xref: /freebsd/sys/contrib/zstd/lib/compress/zstd_compress_sequences.c (revision 61898cde69374d5a9994e2074605bc4101aff72d)
1 /*
2  * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc.
3  * All rights reserved.
4  *
5  * This source code is licensed under both the BSD-style license (found in the
6  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
7  * in the COPYING file in the root directory of this source tree).
8  * You may select, at your option, one of the above-listed licenses.
9  */
10 
11  /*-*************************************
12  *  Dependencies
13  ***************************************/
14 #include "zstd_compress_sequences.h"
15 
16 /**
17  * -log2(x / 256) lookup table for x in [0, 256).
18  * If x == 0: Return 0
19  * Else: Return floor(-log2(x / 256) * 256)
20  */
21 static unsigned const kInverseProbabilityLog256[256] = {
22     0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
23     1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
24     874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
25     724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
26     618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
27     535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
28     468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
29     411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
30     362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
31     318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
32     279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
33     244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
34     212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
35     182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
36     155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
37     130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
38     106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
39     83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
40     62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
41     42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
42     23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
43     5,    4,    2,    1,
44 };
45 
46 static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
47   void const* ptr = ctable;
48   U16 const* u16ptr = (U16 const*)ptr;
49   U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
50   return maxSymbolValue;
51 }
52 
53 /**
54  * Returns the cost in bytes of encoding the normalized count header.
55  * Returns an error if any of the helper functions return an error.
56  */
57 static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
58                               size_t const nbSeq, unsigned const FSELog)
59 {
60     BYTE wksp[FSE_NCOUNTBOUND];
61     S16 norm[MaxSeq + 1];
62     const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
63     FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max), "");
64     return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
65 }
66 
67 /**
68  * Returns the cost in bits of encoding the distribution described by count
69  * using the entropy bound.
70  */
71 static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
72 {
73     unsigned cost = 0;
74     unsigned s;
75     for (s = 0; s <= max; ++s) {
76         unsigned norm = (unsigned)((256 * count[s]) / total);
77         if (count[s] != 0 && norm == 0)
78             norm = 1;
79         assert(count[s] < total);
80         cost += count[s] * kInverseProbabilityLog256[norm];
81     }
82     return cost >> 8;
83 }
84 
85 /**
86  * Returns the cost in bits of encoding the distribution in count using ctable.
87  * Returns an error if ctable cannot represent all the symbols in count.
88  */
89 size_t ZSTD_fseBitCost(
90     FSE_CTable const* ctable,
91     unsigned const* count,
92     unsigned const max)
93 {
94     unsigned const kAccuracyLog = 8;
95     size_t cost = 0;
96     unsigned s;
97     FSE_CState_t cstate;
98     FSE_initCState(&cstate, ctable);
99     if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
100         DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
101                     ZSTD_getFSEMaxSymbolValue(ctable), max);
102         return ERROR(GENERIC);
103     }
104     for (s = 0; s <= max; ++s) {
105         unsigned const tableLog = cstate.stateLog;
106         unsigned const badCost = (tableLog + 1) << kAccuracyLog;
107         unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
108         if (count[s] == 0)
109             continue;
110         if (bitCost >= badCost) {
111             DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
112             return ERROR(GENERIC);
113         }
114         cost += (size_t)count[s] * bitCost;
115     }
116     return cost >> kAccuracyLog;
117 }
118 
119 /**
120  * Returns the cost in bits of encoding the distribution in count using the
121  * table described by norm. The max symbol support by norm is assumed >= max.
122  * norm must be valid for every symbol with non-zero probability in count.
123  */
124 size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
125                              unsigned const* count, unsigned const max)
126 {
127     unsigned const shift = 8 - accuracyLog;
128     size_t cost = 0;
129     unsigned s;
130     assert(accuracyLog <= 8);
131     for (s = 0; s <= max; ++s) {
132         unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
133         unsigned const norm256 = normAcc << shift;
134         assert(norm256 > 0);
135         assert(norm256 < 256);
136         cost += count[s] * kInverseProbabilityLog256[norm256];
137     }
138     return cost >> 8;
139 }
140 
141 symbolEncodingType_e
142 ZSTD_selectEncodingType(
143         FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
144         size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
145         FSE_CTable const* prevCTable,
146         short const* defaultNorm, U32 defaultNormLog,
147         ZSTD_defaultPolicy_e const isDefaultAllowed,
148         ZSTD_strategy const strategy)
149 {
150     ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
151     if (mostFrequent == nbSeq) {
152         *repeatMode = FSE_repeat_none;
153         if (isDefaultAllowed && nbSeq <= 2) {
154             /* Prefer set_basic over set_rle when there are 2 or less symbols,
155              * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
156              * If basic encoding isn't possible, always choose RLE.
157              */
158             DEBUGLOG(5, "Selected set_basic");
159             return set_basic;
160         }
161         DEBUGLOG(5, "Selected set_rle");
162         return set_rle;
163     }
164     if (strategy < ZSTD_lazy) {
165         if (isDefaultAllowed) {
166             size_t const staticFse_nbSeq_max = 1000;
167             size_t const mult = 10 - strategy;
168             size_t const baseLog = 3;
169             size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
170             assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
171             assert(mult <= 9 && mult >= 7);
172             if ( (*repeatMode == FSE_repeat_valid)
173               && (nbSeq < staticFse_nbSeq_max) ) {
174                 DEBUGLOG(5, "Selected set_repeat");
175                 return set_repeat;
176             }
177             if ( (nbSeq < dynamicFse_nbSeq_min)
178               || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
179                 DEBUGLOG(5, "Selected set_basic");
180                 /* The format allows default tables to be repeated, but it isn't useful.
181                  * When using simple heuristics to select encoding type, we don't want
182                  * to confuse these tables with dictionaries. When running more careful
183                  * analysis, we don't need to waste time checking both repeating tables
184                  * and default tables.
185                  */
186                 *repeatMode = FSE_repeat_none;
187                 return set_basic;
188             }
189         }
190     } else {
191         size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
192         size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
193         size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
194         size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
195 
196         if (isDefaultAllowed) {
197             assert(!ZSTD_isError(basicCost));
198             assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
199         }
200         assert(!ZSTD_isError(NCountCost));
201         assert(compressedCost < ERROR(maxCode));
202         DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
203                     (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
204         if (basicCost <= repeatCost && basicCost <= compressedCost) {
205             DEBUGLOG(5, "Selected set_basic");
206             assert(isDefaultAllowed);
207             *repeatMode = FSE_repeat_none;
208             return set_basic;
209         }
210         if (repeatCost <= compressedCost) {
211             DEBUGLOG(5, "Selected set_repeat");
212             assert(!ZSTD_isError(repeatCost));
213             return set_repeat;
214         }
215         assert(compressedCost < basicCost && compressedCost < repeatCost);
216     }
217     DEBUGLOG(5, "Selected set_compressed");
218     *repeatMode = FSE_repeat_check;
219     return set_compressed;
220 }
221 
222 size_t
223 ZSTD_buildCTable(void* dst, size_t dstCapacity,
224                 FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
225                 unsigned* count, U32 max,
226                 const BYTE* codeTable, size_t nbSeq,
227                 const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
228                 const FSE_CTable* prevCTable, size_t prevCTableSize,
229                 void* entropyWorkspace, size_t entropyWorkspaceSize)
230 {
231     BYTE* op = (BYTE*)dst;
232     const BYTE* const oend = op + dstCapacity;
233     DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
234 
235     switch (type) {
236     case set_rle:
237         FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
238         RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
239         *op = codeTable[0];
240         return 1;
241     case set_repeat:
242         memcpy(nextCTable, prevCTable, prevCTableSize);
243         return 0;
244     case set_basic:
245         FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
246         return 0;
247     case set_compressed: {
248         S16 norm[MaxSeq + 1];
249         size_t nbSeq_1 = nbSeq;
250         const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
251         if (count[codeTable[nbSeq-1]] > 1) {
252             count[codeTable[nbSeq-1]]--;
253             nbSeq_1--;
254         }
255         assert(nbSeq_1 > 1);
256         FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq_1, max), "");
257         {   size_t const NCountSize = FSE_writeNCount(op, oend - op, norm, max, tableLog);   /* overflow protected */
258             FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
259             FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, norm, max, tableLog, entropyWorkspace, entropyWorkspaceSize), "");
260             return NCountSize;
261         }
262     }
263     default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
264     }
265 }
266 
267 FORCE_INLINE_TEMPLATE size_t
268 ZSTD_encodeSequences_body(
269             void* dst, size_t dstCapacity,
270             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
271             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
272             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
273             seqDef const* sequences, size_t nbSeq, int longOffsets)
274 {
275     BIT_CStream_t blockStream;
276     FSE_CState_t  stateMatchLength;
277     FSE_CState_t  stateOffsetBits;
278     FSE_CState_t  stateLitLength;
279 
280     RETURN_ERROR_IF(
281         ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
282         dstSize_tooSmall, "not enough space remaining");
283     DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
284                 (int)(blockStream.endPtr - blockStream.startPtr),
285                 (unsigned)dstCapacity);
286 
287     /* first symbols */
288     FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
289     FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
290     FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
291     BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
292     if (MEM_32bits()) BIT_flushBits(&blockStream);
293     BIT_addBits(&blockStream, sequences[nbSeq-1].matchLength, ML_bits[mlCodeTable[nbSeq-1]]);
294     if (MEM_32bits()) BIT_flushBits(&blockStream);
295     if (longOffsets) {
296         U32 const ofBits = ofCodeTable[nbSeq-1];
297         unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
298         if (extraBits) {
299             BIT_addBits(&blockStream, sequences[nbSeq-1].offset, extraBits);
300             BIT_flushBits(&blockStream);
301         }
302         BIT_addBits(&blockStream, sequences[nbSeq-1].offset >> extraBits,
303                     ofBits - extraBits);
304     } else {
305         BIT_addBits(&blockStream, sequences[nbSeq-1].offset, ofCodeTable[nbSeq-1]);
306     }
307     BIT_flushBits(&blockStream);
308 
309     {   size_t n;
310         for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
311             BYTE const llCode = llCodeTable[n];
312             BYTE const ofCode = ofCodeTable[n];
313             BYTE const mlCode = mlCodeTable[n];
314             U32  const llBits = LL_bits[llCode];
315             U32  const ofBits = ofCode;
316             U32  const mlBits = ML_bits[mlCode];
317             DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
318                         (unsigned)sequences[n].litLength,
319                         (unsigned)sequences[n].matchLength + MINMATCH,
320                         (unsigned)sequences[n].offset);
321                                                                             /* 32b*/  /* 64b*/
322                                                                             /* (7)*/  /* (7)*/
323             FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
324             FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
325             if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
326             FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
327             if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
328                 BIT_flushBits(&blockStream);                                /* (7)*/
329             BIT_addBits(&blockStream, sequences[n].litLength, llBits);
330             if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
331             BIT_addBits(&blockStream, sequences[n].matchLength, mlBits);
332             if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
333             if (longOffsets) {
334                 unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
335                 if (extraBits) {
336                     BIT_addBits(&blockStream, sequences[n].offset, extraBits);
337                     BIT_flushBits(&blockStream);                            /* (7)*/
338                 }
339                 BIT_addBits(&blockStream, sequences[n].offset >> extraBits,
340                             ofBits - extraBits);                            /* 31 */
341             } else {
342                 BIT_addBits(&blockStream, sequences[n].offset, ofBits);     /* 31 */
343             }
344             BIT_flushBits(&blockStream);                                    /* (7)*/
345             DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
346     }   }
347 
348     DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
349     FSE_flushCState(&blockStream, &stateMatchLength);
350     DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
351     FSE_flushCState(&blockStream, &stateOffsetBits);
352     DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
353     FSE_flushCState(&blockStream, &stateLitLength);
354 
355     {   size_t const streamSize = BIT_closeCStream(&blockStream);
356         RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
357         return streamSize;
358     }
359 }
360 
361 static size_t
362 ZSTD_encodeSequences_default(
363             void* dst, size_t dstCapacity,
364             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
365             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
366             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
367             seqDef const* sequences, size_t nbSeq, int longOffsets)
368 {
369     return ZSTD_encodeSequences_body(dst, dstCapacity,
370                                     CTable_MatchLength, mlCodeTable,
371                                     CTable_OffsetBits, ofCodeTable,
372                                     CTable_LitLength, llCodeTable,
373                                     sequences, nbSeq, longOffsets);
374 }
375 
376 
377 #if DYNAMIC_BMI2
378 
379 static TARGET_ATTRIBUTE("bmi2") size_t
380 ZSTD_encodeSequences_bmi2(
381             void* dst, size_t dstCapacity,
382             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
383             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
384             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
385             seqDef const* sequences, size_t nbSeq, int longOffsets)
386 {
387     return ZSTD_encodeSequences_body(dst, dstCapacity,
388                                     CTable_MatchLength, mlCodeTable,
389                                     CTable_OffsetBits, ofCodeTable,
390                                     CTable_LitLength, llCodeTable,
391                                     sequences, nbSeq, longOffsets);
392 }
393 
394 #endif
395 
396 size_t ZSTD_encodeSequences(
397             void* dst, size_t dstCapacity,
398             FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
399             FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
400             FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
401             seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
402 {
403     DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
404 #if DYNAMIC_BMI2
405     if (bmi2) {
406         return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
407                                          CTable_MatchLength, mlCodeTable,
408                                          CTable_OffsetBits, ofCodeTable,
409                                          CTable_LitLength, llCodeTable,
410                                          sequences, nbSeq, longOffsets);
411     }
412 #endif
413     (void)bmi2;
414     return ZSTD_encodeSequences_default(dst, dstCapacity,
415                                         CTable_MatchLength, mlCodeTable,
416                                         CTable_OffsetBits, ofCodeTable,
417                                         CTable_LitLength, llCodeTable,
418                                         sequences, nbSeq, longOffsets);
419 }
420