter) 986 { 987 case ZSTDMT_p_jobSize : 988 DEBUGLOG(4, "ZSTDMT_CCtxParam_setMTCtxParameter : set jobSize to %i", value); 989 if ( value != 0 /* default */ 990 && value < ZSTDMT_JOBSIZE_MIN) 991 value = ZSTDMT_JOBSIZE_MIN; 992 assert(value >= 0); 993 if (value > ZSTDMT_JOBSIZE_MAX) value = ZSTDMT_JOBSIZE_MAX; 994 params->jobSize = value; 995 return value; 996 997 case ZSTDMT_p_overlapLog : 998 DEBUGLOG(4, "ZSTDMT_p_overlapLog : %i", value); 999 if (value < ZSTD_OVERLAPLOG_MIN) value = ZSTD_OVERLAPLOG_MIN; 1000 if (value > ZSTD_OVERLAPLOG_MAX) value = ZSTD_OVERLAPLOG_MAX; 1001 params->overlapLog = value; 1002 return value; 1003 1004 case ZSTDMT_p_rsyncable : 1005 value = (value != 0); 1006 params->rsyncable = value; 1007 return value; 1008 1009 default : 1010 return ERROR(parameter_unsupported); 1011 } 1012 } 1013 1014 size_t ZSTDMT_setMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int value) 1015 { 1016 DEBUGLOG(4, "ZSTDMT_setMTCtxParameter"); 1017 return ZSTDMT_CCtxParam_setMTCtxParameter(&mtctx->params, parameter, value); 1018 } 1019 1020 size_t ZSTDMT_getMTCtxParameter(ZSTDMT_CCtx* mtctx, ZSTDMT_parameter parameter, int* value) 1021 { 1022 switch (parameter) { 1023 case ZSTDMT_p_jobSize: 1024 assert(mtctx->params.jobSize <= INT_MAX); 1025 *value = (int)(mtctx->params.jobSize); 1026 break; 1027 case ZSTDMT_p_overlapLog: 1028 *value = mtctx->params.overlapLog; 1029 break; 1030 case ZSTDMT_p_rsyncable: 1031 *value = mtctx->params.rsyncable; 1032 break; 1033 default: 1034 return ERROR(parameter_unsupported); 1035 } 1036 return 0; 1037 } 1038 1039 /* Sets parameters relevant to the compression job, 1040 * initializing others to default values. */ 1041 static ZSTD_CCtx_params ZSTDMT_initJobCCtxParams(ZSTD_CCtx_params const params) 1042 { 1043 ZSTD_CCtx_params jobParams; 1044 memset(&jobParams, 0, sizeof(jobParams)); 1045 1046 jobParams.cParams = params.cParams; 1047 jobParams.fParams = params.fParams; 1048 jobParams.compressionLevel = params.compressionLevel; 1049 1050 return jobParams; 1051 } 1052 1053 1054 /* ZSTDMT_resize() : 1055 * @return : error code if fails, 0 on success */ 1056 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers) 1057 { 1058 if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation); 1059 CHECK_F( ZSTDMT_expandJobsTable(mtctx, nbWorkers) ); 1060 mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, nbWorkers); 1061 if (mtctx->bufPool == NULL) return ERROR(memory_allocation); 1062 mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers); 1063 if (mtctx->cctxPool == NULL) return ERROR(memory_allocation); 1064 mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers); 1065 if (mtctx->seqPool == NULL) return ERROR(memory_allocation); 1066 ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers); 1067 return 0; 1068 } 1069 1070 1071 /*! ZSTDMT_updateCParams_whileCompressing() : 1072 * Updates a selected set of compression parameters, remaining compatible with currently active frame. 1073 * New parameters will be applied to next compression job. */ 1074 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams) 1075 { 1076 U32 const saved_wlog = mtctx->params.cParams.windowLog; /* Do not modify windowLog while compressing */ 1077 int const compressionLevel = cctxParams->compressionLevel; 1078 DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)", 1079 compressionLevel); 1080 mtctx->params.compressionLevel = compressionLevel; 1081 { ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, 0, 0); 1082 cParams.windowLog = saved_wlog; 1083 mtctx->params.cParams = cParams; 1084 } 1085 } 1086 1087 /* ZSTDMT_getFrameProgression(): 1088 * tells how much data has been consumed (input) and produced (output) for current frame. 1089 * able to count progression inside worker threads. 1090 * Note : mutex will be acquired during statistics collection inside workers. */ 1091 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx) 1092 { 1093 ZSTD_frameProgression fps; 1094 DEBUGLOG(5, "ZSTDMT_getFrameProgression"); 1095 fps.ingested = mtctx->consumed + mtctx->inBuff.filled; 1096 fps.consumed = mtctx->consumed; 1097 fps.produced = fps.flushed = mtctx->produced; 1098 fps.currentJobID = mtctx->nextJobID; 1099 fps.nbActiveWorkers = 0; 1100 { unsigned jobNb; 1101 unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1); 1102 DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)", 1103 mtctx->doneJobID, lastJobNb, mtctx->jobReady) 1104 for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) { 1105 unsigned const wJobID = jobNb & mtctx->jobIDMask; 1106 ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID]; 1107 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1108 { size_t const cResult = jobPtr->cSize; 1109 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1110 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1111 assert(flushed <= produced); 1112 fps.ingested += jobPtr->src.size; 1113 fps.consumed += jobPtr->consumed; 1114 fps.produced += produced; 1115 fps.flushed += flushed; 1116 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size); 1117 } 1118 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1119 } 1120 } 1121 return fps; 1122 } 1123 1124 1125 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx) 1126 { 1127 size_t toFlush; 1128 unsigned const jobID = mtctx->doneJobID; 1129 assert(jobID <= mtctx->nextJobID); 1130 if (jobID == mtctx->nextJobID) return 0; /* no active job => nothing to flush */ 1131 1132 /* look into oldest non-fully-flushed job */ 1133 { unsigned const wJobID = jobID & mtctx->jobIDMask; 1134 ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID]; 1135 ZSTD_pthread_mutex_lock(&jobPtr->job_mutex); 1136 { size_t const cResult = jobPtr->cSize; 1137 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult; 1138 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed; 1139 assert(flushed <= produced); 1140 toFlush = produced - flushed; 1141 if (toFlush==0 && (jobPtr->consumed >= jobPtr->src.size)) { 1142 /* doneJobID is not-fully-flushed, but toFlush==0 : doneJobID should be compressing some more data */ 1143 assert(jobPtr->consumed < jobPtr->src.size); 1144 } 1145 } 1146 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1147 } 1148 1149 return toFlush; 1150 } 1151 1152 1153 /* ------------------------------------------ */ 1154 /* ===== Multi-threaded compression ===== */ 1155 /* ------------------------------------------ */ 1156 1157 static unsigned ZSTDMT_computeTargetJobLog(ZSTD_CCtx_params const params) 1158 { 1159 if (params.ldmParams.enableLdm) 1160 /* In Long Range Mode, the windowLog is typically oversized. 1161 * In which case, it's preferable to determine the jobSize 1162 * based on chainLog instead. */ 1163 return MAX(21, params.cParams.chainLog + 4); 1164 return MAX(20, params.cParams.windowLog + 2); 1165 } 1166 1167 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat) 1168 { 1169 switch(strat) 1170 { 1171 case ZSTD_btultra2: 1172 return 9; 1173 case ZSTD_btultra: 1174 case ZSTD_btopt: 1175 return 8; 1176 case ZSTD_btlazy2: 1177 case ZSTD_lazy2: 1178 return 7; 1179 case ZSTD_lazy: 1180 case ZSTD_greedy: 1181 case ZSTD_dfast: 1182 case ZSTD_fast: 1183 default:; 1184 } 1185 return 6; 1186 } 1187 1188 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat) 1189 { 1190 assert(0 <= ovlog && ovlog <= 9); 1191 if (ovlog == 0) return ZSTDMT_overlapLog_default(strat); 1192 return ovlog; 1193 } 1194 1195 static size_t ZSTDMT_computeOverlapSize(ZSTD_CCtx_params const params) 1196 { 1197 int const overlapRLog = 9 - ZSTDMT_overlapLog(params.overlapLog, params.cParams.strategy); 1198 int ovLog = (overlapRLog >= 8) ? 0 : (params.cParams.windowLog - overlapRLog); 1199 assert(0 <= overlapRLog && overlapRLog <= 8); 1200 if (params.ldmParams.enableLdm) { 1201 /* In Long Range Mode, the windowLog is typically oversized. 1202 * In which case, it's preferable to determine the jobSize 1203 * based on chainLog instead. 1204 * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */ 1205 ovLog = MIN(params.cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2) 1206 - overlapRLog; 1207 } 1208 assert(0 <= ovLog && ovLog <= 30); 1209 DEBUGLOG(4, "overlapLog : %i", params.overlapLog); 1210 DEBUGLOG(4, "overlap size : %i", 1 << ovLog); 1211 return (ovLog==0) ? 0 : (size_t)1 << ovLog; 1212 } 1213 1214 static unsigned 1215 ZSTDMT_computeNbJobs(ZSTD_CCtx_params params, size_t srcSize, unsigned nbWorkers) 1216 { 1217 assert(nbWorkers>0); 1218 { size_t const jobSizeTarget = (size_t)1 << ZSTDMT_computeTargetJobLog(params); 1219 size_t const jobMaxSize = jobSizeTarget << 2; 1220 size_t const passSizeMax = jobMaxSize * nbWorkers; 1221 unsigned const multiplier = (unsigned)(srcSize / passSizeMax) + 1; 1222 unsigned const nbJobsLarge = multiplier * nbWorkers; 1223 unsigned const nbJobsMax = (unsigned)(srcSize / jobSizeTarget) + 1; 1224 unsigned const nbJobsSmall = MIN(nbJobsMax, nbWorkers); 1225 return (multiplier>1) ? nbJobsLarge : nbJobsSmall; 1226 } } 1227 1228 /* ZSTDMT_compress_advanced_internal() : 1229 * This is a blocking function : it will only give back control to caller after finishing its compression job. 1230 */ 1231 static size_t ZSTDMT_compress_advanced_internal( 1232 ZSTDMT_CCtx* mtctx, 1233 void* dst, size_t dstCapacity, 1234 const void* src, size_t srcSize, 1235 const ZSTD_CDict* cdict, 1236 ZSTD_CCtx_params params) 1237 { 1238 ZSTD_CCtx_params const jobParams = ZSTDMT_initJobCCtxParams(params); 1239 size_t const overlapSize = ZSTDMT_computeOverlapSize(params); 1240 unsigned const nbJobs = ZSTDMT_computeNbJobs(params, srcSize, params.nbWorkers); 1241 size_t const proposedJobSize = (srcSize + (nbJobs-1)) / nbJobs; 1242 size_t const avgJobSize = (((proposedJobSize-1) & 0x1FFFF) < 0x7FFF) ? proposedJobSize + 0xFFFF : proposedJobSize; /* avoid too small last block */ 1243 const char* const srcStart = (const char*)src; 1244 size_t remainingSrcSize = srcSize; 1245 unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbJobs : (unsigned)(dstCapacity / ZSTD_compressBound(avgJobSize)); /* presumes avgJobSize >= 256 KB, which should be the case */ 1246 size_t frameStartPos = 0, dstBufferPos = 0; 1247 assert(jobParams.nbWorkers == 0); 1248 assert(mtctx->cctxPool->totalCCtx == params.nbWorkers); 1249 1250 params.jobSize = (U32)avgJobSize; 1251 DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: nbJobs=%2u (rawSize=%u bytes; fixedSize=%u) ", 1252 nbJobs, (U32)proposedJobSize, (U32)avgJobSize); 1253 1254 if ((nbJobs==1) | (params.nbWorkers<=1)) { /* fallback to single-thread mode : this is a blocking invocation anyway */ 1255 ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0]; 1256 DEBUGLOG(4, "ZSTDMT_compress_advanced_internal: fallback to single-thread mode"); 1257 if (cdict) return ZSTD_compress_usingCDict_advanced(cctx, dst, dstCapacity, src, srcSize, cdict, jobParams.fParams); 1258 return ZSTD_compress_advanced_internal(cctx, dst, dstCapacity, src, srcSize, NULL, 0, jobParams); 1259 } 1260 1261 assert(avgJobSize >= 256 KB); /* condition for ZSTD_compressBound(A) + ZSTD_compressBound(B) <= ZSTD_compressBound(A+B), required to compress directly into Dst (no additional buffer) */ 1262 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(avgJobSize) ); 1263 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, avgJobSize)) 1264 return ERROR(memory_allocation); 1265 1266 CHECK_F( ZSTDMT_expandJobsTable(mtctx, nbJobs) ); /* only expands if necessary */ 1267 1268 { unsigned u; 1269 for (u=0; u<nbJobs; u++) { 1270 size_t const jobSize = MIN(remainingSrcSize, avgJobSize); 1271 size_t const dstBufferCapacity = ZSTD_compressBound(jobSize); 1272 buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity }; 1273 buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : g_nullBuffer; 1274 size_t dictSize = u ? overlapSize : 0; 1275 1276 mtctx->jobs[u].prefix.start = srcStart + frameStartPos - dictSize; 1277 mtctx->jobs[u].prefix.size = dictSize; 1278 mtctx->jobs[u].src.start = srcStart + frameStartPos; 1279 mtctx->jobs[u].src.size = jobSize; assert(jobSize > 0); /* avoid job.src.size == 0 */ 1280 mtctx->jobs[u].consumed = 0; 1281 mtctx->jobs[u].cSize = 0; 1282 mtctx->jobs[u].cdict = (u==0) ? cdict : NULL; 1283 mtctx->jobs[u].fullFrameSize = srcSize; 1284 mtctx->jobs[u].params = jobParams; 1285 /* do not calculate checksum within sections, but write it in header for first section */ 1286 mtctx->jobs[u].dstBuff = dstBuffer; 1287 mtctx->jobs[u].cctxPool = mtctx->cctxPool; 1288 mtctx->jobs[u].bufPool = mtctx->bufPool; 1289 mtctx->jobs[u].seqPool = mtctx->seqPool; 1290 mtctx->jobs[u].serial = &mtctx->serial; 1291 mtctx->jobs[u].jobID = u; 1292 mtctx->jobs[u].firstJob = (u==0); 1293 mtctx->jobs[u].lastJob = (u==nbJobs-1); 1294 1295 DEBUGLOG(5, "ZSTDMT_compress_advanced_internal: posting job %u (%u bytes)", u, (U32)jobSize); 1296 DEBUG_PRINTHEX(6, mtctx->jobs[u].prefix.start, 12); 1297 POOL_add(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[u]); 1298 1299 frameStartPos += jobSize; 1300 dstBufferPos += dstBufferCapacity; 1301 remainingSrcSize -= jobSize; 1302 } } 1303 1304 /* collect result */ 1305 { size_t error = 0, dstPos = 0; 1306 unsigned jobID; 1307 for (jobID=0; jobID<nbJobs; jobID++) { 1308 DEBUGLOG(5, "waiting for job %u ", jobID); 1309 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex); 1310 while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) { 1311 DEBUGLOG(5, "waiting for jobCompleted signal from job %u", jobID); 1312 ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex); 1313 } 1314 ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex); 1315 DEBUGLOG(5, "ready to write job %u ", jobID); 1316 1317 { size_t const cSize = mtctx->jobs[jobID].cSize; 1318 if (ZSTD_isError(cSize)) error = cSize; 1319 if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall); 1320 if (jobID) { /* note : job 0 is written directly at dst, which is correct position */ 1321 if (!error) 1322 memmove((char*)dst + dstPos, mtctx->jobs[jobID].dstBuff.start, cSize); /* may overlap when job compressed within dst */ 1323 if (jobID >= compressWithinDst) { /* job compressed into its own buffer, which must be released */ 1324 DEBUGLOG(5, "releasing buffer %u>=%u", jobID, compressWithinDst); 1325 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff); 1326 } } 1327 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1328 mtctx->jobs[jobID].cSize = 0; 1329 dstPos += cSize ; 1330 } 1331 } /* for (jobID=0; jobID<nbJobs; jobID++) */ 1332 1333 DEBUGLOG(4, "checksumFlag : %u ", params.fParams.checksumFlag); 1334 if (params.fParams.checksumFlag) { 1335 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1336 if (dstPos + 4 > dstCapacity) { 1337 error = ERROR(dstSize_tooSmall); 1338 } else { 1339 DEBUGLOG(4, "writing checksum : %08X \n", checksum); 1340 MEM_writeLE32((char*)dst + dstPos, checksum); 1341 dstPos += 4; 1342 } } 1343 1344 if (!error) DEBUGLOG(4, "compressed size : %u ", (U32)dstPos); 1345 return error ? error : dstPos; 1346 } 1347 } 1348 1349 size_t ZSTDMT_compress_advanced(ZSTDMT_CCtx* mtctx, 1350 void* dst, size_t dstCapacity, 1351 const void* src, size_t srcSize, 1352 const ZSTD_CDict* cdict, 1353 ZSTD_parameters params, 1354 int overlapLog) 1355 { 1356 ZSTD_CCtx_params cctxParams = mtctx->params; 1357 cctxParams.cParams = params.cParams; 1358 cctxParams.fParams = params.fParams; 1359 assert(ZSTD_OVERLAPLOG_MIN <= overlapLog && overlapLog <= ZSTD_OVERLAPLOG_MAX); 1360 cctxParams.overlapLog = overlapLog; 1361 return ZSTDMT_compress_advanced_internal(mtctx, 1362 dst, dstCapacity, 1363 src, srcSize, 1364 cdict, cctxParams); 1365 } 1366 1367 1368 size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx, 1369 void* dst, size_t dstCapacity, 1370 const void* src, size_t srcSize, 1371 int compressionLevel) 1372 { 1373 ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0); 1374 int const overlapLog = ZSTDMT_overlapLog_default(params.cParams.strategy); 1375 params.fParams.contentSizeFlag = 1; 1376 return ZSTDMT_compress_advanced(mtctx, dst, dstCapacity, src, srcSize, NULL, params, overlapLog); 1377 } 1378 1379 1380 /* ====================================== */ 1381 /* ======= Streaming API ======= */ 1382 /* ====================================== */ 1383 1384 size_t ZSTDMT_initCStream_internal( 1385 ZSTDMT_CCtx* mtctx, 1386 const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType, 1387 const ZSTD_CDict* cdict, ZSTD_CCtx_params params, 1388 unsigned long long pledgedSrcSize) 1389 { 1390 DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)", 1391 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx); 1392 1393 /* params supposed partially fully validated at this point */ 1394 assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams))); 1395 assert(!((dict) && (cdict))); /* either dict or cdict, not both */ 1396 1397 /* init */ 1398 if (params.nbWorkers != mtctx->params.nbWorkers) 1399 CHECK_F( ZSTDMT_resize(mtctx, params.nbWorkers) ); 1400 1401 if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN; 1402 if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = ZSTDMT_JOBSIZE_MAX; 1403 1404 mtctx->singleBlockingThread = (pledgedSrcSize <= ZSTDMT_JOBSIZE_MIN); /* do not trigger multi-threading when srcSize is too small */ 1405 if (mtctx->singleBlockingThread) { 1406 ZSTD_CCtx_params const singleThreadParams = ZSTDMT_initJobCCtxParams(params); 1407 DEBUGLOG(5, "ZSTDMT_initCStream_internal: switch to single blocking thread mode"); 1408 assert(singleThreadParams.nbWorkers == 0); 1409 return ZSTD_initCStream_internal(mtctx->cctxPool->cctx[0], 1410 dict, dictSize, cdict, 1411 singleThreadParams, pledgedSrcSize); 1412 } 1413 1414 DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers); 1415 1416 if (mtctx->allJobsCompleted == 0) { /* previous compression not correctly finished */ 1417 ZSTDMT_waitForAllJobsCompleted(mtctx); 1418 ZSTDMT_releaseAllJobResources(mtctx); 1419 mtctx->allJobsCompleted = 1; 1420 } 1421 1422 mtctx->params = params; 1423 mtctx->frameContentSize = pledgedSrcSize; 1424 if (dict) { 1425 ZSTD_freeCDict(mtctx->cdictLocal); 1426 mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize, 1427 ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */ 1428 params.cParams, mtctx->cMem); 1429 mtctx->cdict = mtctx->cdictLocal; 1430 if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation); 1431 } else { 1432 ZSTD_freeCDict(mtctx->cdictLocal); 1433 mtctx->cdictLocal = NULL; 1434 mtctx->cdict = cdict; 1435 } 1436 1437 mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(params); 1438 DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10)); 1439 mtctx->targetSectionSize = params.jobSize; 1440 if (mtctx->targetSectionSize == 0) { 1441 mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(params); 1442 } 1443 if (params.rsyncable) { 1444 /* Aim for the targetsectionSize as the average job size. */ 1445 U32 const jobSizeMB = (U32)(mtctx->targetSectionSize >> 20); 1446 U32 const rsyncBits = ZSTD_highbit32(jobSizeMB) + 20; 1447 assert(jobSizeMB >= 1); 1448 DEBUGLOG(4, "rsyncLog = %u", rsyncBits); 1449 mtctx->rsync.hash = 0; 1450 mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1; 1451 mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH); 1452 } 1453 if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize; /* job size must be >= overlap size */ 1454 DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize); 1455 DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10)); 1456 ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize)); 1457 { 1458 /* If ldm is enabled we need windowSize space. */ 1459 size_t const windowSize = mtctx->params.ldmParams.enableLdm ? (1U << mtctx->params.cParams.windowLog) : 0; 1460 /* Two buffers of slack, plus extra space for the overlap 1461 * This is the minimum slack that LDM works with. One extra because 1462 * flush might waste up to targetSectionSize-1 bytes. Another extra 1463 * for the overlap (if > 0), then one to fill which doesn't overlap 1464 * with the LDM window. 1465 */ 1466 size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0); 1467 size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers; 1468 /* Compute the total size, and always have enough slack */ 1469 size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1); 1470 size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers; 1471 size_t const capacity = MAX(windowSize, sectionsSize) + slackSize; 1472 if (mtctx->roundBuff.capacity < capacity) { 1473 if (mtctx->roundBuff.buffer) 1474 ZSTD_free(mtctx->roundBuff.buffer, mtctx->cMem); 1475 mtctx->roundBuff.buffer = (BYTE*)ZSTD_malloc(capacity, mtctx->cMem); 1476 if (mtctx->roundBuff.buffer == NULL) { 1477 mtctx->roundBuff.capacity = 0; 1478 return ERROR(memory_allocation); 1479 } 1480 mtctx->roundBuff.capacity = capacity; 1481 } 1482 } 1483 DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10)); 1484 mtctx->roundBuff.pos = 0; 1485 mtctx->inBuff.buffer = g_nullBuffer; 1486 mtctx->inBuff.filled = 0; 1487 mtctx->inBuff.prefix = kNullRange; 1488 mtctx->doneJobID = 0; 1489 mtctx->nextJobID = 0; 1490 mtctx->frameEnded = 0; 1491 mtctx->allJobsCompleted = 0; 1492 mtctx->consumed = 0; 1493 mtctx->produced = 0; 1494 if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize)) 1495 return ERROR(memory_allocation); 1496 return 0; 1497 } 1498 1499 size_t ZSTDMT_initCStream_advanced(ZSTDMT_CCtx* mtctx, 1500 const void* dict, size_t dictSize, 1501 ZSTD_parameters params, 1502 unsigned long long pledgedSrcSize) 1503 { 1504 ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ 1505 DEBUGLOG(4, "ZSTDMT_initCStream_advanced (pledgedSrcSize=%u)", (U32)pledgedSrcSize); 1506 cctxParams.cParams = params.cParams; 1507 cctxParams.fParams = params.fParams; 1508 return ZSTDMT_initCStream_internal(mtctx, dict, dictSize, ZSTD_dct_auto, NULL, 1509 cctxParams, pledgedSrcSize); 1510 } 1511 1512 size_t ZSTDMT_initCStream_usingCDict(ZSTDMT_CCtx* mtctx, 1513 const ZSTD_CDict* cdict, 1514 ZSTD_frameParameters fParams, 1515 unsigned long long pledgedSrcSize) 1516 { 1517 ZSTD_CCtx_params cctxParams = mtctx->params; 1518 if (cdict==NULL) return ERROR(dictionary_wrong); /* method incompatible with NULL cdict */ 1519 cctxParams.cParams = ZSTD_getCParamsFromCDict(cdict); 1520 cctxParams.fParams = fParams; 1521 return ZSTDMT_initCStream_internal(mtctx, NULL, 0 /*dictSize*/, ZSTD_dct_auto, cdict, 1522 cctxParams, pledgedSrcSize); 1523 } 1524 1525 1526 /* ZSTDMT_resetCStream() : 1527 * pledgedSrcSize can be zero == unknown (for the time being) 1528 * prefer using ZSTD_CONTENTSIZE_UNKNOWN, 1529 * as `0` might mean "empty" in the future */ 1530 size_t ZSTDMT_resetCStream(ZSTDMT_CCtx* mtctx, unsigned long long pledgedSrcSize) 1531 { 1532 if (!pledgedSrcSize) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; 1533 return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, 0, mtctx->params, 1534 pledgedSrcSize); 1535 } 1536 1537 size_t ZSTDMT_initCStream(ZSTDMT_CCtx* mtctx, int compressionLevel) { 1538 ZSTD_parameters const params = ZSTD_getParams(compressionLevel, ZSTD_CONTENTSIZE_UNKNOWN, 0); 1539 ZSTD_CCtx_params cctxParams = mtctx->params; /* retrieve sticky params */ 1540 DEBUGLOG(4, "ZSTDMT_initCStream (cLevel=%i)", compressionLevel); 1541 cctxParams.cParams = params.cParams; 1542 cctxParams.fParams = params.fParams; 1543 return ZSTDMT_initCStream_internal(mtctx, NULL, 0, ZSTD_dct_auto, NULL, cctxParams, ZSTD_CONTENTSIZE_UNKNOWN); 1544 } 1545 1546 1547 /* ZSTDMT_writeLastEmptyBlock() 1548 * Write a single empty block with an end-of-frame to finish a frame. 1549 * Job must be created from streaming variant. 1550 * This function is always successfull if expected conditions are fulfilled. 1551 */ 1552 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job) 1553 { 1554 assert(job->lastJob == 1); 1555 assert(job->src.size == 0); /* last job is empty -> will be simplified into a last empty block */ 1556 assert(job->firstJob == 0); /* cannot be first job, as it also needs to create frame header */ 1557 assert(job->dstBuff.start == NULL); /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */ 1558 job->dstBuff = ZSTDMT_getBuffer(job->bufPool); 1559 if (job->dstBuff.start == NULL) { 1560 job->cSize = ERROR(memory_allocation); 1561 return; 1562 } 1563 assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize); /* no buffer should ever be that small */ 1564 job->src = kNullRange; 1565 job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity); 1566 assert(!ZSTD_isError(job->cSize)); 1567 assert(job->consumed == 0); 1568 } 1569 1570 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp) 1571 { 1572 unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask; 1573 int const endFrame = (endOp == ZSTD_e_end); 1574 1575 if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) { 1576 DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full"); 1577 assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask)); 1578 return 0; 1579 } 1580 1581 if (!mtctx->jobReady) { 1582 BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start; 1583 DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ", 1584 mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size); 1585 mtctx->jobs[jobID].src.start = src; 1586 mtctx->jobs[jobID].src.size = srcSize; 1587 assert(mtctx->inBuff.filled >= srcSize); 1588 mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix; 1589 mtctx->jobs[jobID].consumed = 0; 1590 mtctx->jobs[jobID].cSize = 0; 1591 mtctx->jobs[jobID].params = mtctx->params; 1592 mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL; 1593 mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize; 1594 mtctx->jobs[jobID].dstBuff = g_nullBuffer; 1595 mtctx->jobs[jobID].cctxPool = mtctx->cctxPool; 1596 mtctx->jobs[jobID].bufPool = mtctx->bufPool; 1597 mtctx->jobs[jobID].seqPool = mtctx->seqPool; 1598 mtctx->jobs[jobID].serial = &mtctx->serial; 1599 mtctx->jobs[jobID].jobID = mtctx->nextJobID; 1600 mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0); 1601 mtctx->jobs[jobID].lastJob = endFrame; 1602 mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0); 1603 mtctx->jobs[jobID].dstFlushed = 0; 1604 1605 /* Update the round buffer pos and clear the input buffer to be reset */ 1606 mtctx->roundBuff.pos += srcSize; 1607 mtctx->inBuff.buffer = g_nullBuffer; 1608 mtctx->inBuff.filled = 0; 1609 /* Set the prefix */ 1610 if (!endFrame) { 1611 size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize); 1612 mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize; 1613 mtctx->inBuff.prefix.size = newPrefixSize; 1614 } else { /* endFrame==1 => no need for another input buffer */ 1615 mtctx->inBuff.prefix = kNullRange; 1616 mtctx->frameEnded = endFrame; 1617 if (mtctx->nextJobID == 0) { 1618 /* single job exception : checksum is already calculated directly within worker thread */ 1619 mtctx->params.fParams.checksumFlag = 0; 1620 } } 1621 1622 if ( (srcSize == 0) 1623 && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) { 1624 DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame"); 1625 assert(endOp == ZSTD_e_end); /* only possible case : need to end the frame with an empty last block */ 1626 ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID); 1627 mtctx->nextJobID++; 1628 return 0; 1629 } 1630 } 1631 1632 DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes (end:%u, jobNb == %u (mod:%u))", 1633 mtctx->nextJobID, 1634 (U32)mtctx->jobs[jobID].src.size, 1635 mtctx->jobs[jobID].lastJob, 1636 mtctx->nextJobID, 1637 jobID); 1638 if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) { 1639 mtctx->nextJobID++; 1640 mtctx->jobReady = 0; 1641 } else { 1642 DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID); 1643 mtctx->jobReady = 1; 1644 } 1645 return 0; 1646 } 1647 1648 1649 /*! ZSTDMT_flushProduced() : 1650 * flush whatever data has been produced but not yet flushed in current job. 1651 * move to next job if current one is fully flushed. 1652 * `output` : `pos` will be updated with amount of data flushed . 1653 * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush . 1654 * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */ 1655 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end) 1656 { 1657 unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask; 1658 DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)", 1659 blockToFlush, mtctx->doneJobID, mtctx->nextJobID); 1660 assert(output->size >= output->pos); 1661 1662 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1663 if ( blockToFlush 1664 && (mtctx->doneJobID < mtctx->nextJobID) ) { 1665 assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize); 1666 while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) { /* nothing to flush */ 1667 if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) { 1668 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none", 1669 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size); 1670 break; 1671 } 1672 DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)", 1673 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1674 ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex); /* block when nothing to flush but some to come */ 1675 } } 1676 1677 /* try to flush something */ 1678 { size_t cSize = mtctx->jobs[wJobID].cSize; /* shared */ 1679 size_t const srcConsumed = mtctx->jobs[wJobID].consumed; /* shared */ 1680 size_t const srcSize = mtctx->jobs[wJobID].src.size; /* read-only, could be done after mutex lock, but no-declaration-after-statement */ 1681 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1682 if (ZSTD_isError(cSize)) { 1683 DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s", 1684 mtctx->doneJobID, ZSTD_getErrorName(cSize)); 1685 ZSTDMT_waitForAllJobsCompleted(mtctx); 1686 ZSTDMT_releaseAllJobResources(mtctx); 1687 return cSize; 1688 } 1689 /* add frame checksum if necessary (can only happen once) */ 1690 assert(srcConsumed <= srcSize); 1691 if ( (srcConsumed == srcSize) /* job completed -> worker no longer active */ 1692 && mtctx->jobs[wJobID].frameChecksumNeeded ) { 1693 U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState); 1694 DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum); 1695 MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum); 1696 cSize += 4; 1697 mtctx->jobs[wJobID].cSize += 4; /* can write this shared value, as worker is no longer active */ 1698 mtctx->jobs[wJobID].frameChecksumNeeded = 0; 1699 } 1700 1701 if (cSize > 0) { /* compression is ongoing or completed */ 1702 size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos); 1703 DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)", 1704 (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize); 1705 assert(mtctx->doneJobID < mtctx->nextJobID); 1706 assert(cSize >= mtctx->jobs[wJobID].dstFlushed); 1707 assert(mtctx->jobs[wJobID].dstBuff.start != NULL); 1708 memcpy((char*)output->dst + output->pos, 1709 (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed, 1710 toFlush); 1711 output->pos += toFlush; 1712 mtctx->jobs[wJobID].dstFlushed += toFlush; /* can write : this value is only used by mtctx */ 1713 1714 if ( (srcConsumed == srcSize) /* job is completed */ 1715 && (mtctx->jobs[wJobID].dstFlushed == cSize) ) { /* output buffer fully flushed => free this job position */ 1716 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one", 1717 mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed); 1718 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff); 1719 DEBUGLOG(5, "dstBuffer released"); 1720 mtctx->jobs[wJobID].dstBuff = g_nullBuffer; 1721 mtctx->jobs[wJobID].cSize = 0; /* ensure this job slot is considered "not started" in future check */ 1722 mtctx->consumed += srcSize; 1723 mtctx->produced += cSize; 1724 mtctx->doneJobID++; 1725 } } 1726 1727 /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */ 1728 if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed); 1729 if (srcSize > srcConsumed) return 1; /* current job not completely compressed */ 1730 } 1731 if (mtctx->doneJobID < mtctx->nextJobID) return 1; /* some more jobs ongoing */ 1732 if (mtctx->jobReady) return 1; /* one job is ready to push, just not yet in the list */ 1733 if (mtctx->inBuff.filled > 0) return 1; /* input is not empty, and still needs to be converted into a job */ 1734 mtctx->allJobsCompleted = mtctx->frameEnded; /* all jobs are entirely flushed => if this one is last one, frame is completed */ 1735 if (end == ZSTD_e_end) return !mtctx->frameEnded; /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */ 1736 return 0; /* internal buffers fully flushed */ 1737 } 1738 1739 /** 1740 * Returns the range of data used by the earliest job that is not yet complete. 1741 * If the data of the first job is broken up into two segments, we cover both 1742 * sections. 1743 */ 1744 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx) 1745 { 1746 unsigned const firstJobID = mtctx->doneJobID; 1747 unsigned const lastJobID = mtctx->nextJobID; 1748 unsigned jobID; 1749 1750 for (jobID = firstJobID; jobID < lastJobID; ++jobID) { 1751 unsigned const wJobID = jobID & mtctx->jobIDMask; 1752 size_t consumed; 1753 1754 ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex); 1755 consumed = mtctx->jobs[wJobID].consumed; 1756 ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex); 1757 1758 if (consumed < mtctx->jobs[wJobID].src.size) { 1759 range_t range = mtctx->jobs[wJobID].prefix; 1760 if (range.size == 0) { 1761 /* Empty prefix */ 1762 range = mtctx->jobs[wJobID].src; 1763 } 1764 /* Job source in multiple segments not supported yet */ 1765 assert(range.start <= mtctx->jobs[wJobID].src.start); 1766 return range; 1767 } 1768 } 1769 return kNullRange; 1770 } 1771 1772 /** 1773 * Returns non-zero iff buffer and range overlap. 1774 */ 1775 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range) 1776 { 1777 BYTE const* const bufferStart = (BYTE const*)buffer.start; 1778 BYTE const* const bufferEnd = bufferStart + buffer.capacity; 1779 BYTE const* const rangeStart = (BYTE const*)range.start; 1780 BYTE const* const rangeEnd = rangeStart + range.size; 1781 1782 if (rangeStart == NULL || bufferStart == NULL) 1783 return 0; 1784 /* Empty ranges cannot overlap */ 1785 if (bufferStart == bufferEnd || rangeStart == rangeEnd) 1786 return 0; 1787 1788 return bufferStart < rangeEnd && rangeStart < bufferEnd; 1789 } 1790 1791 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window) 1792 { 1793 range_t extDict; 1794 range_t prefix; 1795 1796 DEBUGLOG(5, "ZSTDMT_doesOverlapWindow"); 1797 extDict.start = window.dictBase + window.lowLimit; 1798 extDict.size = window.dictLimit - window.lowLimit; 1799 1800 prefix.start = window.base + window.dictLimit; 1801 prefix.size = window.nextSrc - (window.base + window.dictLimit); 1802 DEBUGLOG(5, "extDict [0x%zx, 0x%zx)", 1803 (size_t)extDict.start, 1804 (size_t)extDict.start + extDict.size); 1805 DEBUGLOG(5, "prefix [0x%zx, 0x%zx)", 1806 (size_t)prefix.start, 1807 (size_t)prefix.start + prefix.size); 1808 1809 return ZSTDMT_isOverlapped(buffer, extDict) 1810 || ZSTDMT_isOverlapped(buffer, prefix); 1811 } 1812 1813 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer) 1814 { 1815 if (mtctx->params.ldmParams.enableLdm) { 1816 ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex; 1817 DEBUGLOG(5, "ZSTDMT_waitForLdmComplete"); 1818 DEBUGLOG(5, "source [0x%zx, 0x%zx)", 1819 (size_t)buffer.start, 1820 (size_t)buffer.start + buffer.capacity); 1821 ZSTD_PTHREAD_MUTEX_LOCK(mutex); 1822 while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) { 1823 DEBUGLOG(5, "Waiting for LDM to finish..."); 1824 ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex); 1825 } 1826 DEBUGLOG(6, "Done waiting for LDM to finish"); 1827 ZSTD_pthread_mutex_unlock(mutex); 1828 } 1829 } 1830 1831 /** 1832 * Attempts to set the inBuff to the next section to fill. 1833 * If any part of the new section is still in use we give up. 1834 * Returns non-zero if the buffer is filled. 1835 */ 1836 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx) 1837 { 1838 range_t const inUse = ZSTDMT_getInputDataInUse(mtctx); 1839 size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos; 1840 size_t const target = mtctx->targetSectionSize; 1841 buffer_t buffer; 1842 1843 DEBUGLOG(5, "ZSTDMT_tryGetInputRange"); 1844 assert(mtctx->inBuff.buffer.start == NULL); 1845 assert(mtctx->roundBuff.capacity >= target); 1846 1847 if (spaceLeft < target) { 1848 /* ZSTD_invalidateRepCodes() doesn't work for extDict variants. 1849 * Simply copy the prefix to the beginning in that case. 1850 */ 1851 BYTE* const start = (BYTE*)mtctx->roundBuff.buffer; 1852 size_t const prefixSize = mtctx->inBuff.prefix.size; 1853 1854 buffer.start = start; 1855 buffer.capacity = prefixSize; 1856 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1857 DEBUGLOG(5, "Waiting for buffer..."); 1858 return 0; 1859 } 1860 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1861 memmove(start, mtctx->inBuff.prefix.start, prefixSize); 1862 mtctx->inBuff.prefix.start = start; 1863 mtctx->roundBuff.pos = prefixSize; 1864 } 1865 buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos; 1866 buffer.capacity = target; 1867 1868 if (ZSTDMT_isOverlapped(buffer, inUse)) { 1869 DEBUGLOG(5, "Waiting for buffer..."); 1870 return 0; 1871 } 1872 assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix)); 1873 1874 ZSTDMT_waitForLdmComplete(mtctx, buffer); 1875 1876 DEBUGLOG(5, "Using prefix range [%zx, %zx)", 1877 (size_t)mtctx->inBuff.prefix.start, 1878 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size); 1879 DEBUGLOG(5, "Using source range [%zx, %zx)", 1880 (size_t)buffer.start, 1881 (size_t)buffer.start + buffer.capacity); 1882 1883 1884 mtctx->inBuff.buffer = buffer; 1885 mtctx->inBuff.filled = 0; 1886 assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity); 1887 return 1; 1888 } 1889 1890 typedef struct { 1891 size_t toLoad; /* The number of bytes to load from the input. */ 1892 int flush; /* Boolean declaring if we must flush because we found a synchronization point. */ 1893 } syncPoint_t; 1894 1895 /** 1896 * Searches through the input for a synchronization point. If one is found, we 1897 * will instruct the caller to flush, and return the number of bytes to load. 1898 * Otherwise, we will load as many bytes as possible and instruct the caller 1899 * to continue as normal. 1900 */ 1901 static syncPoint_t 1902 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input) 1903 { 1904 BYTE const* const istart = (BYTE const*)input.src + input.pos; 1905 U64 const primePower = mtctx->rsync.primePower; 1906 U64 const hitMask = mtctx->rsync.hitMask; 1907 1908 syncPoint_t syncPoint; 1909 U64 hash; 1910 BYTE const* prev; 1911 size_t pos; 1912 1913 syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled); 1914 syncPoint.flush = 0; 1915 if (!mtctx->params.rsyncable) 1916 /* Rsync is disabled. */ 1917 return syncPoint; 1918 if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH) 1919 /* Not enough to compute the hash. 1920 * We will miss any synchronization points in this RSYNC_LENGTH byte 1921 * window. However, since it depends only in the internal buffers, if the 1922 * state is already synchronized, we will remain synchronized. 1923 * Additionally, the probability that we miss a synchronization point is 1924 * low: RSYNC_LENGTH / targetSectionSize. 1925 */ 1926 return syncPoint; 1927 /* Initialize the loop variables. */ 1928 if (mtctx->inBuff.filled >= RSYNC_LENGTH) { 1929 /* We have enough bytes buffered to initialize the hash. 1930 * Start scanning at the beginning of the input. 1931 */ 1932 pos = 0; 1933 prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH; 1934 hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH); 1935 } else { 1936 /* We don't have enough bytes buffered to initialize the hash, but 1937 * we know we have at least RSYNC_LENGTH bytes total. 1938 * Start scanning after the first RSYNC_LENGTH bytes less the bytes 1939 * already buffered. 1940 */ 1941 pos = RSYNC_LENGTH - mtctx->inBuff.filled; 1942 prev = (BYTE const*)mtctx->inBuff.buffer.start - pos; 1943 hash = ZSTD_rollingHash_compute(mtctx->inBuff.buffer.start, mtctx->inBuff.filled); 1944 hash = ZSTD_rollingHash_append(hash, istart, pos); 1945 } 1946 /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll 1947 * through the input. If we hit a synchronization point, then cut the 1948 * job off, and tell the compressor to flush the job. Otherwise, load 1949 * all the bytes and continue as normal. 1950 * If we go too long without a synchronization point (targetSectionSize) 1951 * then a block will be emitted anyways, but this is okay, since if we 1952 * are already synchronized we will remain synchronized. 1953 */ 1954 for (; pos < syncPoint.toLoad; ++pos) { 1955 BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH]; 1956 /* if (pos >= RSYNC_LENGTH) assert(ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash); */ 1957 hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower); 1958 if ((hash & hitMask) == hitMask) { 1959 syncPoint.toLoad = pos + 1; 1960 syncPoint.flush = 1; 1961 break; 1962 } 1963 } 1964 return syncPoint; 1965 } 1966 1967 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx) 1968 { 1969 size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled; 1970 if (hintInSize==0) hintInSize = mtctx->targetSectionSize; 1971 return hintInSize; 1972 } 1973 1974 /** ZSTDMT_compressStream_generic() : 1975 * internal use only - exposed to be invoked from zstd_compress.c 1976 * assumption : output and input are valid (pos <= size) 1977 * @return : minimum amount of data remaining to flush, 0 if none */ 1978 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx, 1979 ZSTD_outBuffer* output, 1980 ZSTD_inBuffer* input, 1981 ZSTD_EndDirective endOp) 1982 { 1983 unsigned forwardInputProgress = 0; 1984 DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)", 1985 (U32)endOp, (U32)(input->size - input->pos)); 1986 assert(output->pos <= output->size); 1987 assert(input->pos <= input->size); 1988 1989 if (mtctx->singleBlockingThread) { /* delegate to single-thread (synchronous) */ 1990 return ZSTD_compressStream_generic(mtctx->cctxPool->cctx[0], output, input, endOp); 1991 } 1992 1993 if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) { 1994 /* current frame being ended. Only flush/end are allowed */ 1995 return ERROR(stage_wrong); 1996 } 1997 1998 /* single-pass shortcut (note : synchronous-mode) */ 1999 if ( (!mtctx->params.rsyncable) /* rsyncable mode is disabled */ 2000 && (mtctx->nextJobID == 0) /* just started */ 2001 && (mtctx->inBuff.filled == 0) /* nothing buffered */ 2002 && (!mtctx->jobReady) /* no job already created */ 2003 && (endOp == ZSTD_e_end) /* end order */ 2004 && (output->size - output->pos >= ZSTD_compressBound(input->size - input->pos)) ) { /* enough space in dst */ 2005 size_t const cSize = ZSTDMT_compress_advanced_internal(mtctx, 2006 (char*)output->dst + output->pos, output->size - output->pos, 2007 (const char*)input->src + input->pos, input->size - input->pos, 2008 mtctx->cdict, mtctx->params); 2009 if (ZSTD_isError(cSize)) return cSize; 2010 input->pos = input->size; 2011 output->pos += cSize; 2012 mtctx->allJobsCompleted = 1; 2013 mtctx->frameEnded = 1; 2014 return 0; 2015 } 2016 2017 /* fill input buffer */ 2018 if ( (!mtctx->jobReady) 2019 && (input->size > input->pos) ) { /* support NULL input */ 2020 if (mtctx->inBuff.buffer.start == NULL) { 2021 assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */ 2022 if (!ZSTDMT_tryGetInputRange(mtctx)) { 2023 /* It is only possible for this operation to fail if there are 2024 * still compression jobs ongoing. 2025 */ 2026 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed"); 2027 assert(mtctx->doneJobID != mtctx->nextJobID); 2028 } else 2029 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start); 2030 } 2031 if (mtctx->inBuff.buffer.start != NULL) { 2032 syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input); 2033 if (syncPoint.flush && endOp == ZSTD_e_continue) { 2034 endOp = ZSTD_e_flush; 2035 } 2036 assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize); 2037 DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u", 2038 (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize); 2039 memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad); 2040 input->pos += syncPoint.toLoad; 2041 mtctx->inBuff.filled += syncPoint.toLoad; 2042 forwardInputProgress = syncPoint.toLoad>0; 2043 } 2044 if ((input->pos < input->size) && (endOp == ZSTD_e_end)) 2045 endOp = ZSTD_e_flush; /* can't end now : not all input consumed */ 2046 } 2047 2048 if ( (mtctx->jobReady) 2049 || (mtctx->inBuff.filled >= mtctx->targetSectionSize) /* filled enough : let's compress */ 2050 || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0)) /* something to flush : let's go */ 2051 || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) { /* must finish the frame with a zero-size block */ 2052 size_t const jobSize = mtctx->inBuff.filled; 2053 assert(mtctx->inBuff.filled <= mtctx->targetSectionSize); 2054 CHECK_F( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) ); 2055 } 2056 2057 /* check for potential compressed data ready to be flushed */ 2058 { size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */ 2059 if (input->pos < input->size) return MAX(remainingToFlush, 1); /* input not consumed : do not end flush yet */ 2060 DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush); 2061 return remainingToFlush; 2062 } 2063 } 2064 2065 2066 size_t ZSTDMT_compressStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_inBuffer* input) 2067 { 2068 CHECK_F( ZSTDMT_compressStream_generic(mtctx, output, input, ZSTD_e_continue) ); 2069 2070 /* recommended next input size : fill current input buffer */ 2071 return mtctx->targetSectionSize - mtctx->inBuff.filled; /* note : could be zero when input buffer is fully filled and no more availability to create new job */ 2072 } 2073 2074 2075 static size_t ZSTDMT_flushStream_internal(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, ZSTD_EndDirective endFrame) 2076 { 2077 size_t const srcSize = mtctx->inBuff.filled; 2078 DEBUGLOG(5, "ZSTDMT_flushStream_internal"); 2079 2080 if ( mtctx->jobReady /* one job ready for a worker to pick up */ 2081 || (srcSize > 0) /* still some data within input buffer */ 2082 || ((endFrame==ZSTD_e_end) && !mtctx->frameEnded)) { /* need a last 0-size block to end frame */ 2083 DEBUGLOG(5, "ZSTDMT_flushStream_internal : create a new job (%u bytes, end:%u)", 2084 (U32)srcSize, (U32)endFrame); 2085 CHECK_F( ZSTDMT_createCompressionJob(mtctx, srcSize, endFrame) ); 2086 } 2087 2088 /* check if there is any data available to flush */ 2089 return ZSTDMT_flushProduced(mtctx, output, 1 /* blockToFlush */, endFrame); 2090 } 2091 2092 2093 size_t ZSTDMT_flushStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) 2094 { 2095 DEBUGLOG(5, "ZSTDMT_flushStream"); 2096 if (mtctx->singleBlockingThread) 2097 return ZSTD_flushStream(mtctx->cctxPool->cctx[0], output); 2098 return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_flush); 2099 } 2100 2101 size_t ZSTDMT_endStream(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output) 2102 { 2103 DEBUGLOG(4, "ZSTDMT_endStream"); 2104 if (mtctx->singleBlockingThread) 2105 return ZSTD_endStream(mtctx->cctxPool->cctx[0], output); 2106 return ZSTDMT_flushStream_internal(mtctx, output, ZSTD_e_end); 2107 } 2108