xref: /freebsd/sys/contrib/zstd/lib/compress/zstdmt_compress.c (revision 035dd78d30ba28a3dc15c05ec85ad10127165677)
1 /*
2  * Copyright (c) Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11 
12 /* ======   Compiler specifics   ====== */
13 #if defined(_MSC_VER)
14 #  pragma warning(disable : 4204)   /* disable: C4204: non-constant aggregate initializer */
15 #endif
16 
17 
18 /* ======   Constants   ====== */
19 #define ZSTDMT_OVERLAPLOG_DEFAULT 0
20 
21 
22 /* ======   Dependencies   ====== */
23 #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memset, INT_MAX, UINT_MAX */
24 #include "../common/mem.h"         /* MEM_STATIC */
25 #include "../common/pool.h"        /* threadpool */
26 #include "../common/threading.h"   /* mutex */
27 #include "zstd_compress_internal.h"  /* MIN, ERROR, ZSTD_*, ZSTD_highbit32 */
28 #include "zstd_ldm.h"
29 #include "zstdmt_compress.h"
30 
31 /* Guards code to support resizing the SeqPool.
32  * We will want to resize the SeqPool to save memory in the future.
33  * Until then, comment the code out since it is unused.
34  */
35 #define ZSTD_RESIZE_SEQPOOL 0
36 
37 /* ======   Debug   ====== */
38 #if defined(DEBUGLEVEL) && (DEBUGLEVEL>=2) \
39     && !defined(_MSC_VER) \
40     && !defined(__MINGW32__)
41 
42 #  include <stdio.h>
43 #  include <unistd.h>
44 #  include <sys/times.h>
45 
46 #  define DEBUG_PRINTHEX(l,p,n) {            \
47     unsigned debug_u;                        \
48     for (debug_u=0; debug_u<(n); debug_u++)  \
49         RAWLOG(l, "%02X ", ((const unsigned char*)(p))[debug_u]); \
50     RAWLOG(l, " \n");                        \
51 }
52 
53 static unsigned long long GetCurrentClockTimeMicroseconds(void)
54 {
55    static clock_t _ticksPerSecond = 0;
56    if (_ticksPerSecond <= 0) _ticksPerSecond = sysconf(_SC_CLK_TCK);
57 
58    {   struct tms junk; clock_t newTicks = (clock_t) times(&junk);
59        return ((((unsigned long long)newTicks)*(1000000))/_ticksPerSecond);
60 }  }
61 
62 #define MUTEX_WAIT_TIME_DLEVEL 6
63 #define ZSTD_PTHREAD_MUTEX_LOCK(mutex) {          \
64     if (DEBUGLEVEL >= MUTEX_WAIT_TIME_DLEVEL) {   \
65         unsigned long long const beforeTime = GetCurrentClockTimeMicroseconds(); \
66         ZSTD_pthread_mutex_lock(mutex);           \
67         {   unsigned long long const afterTime = GetCurrentClockTimeMicroseconds(); \
68             unsigned long long const elapsedTime = (afterTime-beforeTime); \
69             if (elapsedTime > 1000) {  /* or whatever threshold you like; I'm using 1 millisecond here */ \
70                 DEBUGLOG(MUTEX_WAIT_TIME_DLEVEL, "Thread took %llu microseconds to acquire mutex %s \n", \
71                    elapsedTime, #mutex);          \
72         }   }                                     \
73     } else {                                      \
74         ZSTD_pthread_mutex_lock(mutex);           \
75     }                                             \
76 }
77 
78 #else
79 
80 #  define ZSTD_PTHREAD_MUTEX_LOCK(m) ZSTD_pthread_mutex_lock(m)
81 #  define DEBUG_PRINTHEX(l,p,n) {}
82 
83 #endif
84 
85 
86 /* =====   Buffer Pool   ===== */
87 /* a single Buffer Pool can be invoked from multiple threads in parallel */
88 
89 typedef struct buffer_s {
90     void* start;
91     size_t capacity;
92 } buffer_t;
93 
94 static const buffer_t g_nullBuffer = { NULL, 0 };
95 
96 typedef struct ZSTDMT_bufferPool_s {
97     ZSTD_pthread_mutex_t poolMutex;
98     size_t bufferSize;
99     unsigned totalBuffers;
100     unsigned nbBuffers;
101     ZSTD_customMem cMem;
102     buffer_t bTable[1];   /* variable size */
103 } ZSTDMT_bufferPool;
104 
105 static ZSTDMT_bufferPool* ZSTDMT_createBufferPool(unsigned maxNbBuffers, ZSTD_customMem cMem)
106 {
107     ZSTDMT_bufferPool* const bufPool = (ZSTDMT_bufferPool*)ZSTD_customCalloc(
108         sizeof(ZSTDMT_bufferPool) + (maxNbBuffers-1) * sizeof(buffer_t), cMem);
109     if (bufPool==NULL) return NULL;
110     if (ZSTD_pthread_mutex_init(&bufPool->poolMutex, NULL)) {
111         ZSTD_customFree(bufPool, cMem);
112         return NULL;
113     }
114     bufPool->bufferSize = 64 KB;
115     bufPool->totalBuffers = maxNbBuffers;
116     bufPool->nbBuffers = 0;
117     bufPool->cMem = cMem;
118     return bufPool;
119 }
120 
121 static void ZSTDMT_freeBufferPool(ZSTDMT_bufferPool* bufPool)
122 {
123     unsigned u;
124     DEBUGLOG(3, "ZSTDMT_freeBufferPool (address:%08X)", (U32)(size_t)bufPool);
125     if (!bufPool) return;   /* compatibility with free on NULL */
126     for (u=0; u<bufPool->totalBuffers; u++) {
127         DEBUGLOG(4, "free buffer %2u (address:%08X)", u, (U32)(size_t)bufPool->bTable[u].start);
128         ZSTD_customFree(bufPool->bTable[u].start, bufPool->cMem);
129     }
130     ZSTD_pthread_mutex_destroy(&bufPool->poolMutex);
131     ZSTD_customFree(bufPool, bufPool->cMem);
132 }
133 
134 /* only works at initialization, not during compression */
135 static size_t ZSTDMT_sizeof_bufferPool(ZSTDMT_bufferPool* bufPool)
136 {
137     size_t const poolSize = sizeof(*bufPool)
138                           + (bufPool->totalBuffers - 1) * sizeof(buffer_t);
139     unsigned u;
140     size_t totalBufferSize = 0;
141     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
142     for (u=0; u<bufPool->totalBuffers; u++)
143         totalBufferSize += bufPool->bTable[u].capacity;
144     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
145 
146     return poolSize + totalBufferSize;
147 }
148 
149 /* ZSTDMT_setBufferSize() :
150  * all future buffers provided by this buffer pool will have _at least_ this size
151  * note : it's better for all buffers to have same size,
152  * as they become freely interchangeable, reducing malloc/free usages and memory fragmentation */
153 static void ZSTDMT_setBufferSize(ZSTDMT_bufferPool* const bufPool, size_t const bSize)
154 {
155     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
156     DEBUGLOG(4, "ZSTDMT_setBufferSize: bSize = %u", (U32)bSize);
157     bufPool->bufferSize = bSize;
158     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
159 }
160 
161 
162 static ZSTDMT_bufferPool* ZSTDMT_expandBufferPool(ZSTDMT_bufferPool* srcBufPool, unsigned maxNbBuffers)
163 {
164     if (srcBufPool==NULL) return NULL;
165     if (srcBufPool->totalBuffers >= maxNbBuffers) /* good enough */
166         return srcBufPool;
167     /* need a larger buffer pool */
168     {   ZSTD_customMem const cMem = srcBufPool->cMem;
169         size_t const bSize = srcBufPool->bufferSize;   /* forward parameters */
170         ZSTDMT_bufferPool* newBufPool;
171         ZSTDMT_freeBufferPool(srcBufPool);
172         newBufPool = ZSTDMT_createBufferPool(maxNbBuffers, cMem);
173         if (newBufPool==NULL) return newBufPool;
174         ZSTDMT_setBufferSize(newBufPool, bSize);
175         return newBufPool;
176     }
177 }
178 
179 /** ZSTDMT_getBuffer() :
180  *  assumption : bufPool must be valid
181  * @return : a buffer, with start pointer and size
182  *  note: allocation may fail, in this case, start==NULL and size==0 */
183 static buffer_t ZSTDMT_getBuffer(ZSTDMT_bufferPool* bufPool)
184 {
185     size_t const bSize = bufPool->bufferSize;
186     DEBUGLOG(5, "ZSTDMT_getBuffer: bSize = %u", (U32)bufPool->bufferSize);
187     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
188     if (bufPool->nbBuffers) {   /* try to use an existing buffer */
189         buffer_t const buf = bufPool->bTable[--(bufPool->nbBuffers)];
190         size_t const availBufferSize = buf.capacity;
191         bufPool->bTable[bufPool->nbBuffers] = g_nullBuffer;
192         if ((availBufferSize >= bSize) & ((availBufferSize>>3) <= bSize)) {
193             /* large enough, but not too much */
194             DEBUGLOG(5, "ZSTDMT_getBuffer: provide buffer %u of size %u",
195                         bufPool->nbBuffers, (U32)buf.capacity);
196             ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
197             return buf;
198         }
199         /* size conditions not respected : scratch this buffer, create new one */
200         DEBUGLOG(5, "ZSTDMT_getBuffer: existing buffer does not meet size conditions => freeing");
201         ZSTD_customFree(buf.start, bufPool->cMem);
202     }
203     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
204     /* create new buffer */
205     DEBUGLOG(5, "ZSTDMT_getBuffer: create a new buffer");
206     {   buffer_t buffer;
207         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
208         buffer.start = start;   /* note : start can be NULL if malloc fails ! */
209         buffer.capacity = (start==NULL) ? 0 : bSize;
210         if (start==NULL) {
211             DEBUGLOG(5, "ZSTDMT_getBuffer: buffer allocation failure !!");
212         } else {
213             DEBUGLOG(5, "ZSTDMT_getBuffer: created buffer of size %u", (U32)bSize);
214         }
215         return buffer;
216     }
217 }
218 
219 #if ZSTD_RESIZE_SEQPOOL
220 /** ZSTDMT_resizeBuffer() :
221  * assumption : bufPool must be valid
222  * @return : a buffer that is at least the buffer pool buffer size.
223  *           If a reallocation happens, the data in the input buffer is copied.
224  */
225 static buffer_t ZSTDMT_resizeBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buffer)
226 {
227     size_t const bSize = bufPool->bufferSize;
228     if (buffer.capacity < bSize) {
229         void* const start = ZSTD_customMalloc(bSize, bufPool->cMem);
230         buffer_t newBuffer;
231         newBuffer.start = start;
232         newBuffer.capacity = start == NULL ? 0 : bSize;
233         if (start != NULL) {
234             assert(newBuffer.capacity >= buffer.capacity);
235             ZSTD_memcpy(newBuffer.start, buffer.start, buffer.capacity);
236             DEBUGLOG(5, "ZSTDMT_resizeBuffer: created buffer of size %u", (U32)bSize);
237             return newBuffer;
238         }
239         DEBUGLOG(5, "ZSTDMT_resizeBuffer: buffer allocation failure !!");
240     }
241     return buffer;
242 }
243 #endif
244 
245 /* store buffer for later re-use, up to pool capacity */
246 static void ZSTDMT_releaseBuffer(ZSTDMT_bufferPool* bufPool, buffer_t buf)
247 {
248     DEBUGLOG(5, "ZSTDMT_releaseBuffer");
249     if (buf.start == NULL) return;   /* compatible with release on NULL */
250     ZSTD_pthread_mutex_lock(&bufPool->poolMutex);
251     if (bufPool->nbBuffers < bufPool->totalBuffers) {
252         bufPool->bTable[bufPool->nbBuffers++] = buf;  /* stored for later use */
253         DEBUGLOG(5, "ZSTDMT_releaseBuffer: stored buffer of size %u in slot %u",
254                     (U32)buf.capacity, (U32)(bufPool->nbBuffers-1));
255         ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
256         return;
257     }
258     ZSTD_pthread_mutex_unlock(&bufPool->poolMutex);
259     /* Reached bufferPool capacity (should not happen) */
260     DEBUGLOG(5, "ZSTDMT_releaseBuffer: pool capacity reached => freeing ");
261     ZSTD_customFree(buf.start, bufPool->cMem);
262 }
263 
264 /* We need 2 output buffers per worker since each dstBuff must be flushed after it is released.
265  * The 3 additional buffers are as follows:
266  *   1 buffer for input loading
267  *   1 buffer for "next input" when submitting current one
268  *   1 buffer stuck in queue */
269 #define BUF_POOL_MAX_NB_BUFFERS(nbWorkers) 2*nbWorkers + 3
270 
271 /* After a worker releases its rawSeqStore, it is immediately ready for reuse.
272  * So we only need one seq buffer per worker. */
273 #define SEQ_POOL_MAX_NB_BUFFERS(nbWorkers) nbWorkers
274 
275 /* =====   Seq Pool Wrapper   ====== */
276 
277 typedef ZSTDMT_bufferPool ZSTDMT_seqPool;
278 
279 static size_t ZSTDMT_sizeof_seqPool(ZSTDMT_seqPool* seqPool)
280 {
281     return ZSTDMT_sizeof_bufferPool(seqPool);
282 }
283 
284 static rawSeqStore_t bufferToSeq(buffer_t buffer)
285 {
286     rawSeqStore_t seq = kNullRawSeqStore;
287     seq.seq = (rawSeq*)buffer.start;
288     seq.capacity = buffer.capacity / sizeof(rawSeq);
289     return seq;
290 }
291 
292 static buffer_t seqToBuffer(rawSeqStore_t seq)
293 {
294     buffer_t buffer;
295     buffer.start = seq.seq;
296     buffer.capacity = seq.capacity * sizeof(rawSeq);
297     return buffer;
298 }
299 
300 static rawSeqStore_t ZSTDMT_getSeq(ZSTDMT_seqPool* seqPool)
301 {
302     if (seqPool->bufferSize == 0) {
303         return kNullRawSeqStore;
304     }
305     return bufferToSeq(ZSTDMT_getBuffer(seqPool));
306 }
307 
308 #if ZSTD_RESIZE_SEQPOOL
309 static rawSeqStore_t ZSTDMT_resizeSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
310 {
311   return bufferToSeq(ZSTDMT_resizeBuffer(seqPool, seqToBuffer(seq)));
312 }
313 #endif
314 
315 static void ZSTDMT_releaseSeq(ZSTDMT_seqPool* seqPool, rawSeqStore_t seq)
316 {
317   ZSTDMT_releaseBuffer(seqPool, seqToBuffer(seq));
318 }
319 
320 static void ZSTDMT_setNbSeq(ZSTDMT_seqPool* const seqPool, size_t const nbSeq)
321 {
322   ZSTDMT_setBufferSize(seqPool, nbSeq * sizeof(rawSeq));
323 }
324 
325 static ZSTDMT_seqPool* ZSTDMT_createSeqPool(unsigned nbWorkers, ZSTD_customMem cMem)
326 {
327     ZSTDMT_seqPool* const seqPool = ZSTDMT_createBufferPool(SEQ_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
328     if (seqPool == NULL) return NULL;
329     ZSTDMT_setNbSeq(seqPool, 0);
330     return seqPool;
331 }
332 
333 static void ZSTDMT_freeSeqPool(ZSTDMT_seqPool* seqPool)
334 {
335     ZSTDMT_freeBufferPool(seqPool);
336 }
337 
338 static ZSTDMT_seqPool* ZSTDMT_expandSeqPool(ZSTDMT_seqPool* pool, U32 nbWorkers)
339 {
340     return ZSTDMT_expandBufferPool(pool, SEQ_POOL_MAX_NB_BUFFERS(nbWorkers));
341 }
342 
343 
344 /* =====   CCtx Pool   ===== */
345 /* a single CCtx Pool can be invoked from multiple threads in parallel */
346 
347 typedef struct {
348     ZSTD_pthread_mutex_t poolMutex;
349     int totalCCtx;
350     int availCCtx;
351     ZSTD_customMem cMem;
352     ZSTD_CCtx* cctx[1];   /* variable size */
353 } ZSTDMT_CCtxPool;
354 
355 /* note : all CCtx borrowed from the pool should be released back to the pool _before_ freeing the pool */
356 static void ZSTDMT_freeCCtxPool(ZSTDMT_CCtxPool* pool)
357 {
358     int cid;
359     for (cid=0; cid<pool->totalCCtx; cid++)
360         ZSTD_freeCCtx(pool->cctx[cid]);  /* note : compatible with free on NULL */
361     ZSTD_pthread_mutex_destroy(&pool->poolMutex);
362     ZSTD_customFree(pool, pool->cMem);
363 }
364 
365 /* ZSTDMT_createCCtxPool() :
366  * implies nbWorkers >= 1 , checked by caller ZSTDMT_createCCtx() */
367 static ZSTDMT_CCtxPool* ZSTDMT_createCCtxPool(int nbWorkers,
368                                               ZSTD_customMem cMem)
369 {
370     ZSTDMT_CCtxPool* const cctxPool = (ZSTDMT_CCtxPool*) ZSTD_customCalloc(
371         sizeof(ZSTDMT_CCtxPool) + (nbWorkers-1)*sizeof(ZSTD_CCtx*), cMem);
372     assert(nbWorkers > 0);
373     if (!cctxPool) return NULL;
374     if (ZSTD_pthread_mutex_init(&cctxPool->poolMutex, NULL)) {
375         ZSTD_customFree(cctxPool, cMem);
376         return NULL;
377     }
378     cctxPool->cMem = cMem;
379     cctxPool->totalCCtx = nbWorkers;
380     cctxPool->availCCtx = 1;   /* at least one cctx for single-thread mode */
381     cctxPool->cctx[0] = ZSTD_createCCtx_advanced(cMem);
382     if (!cctxPool->cctx[0]) { ZSTDMT_freeCCtxPool(cctxPool); return NULL; }
383     DEBUGLOG(3, "cctxPool created, with %u workers", nbWorkers);
384     return cctxPool;
385 }
386 
387 static ZSTDMT_CCtxPool* ZSTDMT_expandCCtxPool(ZSTDMT_CCtxPool* srcPool,
388                                               int nbWorkers)
389 {
390     if (srcPool==NULL) return NULL;
391     if (nbWorkers <= srcPool->totalCCtx) return srcPool;   /* good enough */
392     /* need a larger cctx pool */
393     {   ZSTD_customMem const cMem = srcPool->cMem;
394         ZSTDMT_freeCCtxPool(srcPool);
395         return ZSTDMT_createCCtxPool(nbWorkers, cMem);
396     }
397 }
398 
399 /* only works during initialization phase, not during compression */
400 static size_t ZSTDMT_sizeof_CCtxPool(ZSTDMT_CCtxPool* cctxPool)
401 {
402     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
403     {   unsigned const nbWorkers = cctxPool->totalCCtx;
404         size_t const poolSize = sizeof(*cctxPool)
405                                 + (nbWorkers-1) * sizeof(ZSTD_CCtx*);
406         unsigned u;
407         size_t totalCCtxSize = 0;
408         for (u=0; u<nbWorkers; u++) {
409             totalCCtxSize += ZSTD_sizeof_CCtx(cctxPool->cctx[u]);
410         }
411         ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
412         assert(nbWorkers > 0);
413         return poolSize + totalCCtxSize;
414     }
415 }
416 
417 static ZSTD_CCtx* ZSTDMT_getCCtx(ZSTDMT_CCtxPool* cctxPool)
418 {
419     DEBUGLOG(5, "ZSTDMT_getCCtx");
420     ZSTD_pthread_mutex_lock(&cctxPool->poolMutex);
421     if (cctxPool->availCCtx) {
422         cctxPool->availCCtx--;
423         {   ZSTD_CCtx* const cctx = cctxPool->cctx[cctxPool->availCCtx];
424             ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
425             return cctx;
426     }   }
427     ZSTD_pthread_mutex_unlock(&cctxPool->poolMutex);
428     DEBUGLOG(5, "create one more CCtx");
429     return ZSTD_createCCtx_advanced(cctxPool->cMem);   /* note : can be NULL, when creation fails ! */
430 }
431 
432 static void ZSTDMT_releaseCCtx(ZSTDMT_CCtxPool* pool, ZSTD_CCtx* cctx)
433 {
434     if (cctx==NULL) return;   /* compatibility with release on NULL */
435     ZSTD_pthread_mutex_lock(&pool->poolMutex);
436     if (pool->availCCtx < pool->totalCCtx)
437         pool->cctx[pool->availCCtx++] = cctx;
438     else {
439         /* pool overflow : should not happen, since totalCCtx==nbWorkers */
440         DEBUGLOG(4, "CCtx pool overflow : free cctx");
441         ZSTD_freeCCtx(cctx);
442     }
443     ZSTD_pthread_mutex_unlock(&pool->poolMutex);
444 }
445 
446 /* ====   Serial State   ==== */
447 
448 typedef struct {
449     void const* start;
450     size_t size;
451 } range_t;
452 
453 typedef struct {
454     /* All variables in the struct are protected by mutex. */
455     ZSTD_pthread_mutex_t mutex;
456     ZSTD_pthread_cond_t cond;
457     ZSTD_CCtx_params params;
458     ldmState_t ldmState;
459     XXH64_state_t xxhState;
460     unsigned nextJobID;
461     /* Protects ldmWindow.
462      * Must be acquired after the main mutex when acquiring both.
463      */
464     ZSTD_pthread_mutex_t ldmWindowMutex;
465     ZSTD_pthread_cond_t ldmWindowCond;  /* Signaled when ldmWindow is updated */
466     ZSTD_window_t ldmWindow;  /* A thread-safe copy of ldmState.window */
467 } serialState_t;
468 
469 static int
470 ZSTDMT_serialState_reset(serialState_t* serialState,
471                          ZSTDMT_seqPool* seqPool,
472                          ZSTD_CCtx_params params,
473                          size_t jobSize,
474                          const void* dict, size_t const dictSize,
475                          ZSTD_dictContentType_e dictContentType)
476 {
477     /* Adjust parameters */
478     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
479         DEBUGLOG(4, "LDM window size = %u KB", (1U << params.cParams.windowLog) >> 10);
480         ZSTD_ldm_adjustParameters(&params.ldmParams, &params.cParams);
481         assert(params.ldmParams.hashLog >= params.ldmParams.bucketSizeLog);
482         assert(params.ldmParams.hashRateLog < 32);
483     } else {
484         ZSTD_memset(&params.ldmParams, 0, sizeof(params.ldmParams));
485     }
486     serialState->nextJobID = 0;
487     if (params.fParams.checksumFlag)
488         XXH64_reset(&serialState->xxhState, 0);
489     if (params.ldmParams.enableLdm == ZSTD_ps_enable) {
490         ZSTD_customMem cMem = params.customMem;
491         unsigned const hashLog = params.ldmParams.hashLog;
492         size_t const hashSize = ((size_t)1 << hashLog) * sizeof(ldmEntry_t);
493         unsigned const bucketLog =
494             params.ldmParams.hashLog - params.ldmParams.bucketSizeLog;
495         unsigned const prevBucketLog =
496             serialState->params.ldmParams.hashLog -
497             serialState->params.ldmParams.bucketSizeLog;
498         size_t const numBuckets = (size_t)1 << bucketLog;
499         /* Size the seq pool tables */
500         ZSTDMT_setNbSeq(seqPool, ZSTD_ldm_getMaxNbSeq(params.ldmParams, jobSize));
501         /* Reset the window */
502         ZSTD_window_init(&serialState->ldmState.window);
503         /* Resize tables and output space if necessary. */
504         if (serialState->ldmState.hashTable == NULL || serialState->params.ldmParams.hashLog < hashLog) {
505             ZSTD_customFree(serialState->ldmState.hashTable, cMem);
506             serialState->ldmState.hashTable = (ldmEntry_t*)ZSTD_customMalloc(hashSize, cMem);
507         }
508         if (serialState->ldmState.bucketOffsets == NULL || prevBucketLog < bucketLog) {
509             ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
510             serialState->ldmState.bucketOffsets = (BYTE*)ZSTD_customMalloc(numBuckets, cMem);
511         }
512         if (!serialState->ldmState.hashTable || !serialState->ldmState.bucketOffsets)
513             return 1;
514         /* Zero the tables */
515         ZSTD_memset(serialState->ldmState.hashTable, 0, hashSize);
516         ZSTD_memset(serialState->ldmState.bucketOffsets, 0, numBuckets);
517 
518         /* Update window state and fill hash table with dict */
519         serialState->ldmState.loadedDictEnd = 0;
520         if (dictSize > 0) {
521             if (dictContentType == ZSTD_dct_rawContent) {
522                 BYTE const* const dictEnd = (const BYTE*)dict + dictSize;
523                 ZSTD_window_update(&serialState->ldmState.window, dict, dictSize, /* forceNonContiguous */ 0);
524                 ZSTD_ldm_fillHashTable(&serialState->ldmState, (const BYTE*)dict, dictEnd, &params.ldmParams);
525                 serialState->ldmState.loadedDictEnd = params.forceWindow ? 0 : (U32)(dictEnd - serialState->ldmState.window.base);
526             } else {
527                 /* don't even load anything */
528             }
529         }
530 
531         /* Initialize serialState's copy of ldmWindow. */
532         serialState->ldmWindow = serialState->ldmState.window;
533     }
534 
535     serialState->params = params;
536     serialState->params.jobSize = (U32)jobSize;
537     return 0;
538 }
539 
540 static int ZSTDMT_serialState_init(serialState_t* serialState)
541 {
542     int initError = 0;
543     ZSTD_memset(serialState, 0, sizeof(*serialState));
544     initError |= ZSTD_pthread_mutex_init(&serialState->mutex, NULL);
545     initError |= ZSTD_pthread_cond_init(&serialState->cond, NULL);
546     initError |= ZSTD_pthread_mutex_init(&serialState->ldmWindowMutex, NULL);
547     initError |= ZSTD_pthread_cond_init(&serialState->ldmWindowCond, NULL);
548     return initError;
549 }
550 
551 static void ZSTDMT_serialState_free(serialState_t* serialState)
552 {
553     ZSTD_customMem cMem = serialState->params.customMem;
554     ZSTD_pthread_mutex_destroy(&serialState->mutex);
555     ZSTD_pthread_cond_destroy(&serialState->cond);
556     ZSTD_pthread_mutex_destroy(&serialState->ldmWindowMutex);
557     ZSTD_pthread_cond_destroy(&serialState->ldmWindowCond);
558     ZSTD_customFree(serialState->ldmState.hashTable, cMem);
559     ZSTD_customFree(serialState->ldmState.bucketOffsets, cMem);
560 }
561 
562 static void ZSTDMT_serialState_update(serialState_t* serialState,
563                                       ZSTD_CCtx* jobCCtx, rawSeqStore_t seqStore,
564                                       range_t src, unsigned jobID)
565 {
566     /* Wait for our turn */
567     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
568     while (serialState->nextJobID < jobID) {
569         DEBUGLOG(5, "wait for serialState->cond");
570         ZSTD_pthread_cond_wait(&serialState->cond, &serialState->mutex);
571     }
572     /* A future job may error and skip our job */
573     if (serialState->nextJobID == jobID) {
574         /* It is now our turn, do any processing necessary */
575         if (serialState->params.ldmParams.enableLdm == ZSTD_ps_enable) {
576             size_t error;
577             assert(seqStore.seq != NULL && seqStore.pos == 0 &&
578                    seqStore.size == 0 && seqStore.capacity > 0);
579             assert(src.size <= serialState->params.jobSize);
580             ZSTD_window_update(&serialState->ldmState.window, src.start, src.size, /* forceNonContiguous */ 0);
581             error = ZSTD_ldm_generateSequences(
582                 &serialState->ldmState, &seqStore,
583                 &serialState->params.ldmParams, src.start, src.size);
584             /* We provide a large enough buffer to never fail. */
585             assert(!ZSTD_isError(error)); (void)error;
586             /* Update ldmWindow to match the ldmState.window and signal the main
587              * thread if it is waiting for a buffer.
588              */
589             ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
590             serialState->ldmWindow = serialState->ldmState.window;
591             ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
592             ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
593         }
594         if (serialState->params.fParams.checksumFlag && src.size > 0)
595             XXH64_update(&serialState->xxhState, src.start, src.size);
596     }
597     /* Now it is the next jobs turn */
598     serialState->nextJobID++;
599     ZSTD_pthread_cond_broadcast(&serialState->cond);
600     ZSTD_pthread_mutex_unlock(&serialState->mutex);
601 
602     if (seqStore.size > 0) {
603         size_t const err = ZSTD_referenceExternalSequences(
604             jobCCtx, seqStore.seq, seqStore.size);
605         assert(serialState->params.ldmParams.enableLdm == ZSTD_ps_enable);
606         assert(!ZSTD_isError(err));
607         (void)err;
608     }
609 }
610 
611 static void ZSTDMT_serialState_ensureFinished(serialState_t* serialState,
612                                               unsigned jobID, size_t cSize)
613 {
614     ZSTD_PTHREAD_MUTEX_LOCK(&serialState->mutex);
615     if (serialState->nextJobID <= jobID) {
616         assert(ZSTD_isError(cSize)); (void)cSize;
617         DEBUGLOG(5, "Skipping past job %u because of error", jobID);
618         serialState->nextJobID = jobID + 1;
619         ZSTD_pthread_cond_broadcast(&serialState->cond);
620 
621         ZSTD_PTHREAD_MUTEX_LOCK(&serialState->ldmWindowMutex);
622         ZSTD_window_clear(&serialState->ldmWindow);
623         ZSTD_pthread_cond_signal(&serialState->ldmWindowCond);
624         ZSTD_pthread_mutex_unlock(&serialState->ldmWindowMutex);
625     }
626     ZSTD_pthread_mutex_unlock(&serialState->mutex);
627 
628 }
629 
630 
631 /* ------------------------------------------ */
632 /* =====          Worker thread         ===== */
633 /* ------------------------------------------ */
634 
635 static const range_t kNullRange = { NULL, 0 };
636 
637 typedef struct {
638     size_t   consumed;                   /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx */
639     size_t   cSize;                      /* SHARED - set0 by mtctx, then modified by worker AND read by mtctx, then set0 by mtctx */
640     ZSTD_pthread_mutex_t job_mutex;      /* Thread-safe - used by mtctx and worker */
641     ZSTD_pthread_cond_t job_cond;        /* Thread-safe - used by mtctx and worker */
642     ZSTDMT_CCtxPool* cctxPool;           /* Thread-safe - used by mtctx and (all) workers */
643     ZSTDMT_bufferPool* bufPool;          /* Thread-safe - used by mtctx and (all) workers */
644     ZSTDMT_seqPool* seqPool;             /* Thread-safe - used by mtctx and (all) workers */
645     serialState_t* serial;               /* Thread-safe - used by mtctx and (all) workers */
646     buffer_t dstBuff;                    /* set by worker (or mtctx), then read by worker & mtctx, then modified by mtctx => no barrier */
647     range_t prefix;                      /* set by mtctx, then read by worker & mtctx => no barrier */
648     range_t src;                         /* set by mtctx, then read by worker & mtctx => no barrier */
649     unsigned jobID;                      /* set by mtctx, then read by worker => no barrier */
650     unsigned firstJob;                   /* set by mtctx, then read by worker => no barrier */
651     unsigned lastJob;                    /* set by mtctx, then read by worker => no barrier */
652     ZSTD_CCtx_params params;             /* set by mtctx, then read by worker => no barrier */
653     const ZSTD_CDict* cdict;             /* set by mtctx, then read by worker => no barrier */
654     unsigned long long fullFrameSize;    /* set by mtctx, then read by worker => no barrier */
655     size_t   dstFlushed;                 /* used only by mtctx */
656     unsigned frameChecksumNeeded;        /* used only by mtctx */
657 } ZSTDMT_jobDescription;
658 
659 #define JOB_ERROR(e) {                          \
660     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);   \
661     job->cSize = e;                             \
662     ZSTD_pthread_mutex_unlock(&job->job_mutex); \
663     goto _endJob;                               \
664 }
665 
666 /* ZSTDMT_compressionJob() is a POOL_function type */
667 static void ZSTDMT_compressionJob(void* jobDescription)
668 {
669     ZSTDMT_jobDescription* const job = (ZSTDMT_jobDescription*)jobDescription;
670     ZSTD_CCtx_params jobParams = job->params;   /* do not modify job->params ! copy it, modify the copy */
671     ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(job->cctxPool);
672     rawSeqStore_t rawSeqStore = ZSTDMT_getSeq(job->seqPool);
673     buffer_t dstBuff = job->dstBuff;
674     size_t lastCBlockSize = 0;
675 
676     /* resources */
677     if (cctx==NULL) JOB_ERROR(ERROR(memory_allocation));
678     if (dstBuff.start == NULL) {   /* streaming job : doesn't provide a dstBuffer */
679         dstBuff = ZSTDMT_getBuffer(job->bufPool);
680         if (dstBuff.start==NULL) JOB_ERROR(ERROR(memory_allocation));
681         job->dstBuff = dstBuff;   /* this value can be read in ZSTDMT_flush, when it copies the whole job */
682     }
683     if (jobParams.ldmParams.enableLdm == ZSTD_ps_enable && rawSeqStore.seq == NULL)
684         JOB_ERROR(ERROR(memory_allocation));
685 
686     /* Don't compute the checksum for chunks, since we compute it externally,
687      * but write it in the header.
688      */
689     if (job->jobID != 0) jobParams.fParams.checksumFlag = 0;
690     /* Don't run LDM for the chunks, since we handle it externally */
691     jobParams.ldmParams.enableLdm = ZSTD_ps_disable;
692     /* Correct nbWorkers to 0. */
693     jobParams.nbWorkers = 0;
694 
695 
696     /* init */
697     if (job->cdict) {
698         size_t const initError = ZSTD_compressBegin_advanced_internal(cctx, NULL, 0, ZSTD_dct_auto, ZSTD_dtlm_fast, job->cdict, &jobParams, job->fullFrameSize);
699         assert(job->firstJob);  /* only allowed for first job */
700         if (ZSTD_isError(initError)) JOB_ERROR(initError);
701     } else {  /* srcStart points at reloaded section */
702         U64 const pledgedSrcSize = job->firstJob ? job->fullFrameSize : job->src.size;
703         {   size_t const forceWindowError = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_forceMaxWindow, !job->firstJob);
704             if (ZSTD_isError(forceWindowError)) JOB_ERROR(forceWindowError);
705         }
706         if (!job->firstJob) {
707             size_t const err = ZSTD_CCtxParams_setParameter(&jobParams, ZSTD_c_deterministicRefPrefix, 0);
708             if (ZSTD_isError(err)) JOB_ERROR(err);
709         }
710         {   size_t const initError = ZSTD_compressBegin_advanced_internal(cctx,
711                                         job->prefix.start, job->prefix.size, ZSTD_dct_rawContent, /* load dictionary in "content-only" mode (no header analysis) */
712                                         ZSTD_dtlm_fast,
713                                         NULL, /*cdict*/
714                                         &jobParams, pledgedSrcSize);
715             if (ZSTD_isError(initError)) JOB_ERROR(initError);
716     }   }
717 
718     /* Perform serial step as early as possible, but after CCtx initialization */
719     ZSTDMT_serialState_update(job->serial, cctx, rawSeqStore, job->src, job->jobID);
720 
721     if (!job->firstJob) {  /* flush and overwrite frame header when it's not first job */
722         size_t const hSize = ZSTD_compressContinue(cctx, dstBuff.start, dstBuff.capacity, job->src.start, 0);
723         if (ZSTD_isError(hSize)) JOB_ERROR(hSize);
724         DEBUGLOG(5, "ZSTDMT_compressionJob: flush and overwrite %u bytes of frame header (not first job)", (U32)hSize);
725         ZSTD_invalidateRepCodes(cctx);
726     }
727 
728     /* compress */
729     {   size_t const chunkSize = 4*ZSTD_BLOCKSIZE_MAX;
730         int const nbChunks = (int)((job->src.size + (chunkSize-1)) / chunkSize);
731         const BYTE* ip = (const BYTE*) job->src.start;
732         BYTE* const ostart = (BYTE*)dstBuff.start;
733         BYTE* op = ostart;
734         BYTE* oend = op + dstBuff.capacity;
735         int chunkNb;
736         if (sizeof(size_t) > sizeof(int)) assert(job->src.size < ((size_t)INT_MAX) * chunkSize);   /* check overflow */
737         DEBUGLOG(5, "ZSTDMT_compressionJob: compress %u bytes in %i blocks", (U32)job->src.size, nbChunks);
738         assert(job->cSize == 0);
739         for (chunkNb = 1; chunkNb < nbChunks; chunkNb++) {
740             size_t const cSize = ZSTD_compressContinue(cctx, op, oend-op, ip, chunkSize);
741             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
742             ip += chunkSize;
743             op += cSize; assert(op < oend);
744             /* stats */
745             ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
746             job->cSize += cSize;
747             job->consumed = chunkSize * chunkNb;
748             DEBUGLOG(5, "ZSTDMT_compressionJob: compress new block : cSize==%u bytes (total: %u)",
749                         (U32)cSize, (U32)job->cSize);
750             ZSTD_pthread_cond_signal(&job->job_cond);   /* warns some more data is ready to be flushed */
751             ZSTD_pthread_mutex_unlock(&job->job_mutex);
752         }
753         /* last block */
754         assert(chunkSize > 0);
755         assert((chunkSize & (chunkSize - 1)) == 0);  /* chunkSize must be power of 2 for mask==(chunkSize-1) to work */
756         if ((nbChunks > 0) | job->lastJob /*must output a "last block" flag*/ ) {
757             size_t const lastBlockSize1 = job->src.size & (chunkSize-1);
758             size_t const lastBlockSize = ((lastBlockSize1==0) & (job->src.size>=chunkSize)) ? chunkSize : lastBlockSize1;
759             size_t const cSize = (job->lastJob) ?
760                  ZSTD_compressEnd     (cctx, op, oend-op, ip, lastBlockSize) :
761                  ZSTD_compressContinue(cctx, op, oend-op, ip, lastBlockSize);
762             if (ZSTD_isError(cSize)) JOB_ERROR(cSize);
763             lastCBlockSize = cSize;
764     }   }
765     if (!job->firstJob) {
766         /* Double check that we don't have an ext-dict, because then our
767          * repcode invalidation doesn't work.
768          */
769         assert(!ZSTD_window_hasExtDict(cctx->blockState.matchState.window));
770     }
771     ZSTD_CCtx_trace(cctx, 0);
772 
773 _endJob:
774     ZSTDMT_serialState_ensureFinished(job->serial, job->jobID, job->cSize);
775     if (job->prefix.size > 0)
776         DEBUGLOG(5, "Finished with prefix: %zx", (size_t)job->prefix.start);
777     DEBUGLOG(5, "Finished with source: %zx", (size_t)job->src.start);
778     /* release resources */
779     ZSTDMT_releaseSeq(job->seqPool, rawSeqStore);
780     ZSTDMT_releaseCCtx(job->cctxPool, cctx);
781     /* report */
782     ZSTD_PTHREAD_MUTEX_LOCK(&job->job_mutex);
783     if (ZSTD_isError(job->cSize)) assert(lastCBlockSize == 0);
784     job->cSize += lastCBlockSize;
785     job->consumed = job->src.size;  /* when job->consumed == job->src.size , compression job is presumed completed */
786     ZSTD_pthread_cond_signal(&job->job_cond);
787     ZSTD_pthread_mutex_unlock(&job->job_mutex);
788 }
789 
790 
791 /* ------------------------------------------ */
792 /* =====   Multi-threaded compression   ===== */
793 /* ------------------------------------------ */
794 
795 typedef struct {
796     range_t prefix;         /* read-only non-owned prefix buffer */
797     buffer_t buffer;
798     size_t filled;
799 } inBuff_t;
800 
801 typedef struct {
802   BYTE* buffer;     /* The round input buffer. All jobs get references
803                      * to pieces of the buffer. ZSTDMT_tryGetInputRange()
804                      * handles handing out job input buffers, and makes
805                      * sure it doesn't overlap with any pieces still in use.
806                      */
807   size_t capacity;  /* The capacity of buffer. */
808   size_t pos;       /* The position of the current inBuff in the round
809                      * buffer. Updated past the end if the inBuff once
810                      * the inBuff is sent to the worker thread.
811                      * pos <= capacity.
812                      */
813 } roundBuff_t;
814 
815 static const roundBuff_t kNullRoundBuff = {NULL, 0, 0};
816 
817 #define RSYNC_LENGTH 32
818 /* Don't create chunks smaller than the zstd block size.
819  * This stops us from regressing compression ratio too much,
820  * and ensures our output fits in ZSTD_compressBound().
821  *
822  * If this is shrunk < ZSTD_BLOCKSIZELOG_MIN then
823  * ZSTD_COMPRESSBOUND() will need to be updated.
824  */
825 #define RSYNC_MIN_BLOCK_LOG ZSTD_BLOCKSIZELOG_MAX
826 #define RSYNC_MIN_BLOCK_SIZE (1<<RSYNC_MIN_BLOCK_LOG)
827 
828 typedef struct {
829   U64 hash;
830   U64 hitMask;
831   U64 primePower;
832 } rsyncState_t;
833 
834 struct ZSTDMT_CCtx_s {
835     POOL_ctx* factory;
836     ZSTDMT_jobDescription* jobs;
837     ZSTDMT_bufferPool* bufPool;
838     ZSTDMT_CCtxPool* cctxPool;
839     ZSTDMT_seqPool* seqPool;
840     ZSTD_CCtx_params params;
841     size_t targetSectionSize;
842     size_t targetPrefixSize;
843     int jobReady;        /* 1 => one job is already prepared, but pool has shortage of workers. Don't create a new job. */
844     inBuff_t inBuff;
845     roundBuff_t roundBuff;
846     serialState_t serial;
847     rsyncState_t rsync;
848     unsigned jobIDMask;
849     unsigned doneJobID;
850     unsigned nextJobID;
851     unsigned frameEnded;
852     unsigned allJobsCompleted;
853     unsigned long long frameContentSize;
854     unsigned long long consumed;
855     unsigned long long produced;
856     ZSTD_customMem cMem;
857     ZSTD_CDict* cdictLocal;
858     const ZSTD_CDict* cdict;
859     unsigned providedFactory: 1;
860 };
861 
862 static void ZSTDMT_freeJobsTable(ZSTDMT_jobDescription* jobTable, U32 nbJobs, ZSTD_customMem cMem)
863 {
864     U32 jobNb;
865     if (jobTable == NULL) return;
866     for (jobNb=0; jobNb<nbJobs; jobNb++) {
867         ZSTD_pthread_mutex_destroy(&jobTable[jobNb].job_mutex);
868         ZSTD_pthread_cond_destroy(&jobTable[jobNb].job_cond);
869     }
870     ZSTD_customFree(jobTable, cMem);
871 }
872 
873 /* ZSTDMT_allocJobsTable()
874  * allocate and init a job table.
875  * update *nbJobsPtr to next power of 2 value, as size of table */
876 static ZSTDMT_jobDescription* ZSTDMT_createJobsTable(U32* nbJobsPtr, ZSTD_customMem cMem)
877 {
878     U32 const nbJobsLog2 = ZSTD_highbit32(*nbJobsPtr) + 1;
879     U32 const nbJobs = 1 << nbJobsLog2;
880     U32 jobNb;
881     ZSTDMT_jobDescription* const jobTable = (ZSTDMT_jobDescription*)
882                 ZSTD_customCalloc(nbJobs * sizeof(ZSTDMT_jobDescription), cMem);
883     int initError = 0;
884     if (jobTable==NULL) return NULL;
885     *nbJobsPtr = nbJobs;
886     for (jobNb=0; jobNb<nbJobs; jobNb++) {
887         initError |= ZSTD_pthread_mutex_init(&jobTable[jobNb].job_mutex, NULL);
888         initError |= ZSTD_pthread_cond_init(&jobTable[jobNb].job_cond, NULL);
889     }
890     if (initError != 0) {
891         ZSTDMT_freeJobsTable(jobTable, nbJobs, cMem);
892         return NULL;
893     }
894     return jobTable;
895 }
896 
897 static size_t ZSTDMT_expandJobsTable (ZSTDMT_CCtx* mtctx, U32 nbWorkers) {
898     U32 nbJobs = nbWorkers + 2;
899     if (nbJobs > mtctx->jobIDMask+1) {  /* need more job capacity */
900         ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
901         mtctx->jobIDMask = 0;
902         mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, mtctx->cMem);
903         if (mtctx->jobs==NULL) return ERROR(memory_allocation);
904         assert((nbJobs != 0) && ((nbJobs & (nbJobs - 1)) == 0));  /* ensure nbJobs is a power of 2 */
905         mtctx->jobIDMask = nbJobs - 1;
906     }
907     return 0;
908 }
909 
910 
911 /* ZSTDMT_CCtxParam_setNbWorkers():
912  * Internal use only */
913 static size_t ZSTDMT_CCtxParam_setNbWorkers(ZSTD_CCtx_params* params, unsigned nbWorkers)
914 {
915     return ZSTD_CCtxParams_setParameter(params, ZSTD_c_nbWorkers, (int)nbWorkers);
916 }
917 
918 MEM_STATIC ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced_internal(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
919 {
920     ZSTDMT_CCtx* mtctx;
921     U32 nbJobs = nbWorkers + 2;
922     int initError;
923     DEBUGLOG(3, "ZSTDMT_createCCtx_advanced (nbWorkers = %u)", nbWorkers);
924 
925     if (nbWorkers < 1) return NULL;
926     nbWorkers = MIN(nbWorkers , ZSTDMT_NBWORKERS_MAX);
927     if ((cMem.customAlloc!=NULL) ^ (cMem.customFree!=NULL))
928         /* invalid custom allocator */
929         return NULL;
930 
931     mtctx = (ZSTDMT_CCtx*) ZSTD_customCalloc(sizeof(ZSTDMT_CCtx), cMem);
932     if (!mtctx) return NULL;
933     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
934     mtctx->cMem = cMem;
935     mtctx->allJobsCompleted = 1;
936     if (pool != NULL) {
937       mtctx->factory = pool;
938       mtctx->providedFactory = 1;
939     }
940     else {
941       mtctx->factory = POOL_create_advanced(nbWorkers, 0, cMem);
942       mtctx->providedFactory = 0;
943     }
944     mtctx->jobs = ZSTDMT_createJobsTable(&nbJobs, cMem);
945     assert(nbJobs > 0); assert((nbJobs & (nbJobs - 1)) == 0);  /* ensure nbJobs is a power of 2 */
946     mtctx->jobIDMask = nbJobs - 1;
947     mtctx->bufPool = ZSTDMT_createBufferPool(BUF_POOL_MAX_NB_BUFFERS(nbWorkers), cMem);
948     mtctx->cctxPool = ZSTDMT_createCCtxPool(nbWorkers, cMem);
949     mtctx->seqPool = ZSTDMT_createSeqPool(nbWorkers, cMem);
950     initError = ZSTDMT_serialState_init(&mtctx->serial);
951     mtctx->roundBuff = kNullRoundBuff;
952     if (!mtctx->factory | !mtctx->jobs | !mtctx->bufPool | !mtctx->cctxPool | !mtctx->seqPool | initError) {
953         ZSTDMT_freeCCtx(mtctx);
954         return NULL;
955     }
956     DEBUGLOG(3, "mt_cctx created, for %u threads", nbWorkers);
957     return mtctx;
958 }
959 
960 ZSTDMT_CCtx* ZSTDMT_createCCtx_advanced(unsigned nbWorkers, ZSTD_customMem cMem, ZSTD_threadPool* pool)
961 {
962 #ifdef ZSTD_MULTITHREAD
963     return ZSTDMT_createCCtx_advanced_internal(nbWorkers, cMem, pool);
964 #else
965     (void)nbWorkers;
966     (void)cMem;
967     (void)pool;
968     return NULL;
969 #endif
970 }
971 
972 
973 /* ZSTDMT_releaseAllJobResources() :
974  * note : ensure all workers are killed first ! */
975 static void ZSTDMT_releaseAllJobResources(ZSTDMT_CCtx* mtctx)
976 {
977     unsigned jobID;
978     DEBUGLOG(3, "ZSTDMT_releaseAllJobResources");
979     for (jobID=0; jobID <= mtctx->jobIDMask; jobID++) {
980         /* Copy the mutex/cond out */
981         ZSTD_pthread_mutex_t const mutex = mtctx->jobs[jobID].job_mutex;
982         ZSTD_pthread_cond_t const cond = mtctx->jobs[jobID].job_cond;
983 
984         DEBUGLOG(4, "job%02u: release dst address %08X", jobID, (U32)(size_t)mtctx->jobs[jobID].dstBuff.start);
985         ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[jobID].dstBuff);
986 
987         /* Clear the job description, but keep the mutex/cond */
988         ZSTD_memset(&mtctx->jobs[jobID], 0, sizeof(mtctx->jobs[jobID]));
989         mtctx->jobs[jobID].job_mutex = mutex;
990         mtctx->jobs[jobID].job_cond = cond;
991     }
992     mtctx->inBuff.buffer = g_nullBuffer;
993     mtctx->inBuff.filled = 0;
994     mtctx->allJobsCompleted = 1;
995 }
996 
997 static void ZSTDMT_waitForAllJobsCompleted(ZSTDMT_CCtx* mtctx)
998 {
999     DEBUGLOG(4, "ZSTDMT_waitForAllJobsCompleted");
1000     while (mtctx->doneJobID < mtctx->nextJobID) {
1001         unsigned const jobID = mtctx->doneJobID & mtctx->jobIDMask;
1002         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[jobID].job_mutex);
1003         while (mtctx->jobs[jobID].consumed < mtctx->jobs[jobID].src.size) {
1004             DEBUGLOG(4, "waiting for jobCompleted signal from job %u", mtctx->doneJobID);   /* we want to block when waiting for data to flush */
1005             ZSTD_pthread_cond_wait(&mtctx->jobs[jobID].job_cond, &mtctx->jobs[jobID].job_mutex);
1006         }
1007         ZSTD_pthread_mutex_unlock(&mtctx->jobs[jobID].job_mutex);
1008         mtctx->doneJobID++;
1009     }
1010 }
1011 
1012 size_t ZSTDMT_freeCCtx(ZSTDMT_CCtx* mtctx)
1013 {
1014     if (mtctx==NULL) return 0;   /* compatible with free on NULL */
1015     if (!mtctx->providedFactory)
1016         POOL_free(mtctx->factory);   /* stop and free worker threads */
1017     ZSTDMT_releaseAllJobResources(mtctx);  /* release job resources into pools first */
1018     ZSTDMT_freeJobsTable(mtctx->jobs, mtctx->jobIDMask+1, mtctx->cMem);
1019     ZSTDMT_freeBufferPool(mtctx->bufPool);
1020     ZSTDMT_freeCCtxPool(mtctx->cctxPool);
1021     ZSTDMT_freeSeqPool(mtctx->seqPool);
1022     ZSTDMT_serialState_free(&mtctx->serial);
1023     ZSTD_freeCDict(mtctx->cdictLocal);
1024     if (mtctx->roundBuff.buffer)
1025         ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1026     ZSTD_customFree(mtctx, mtctx->cMem);
1027     return 0;
1028 }
1029 
1030 size_t ZSTDMT_sizeof_CCtx(ZSTDMT_CCtx* mtctx)
1031 {
1032     if (mtctx == NULL) return 0;   /* supports sizeof NULL */
1033     return sizeof(*mtctx)
1034             + POOL_sizeof(mtctx->factory)
1035             + ZSTDMT_sizeof_bufferPool(mtctx->bufPool)
1036             + (mtctx->jobIDMask+1) * sizeof(ZSTDMT_jobDescription)
1037             + ZSTDMT_sizeof_CCtxPool(mtctx->cctxPool)
1038             + ZSTDMT_sizeof_seqPool(mtctx->seqPool)
1039             + ZSTD_sizeof_CDict(mtctx->cdictLocal)
1040             + mtctx->roundBuff.capacity;
1041 }
1042 
1043 
1044 /* ZSTDMT_resize() :
1045  * @return : error code if fails, 0 on success */
1046 static size_t ZSTDMT_resize(ZSTDMT_CCtx* mtctx, unsigned nbWorkers)
1047 {
1048     if (POOL_resize(mtctx->factory, nbWorkers)) return ERROR(memory_allocation);
1049     FORWARD_IF_ERROR( ZSTDMT_expandJobsTable(mtctx, nbWorkers) , "");
1050     mtctx->bufPool = ZSTDMT_expandBufferPool(mtctx->bufPool, BUF_POOL_MAX_NB_BUFFERS(nbWorkers));
1051     if (mtctx->bufPool == NULL) return ERROR(memory_allocation);
1052     mtctx->cctxPool = ZSTDMT_expandCCtxPool(mtctx->cctxPool, nbWorkers);
1053     if (mtctx->cctxPool == NULL) return ERROR(memory_allocation);
1054     mtctx->seqPool = ZSTDMT_expandSeqPool(mtctx->seqPool, nbWorkers);
1055     if (mtctx->seqPool == NULL) return ERROR(memory_allocation);
1056     ZSTDMT_CCtxParam_setNbWorkers(&mtctx->params, nbWorkers);
1057     return 0;
1058 }
1059 
1060 
1061 /*! ZSTDMT_updateCParams_whileCompressing() :
1062  *  Updates a selected set of compression parameters, remaining compatible with currently active frame.
1063  *  New parameters will be applied to next compression job. */
1064 void ZSTDMT_updateCParams_whileCompressing(ZSTDMT_CCtx* mtctx, const ZSTD_CCtx_params* cctxParams)
1065 {
1066     U32 const saved_wlog = mtctx->params.cParams.windowLog;   /* Do not modify windowLog while compressing */
1067     int const compressionLevel = cctxParams->compressionLevel;
1068     DEBUGLOG(5, "ZSTDMT_updateCParams_whileCompressing (level:%i)",
1069                 compressionLevel);
1070     mtctx->params.compressionLevel = compressionLevel;
1071     {   ZSTD_compressionParameters cParams = ZSTD_getCParamsFromCCtxParams(cctxParams, ZSTD_CONTENTSIZE_UNKNOWN, 0, ZSTD_cpm_noAttachDict);
1072         cParams.windowLog = saved_wlog;
1073         mtctx->params.cParams = cParams;
1074     }
1075 }
1076 
1077 /* ZSTDMT_getFrameProgression():
1078  * tells how much data has been consumed (input) and produced (output) for current frame.
1079  * able to count progression inside worker threads.
1080  * Note : mutex will be acquired during statistics collection inside workers. */
1081 ZSTD_frameProgression ZSTDMT_getFrameProgression(ZSTDMT_CCtx* mtctx)
1082 {
1083     ZSTD_frameProgression fps;
1084     DEBUGLOG(5, "ZSTDMT_getFrameProgression");
1085     fps.ingested = mtctx->consumed + mtctx->inBuff.filled;
1086     fps.consumed = mtctx->consumed;
1087     fps.produced = fps.flushed = mtctx->produced;
1088     fps.currentJobID = mtctx->nextJobID;
1089     fps.nbActiveWorkers = 0;
1090     {   unsigned jobNb;
1091         unsigned lastJobNb = mtctx->nextJobID + mtctx->jobReady; assert(mtctx->jobReady <= 1);
1092         DEBUGLOG(6, "ZSTDMT_getFrameProgression: jobs: from %u to <%u (jobReady:%u)",
1093                     mtctx->doneJobID, lastJobNb, mtctx->jobReady)
1094         for (jobNb = mtctx->doneJobID ; jobNb < lastJobNb ; jobNb++) {
1095             unsigned const wJobID = jobNb & mtctx->jobIDMask;
1096             ZSTDMT_jobDescription* jobPtr = &mtctx->jobs[wJobID];
1097             ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1098             {   size_t const cResult = jobPtr->cSize;
1099                 size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1100                 size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1101                 assert(flushed <= produced);
1102                 fps.ingested += jobPtr->src.size;
1103                 fps.consumed += jobPtr->consumed;
1104                 fps.produced += produced;
1105                 fps.flushed  += flushed;
1106                 fps.nbActiveWorkers += (jobPtr->consumed < jobPtr->src.size);
1107             }
1108             ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1109         }
1110     }
1111     return fps;
1112 }
1113 
1114 
1115 size_t ZSTDMT_toFlushNow(ZSTDMT_CCtx* mtctx)
1116 {
1117     size_t toFlush;
1118     unsigned const jobID = mtctx->doneJobID;
1119     assert(jobID <= mtctx->nextJobID);
1120     if (jobID == mtctx->nextJobID) return 0;   /* no active job => nothing to flush */
1121 
1122     /* look into oldest non-fully-flushed job */
1123     {   unsigned const wJobID = jobID & mtctx->jobIDMask;
1124         ZSTDMT_jobDescription* const jobPtr = &mtctx->jobs[wJobID];
1125         ZSTD_pthread_mutex_lock(&jobPtr->job_mutex);
1126         {   size_t const cResult = jobPtr->cSize;
1127             size_t const produced = ZSTD_isError(cResult) ? 0 : cResult;
1128             size_t const flushed = ZSTD_isError(cResult) ? 0 : jobPtr->dstFlushed;
1129             assert(flushed <= produced);
1130             assert(jobPtr->consumed <= jobPtr->src.size);
1131             toFlush = produced - flushed;
1132             /* if toFlush==0, nothing is available to flush.
1133              * However, jobID is expected to still be active:
1134              * if jobID was already completed and fully flushed,
1135              * ZSTDMT_flushProduced() should have already moved onto next job.
1136              * Therefore, some input has not yet been consumed. */
1137             if (toFlush==0) {
1138                 assert(jobPtr->consumed < jobPtr->src.size);
1139             }
1140         }
1141         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1142     }
1143 
1144     return toFlush;
1145 }
1146 
1147 
1148 /* ------------------------------------------ */
1149 /* =====   Multi-threaded compression   ===== */
1150 /* ------------------------------------------ */
1151 
1152 static unsigned ZSTDMT_computeTargetJobLog(const ZSTD_CCtx_params* params)
1153 {
1154     unsigned jobLog;
1155     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1156         /* In Long Range Mode, the windowLog is typically oversized.
1157          * In which case, it's preferable to determine the jobSize
1158          * based on cycleLog instead. */
1159         jobLog = MAX(21, ZSTD_cycleLog(params->cParams.chainLog, params->cParams.strategy) + 3);
1160     } else {
1161         jobLog = MAX(20, params->cParams.windowLog + 2);
1162     }
1163     return MIN(jobLog, (unsigned)ZSTDMT_JOBLOG_MAX);
1164 }
1165 
1166 static int ZSTDMT_overlapLog_default(ZSTD_strategy strat)
1167 {
1168     switch(strat)
1169     {
1170         case ZSTD_btultra2:
1171             return 9;
1172         case ZSTD_btultra:
1173         case ZSTD_btopt:
1174             return 8;
1175         case ZSTD_btlazy2:
1176         case ZSTD_lazy2:
1177             return 7;
1178         case ZSTD_lazy:
1179         case ZSTD_greedy:
1180         case ZSTD_dfast:
1181         case ZSTD_fast:
1182         default:;
1183     }
1184     return 6;
1185 }
1186 
1187 static int ZSTDMT_overlapLog(int ovlog, ZSTD_strategy strat)
1188 {
1189     assert(0 <= ovlog && ovlog <= 9);
1190     if (ovlog == 0) return ZSTDMT_overlapLog_default(strat);
1191     return ovlog;
1192 }
1193 
1194 static size_t ZSTDMT_computeOverlapSize(const ZSTD_CCtx_params* params)
1195 {
1196     int const overlapRLog = 9 - ZSTDMT_overlapLog(params->overlapLog, params->cParams.strategy);
1197     int ovLog = (overlapRLog >= 8) ? 0 : (params->cParams.windowLog - overlapRLog);
1198     assert(0 <= overlapRLog && overlapRLog <= 8);
1199     if (params->ldmParams.enableLdm == ZSTD_ps_enable) {
1200         /* In Long Range Mode, the windowLog is typically oversized.
1201          * In which case, it's preferable to determine the jobSize
1202          * based on chainLog instead.
1203          * Then, ovLog becomes a fraction of the jobSize, rather than windowSize */
1204         ovLog = MIN(params->cParams.windowLog, ZSTDMT_computeTargetJobLog(params) - 2)
1205                 - overlapRLog;
1206     }
1207     assert(0 <= ovLog && ovLog <= ZSTD_WINDOWLOG_MAX);
1208     DEBUGLOG(4, "overlapLog : %i", params->overlapLog);
1209     DEBUGLOG(4, "overlap size : %i", 1 << ovLog);
1210     return (ovLog==0) ? 0 : (size_t)1 << ovLog;
1211 }
1212 
1213 /* ====================================== */
1214 /* =======      Streaming API     ======= */
1215 /* ====================================== */
1216 
1217 size_t ZSTDMT_initCStream_internal(
1218         ZSTDMT_CCtx* mtctx,
1219         const void* dict, size_t dictSize, ZSTD_dictContentType_e dictContentType,
1220         const ZSTD_CDict* cdict, ZSTD_CCtx_params params,
1221         unsigned long long pledgedSrcSize)
1222 {
1223     DEBUGLOG(4, "ZSTDMT_initCStream_internal (pledgedSrcSize=%u, nbWorkers=%u, cctxPool=%u)",
1224                 (U32)pledgedSrcSize, params.nbWorkers, mtctx->cctxPool->totalCCtx);
1225 
1226     /* params supposed partially fully validated at this point */
1227     assert(!ZSTD_isError(ZSTD_checkCParams(params.cParams)));
1228     assert(!((dict) && (cdict)));  /* either dict or cdict, not both */
1229 
1230     /* init */
1231     if (params.nbWorkers != mtctx->params.nbWorkers)
1232         FORWARD_IF_ERROR( ZSTDMT_resize(mtctx, params.nbWorkers) , "");
1233 
1234     if (params.jobSize != 0 && params.jobSize < ZSTDMT_JOBSIZE_MIN) params.jobSize = ZSTDMT_JOBSIZE_MIN;
1235     if (params.jobSize > (size_t)ZSTDMT_JOBSIZE_MAX) params.jobSize = (size_t)ZSTDMT_JOBSIZE_MAX;
1236 
1237     DEBUGLOG(4, "ZSTDMT_initCStream_internal: %u workers", params.nbWorkers);
1238 
1239     if (mtctx->allJobsCompleted == 0) {   /* previous compression not correctly finished */
1240         ZSTDMT_waitForAllJobsCompleted(mtctx);
1241         ZSTDMT_releaseAllJobResources(mtctx);
1242         mtctx->allJobsCompleted = 1;
1243     }
1244 
1245     mtctx->params = params;
1246     mtctx->frameContentSize = pledgedSrcSize;
1247     if (dict) {
1248         ZSTD_freeCDict(mtctx->cdictLocal);
1249         mtctx->cdictLocal = ZSTD_createCDict_advanced(dict, dictSize,
1250                                                     ZSTD_dlm_byCopy, dictContentType, /* note : a loadPrefix becomes an internal CDict */
1251                                                     params.cParams, mtctx->cMem);
1252         mtctx->cdict = mtctx->cdictLocal;
1253         if (mtctx->cdictLocal == NULL) return ERROR(memory_allocation);
1254     } else {
1255         ZSTD_freeCDict(mtctx->cdictLocal);
1256         mtctx->cdictLocal = NULL;
1257         mtctx->cdict = cdict;
1258     }
1259 
1260     mtctx->targetPrefixSize = ZSTDMT_computeOverlapSize(&params);
1261     DEBUGLOG(4, "overlapLog=%i => %u KB", params.overlapLog, (U32)(mtctx->targetPrefixSize>>10));
1262     mtctx->targetSectionSize = params.jobSize;
1263     if (mtctx->targetSectionSize == 0) {
1264         mtctx->targetSectionSize = 1ULL << ZSTDMT_computeTargetJobLog(&params);
1265     }
1266     assert(mtctx->targetSectionSize <= (size_t)ZSTDMT_JOBSIZE_MAX);
1267 
1268     if (params.rsyncable) {
1269         /* Aim for the targetsectionSize as the average job size. */
1270         U32 const jobSizeKB = (U32)(mtctx->targetSectionSize >> 10);
1271         U32 const rsyncBits = (assert(jobSizeKB >= 1), ZSTD_highbit32(jobSizeKB) + 10);
1272         /* We refuse to create jobs < RSYNC_MIN_BLOCK_SIZE bytes, so make sure our
1273          * expected job size is at least 4x larger. */
1274         assert(rsyncBits >= RSYNC_MIN_BLOCK_LOG + 2);
1275         DEBUGLOG(4, "rsyncLog = %u", rsyncBits);
1276         mtctx->rsync.hash = 0;
1277         mtctx->rsync.hitMask = (1ULL << rsyncBits) - 1;
1278         mtctx->rsync.primePower = ZSTD_rollingHash_primePower(RSYNC_LENGTH);
1279     }
1280     if (mtctx->targetSectionSize < mtctx->targetPrefixSize) mtctx->targetSectionSize = mtctx->targetPrefixSize;  /* job size must be >= overlap size */
1281     DEBUGLOG(4, "Job Size : %u KB (note : set to %u)", (U32)(mtctx->targetSectionSize>>10), (U32)params.jobSize);
1282     DEBUGLOG(4, "inBuff Size : %u KB", (U32)(mtctx->targetSectionSize>>10));
1283     ZSTDMT_setBufferSize(mtctx->bufPool, ZSTD_compressBound(mtctx->targetSectionSize));
1284     {
1285         /* If ldm is enabled we need windowSize space. */
1286         size_t const windowSize = mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable ? (1U << mtctx->params.cParams.windowLog) : 0;
1287         /* Two buffers of slack, plus extra space for the overlap
1288          * This is the minimum slack that LDM works with. One extra because
1289          * flush might waste up to targetSectionSize-1 bytes. Another extra
1290          * for the overlap (if > 0), then one to fill which doesn't overlap
1291          * with the LDM window.
1292          */
1293         size_t const nbSlackBuffers = 2 + (mtctx->targetPrefixSize > 0);
1294         size_t const slackSize = mtctx->targetSectionSize * nbSlackBuffers;
1295         /* Compute the total size, and always have enough slack */
1296         size_t const nbWorkers = MAX(mtctx->params.nbWorkers, 1);
1297         size_t const sectionsSize = mtctx->targetSectionSize * nbWorkers;
1298         size_t const capacity = MAX(windowSize, sectionsSize) + slackSize;
1299         if (mtctx->roundBuff.capacity < capacity) {
1300             if (mtctx->roundBuff.buffer)
1301                 ZSTD_customFree(mtctx->roundBuff.buffer, mtctx->cMem);
1302             mtctx->roundBuff.buffer = (BYTE*)ZSTD_customMalloc(capacity, mtctx->cMem);
1303             if (mtctx->roundBuff.buffer == NULL) {
1304                 mtctx->roundBuff.capacity = 0;
1305                 return ERROR(memory_allocation);
1306             }
1307             mtctx->roundBuff.capacity = capacity;
1308         }
1309     }
1310     DEBUGLOG(4, "roundBuff capacity : %u KB", (U32)(mtctx->roundBuff.capacity>>10));
1311     mtctx->roundBuff.pos = 0;
1312     mtctx->inBuff.buffer = g_nullBuffer;
1313     mtctx->inBuff.filled = 0;
1314     mtctx->inBuff.prefix = kNullRange;
1315     mtctx->doneJobID = 0;
1316     mtctx->nextJobID = 0;
1317     mtctx->frameEnded = 0;
1318     mtctx->allJobsCompleted = 0;
1319     mtctx->consumed = 0;
1320     mtctx->produced = 0;
1321     if (ZSTDMT_serialState_reset(&mtctx->serial, mtctx->seqPool, params, mtctx->targetSectionSize,
1322                                  dict, dictSize, dictContentType))
1323         return ERROR(memory_allocation);
1324     return 0;
1325 }
1326 
1327 
1328 /* ZSTDMT_writeLastEmptyBlock()
1329  * Write a single empty block with an end-of-frame to finish a frame.
1330  * Job must be created from streaming variant.
1331  * This function is always successful if expected conditions are fulfilled.
1332  */
1333 static void ZSTDMT_writeLastEmptyBlock(ZSTDMT_jobDescription* job)
1334 {
1335     assert(job->lastJob == 1);
1336     assert(job->src.size == 0);   /* last job is empty -> will be simplified into a last empty block */
1337     assert(job->firstJob == 0);   /* cannot be first job, as it also needs to create frame header */
1338     assert(job->dstBuff.start == NULL);   /* invoked from streaming variant only (otherwise, dstBuff might be user's output) */
1339     job->dstBuff = ZSTDMT_getBuffer(job->bufPool);
1340     if (job->dstBuff.start == NULL) {
1341       job->cSize = ERROR(memory_allocation);
1342       return;
1343     }
1344     assert(job->dstBuff.capacity >= ZSTD_blockHeaderSize);   /* no buffer should ever be that small */
1345     job->src = kNullRange;
1346     job->cSize = ZSTD_writeLastEmptyBlock(job->dstBuff.start, job->dstBuff.capacity);
1347     assert(!ZSTD_isError(job->cSize));
1348     assert(job->consumed == 0);
1349 }
1350 
1351 static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* mtctx, size_t srcSize, ZSTD_EndDirective endOp)
1352 {
1353     unsigned const jobID = mtctx->nextJobID & mtctx->jobIDMask;
1354     int const endFrame = (endOp == ZSTD_e_end);
1355 
1356     if (mtctx->nextJobID > mtctx->doneJobID + mtctx->jobIDMask) {
1357         DEBUGLOG(5, "ZSTDMT_createCompressionJob: will not create new job : table is full");
1358         assert((mtctx->nextJobID & mtctx->jobIDMask) == (mtctx->doneJobID & mtctx->jobIDMask));
1359         return 0;
1360     }
1361 
1362     if (!mtctx->jobReady) {
1363         BYTE const* src = (BYTE const*)mtctx->inBuff.buffer.start;
1364         DEBUGLOG(5, "ZSTDMT_createCompressionJob: preparing job %u to compress %u bytes with %u preload ",
1365                     mtctx->nextJobID, (U32)srcSize, (U32)mtctx->inBuff.prefix.size);
1366         mtctx->jobs[jobID].src.start = src;
1367         mtctx->jobs[jobID].src.size = srcSize;
1368         assert(mtctx->inBuff.filled >= srcSize);
1369         mtctx->jobs[jobID].prefix = mtctx->inBuff.prefix;
1370         mtctx->jobs[jobID].consumed = 0;
1371         mtctx->jobs[jobID].cSize = 0;
1372         mtctx->jobs[jobID].params = mtctx->params;
1373         mtctx->jobs[jobID].cdict = mtctx->nextJobID==0 ? mtctx->cdict : NULL;
1374         mtctx->jobs[jobID].fullFrameSize = mtctx->frameContentSize;
1375         mtctx->jobs[jobID].dstBuff = g_nullBuffer;
1376         mtctx->jobs[jobID].cctxPool = mtctx->cctxPool;
1377         mtctx->jobs[jobID].bufPool = mtctx->bufPool;
1378         mtctx->jobs[jobID].seqPool = mtctx->seqPool;
1379         mtctx->jobs[jobID].serial = &mtctx->serial;
1380         mtctx->jobs[jobID].jobID = mtctx->nextJobID;
1381         mtctx->jobs[jobID].firstJob = (mtctx->nextJobID==0);
1382         mtctx->jobs[jobID].lastJob = endFrame;
1383         mtctx->jobs[jobID].frameChecksumNeeded = mtctx->params.fParams.checksumFlag && endFrame && (mtctx->nextJobID>0);
1384         mtctx->jobs[jobID].dstFlushed = 0;
1385 
1386         /* Update the round buffer pos and clear the input buffer to be reset */
1387         mtctx->roundBuff.pos += srcSize;
1388         mtctx->inBuff.buffer = g_nullBuffer;
1389         mtctx->inBuff.filled = 0;
1390         /* Set the prefix */
1391         if (!endFrame) {
1392             size_t const newPrefixSize = MIN(srcSize, mtctx->targetPrefixSize);
1393             mtctx->inBuff.prefix.start = src + srcSize - newPrefixSize;
1394             mtctx->inBuff.prefix.size = newPrefixSize;
1395         } else {   /* endFrame==1 => no need for another input buffer */
1396             mtctx->inBuff.prefix = kNullRange;
1397             mtctx->frameEnded = endFrame;
1398             if (mtctx->nextJobID == 0) {
1399                 /* single job exception : checksum is already calculated directly within worker thread */
1400                 mtctx->params.fParams.checksumFlag = 0;
1401         }   }
1402 
1403         if ( (srcSize == 0)
1404           && (mtctx->nextJobID>0)/*single job must also write frame header*/ ) {
1405             DEBUGLOG(5, "ZSTDMT_createCompressionJob: creating a last empty block to end frame");
1406             assert(endOp == ZSTD_e_end);  /* only possible case : need to end the frame with an empty last block */
1407             ZSTDMT_writeLastEmptyBlock(mtctx->jobs + jobID);
1408             mtctx->nextJobID++;
1409             return 0;
1410         }
1411     }
1412 
1413     DEBUGLOG(5, "ZSTDMT_createCompressionJob: posting job %u : %u bytes  (end:%u, jobNb == %u (mod:%u))",
1414                 mtctx->nextJobID,
1415                 (U32)mtctx->jobs[jobID].src.size,
1416                 mtctx->jobs[jobID].lastJob,
1417                 mtctx->nextJobID,
1418                 jobID);
1419     if (POOL_tryAdd(mtctx->factory, ZSTDMT_compressionJob, &mtctx->jobs[jobID])) {
1420         mtctx->nextJobID++;
1421         mtctx->jobReady = 0;
1422     } else {
1423         DEBUGLOG(5, "ZSTDMT_createCompressionJob: no worker available for job %u", mtctx->nextJobID);
1424         mtctx->jobReady = 1;
1425     }
1426     return 0;
1427 }
1428 
1429 
1430 /*! ZSTDMT_flushProduced() :
1431  *  flush whatever data has been produced but not yet flushed in current job.
1432  *  move to next job if current one is fully flushed.
1433  * `output` : `pos` will be updated with amount of data flushed .
1434  * `blockToFlush` : if >0, the function will block and wait if there is no data available to flush .
1435  * @return : amount of data remaining within internal buffer, 0 if no more, 1 if unknown but > 0, or an error code */
1436 static size_t ZSTDMT_flushProduced(ZSTDMT_CCtx* mtctx, ZSTD_outBuffer* output, unsigned blockToFlush, ZSTD_EndDirective end)
1437 {
1438     unsigned const wJobID = mtctx->doneJobID & mtctx->jobIDMask;
1439     DEBUGLOG(5, "ZSTDMT_flushProduced (blocking:%u , job %u <= %u)",
1440                 blockToFlush, mtctx->doneJobID, mtctx->nextJobID);
1441     assert(output->size >= output->pos);
1442 
1443     ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1444     if (  blockToFlush
1445       && (mtctx->doneJobID < mtctx->nextJobID) ) {
1446         assert(mtctx->jobs[wJobID].dstFlushed <= mtctx->jobs[wJobID].cSize);
1447         while (mtctx->jobs[wJobID].dstFlushed == mtctx->jobs[wJobID].cSize) {  /* nothing to flush */
1448             if (mtctx->jobs[wJobID].consumed == mtctx->jobs[wJobID].src.size) {
1449                 DEBUGLOG(5, "job %u is completely consumed (%u == %u) => don't wait for cond, there will be none",
1450                             mtctx->doneJobID, (U32)mtctx->jobs[wJobID].consumed, (U32)mtctx->jobs[wJobID].src.size);
1451                 break;
1452             }
1453             DEBUGLOG(5, "waiting for something to flush from job %u (currently flushed: %u bytes)",
1454                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1455             ZSTD_pthread_cond_wait(&mtctx->jobs[wJobID].job_cond, &mtctx->jobs[wJobID].job_mutex);  /* block when nothing to flush but some to come */
1456     }   }
1457 
1458     /* try to flush something */
1459     {   size_t cSize = mtctx->jobs[wJobID].cSize;                  /* shared */
1460         size_t const srcConsumed = mtctx->jobs[wJobID].consumed;   /* shared */
1461         size_t const srcSize = mtctx->jobs[wJobID].src.size;       /* read-only, could be done after mutex lock, but no-declaration-after-statement */
1462         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1463         if (ZSTD_isError(cSize)) {
1464             DEBUGLOG(5, "ZSTDMT_flushProduced: job %u : compression error detected : %s",
1465                         mtctx->doneJobID, ZSTD_getErrorName(cSize));
1466             ZSTDMT_waitForAllJobsCompleted(mtctx);
1467             ZSTDMT_releaseAllJobResources(mtctx);
1468             return cSize;
1469         }
1470         /* add frame checksum if necessary (can only happen once) */
1471         assert(srcConsumed <= srcSize);
1472         if ( (srcConsumed == srcSize)   /* job completed -> worker no longer active */
1473           && mtctx->jobs[wJobID].frameChecksumNeeded ) {
1474             U32 const checksum = (U32)XXH64_digest(&mtctx->serial.xxhState);
1475             DEBUGLOG(4, "ZSTDMT_flushProduced: writing checksum : %08X \n", checksum);
1476             MEM_writeLE32((char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].cSize, checksum);
1477             cSize += 4;
1478             mtctx->jobs[wJobID].cSize += 4;  /* can write this shared value, as worker is no longer active */
1479             mtctx->jobs[wJobID].frameChecksumNeeded = 0;
1480         }
1481 
1482         if (cSize > 0) {   /* compression is ongoing or completed */
1483             size_t const toFlush = MIN(cSize - mtctx->jobs[wJobID].dstFlushed, output->size - output->pos);
1484             DEBUGLOG(5, "ZSTDMT_flushProduced: Flushing %u bytes from job %u (completion:%u/%u, generated:%u)",
1485                         (U32)toFlush, mtctx->doneJobID, (U32)srcConsumed, (U32)srcSize, (U32)cSize);
1486             assert(mtctx->doneJobID < mtctx->nextJobID);
1487             assert(cSize >= mtctx->jobs[wJobID].dstFlushed);
1488             assert(mtctx->jobs[wJobID].dstBuff.start != NULL);
1489             if (toFlush > 0) {
1490                 ZSTD_memcpy((char*)output->dst + output->pos,
1491                     (const char*)mtctx->jobs[wJobID].dstBuff.start + mtctx->jobs[wJobID].dstFlushed,
1492                     toFlush);
1493             }
1494             output->pos += toFlush;
1495             mtctx->jobs[wJobID].dstFlushed += toFlush;  /* can write : this value is only used by mtctx */
1496 
1497             if ( (srcConsumed == srcSize)    /* job is completed */
1498               && (mtctx->jobs[wJobID].dstFlushed == cSize) ) {   /* output buffer fully flushed => free this job position */
1499                 DEBUGLOG(5, "Job %u completed (%u bytes), moving to next one",
1500                         mtctx->doneJobID, (U32)mtctx->jobs[wJobID].dstFlushed);
1501                 ZSTDMT_releaseBuffer(mtctx->bufPool, mtctx->jobs[wJobID].dstBuff);
1502                 DEBUGLOG(5, "dstBuffer released");
1503                 mtctx->jobs[wJobID].dstBuff = g_nullBuffer;
1504                 mtctx->jobs[wJobID].cSize = 0;   /* ensure this job slot is considered "not started" in future check */
1505                 mtctx->consumed += srcSize;
1506                 mtctx->produced += cSize;
1507                 mtctx->doneJobID++;
1508         }   }
1509 
1510         /* return value : how many bytes left in buffer ; fake it to 1 when unknown but >0 */
1511         if (cSize > mtctx->jobs[wJobID].dstFlushed) return (cSize - mtctx->jobs[wJobID].dstFlushed);
1512         if (srcSize > srcConsumed) return 1;   /* current job not completely compressed */
1513     }
1514     if (mtctx->doneJobID < mtctx->nextJobID) return 1;   /* some more jobs ongoing */
1515     if (mtctx->jobReady) return 1;      /* one job is ready to push, just not yet in the list */
1516     if (mtctx->inBuff.filled > 0) return 1;   /* input is not empty, and still needs to be converted into a job */
1517     mtctx->allJobsCompleted = mtctx->frameEnded;   /* all jobs are entirely flushed => if this one is last one, frame is completed */
1518     if (end == ZSTD_e_end) return !mtctx->frameEnded;  /* for ZSTD_e_end, question becomes : is frame completed ? instead of : are internal buffers fully flushed ? */
1519     return 0;   /* internal buffers fully flushed */
1520 }
1521 
1522 /**
1523  * Returns the range of data used by the earliest job that is not yet complete.
1524  * If the data of the first job is broken up into two segments, we cover both
1525  * sections.
1526  */
1527 static range_t ZSTDMT_getInputDataInUse(ZSTDMT_CCtx* mtctx)
1528 {
1529     unsigned const firstJobID = mtctx->doneJobID;
1530     unsigned const lastJobID = mtctx->nextJobID;
1531     unsigned jobID;
1532 
1533     for (jobID = firstJobID; jobID < lastJobID; ++jobID) {
1534         unsigned const wJobID = jobID & mtctx->jobIDMask;
1535         size_t consumed;
1536 
1537         ZSTD_PTHREAD_MUTEX_LOCK(&mtctx->jobs[wJobID].job_mutex);
1538         consumed = mtctx->jobs[wJobID].consumed;
1539         ZSTD_pthread_mutex_unlock(&mtctx->jobs[wJobID].job_mutex);
1540 
1541         if (consumed < mtctx->jobs[wJobID].src.size) {
1542             range_t range = mtctx->jobs[wJobID].prefix;
1543             if (range.size == 0) {
1544                 /* Empty prefix */
1545                 range = mtctx->jobs[wJobID].src;
1546             }
1547             /* Job source in multiple segments not supported yet */
1548             assert(range.start <= mtctx->jobs[wJobID].src.start);
1549             return range;
1550         }
1551     }
1552     return kNullRange;
1553 }
1554 
1555 /**
1556  * Returns non-zero iff buffer and range overlap.
1557  */
1558 static int ZSTDMT_isOverlapped(buffer_t buffer, range_t range)
1559 {
1560     BYTE const* const bufferStart = (BYTE const*)buffer.start;
1561     BYTE const* const rangeStart = (BYTE const*)range.start;
1562 
1563     if (rangeStart == NULL || bufferStart == NULL)
1564         return 0;
1565 
1566     {
1567         BYTE const* const bufferEnd = bufferStart + buffer.capacity;
1568         BYTE const* const rangeEnd = rangeStart + range.size;
1569 
1570         /* Empty ranges cannot overlap */
1571         if (bufferStart == bufferEnd || rangeStart == rangeEnd)
1572             return 0;
1573 
1574         return bufferStart < rangeEnd && rangeStart < bufferEnd;
1575     }
1576 }
1577 
1578 static int ZSTDMT_doesOverlapWindow(buffer_t buffer, ZSTD_window_t window)
1579 {
1580     range_t extDict;
1581     range_t prefix;
1582 
1583     DEBUGLOG(5, "ZSTDMT_doesOverlapWindow");
1584     extDict.start = window.dictBase + window.lowLimit;
1585     extDict.size = window.dictLimit - window.lowLimit;
1586 
1587     prefix.start = window.base + window.dictLimit;
1588     prefix.size = window.nextSrc - (window.base + window.dictLimit);
1589     DEBUGLOG(5, "extDict [0x%zx, 0x%zx)",
1590                 (size_t)extDict.start,
1591                 (size_t)extDict.start + extDict.size);
1592     DEBUGLOG(5, "prefix  [0x%zx, 0x%zx)",
1593                 (size_t)prefix.start,
1594                 (size_t)prefix.start + prefix.size);
1595 
1596     return ZSTDMT_isOverlapped(buffer, extDict)
1597         || ZSTDMT_isOverlapped(buffer, prefix);
1598 }
1599 
1600 static void ZSTDMT_waitForLdmComplete(ZSTDMT_CCtx* mtctx, buffer_t buffer)
1601 {
1602     if (mtctx->params.ldmParams.enableLdm == ZSTD_ps_enable) {
1603         ZSTD_pthread_mutex_t* mutex = &mtctx->serial.ldmWindowMutex;
1604         DEBUGLOG(5, "ZSTDMT_waitForLdmComplete");
1605         DEBUGLOG(5, "source  [0x%zx, 0x%zx)",
1606                     (size_t)buffer.start,
1607                     (size_t)buffer.start + buffer.capacity);
1608         ZSTD_PTHREAD_MUTEX_LOCK(mutex);
1609         while (ZSTDMT_doesOverlapWindow(buffer, mtctx->serial.ldmWindow)) {
1610             DEBUGLOG(5, "Waiting for LDM to finish...");
1611             ZSTD_pthread_cond_wait(&mtctx->serial.ldmWindowCond, mutex);
1612         }
1613         DEBUGLOG(6, "Done waiting for LDM to finish");
1614         ZSTD_pthread_mutex_unlock(mutex);
1615     }
1616 }
1617 
1618 /**
1619  * Attempts to set the inBuff to the next section to fill.
1620  * If any part of the new section is still in use we give up.
1621  * Returns non-zero if the buffer is filled.
1622  */
1623 static int ZSTDMT_tryGetInputRange(ZSTDMT_CCtx* mtctx)
1624 {
1625     range_t const inUse = ZSTDMT_getInputDataInUse(mtctx);
1626     size_t const spaceLeft = mtctx->roundBuff.capacity - mtctx->roundBuff.pos;
1627     size_t const target = mtctx->targetSectionSize;
1628     buffer_t buffer;
1629 
1630     DEBUGLOG(5, "ZSTDMT_tryGetInputRange");
1631     assert(mtctx->inBuff.buffer.start == NULL);
1632     assert(mtctx->roundBuff.capacity >= target);
1633 
1634     if (spaceLeft < target) {
1635         /* ZSTD_invalidateRepCodes() doesn't work for extDict variants.
1636          * Simply copy the prefix to the beginning in that case.
1637          */
1638         BYTE* const start = (BYTE*)mtctx->roundBuff.buffer;
1639         size_t const prefixSize = mtctx->inBuff.prefix.size;
1640 
1641         buffer.start = start;
1642         buffer.capacity = prefixSize;
1643         if (ZSTDMT_isOverlapped(buffer, inUse)) {
1644             DEBUGLOG(5, "Waiting for buffer...");
1645             return 0;
1646         }
1647         ZSTDMT_waitForLdmComplete(mtctx, buffer);
1648         ZSTD_memmove(start, mtctx->inBuff.prefix.start, prefixSize);
1649         mtctx->inBuff.prefix.start = start;
1650         mtctx->roundBuff.pos = prefixSize;
1651     }
1652     buffer.start = mtctx->roundBuff.buffer + mtctx->roundBuff.pos;
1653     buffer.capacity = target;
1654 
1655     if (ZSTDMT_isOverlapped(buffer, inUse)) {
1656         DEBUGLOG(5, "Waiting for buffer...");
1657         return 0;
1658     }
1659     assert(!ZSTDMT_isOverlapped(buffer, mtctx->inBuff.prefix));
1660 
1661     ZSTDMT_waitForLdmComplete(mtctx, buffer);
1662 
1663     DEBUGLOG(5, "Using prefix range [%zx, %zx)",
1664                 (size_t)mtctx->inBuff.prefix.start,
1665                 (size_t)mtctx->inBuff.prefix.start + mtctx->inBuff.prefix.size);
1666     DEBUGLOG(5, "Using source range [%zx, %zx)",
1667                 (size_t)buffer.start,
1668                 (size_t)buffer.start + buffer.capacity);
1669 
1670 
1671     mtctx->inBuff.buffer = buffer;
1672     mtctx->inBuff.filled = 0;
1673     assert(mtctx->roundBuff.pos + buffer.capacity <= mtctx->roundBuff.capacity);
1674     return 1;
1675 }
1676 
1677 typedef struct {
1678   size_t toLoad;  /* The number of bytes to load from the input. */
1679   int flush;      /* Boolean declaring if we must flush because we found a synchronization point. */
1680 } syncPoint_t;
1681 
1682 /**
1683  * Searches through the input for a synchronization point. If one is found, we
1684  * will instruct the caller to flush, and return the number of bytes to load.
1685  * Otherwise, we will load as many bytes as possible and instruct the caller
1686  * to continue as normal.
1687  */
1688 static syncPoint_t
1689 findSynchronizationPoint(ZSTDMT_CCtx const* mtctx, ZSTD_inBuffer const input)
1690 {
1691     BYTE const* const istart = (BYTE const*)input.src + input.pos;
1692     U64 const primePower = mtctx->rsync.primePower;
1693     U64 const hitMask = mtctx->rsync.hitMask;
1694 
1695     syncPoint_t syncPoint;
1696     U64 hash;
1697     BYTE const* prev;
1698     size_t pos;
1699 
1700     syncPoint.toLoad = MIN(input.size - input.pos, mtctx->targetSectionSize - mtctx->inBuff.filled);
1701     syncPoint.flush = 0;
1702     if (!mtctx->params.rsyncable)
1703         /* Rsync is disabled. */
1704         return syncPoint;
1705     if (mtctx->inBuff.filled + input.size - input.pos < RSYNC_MIN_BLOCK_SIZE)
1706         /* We don't emit synchronization points if it would produce too small blocks.
1707          * We don't have enough input to find a synchronization point, so don't look.
1708          */
1709         return syncPoint;
1710     if (mtctx->inBuff.filled + syncPoint.toLoad < RSYNC_LENGTH)
1711         /* Not enough to compute the hash.
1712          * We will miss any synchronization points in this RSYNC_LENGTH byte
1713          * window. However, since it depends only in the internal buffers, if the
1714          * state is already synchronized, we will remain synchronized.
1715          * Additionally, the probability that we miss a synchronization point is
1716          * low: RSYNC_LENGTH / targetSectionSize.
1717          */
1718         return syncPoint;
1719     /* Initialize the loop variables. */
1720     if (mtctx->inBuff.filled < RSYNC_MIN_BLOCK_SIZE) {
1721         /* We don't need to scan the first RSYNC_MIN_BLOCK_SIZE positions
1722          * because they can't possibly be a sync point. So we can start
1723          * part way through the input buffer.
1724          */
1725         pos = RSYNC_MIN_BLOCK_SIZE - mtctx->inBuff.filled;
1726         if (pos >= RSYNC_LENGTH) {
1727             prev = istart + pos - RSYNC_LENGTH;
1728             hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1729         } else {
1730             assert(mtctx->inBuff.filled >= RSYNC_LENGTH);
1731             prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1732             hash = ZSTD_rollingHash_compute(prev + pos, (RSYNC_LENGTH - pos));
1733             hash = ZSTD_rollingHash_append(hash, istart, pos);
1734         }
1735     } else {
1736         /* We have enough bytes buffered to initialize the hash,
1737          * and are have processed enough bytes to find a sync point.
1738          * Start scanning at the beginning of the input.
1739          */
1740         assert(mtctx->inBuff.filled >= RSYNC_MIN_BLOCK_SIZE);
1741         assert(RSYNC_MIN_BLOCK_SIZE >= RSYNC_LENGTH);
1742         pos = 0;
1743         prev = (BYTE const*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled - RSYNC_LENGTH;
1744         hash = ZSTD_rollingHash_compute(prev, RSYNC_LENGTH);
1745         if ((hash & hitMask) == hitMask) {
1746             /* We're already at a sync point so don't load any more until
1747              * we're able to flush this sync point.
1748              * This likely happened because the job table was full so we
1749              * couldn't add our job.
1750              */
1751             syncPoint.toLoad = 0;
1752             syncPoint.flush = 1;
1753             return syncPoint;
1754         }
1755     }
1756     /* Starting with the hash of the previous RSYNC_LENGTH bytes, roll
1757      * through the input. If we hit a synchronization point, then cut the
1758      * job off, and tell the compressor to flush the job. Otherwise, load
1759      * all the bytes and continue as normal.
1760      * If we go too long without a synchronization point (targetSectionSize)
1761      * then a block will be emitted anyways, but this is okay, since if we
1762      * are already synchronized we will remain synchronized.
1763      */
1764     for (; pos < syncPoint.toLoad; ++pos) {
1765         BYTE const toRemove = pos < RSYNC_LENGTH ? prev[pos] : istart[pos - RSYNC_LENGTH];
1766         assert(pos < RSYNC_LENGTH || ZSTD_rollingHash_compute(istart + pos - RSYNC_LENGTH, RSYNC_LENGTH) == hash);
1767         hash = ZSTD_rollingHash_rotate(hash, toRemove, istart[pos], primePower);
1768         assert(mtctx->inBuff.filled + pos >= RSYNC_MIN_BLOCK_SIZE);
1769         if ((hash & hitMask) == hitMask) {
1770             syncPoint.toLoad = pos + 1;
1771             syncPoint.flush = 1;
1772             break;
1773         }
1774     }
1775     return syncPoint;
1776 }
1777 
1778 size_t ZSTDMT_nextInputSizeHint(const ZSTDMT_CCtx* mtctx)
1779 {
1780     size_t hintInSize = mtctx->targetSectionSize - mtctx->inBuff.filled;
1781     if (hintInSize==0) hintInSize = mtctx->targetSectionSize;
1782     return hintInSize;
1783 }
1784 
1785 /** ZSTDMT_compressStream_generic() :
1786  *  internal use only - exposed to be invoked from zstd_compress.c
1787  *  assumption : output and input are valid (pos <= size)
1788  * @return : minimum amount of data remaining to flush, 0 if none */
1789 size_t ZSTDMT_compressStream_generic(ZSTDMT_CCtx* mtctx,
1790                                      ZSTD_outBuffer* output,
1791                                      ZSTD_inBuffer* input,
1792                                      ZSTD_EndDirective endOp)
1793 {
1794     unsigned forwardInputProgress = 0;
1795     DEBUGLOG(5, "ZSTDMT_compressStream_generic (endOp=%u, srcSize=%u)",
1796                 (U32)endOp, (U32)(input->size - input->pos));
1797     assert(output->pos <= output->size);
1798     assert(input->pos  <= input->size);
1799 
1800     if ((mtctx->frameEnded) && (endOp==ZSTD_e_continue)) {
1801         /* current frame being ended. Only flush/end are allowed */
1802         return ERROR(stage_wrong);
1803     }
1804 
1805     /* fill input buffer */
1806     if ( (!mtctx->jobReady)
1807       && (input->size > input->pos) ) {   /* support NULL input */
1808         if (mtctx->inBuff.buffer.start == NULL) {
1809             assert(mtctx->inBuff.filled == 0); /* Can't fill an empty buffer */
1810             if (!ZSTDMT_tryGetInputRange(mtctx)) {
1811                 /* It is only possible for this operation to fail if there are
1812                  * still compression jobs ongoing.
1813                  */
1814                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange failed");
1815                 assert(mtctx->doneJobID != mtctx->nextJobID);
1816             } else
1817                 DEBUGLOG(5, "ZSTDMT_tryGetInputRange completed successfully : mtctx->inBuff.buffer.start = %p", mtctx->inBuff.buffer.start);
1818         }
1819         if (mtctx->inBuff.buffer.start != NULL) {
1820             syncPoint_t const syncPoint = findSynchronizationPoint(mtctx, *input);
1821             if (syncPoint.flush && endOp == ZSTD_e_continue) {
1822                 endOp = ZSTD_e_flush;
1823             }
1824             assert(mtctx->inBuff.buffer.capacity >= mtctx->targetSectionSize);
1825             DEBUGLOG(5, "ZSTDMT_compressStream_generic: adding %u bytes on top of %u to buffer of size %u",
1826                         (U32)syncPoint.toLoad, (U32)mtctx->inBuff.filled, (U32)mtctx->targetSectionSize);
1827             ZSTD_memcpy((char*)mtctx->inBuff.buffer.start + mtctx->inBuff.filled, (const char*)input->src + input->pos, syncPoint.toLoad);
1828             input->pos += syncPoint.toLoad;
1829             mtctx->inBuff.filled += syncPoint.toLoad;
1830             forwardInputProgress = syncPoint.toLoad>0;
1831         }
1832     }
1833     if ((input->pos < input->size) && (endOp == ZSTD_e_end)) {
1834         /* Can't end yet because the input is not fully consumed.
1835             * We are in one of these cases:
1836             * - mtctx->inBuff is NULL & empty: we couldn't get an input buffer so don't create a new job.
1837             * - We filled the input buffer: flush this job but don't end the frame.
1838             * - We hit a synchronization point: flush this job but don't end the frame.
1839             */
1840         assert(mtctx->inBuff.filled == 0 || mtctx->inBuff.filled == mtctx->targetSectionSize || mtctx->params.rsyncable);
1841         endOp = ZSTD_e_flush;
1842     }
1843 
1844     if ( (mtctx->jobReady)
1845       || (mtctx->inBuff.filled >= mtctx->targetSectionSize)  /* filled enough : let's compress */
1846       || ((endOp != ZSTD_e_continue) && (mtctx->inBuff.filled > 0))  /* something to flush : let's go */
1847       || ((endOp == ZSTD_e_end) && (!mtctx->frameEnded)) ) {   /* must finish the frame with a zero-size block */
1848         size_t const jobSize = mtctx->inBuff.filled;
1849         assert(mtctx->inBuff.filled <= mtctx->targetSectionSize);
1850         FORWARD_IF_ERROR( ZSTDMT_createCompressionJob(mtctx, jobSize, endOp) , "");
1851     }
1852 
1853     /* check for potential compressed data ready to be flushed */
1854     {   size_t const remainingToFlush = ZSTDMT_flushProduced(mtctx, output, !forwardInputProgress, endOp); /* block if there was no forward input progress */
1855         if (input->pos < input->size) return MAX(remainingToFlush, 1);  /* input not consumed : do not end flush yet */
1856         DEBUGLOG(5, "end of ZSTDMT_compressStream_generic: remainingToFlush = %u", (U32)remainingToFlush);
1857         return remainingToFlush;
1858     }
1859 }
1860