1 /* 2 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 */ 9 10 #include "zstd_ldm.h" 11 12 #include "zstd_fast.h" /* ZSTD_fillHashTable() */ 13 #include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */ 14 15 #define LDM_BUCKET_SIZE_LOG 3 16 #define LDM_MIN_MATCH_LENGTH 64 17 #define LDM_HASH_RLOG 7 18 #define LDM_HASH_CHAR_OFFSET 10 19 20 void ZSTD_ldm_adjustParameters(ldmParams_t* params, 21 ZSTD_compressionParameters const* cParams) 22 { 23 U32 const windowLog = cParams->windowLog; 24 ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX); 25 DEBUGLOG(4, "ZSTD_ldm_adjustParameters"); 26 if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG; 27 if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH; 28 if (cParams->strategy >= ZSTD_btopt) { 29 /* Get out of the way of the optimal parser */ 30 U32 const minMatch = MAX(cParams->targetLength, params->minMatchLength); 31 assert(minMatch >= ZSTD_LDM_MINMATCH_MIN); 32 assert(minMatch <= ZSTD_LDM_MINMATCH_MAX); 33 params->minMatchLength = minMatch; 34 } 35 if (params->hashLog == 0) { 36 params->hashLog = MAX(ZSTD_HASHLOG_MIN, windowLog - LDM_HASH_RLOG); 37 assert(params->hashLog <= ZSTD_HASHLOG_MAX); 38 } 39 if (params->hashEveryLog == 0) { 40 params->hashEveryLog = 41 windowLog < params->hashLog ? 0 : windowLog - params->hashLog; 42 } 43 params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog); 44 } 45 46 size_t ZSTD_ldm_getTableSize(ldmParams_t params) 47 { 48 size_t const ldmHSize = ((size_t)1) << params.hashLog; 49 size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog); 50 size_t const ldmBucketSize = 51 ((size_t)1) << (params.hashLog - ldmBucketSizeLog); 52 size_t const totalSize = ldmBucketSize + ldmHSize * sizeof(ldmEntry_t); 53 return params.enableLdm ? totalSize : 0; 54 } 55 56 size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize) 57 { 58 return params.enableLdm ? (maxChunkSize / params.minMatchLength) : 0; 59 } 60 61 /** ZSTD_ldm_getSmallHash() : 62 * numBits should be <= 32 63 * If numBits==0, returns 0. 64 * @return : the most significant numBits of value. */ 65 static U32 ZSTD_ldm_getSmallHash(U64 value, U32 numBits) 66 { 67 assert(numBits <= 32); 68 return numBits == 0 ? 0 : (U32)(value >> (64 - numBits)); 69 } 70 71 /** ZSTD_ldm_getChecksum() : 72 * numBitsToDiscard should be <= 32 73 * @return : the next most significant 32 bits after numBitsToDiscard */ 74 static U32 ZSTD_ldm_getChecksum(U64 hash, U32 numBitsToDiscard) 75 { 76 assert(numBitsToDiscard <= 32); 77 return (hash >> (64 - 32 - numBitsToDiscard)) & 0xFFFFFFFF; 78 } 79 80 /** ZSTD_ldm_getTag() ; 81 * Given the hash, returns the most significant numTagBits bits 82 * after (32 + hbits) bits. 83 * 84 * If there are not enough bits remaining, return the last 85 * numTagBits bits. */ 86 static U32 ZSTD_ldm_getTag(U64 hash, U32 hbits, U32 numTagBits) 87 { 88 assert(numTagBits < 32 && hbits <= 32); 89 if (32 - hbits < numTagBits) { 90 return hash & (((U32)1 << numTagBits) - 1); 91 } else { 92 return (hash >> (32 - hbits - numTagBits)) & (((U32)1 << numTagBits) - 1); 93 } 94 } 95 96 /** ZSTD_ldm_getBucket() : 97 * Returns a pointer to the start of the bucket associated with hash. */ 98 static ldmEntry_t* ZSTD_ldm_getBucket( 99 ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams) 100 { 101 return ldmState->hashTable + (hash << ldmParams.bucketSizeLog); 102 } 103 104 /** ZSTD_ldm_insertEntry() : 105 * Insert the entry with corresponding hash into the hash table */ 106 static void ZSTD_ldm_insertEntry(ldmState_t* ldmState, 107 size_t const hash, const ldmEntry_t entry, 108 ldmParams_t const ldmParams) 109 { 110 BYTE* const bucketOffsets = ldmState->bucketOffsets; 111 *(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + bucketOffsets[hash]) = entry; 112 bucketOffsets[hash]++; 113 bucketOffsets[hash] &= ((U32)1 << ldmParams.bucketSizeLog) - 1; 114 } 115 116 /** ZSTD_ldm_makeEntryAndInsertByTag() : 117 * 118 * Gets the small hash, checksum, and tag from the rollingHash. 119 * 120 * If the tag matches (1 << ldmParams.hashEveryLog)-1, then 121 * creates an ldmEntry from the offset, and inserts it into the hash table. 122 * 123 * hBits is the length of the small hash, which is the most significant hBits 124 * of rollingHash. The checksum is the next 32 most significant bits, followed 125 * by ldmParams.hashEveryLog bits that make up the tag. */ 126 static void ZSTD_ldm_makeEntryAndInsertByTag(ldmState_t* ldmState, 127 U64 const rollingHash, 128 U32 const hBits, 129 U32 const offset, 130 ldmParams_t const ldmParams) 131 { 132 U32 const tag = ZSTD_ldm_getTag(rollingHash, hBits, ldmParams.hashEveryLog); 133 U32 const tagMask = ((U32)1 << ldmParams.hashEveryLog) - 1; 134 if (tag == tagMask) { 135 U32 const hash = ZSTD_ldm_getSmallHash(rollingHash, hBits); 136 U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits); 137 ldmEntry_t entry; 138 entry.offset = offset; 139 entry.checksum = checksum; 140 ZSTD_ldm_insertEntry(ldmState, hash, entry, ldmParams); 141 } 142 } 143 144 /** ZSTD_ldm_getRollingHash() : 145 * Get a 64-bit hash using the first len bytes from buf. 146 * 147 * Giving bytes s = s_1, s_2, ... s_k, the hash is defined to be 148 * H(s) = s_1*(a^(k-1)) + s_2*(a^(k-2)) + ... + s_k*(a^0) 149 * 150 * where the constant a is defined to be prime8bytes. 151 * 152 * The implementation adds an offset to each byte, so 153 * H(s) = (s_1 + HASH_CHAR_OFFSET)*(a^(k-1)) + ... */ 154 static U64 ZSTD_ldm_getRollingHash(const BYTE* buf, U32 len) 155 { 156 U64 ret = 0; 157 U32 i; 158 for (i = 0; i < len; i++) { 159 ret *= prime8bytes; 160 ret += buf[i] + LDM_HASH_CHAR_OFFSET; 161 } 162 return ret; 163 } 164 165 /** ZSTD_ldm_ipow() : 166 * Return base^exp. */ 167 static U64 ZSTD_ldm_ipow(U64 base, U64 exp) 168 { 169 U64 ret = 1; 170 while (exp) { 171 if (exp & 1) { ret *= base; } 172 exp >>= 1; 173 base *= base; 174 } 175 return ret; 176 } 177 178 U64 ZSTD_ldm_getHashPower(U32 minMatchLength) { 179 DEBUGLOG(4, "ZSTD_ldm_getHashPower: mml=%u", minMatchLength); 180 assert(minMatchLength >= ZSTD_LDM_MINMATCH_MIN); 181 return ZSTD_ldm_ipow(prime8bytes, minMatchLength - 1); 182 } 183 184 /** ZSTD_ldm_updateHash() : 185 * Updates hash by removing toRemove and adding toAdd. */ 186 static U64 ZSTD_ldm_updateHash(U64 hash, BYTE toRemove, BYTE toAdd, U64 hashPower) 187 { 188 hash -= ((toRemove + LDM_HASH_CHAR_OFFSET) * hashPower); 189 hash *= prime8bytes; 190 hash += toAdd + LDM_HASH_CHAR_OFFSET; 191 return hash; 192 } 193 194 /** ZSTD_ldm_countBackwardsMatch() : 195 * Returns the number of bytes that match backwards before pIn and pMatch. 196 * 197 * We count only bytes where pMatch >= pBase and pIn >= pAnchor. */ 198 static size_t ZSTD_ldm_countBackwardsMatch( 199 const BYTE* pIn, const BYTE* pAnchor, 200 const BYTE* pMatch, const BYTE* pBase) 201 { 202 size_t matchLength = 0; 203 while (pIn > pAnchor && pMatch > pBase && pIn[-1] == pMatch[-1]) { 204 pIn--; 205 pMatch--; 206 matchLength++; 207 } 208 return matchLength; 209 } 210 211 /** ZSTD_ldm_fillFastTables() : 212 * 213 * Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies. 214 * This is similar to ZSTD_loadDictionaryContent. 215 * 216 * The tables for the other strategies are filled within their 217 * block compressors. */ 218 static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms, 219 ZSTD_compressionParameters const* cParams, 220 void const* end) 221 { 222 const BYTE* const iend = (const BYTE*)end; 223 224 switch(cParams->strategy) 225 { 226 case ZSTD_fast: 227 ZSTD_fillHashTable(ms, cParams, iend); 228 ms->nextToUpdate = (U32)(iend - ms->window.base); 229 break; 230 231 case ZSTD_dfast: 232 ZSTD_fillDoubleHashTable(ms, cParams, iend); 233 ms->nextToUpdate = (U32)(iend - ms->window.base); 234 break; 235 236 case ZSTD_greedy: 237 case ZSTD_lazy: 238 case ZSTD_lazy2: 239 case ZSTD_btlazy2: 240 case ZSTD_btopt: 241 case ZSTD_btultra: 242 break; 243 default: 244 assert(0); /* not possible : not a valid strategy id */ 245 } 246 247 return 0; 248 } 249 250 /** ZSTD_ldm_fillLdmHashTable() : 251 * 252 * Fills hashTable from (lastHashed + 1) to iend (non-inclusive). 253 * lastHash is the rolling hash that corresponds to lastHashed. 254 * 255 * Returns the rolling hash corresponding to position iend-1. */ 256 static U64 ZSTD_ldm_fillLdmHashTable(ldmState_t* state, 257 U64 lastHash, const BYTE* lastHashed, 258 const BYTE* iend, const BYTE* base, 259 U32 hBits, ldmParams_t const ldmParams) 260 { 261 U64 rollingHash = lastHash; 262 const BYTE* cur = lastHashed + 1; 263 264 while (cur < iend) { 265 rollingHash = ZSTD_ldm_updateHash(rollingHash, cur[-1], 266 cur[ldmParams.minMatchLength-1], 267 state->hashPower); 268 ZSTD_ldm_makeEntryAndInsertByTag(state, 269 rollingHash, hBits, 270 (U32)(cur - base), ldmParams); 271 ++cur; 272 } 273 return rollingHash; 274 } 275 276 277 /** ZSTD_ldm_limitTableUpdate() : 278 * 279 * Sets cctx->nextToUpdate to a position corresponding closer to anchor 280 * if it is far way 281 * (after a long match, only update tables a limited amount). */ 282 static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor) 283 { 284 U32 const current = (U32)(anchor - ms->window.base); 285 if (current > ms->nextToUpdate + 1024) { 286 ms->nextToUpdate = 287 current - MIN(512, current - ms->nextToUpdate - 1024); 288 } 289 } 290 291 static size_t ZSTD_ldm_generateSequences_internal( 292 ldmState_t* ldmState, rawSeqStore_t* rawSeqStore, 293 ldmParams_t const* params, void const* src, size_t srcSize) 294 { 295 /* LDM parameters */ 296 int const extDict = ZSTD_window_hasExtDict(ldmState->window); 297 U32 const minMatchLength = params->minMatchLength; 298 U64 const hashPower = ldmState->hashPower; 299 U32 const hBits = params->hashLog - params->bucketSizeLog; 300 U32 const ldmBucketSize = 1U << params->bucketSizeLog; 301 U32 const hashEveryLog = params->hashEveryLog; 302 U32 const ldmTagMask = (1U << params->hashEveryLog) - 1; 303 /* Prefix and extDict parameters */ 304 U32 const dictLimit = ldmState->window.dictLimit; 305 U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit; 306 BYTE const* const base = ldmState->window.base; 307 BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL; 308 BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL; 309 BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL; 310 BYTE const* const lowPrefixPtr = base + dictLimit; 311 /* Input bounds */ 312 BYTE const* const istart = (BYTE const*)src; 313 BYTE const* const iend = istart + srcSize; 314 BYTE const* const ilimit = iend - MAX(minMatchLength, HASH_READ_SIZE); 315 /* Input positions */ 316 BYTE const* anchor = istart; 317 BYTE const* ip = istart; 318 /* Rolling hash */ 319 BYTE const* lastHashed = NULL; 320 U64 rollingHash = 0; 321 322 while (ip <= ilimit) { 323 size_t mLength; 324 U32 const current = (U32)(ip - base); 325 size_t forwardMatchLength = 0, backwardMatchLength = 0; 326 ldmEntry_t* bestEntry = NULL; 327 if (ip != istart) { 328 rollingHash = ZSTD_ldm_updateHash(rollingHash, lastHashed[0], 329 lastHashed[minMatchLength], 330 hashPower); 331 } else { 332 rollingHash = ZSTD_ldm_getRollingHash(ip, minMatchLength); 333 } 334 lastHashed = ip; 335 336 /* Do not insert and do not look for a match */ 337 if (ZSTD_ldm_getTag(rollingHash, hBits, hashEveryLog) != ldmTagMask) { 338 ip++; 339 continue; 340 } 341 342 /* Get the best entry and compute the match lengths */ 343 { 344 ldmEntry_t* const bucket = 345 ZSTD_ldm_getBucket(ldmState, 346 ZSTD_ldm_getSmallHash(rollingHash, hBits), 347 *params); 348 ldmEntry_t* cur; 349 size_t bestMatchLength = 0; 350 U32 const checksum = ZSTD_ldm_getChecksum(rollingHash, hBits); 351 352 for (cur = bucket; cur < bucket + ldmBucketSize; ++cur) { 353 size_t curForwardMatchLength, curBackwardMatchLength, 354 curTotalMatchLength; 355 if (cur->checksum != checksum || cur->offset <= lowestIndex) { 356 continue; 357 } 358 if (extDict) { 359 BYTE const* const curMatchBase = 360 cur->offset < dictLimit ? dictBase : base; 361 BYTE const* const pMatch = curMatchBase + cur->offset; 362 BYTE const* const matchEnd = 363 cur->offset < dictLimit ? dictEnd : iend; 364 BYTE const* const lowMatchPtr = 365 cur->offset < dictLimit ? dictStart : lowPrefixPtr; 366 367 curForwardMatchLength = ZSTD_count_2segments( 368 ip, pMatch, iend, 369 matchEnd, lowPrefixPtr); 370 if (curForwardMatchLength < minMatchLength) { 371 continue; 372 } 373 curBackwardMatchLength = 374 ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch, 375 lowMatchPtr); 376 curTotalMatchLength = curForwardMatchLength + 377 curBackwardMatchLength; 378 } else { /* !extDict */ 379 BYTE const* const pMatch = base + cur->offset; 380 curForwardMatchLength = ZSTD_count(ip, pMatch, iend); 381 if (curForwardMatchLength < minMatchLength) { 382 continue; 383 } 384 curBackwardMatchLength = 385 ZSTD_ldm_countBackwardsMatch(ip, anchor, pMatch, 386 lowPrefixPtr); 387 curTotalMatchLength = curForwardMatchLength + 388 curBackwardMatchLength; 389 } 390 391 if (curTotalMatchLength > bestMatchLength) { 392 bestMatchLength = curTotalMatchLength; 393 forwardMatchLength = curForwardMatchLength; 394 backwardMatchLength = curBackwardMatchLength; 395 bestEntry = cur; 396 } 397 } 398 } 399 400 /* No match found -- continue searching */ 401 if (bestEntry == NULL) { 402 ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, 403 hBits, current, 404 *params); 405 ip++; 406 continue; 407 } 408 409 /* Match found */ 410 mLength = forwardMatchLength + backwardMatchLength; 411 ip -= backwardMatchLength; 412 413 { 414 /* Store the sequence: 415 * ip = current - backwardMatchLength 416 * The match is at (bestEntry->offset - backwardMatchLength) 417 */ 418 U32 const matchIndex = bestEntry->offset; 419 U32 const offset = current - matchIndex; 420 rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size; 421 422 /* Out of sequence storage */ 423 if (rawSeqStore->size == rawSeqStore->capacity) 424 return ERROR(dstSize_tooSmall); 425 seq->litLength = (U32)(ip - anchor); 426 seq->matchLength = (U32)mLength; 427 seq->offset = offset; 428 rawSeqStore->size++; 429 } 430 431 /* Insert the current entry into the hash table */ 432 ZSTD_ldm_makeEntryAndInsertByTag(ldmState, rollingHash, hBits, 433 (U32)(lastHashed - base), 434 *params); 435 436 assert(ip + backwardMatchLength == lastHashed); 437 438 /* Fill the hash table from lastHashed+1 to ip+mLength*/ 439 /* Heuristic: don't need to fill the entire table at end of block */ 440 if (ip + mLength <= ilimit) { 441 rollingHash = ZSTD_ldm_fillLdmHashTable( 442 ldmState, rollingHash, lastHashed, 443 ip + mLength, base, hBits, *params); 444 lastHashed = ip + mLength - 1; 445 } 446 ip += mLength; 447 anchor = ip; 448 } 449 return iend - anchor; 450 } 451 452 /*! ZSTD_ldm_reduceTable() : 453 * reduce table indexes by `reducerValue` */ 454 static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size, 455 U32 const reducerValue) 456 { 457 U32 u; 458 for (u = 0; u < size; u++) { 459 if (table[u].offset < reducerValue) table[u].offset = 0; 460 else table[u].offset -= reducerValue; 461 } 462 } 463 464 size_t ZSTD_ldm_generateSequences( 465 ldmState_t* ldmState, rawSeqStore_t* sequences, 466 ldmParams_t const* params, void const* src, size_t srcSize) 467 { 468 U32 const maxDist = 1U << params->windowLog; 469 BYTE const* const istart = (BYTE const*)src; 470 BYTE const* const iend = istart + srcSize; 471 size_t const kMaxChunkSize = 1 << 20; 472 size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0); 473 size_t chunk; 474 size_t leftoverSize = 0; 475 476 assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize); 477 /* Check that ZSTD_window_update() has been called for this chunk prior 478 * to passing it to this function. 479 */ 480 assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize); 481 /* The input could be very large (in zstdmt), so it must be broken up into 482 * chunks to enforce the maximmum distance and handle overflow correction. 483 */ 484 assert(sequences->pos <= sequences->size); 485 assert(sequences->size <= sequences->capacity); 486 for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) { 487 BYTE const* const chunkStart = istart + chunk * kMaxChunkSize; 488 size_t const remaining = (size_t)(iend - chunkStart); 489 BYTE const *const chunkEnd = 490 (remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize; 491 size_t const chunkSize = chunkEnd - chunkStart; 492 size_t newLeftoverSize; 493 size_t const prevSize = sequences->size; 494 495 assert(chunkStart < iend); 496 /* 1. Perform overflow correction if necessary. */ 497 if (ZSTD_window_needOverflowCorrection(ldmState->window, chunkEnd)) { 498 U32 const ldmHSize = 1U << params->hashLog; 499 U32 const correction = ZSTD_window_correctOverflow( 500 &ldmState->window, /* cycleLog */ 0, maxDist, src); 501 ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction); 502 } 503 /* 2. We enforce the maximum offset allowed. 504 * 505 * kMaxChunkSize should be small enough that we don't lose too much of 506 * the window through early invalidation. 507 * TODO: * Test the chunk size. 508 * * Try invalidation after the sequence generation and test the 509 * the offset against maxDist directly. 510 */ 511 ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, NULL); 512 /* 3. Generate the sequences for the chunk, and get newLeftoverSize. */ 513 newLeftoverSize = ZSTD_ldm_generateSequences_internal( 514 ldmState, sequences, params, chunkStart, chunkSize); 515 if (ZSTD_isError(newLeftoverSize)) 516 return newLeftoverSize; 517 /* 4. We add the leftover literals from previous iterations to the first 518 * newly generated sequence, or add the `newLeftoverSize` if none are 519 * generated. 520 */ 521 /* Prepend the leftover literals from the last call */ 522 if (prevSize < sequences->size) { 523 sequences->seq[prevSize].litLength += (U32)leftoverSize; 524 leftoverSize = newLeftoverSize; 525 } else { 526 assert(newLeftoverSize == chunkSize); 527 leftoverSize += chunkSize; 528 } 529 } 530 return 0; 531 } 532 533 void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch) { 534 while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) { 535 rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos; 536 if (srcSize <= seq->litLength) { 537 /* Skip past srcSize literals */ 538 seq->litLength -= (U32)srcSize; 539 return; 540 } 541 srcSize -= seq->litLength; 542 seq->litLength = 0; 543 if (srcSize < seq->matchLength) { 544 /* Skip past the first srcSize of the match */ 545 seq->matchLength -= (U32)srcSize; 546 if (seq->matchLength < minMatch) { 547 /* The match is too short, omit it */ 548 if (rawSeqStore->pos + 1 < rawSeqStore->size) { 549 seq[1].litLength += seq[0].matchLength; 550 } 551 rawSeqStore->pos++; 552 } 553 return; 554 } 555 srcSize -= seq->matchLength; 556 seq->matchLength = 0; 557 rawSeqStore->pos++; 558 } 559 } 560 561 /** 562 * If the sequence length is longer than remaining then the sequence is split 563 * between this block and the next. 564 * 565 * Returns the current sequence to handle, or if the rest of the block should 566 * be literals, it returns a sequence with offset == 0. 567 */ 568 static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore, 569 U32 const remaining, U32 const minMatch) 570 { 571 rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos]; 572 assert(sequence.offset > 0); 573 /* Likely: No partial sequence */ 574 if (remaining >= sequence.litLength + sequence.matchLength) { 575 rawSeqStore->pos++; 576 return sequence; 577 } 578 /* Cut the sequence short (offset == 0 ==> rest is literals). */ 579 if (remaining <= sequence.litLength) { 580 sequence.offset = 0; 581 } else if (remaining < sequence.litLength + sequence.matchLength) { 582 sequence.matchLength = remaining - sequence.litLength; 583 if (sequence.matchLength < minMatch) { 584 sequence.offset = 0; 585 } 586 } 587 /* Skip past `remaining` bytes for the future sequences. */ 588 ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch); 589 return sequence; 590 } 591 592 size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore, 593 ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], 594 ZSTD_compressionParameters const* cParams, void const* src, size_t srcSize, 595 int const extDict) 596 { 597 unsigned const minMatch = cParams->searchLength; 598 ZSTD_blockCompressor const blockCompressor = 599 ZSTD_selectBlockCompressor(cParams->strategy, extDict); 600 BYTE const* const base = ms->window.base; 601 /* Input bounds */ 602 BYTE const* const istart = (BYTE const*)src; 603 BYTE const* const iend = istart + srcSize; 604 /* Input positions */ 605 BYTE const* ip = istart; 606 607 assert(rawSeqStore->pos <= rawSeqStore->size); 608 assert(rawSeqStore->size <= rawSeqStore->capacity); 609 /* Loop through each sequence and apply the block compressor to the lits */ 610 while (rawSeqStore->pos < rawSeqStore->size && ip < iend) { 611 /* maybeSplitSequence updates rawSeqStore->pos */ 612 rawSeq const sequence = maybeSplitSequence(rawSeqStore, 613 (U32)(iend - ip), minMatch); 614 int i; 615 /* End signal */ 616 if (sequence.offset == 0) 617 break; 618 619 assert(sequence.offset <= (1U << cParams->windowLog)); 620 assert(ip + sequence.litLength + sequence.matchLength <= iend); 621 622 /* Fill tables for block compressor */ 623 ZSTD_ldm_limitTableUpdate(ms, ip); 624 ZSTD_ldm_fillFastTables(ms, cParams, ip); 625 /* Run the block compressor */ 626 { 627 size_t const newLitLength = 628 blockCompressor(ms, seqStore, rep, cParams, ip, 629 sequence.litLength); 630 ip += sequence.litLength; 631 ms->nextToUpdate = (U32)(ip - base); 632 /* Update the repcodes */ 633 for (i = ZSTD_REP_NUM - 1; i > 0; i--) 634 rep[i] = rep[i-1]; 635 rep[0] = sequence.offset; 636 /* Store the sequence */ 637 ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, 638 sequence.offset + ZSTD_REP_MOVE, 639 sequence.matchLength - MINMATCH); 640 ip += sequence.matchLength; 641 } 642 } 643 /* Fill the tables for the block compressor */ 644 ZSTD_ldm_limitTableUpdate(ms, ip); 645 ZSTD_ldm_fillFastTables(ms, cParams, ip); 646 /* Compress the last literals */ 647 { 648 size_t const lastLiterals = blockCompressor(ms, seqStore, rep, cParams, 649 ip, iend - ip); 650 ms->nextToUpdate = (U32)(iend - base); 651 return lastLiterals; 652 } 653 } 654