xref: /freebsd/sys/contrib/zstd/lib/compress/huf_compress.c (revision 370e009188ba90c3290b1479aa06ec98b66e140a)
1 /* ******************************************************************
2  * Huffman encoder, part of New Generation Entropy library
3  * Copyright (c) Yann Collet, Facebook, Inc.
4  *
5  *  You can contact the author at :
6  *  - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
7  *  - Public forum : https://groups.google.com/forum/#!forum/lz4c
8  *
9  * This source code is licensed under both the BSD-style license (found in the
10  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
11  * in the COPYING file in the root directory of this source tree).
12  * You may select, at your option, one of the above-listed licenses.
13 ****************************************************************** */
14 
15 /* **************************************************************
16 *  Compiler specifics
17 ****************************************************************/
18 #ifdef _MSC_VER    /* Visual Studio */
19 #  pragma warning(disable : 4127)        /* disable: C4127: conditional expression is constant */
20 #endif
21 
22 
23 /* **************************************************************
24 *  Includes
25 ****************************************************************/
26 #include "../common/zstd_deps.h"     /* ZSTD_memcpy, ZSTD_memset */
27 #include "../common/compiler.h"
28 #include "../common/bitstream.h"
29 #include "hist.h"
30 #define FSE_STATIC_LINKING_ONLY   /* FSE_optimalTableLog_internal */
31 #include "../common/fse.h"        /* header compression */
32 #define HUF_STATIC_LINKING_ONLY
33 #include "../common/huf.h"
34 #include "../common/error_private.h"
35 
36 
37 /* **************************************************************
38 *  Error Management
39 ****************************************************************/
40 #define HUF_isError ERR_isError
41 #define HUF_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)   /* use only *after* variable declarations */
42 
43 
44 /* **************************************************************
45 *  Utils
46 ****************************************************************/
47 unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
48 {
49     return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 1);
50 }
51 
52 
53 /* *******************************************************
54 *  HUF : Huffman block compression
55 *********************************************************/
56 #define HUF_WORKSPACE_MAX_ALIGNMENT 8
57 
58 static void* HUF_alignUpWorkspace(void* workspace, size_t* workspaceSizePtr, size_t align)
59 {
60     size_t const mask = align - 1;
61     size_t const rem = (size_t)workspace & mask;
62     size_t const add = (align - rem) & mask;
63     BYTE* const aligned = (BYTE*)workspace + add;
64     assert((align & (align - 1)) == 0); /* pow 2 */
65     assert(align <= HUF_WORKSPACE_MAX_ALIGNMENT);
66     if (*workspaceSizePtr >= add) {
67         assert(add < align);
68         assert(((size_t)aligned & mask) == 0);
69         *workspaceSizePtr -= add;
70         return aligned;
71     } else {
72         *workspaceSizePtr = 0;
73         return NULL;
74     }
75 }
76 
77 
78 /* HUF_compressWeights() :
79  * Same as FSE_compress(), but dedicated to huff0's weights compression.
80  * The use case needs much less stack memory.
81  * Note : all elements within weightTable are supposed to be <= HUF_TABLELOG_MAX.
82  */
83 #define MAX_FSE_TABLELOG_FOR_HUFF_HEADER 6
84 
85 typedef struct {
86     FSE_CTable CTable[FSE_CTABLE_SIZE_U32(MAX_FSE_TABLELOG_FOR_HUFF_HEADER, HUF_TABLELOG_MAX)];
87     U32 scratchBuffer[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(HUF_TABLELOG_MAX, MAX_FSE_TABLELOG_FOR_HUFF_HEADER)];
88     unsigned count[HUF_TABLELOG_MAX+1];
89     S16 norm[HUF_TABLELOG_MAX+1];
90 } HUF_CompressWeightsWksp;
91 
92 static size_t HUF_compressWeights(void* dst, size_t dstSize, const void* weightTable, size_t wtSize, void* workspace, size_t workspaceSize)
93 {
94     BYTE* const ostart = (BYTE*) dst;
95     BYTE* op = ostart;
96     BYTE* const oend = ostart + dstSize;
97 
98     unsigned maxSymbolValue = HUF_TABLELOG_MAX;
99     U32 tableLog = MAX_FSE_TABLELOG_FOR_HUFF_HEADER;
100     HUF_CompressWeightsWksp* wksp = (HUF_CompressWeightsWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
101 
102     if (workspaceSize < sizeof(HUF_CompressWeightsWksp)) return ERROR(GENERIC);
103 
104     /* init conditions */
105     if (wtSize <= 1) return 0;  /* Not compressible */
106 
107     /* Scan input and build symbol stats */
108     {   unsigned const maxCount = HIST_count_simple(wksp->count, &maxSymbolValue, weightTable, wtSize);   /* never fails */
109         if (maxCount == wtSize) return 1;   /* only a single symbol in src : rle */
110         if (maxCount == 1) return 0;        /* each symbol present maximum once => not compressible */
111     }
112 
113     tableLog = FSE_optimalTableLog(tableLog, wtSize, maxSymbolValue);
114     CHECK_F( FSE_normalizeCount(wksp->norm, tableLog, wksp->count, wtSize, maxSymbolValue, /* useLowProbCount */ 0) );
115 
116     /* Write table description header */
117     {   CHECK_V_F(hSize, FSE_writeNCount(op, (size_t)(oend-op), wksp->norm, maxSymbolValue, tableLog) );
118         op += hSize;
119     }
120 
121     /* Compress */
122     CHECK_F( FSE_buildCTable_wksp(wksp->CTable, wksp->norm, maxSymbolValue, tableLog, wksp->scratchBuffer, sizeof(wksp->scratchBuffer)) );
123     {   CHECK_V_F(cSize, FSE_compress_usingCTable(op, (size_t)(oend - op), weightTable, wtSize, wksp->CTable) );
124         if (cSize == 0) return 0;   /* not enough space for compressed data */
125         op += cSize;
126     }
127 
128     return (size_t)(op-ostart);
129 }
130 
131 static size_t HUF_getNbBits(HUF_CElt elt)
132 {
133     return elt & 0xFF;
134 }
135 
136 static size_t HUF_getNbBitsFast(HUF_CElt elt)
137 {
138     return elt;
139 }
140 
141 static size_t HUF_getValue(HUF_CElt elt)
142 {
143     return elt & ~0xFF;
144 }
145 
146 static size_t HUF_getValueFast(HUF_CElt elt)
147 {
148     return elt;
149 }
150 
151 static void HUF_setNbBits(HUF_CElt* elt, size_t nbBits)
152 {
153     assert(nbBits <= HUF_TABLELOG_ABSOLUTEMAX);
154     *elt = nbBits;
155 }
156 
157 static void HUF_setValue(HUF_CElt* elt, size_t value)
158 {
159     size_t const nbBits = HUF_getNbBits(*elt);
160     if (nbBits > 0) {
161         assert((value >> nbBits) == 0);
162         *elt |= value << (sizeof(HUF_CElt) * 8 - nbBits);
163     }
164 }
165 
166 typedef struct {
167     HUF_CompressWeightsWksp wksp;
168     BYTE bitsToWeight[HUF_TABLELOG_MAX + 1];   /* precomputed conversion table */
169     BYTE huffWeight[HUF_SYMBOLVALUE_MAX];
170 } HUF_WriteCTableWksp;
171 
172 size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize,
173                             const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog,
174                             void* workspace, size_t workspaceSize)
175 {
176     HUF_CElt const* const ct = CTable + 1;
177     BYTE* op = (BYTE*)dst;
178     U32 n;
179     HUF_WriteCTableWksp* wksp = (HUF_WriteCTableWksp*)HUF_alignUpWorkspace(workspace, &workspaceSize, ZSTD_ALIGNOF(U32));
180 
181     /* check conditions */
182     if (workspaceSize < sizeof(HUF_WriteCTableWksp)) return ERROR(GENERIC);
183     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
184 
185     /* convert to weight */
186     wksp->bitsToWeight[0] = 0;
187     for (n=1; n<huffLog+1; n++)
188         wksp->bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
189     for (n=0; n<maxSymbolValue; n++)
190         wksp->huffWeight[n] = wksp->bitsToWeight[HUF_getNbBits(ct[n])];
191 
192     /* attempt weights compression by FSE */
193     if (maxDstSize < 1) return ERROR(dstSize_tooSmall);
194     {   CHECK_V_F(hSize, HUF_compressWeights(op+1, maxDstSize-1, wksp->huffWeight, maxSymbolValue, &wksp->wksp, sizeof(wksp->wksp)) );
195         if ((hSize>1) & (hSize < maxSymbolValue/2)) {   /* FSE compressed */
196             op[0] = (BYTE)hSize;
197             return hSize+1;
198     }   }
199 
200     /* write raw values as 4-bits (max : 15) */
201     if (maxSymbolValue > (256-128)) return ERROR(GENERIC);   /* should not happen : likely means source cannot be compressed */
202     if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall);   /* not enough space within dst buffer */
203     op[0] = (BYTE)(128 /*special case*/ + (maxSymbolValue-1));
204     wksp->huffWeight[maxSymbolValue] = 0;   /* to be sure it doesn't cause msan issue in final combination */
205     for (n=0; n<maxSymbolValue; n+=2)
206         op[(n/2)+1] = (BYTE)((wksp->huffWeight[n] << 4) + wksp->huffWeight[n+1]);
207     return ((maxSymbolValue+1)/2) + 1;
208 }
209 
210 /*! HUF_writeCTable() :
211     `CTable` : Huffman tree to save, using huf representation.
212     @return : size of saved CTable */
213 size_t HUF_writeCTable (void* dst, size_t maxDstSize,
214                         const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog)
215 {
216     HUF_WriteCTableWksp wksp;
217     return HUF_writeCTable_wksp(dst, maxDstSize, CTable, maxSymbolValue, huffLog, &wksp, sizeof(wksp));
218 }
219 
220 
221 size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned* hasZeroWeights)
222 {
223     BYTE huffWeight[HUF_SYMBOLVALUE_MAX + 1];   /* init not required, even though some static analyzer may complain */
224     U32 rankVal[HUF_TABLELOG_ABSOLUTEMAX + 1];   /* large enough for values from 0 to 16 */
225     U32 tableLog = 0;
226     U32 nbSymbols = 0;
227     HUF_CElt* const ct = CTable + 1;
228 
229     /* get symbol weights */
230     CHECK_V_F(readSize, HUF_readStats(huffWeight, HUF_SYMBOLVALUE_MAX+1, rankVal, &nbSymbols, &tableLog, src, srcSize));
231     *hasZeroWeights = (rankVal[0] > 0);
232 
233     /* check result */
234     if (tableLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
235     if (nbSymbols > *maxSymbolValuePtr+1) return ERROR(maxSymbolValue_tooSmall);
236 
237     CTable[0] = tableLog;
238 
239     /* Prepare base value per rank */
240     {   U32 n, nextRankStart = 0;
241         for (n=1; n<=tableLog; n++) {
242             U32 curr = nextRankStart;
243             nextRankStart += (rankVal[n] << (n-1));
244             rankVal[n] = curr;
245     }   }
246 
247     /* fill nbBits */
248     {   U32 n; for (n=0; n<nbSymbols; n++) {
249             const U32 w = huffWeight[n];
250             HUF_setNbBits(ct + n, (BYTE)(tableLog + 1 - w) & -(w != 0));
251     }   }
252 
253     /* fill val */
254     {   U16 nbPerRank[HUF_TABLELOG_MAX+2]  = {0};  /* support w=0=>n=tableLog+1 */
255         U16 valPerRank[HUF_TABLELOG_MAX+2] = {0};
256         { U32 n; for (n=0; n<nbSymbols; n++) nbPerRank[HUF_getNbBits(ct[n])]++; }
257         /* determine stating value per rank */
258         valPerRank[tableLog+1] = 0;   /* for w==0 */
259         {   U16 min = 0;
260             U32 n; for (n=tableLog; n>0; n--) {  /* start at n=tablelog <-> w=1 */
261                 valPerRank[n] = min;     /* get starting value within each rank */
262                 min += nbPerRank[n];
263                 min >>= 1;
264         }   }
265         /* assign value within rank, symbol order */
266         { U32 n; for (n=0; n<nbSymbols; n++) HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++); }
267     }
268 
269     *maxSymbolValuePtr = nbSymbols - 1;
270     return readSize;
271 }
272 
273 U32 HUF_getNbBitsFromCTable(HUF_CElt const* CTable, U32 symbolValue)
274 {
275     const HUF_CElt* ct = CTable + 1;
276     assert(symbolValue <= HUF_SYMBOLVALUE_MAX);
277     return (U32)HUF_getNbBits(ct[symbolValue]);
278 }
279 
280 
281 typedef struct nodeElt_s {
282     U32 count;
283     U16 parent;
284     BYTE byte;
285     BYTE nbBits;
286 } nodeElt;
287 
288 /**
289  * HUF_setMaxHeight():
290  * Enforces maxNbBits on the Huffman tree described in huffNode.
291  *
292  * It sets all nodes with nbBits > maxNbBits to be maxNbBits. Then it adjusts
293  * the tree to so that it is a valid canonical Huffman tree.
294  *
295  * @pre               The sum of the ranks of each symbol == 2^largestBits,
296  *                    where largestBits == huffNode[lastNonNull].nbBits.
297  * @post              The sum of the ranks of each symbol == 2^largestBits,
298  *                    where largestBits is the return value <= maxNbBits.
299  *
300  * @param huffNode    The Huffman tree modified in place to enforce maxNbBits.
301  * @param lastNonNull The symbol with the lowest count in the Huffman tree.
302  * @param maxNbBits   The maximum allowed number of bits, which the Huffman tree
303  *                    may not respect. After this function the Huffman tree will
304  *                    respect maxNbBits.
305  * @return            The maximum number of bits of the Huffman tree after adjustment,
306  *                    necessarily no more than maxNbBits.
307  */
308 static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
309 {
310     const U32 largestBits = huffNode[lastNonNull].nbBits;
311     /* early exit : no elt > maxNbBits, so the tree is already valid. */
312     if (largestBits <= maxNbBits) return largestBits;
313 
314     /* there are several too large elements (at least >= 2) */
315     {   int totalCost = 0;
316         const U32 baseCost = 1 << (largestBits - maxNbBits);
317         int n = (int)lastNonNull;
318 
319         /* Adjust any ranks > maxNbBits to maxNbBits.
320          * Compute totalCost, which is how far the sum of the ranks is
321          * we are over 2^largestBits after adjust the offending ranks.
322          */
323         while (huffNode[n].nbBits > maxNbBits) {
324             totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
325             huffNode[n].nbBits = (BYTE)maxNbBits;
326             n--;
327         }
328         /* n stops at huffNode[n].nbBits <= maxNbBits */
329         assert(huffNode[n].nbBits <= maxNbBits);
330         /* n end at index of smallest symbol using < maxNbBits */
331         while (huffNode[n].nbBits == maxNbBits) --n;
332 
333         /* renorm totalCost from 2^largestBits to 2^maxNbBits
334          * note : totalCost is necessarily a multiple of baseCost */
335         assert((totalCost & (baseCost - 1)) == 0);
336         totalCost >>= (largestBits - maxNbBits);
337         assert(totalCost > 0);
338 
339         /* repay normalized cost */
340         {   U32 const noSymbol = 0xF0F0F0F0;
341             U32 rankLast[HUF_TABLELOG_MAX+2];
342 
343             /* Get pos of last (smallest = lowest cum. count) symbol per rank */
344             ZSTD_memset(rankLast, 0xF0, sizeof(rankLast));
345             {   U32 currentNbBits = maxNbBits;
346                 int pos;
347                 for (pos=n ; pos >= 0; pos--) {
348                     if (huffNode[pos].nbBits >= currentNbBits) continue;
349                     currentNbBits = huffNode[pos].nbBits;   /* < maxNbBits */
350                     rankLast[maxNbBits-currentNbBits] = (U32)pos;
351             }   }
352 
353             while (totalCost > 0) {
354                 /* Try to reduce the next power of 2 above totalCost because we
355                  * gain back half the rank.
356                  */
357                 U32 nBitsToDecrease = BIT_highbit32((U32)totalCost) + 1;
358                 for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
359                     U32 const highPos = rankLast[nBitsToDecrease];
360                     U32 const lowPos = rankLast[nBitsToDecrease-1];
361                     if (highPos == noSymbol) continue;
362                     /* Decrease highPos if no symbols of lowPos or if it is
363                      * not cheaper to remove 2 lowPos than highPos.
364                      */
365                     if (lowPos == noSymbol) break;
366                     {   U32 const highTotal = huffNode[highPos].count;
367                         U32 const lowTotal = 2 * huffNode[lowPos].count;
368                         if (highTotal <= lowTotal) break;
369                 }   }
370                 /* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
371                 assert(rankLast[nBitsToDecrease] != noSymbol || nBitsToDecrease == 1);
372                 /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
373                 while ((nBitsToDecrease<=HUF_TABLELOG_MAX) && (rankLast[nBitsToDecrease] == noSymbol))
374                     nBitsToDecrease++;
375                 assert(rankLast[nBitsToDecrease] != noSymbol);
376                 /* Increase the number of bits to gain back half the rank cost. */
377                 totalCost -= 1 << (nBitsToDecrease-1);
378                 huffNode[rankLast[nBitsToDecrease]].nbBits++;
379 
380                 /* Fix up the new rank.
381                  * If the new rank was empty, this symbol is now its smallest.
382                  * Otherwise, this symbol will be the largest in the new rank so no adjustment.
383                  */
384                 if (rankLast[nBitsToDecrease-1] == noSymbol)
385                     rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease];
386                 /* Fix up the old rank.
387                  * If the symbol was at position 0, meaning it was the highest weight symbol in the tree,
388                  * it must be the only symbol in its rank, so the old rank now has no symbols.
389                  * Otherwise, since the Huffman nodes are sorted by count, the previous position is now
390                  * the smallest node in the rank. If the previous position belongs to a different rank,
391                  * then the rank is now empty.
392                  */
393                 if (rankLast[nBitsToDecrease] == 0)    /* special case, reached largest symbol */
394                     rankLast[nBitsToDecrease] = noSymbol;
395                 else {
396                     rankLast[nBitsToDecrease]--;
397                     if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
398                         rankLast[nBitsToDecrease] = noSymbol;   /* this rank is now empty */
399                 }
400             }   /* while (totalCost > 0) */
401 
402             /* If we've removed too much weight, then we have to add it back.
403              * To avoid overshooting again, we only adjust the smallest rank.
404              * We take the largest nodes from the lowest rank 0 and move them
405              * to rank 1. There's guaranteed to be enough rank 0 symbols because
406              * TODO.
407              */
408             while (totalCost < 0) {  /* Sometimes, cost correction overshoot */
409                 /* special case : no rank 1 symbol (using maxNbBits-1);
410                  * let's create one from largest rank 0 (using maxNbBits).
411                  */
412                 if (rankLast[1] == noSymbol) {
413                     while (huffNode[n].nbBits == maxNbBits) n--;
414                     huffNode[n+1].nbBits--;
415                     assert(n >= 0);
416                     rankLast[1] = (U32)(n+1);
417                     totalCost++;
418                     continue;
419                 }
420                 huffNode[ rankLast[1] + 1 ].nbBits--;
421                 rankLast[1]++;
422                 totalCost ++;
423             }
424         }   /* repay normalized cost */
425     }   /* there are several too large elements (at least >= 2) */
426 
427     return maxNbBits;
428 }
429 
430 typedef struct {
431     U16 base;
432     U16 curr;
433 } rankPos;
434 
435 typedef nodeElt huffNodeTable[HUF_CTABLE_WORKSPACE_SIZE_U32];
436 
437 /* Number of buckets available for HUF_sort() */
438 #define RANK_POSITION_TABLE_SIZE 192
439 
440 typedef struct {
441   huffNodeTable huffNodeTbl;
442   rankPos rankPosition[RANK_POSITION_TABLE_SIZE];
443 } HUF_buildCTable_wksp_tables;
444 
445 /* RANK_POSITION_DISTINCT_COUNT_CUTOFF == Cutoff point in HUF_sort() buckets for which we use log2 bucketing.
446  * Strategy is to use as many buckets as possible for representing distinct
447  * counts while using the remainder to represent all "large" counts.
448  *
449  * To satisfy this requirement for 192 buckets, we can do the following:
450  * Let buckets 0-166 represent distinct counts of [0, 166]
451  * Let buckets 166 to 192 represent all remaining counts up to RANK_POSITION_MAX_COUNT_LOG using log2 bucketing.
452  */
453 #define RANK_POSITION_MAX_COUNT_LOG 32
454 #define RANK_POSITION_LOG_BUCKETS_BEGIN (RANK_POSITION_TABLE_SIZE - 1) - RANK_POSITION_MAX_COUNT_LOG - 1 /* == 158 */
455 #define RANK_POSITION_DISTINCT_COUNT_CUTOFF RANK_POSITION_LOG_BUCKETS_BEGIN + BIT_highbit32(RANK_POSITION_LOG_BUCKETS_BEGIN) /* == 166 */
456 
457 /* Return the appropriate bucket index for a given count. See definition of
458  * RANK_POSITION_DISTINCT_COUNT_CUTOFF for explanation of bucketing strategy.
459  */
460 static U32 HUF_getIndex(U32 const count) {
461     return (count < RANK_POSITION_DISTINCT_COUNT_CUTOFF)
462         ? count
463         : BIT_highbit32(count) + RANK_POSITION_LOG_BUCKETS_BEGIN;
464 }
465 
466 /* Helper swap function for HUF_quickSortPartition() */
467 static void HUF_swapNodes(nodeElt* a, nodeElt* b) {
468 	nodeElt tmp = *a;
469 	*a = *b;
470 	*b = tmp;
471 }
472 
473 /* Returns 0 if the huffNode array is not sorted by descending count */
474 MEM_STATIC int HUF_isSorted(nodeElt huffNode[], U32 const maxSymbolValue1) {
475     U32 i;
476     for (i = 1; i < maxSymbolValue1; ++i) {
477         if (huffNode[i].count > huffNode[i-1].count) {
478             return 0;
479         }
480     }
481     return 1;
482 }
483 
484 /* Insertion sort by descending order */
485 HINT_INLINE void HUF_insertionSort(nodeElt huffNode[], int const low, int const high) {
486     int i;
487     int const size = high-low+1;
488     huffNode += low;
489     for (i = 1; i < size; ++i) {
490         nodeElt const key = huffNode[i];
491         int j = i - 1;
492         while (j >= 0 && huffNode[j].count < key.count) {
493             huffNode[j + 1] = huffNode[j];
494             j--;
495         }
496         huffNode[j + 1] = key;
497     }
498 }
499 
500 /* Pivot helper function for quicksort. */
501 static int HUF_quickSortPartition(nodeElt arr[], int const low, int const high) {
502     /* Simply select rightmost element as pivot. "Better" selectors like
503      * median-of-three don't experimentally appear to have any benefit.
504      */
505     U32 const pivot = arr[high].count;
506     int i = low - 1;
507     int j = low;
508     for ( ; j < high; j++) {
509         if (arr[j].count > pivot) {
510             i++;
511             HUF_swapNodes(&arr[i], &arr[j]);
512         }
513     }
514     HUF_swapNodes(&arr[i + 1], &arr[high]);
515     return i + 1;
516 }
517 
518 /* Classic quicksort by descending with partially iterative calls
519  * to reduce worst case callstack size.
520  */
521 static void HUF_simpleQuickSort(nodeElt arr[], int low, int high) {
522     int const kInsertionSortThreshold = 8;
523     if (high - low < kInsertionSortThreshold) {
524         HUF_insertionSort(arr, low, high);
525         return;
526     }
527     while (low < high) {
528         int const idx = HUF_quickSortPartition(arr, low, high);
529         if (idx - low < high - idx) {
530             HUF_simpleQuickSort(arr, low, idx - 1);
531             low = idx + 1;
532         } else {
533             HUF_simpleQuickSort(arr, idx + 1, high);
534             high = idx - 1;
535         }
536     }
537 }
538 
539 /**
540  * HUF_sort():
541  * Sorts the symbols [0, maxSymbolValue] by count[symbol] in decreasing order.
542  * This is a typical bucket sorting strategy that uses either quicksort or insertion sort to sort each bucket.
543  *
544  * @param[out] huffNode       Sorted symbols by decreasing count. Only members `.count` and `.byte` are filled.
545  *                            Must have (maxSymbolValue + 1) entries.
546  * @param[in]  count          Histogram of the symbols.
547  * @param[in]  maxSymbolValue Maximum symbol value.
548  * @param      rankPosition   This is a scratch workspace. Must have RANK_POSITION_TABLE_SIZE entries.
549  */
550 static void HUF_sort(nodeElt huffNode[], const unsigned count[], U32 const maxSymbolValue, rankPos rankPosition[]) {
551     U32 n;
552     U32 const maxSymbolValue1 = maxSymbolValue+1;
553 
554     /* Compute base and set curr to base.
555      * For symbol s let lowerRank = HUF_getIndex(count[n]) and rank = lowerRank + 1.
556      * See HUF_getIndex to see bucketing strategy.
557      * We attribute each symbol to lowerRank's base value, because we want to know where
558      * each rank begins in the output, so for rank R we want to count ranks R+1 and above.
559      */
560     ZSTD_memset(rankPosition, 0, sizeof(*rankPosition) * RANK_POSITION_TABLE_SIZE);
561     for (n = 0; n < maxSymbolValue1; ++n) {
562         U32 lowerRank = HUF_getIndex(count[n]);
563         assert(lowerRank < RANK_POSITION_TABLE_SIZE - 1);
564         rankPosition[lowerRank].base++;
565     }
566 
567     assert(rankPosition[RANK_POSITION_TABLE_SIZE - 1].base == 0);
568     /* Set up the rankPosition table */
569     for (n = RANK_POSITION_TABLE_SIZE - 1; n > 0; --n) {
570         rankPosition[n-1].base += rankPosition[n].base;
571         rankPosition[n-1].curr = rankPosition[n-1].base;
572     }
573 
574     /* Insert each symbol into their appropriate bucket, setting up rankPosition table. */
575     for (n = 0; n < maxSymbolValue1; ++n) {
576         U32 const c = count[n];
577         U32 const r = HUF_getIndex(c) + 1;
578         U32 const pos = rankPosition[r].curr++;
579         assert(pos < maxSymbolValue1);
580         huffNode[pos].count = c;
581         huffNode[pos].byte  = (BYTE)n;
582     }
583 
584     /* Sort each bucket. */
585     for (n = RANK_POSITION_DISTINCT_COUNT_CUTOFF; n < RANK_POSITION_TABLE_SIZE - 1; ++n) {
586         U32 const bucketSize = rankPosition[n].curr-rankPosition[n].base;
587         U32 const bucketStartIdx = rankPosition[n].base;
588         if (bucketSize > 1) {
589             assert(bucketStartIdx < maxSymbolValue1);
590             HUF_simpleQuickSort(huffNode + bucketStartIdx, 0, bucketSize-1);
591         }
592     }
593 
594     assert(HUF_isSorted(huffNode, maxSymbolValue1));
595 }
596 
597 /** HUF_buildCTable_wksp() :
598  *  Same as HUF_buildCTable(), but using externally allocated scratch buffer.
599  *  `workSpace` must be aligned on 4-bytes boundaries, and be at least as large as sizeof(HUF_buildCTable_wksp_tables).
600  */
601 #define STARTNODE (HUF_SYMBOLVALUE_MAX+1)
602 
603 /* HUF_buildTree():
604  * Takes the huffNode array sorted by HUF_sort() and builds an unlimited-depth Huffman tree.
605  *
606  * @param huffNode        The array sorted by HUF_sort(). Builds the Huffman tree in this array.
607  * @param maxSymbolValue  The maximum symbol value.
608  * @return                The smallest node in the Huffman tree (by count).
609  */
610 static int HUF_buildTree(nodeElt* huffNode, U32 maxSymbolValue)
611 {
612     nodeElt* const huffNode0 = huffNode - 1;
613     int nonNullRank;
614     int lowS, lowN;
615     int nodeNb = STARTNODE;
616     int n, nodeRoot;
617     /* init for parents */
618     nonNullRank = (int)maxSymbolValue;
619     while(huffNode[nonNullRank].count == 0) nonNullRank--;
620     lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
621     huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
622     huffNode[lowS].parent = huffNode[lowS-1].parent = (U16)nodeNb;
623     nodeNb++; lowS-=2;
624     for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
625     huffNode0[0].count = (U32)(1U<<31);  /* fake entry, strong barrier */
626 
627     /* create parents */
628     while (nodeNb <= nodeRoot) {
629         int const n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
630         int const n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
631         huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
632         huffNode[n1].parent = huffNode[n2].parent = (U16)nodeNb;
633         nodeNb++;
634     }
635 
636     /* distribute weights (unlimited tree height) */
637     huffNode[nodeRoot].nbBits = 0;
638     for (n=nodeRoot-1; n>=STARTNODE; n--)
639         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
640     for (n=0; n<=nonNullRank; n++)
641         huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
642 
643     return nonNullRank;
644 }
645 
646 /**
647  * HUF_buildCTableFromTree():
648  * Build the CTable given the Huffman tree in huffNode.
649  *
650  * @param[out] CTable         The output Huffman CTable.
651  * @param      huffNode       The Huffman tree.
652  * @param      nonNullRank    The last and smallest node in the Huffman tree.
653  * @param      maxSymbolValue The maximum symbol value.
654  * @param      maxNbBits      The exact maximum number of bits used in the Huffman tree.
655  */
656 static void HUF_buildCTableFromTree(HUF_CElt* CTable, nodeElt const* huffNode, int nonNullRank, U32 maxSymbolValue, U32 maxNbBits)
657 {
658     HUF_CElt* const ct = CTable + 1;
659     /* fill result into ctable (val, nbBits) */
660     int n;
661     U16 nbPerRank[HUF_TABLELOG_MAX+1] = {0};
662     U16 valPerRank[HUF_TABLELOG_MAX+1] = {0};
663     int const alphabetSize = (int)(maxSymbolValue + 1);
664     for (n=0; n<=nonNullRank; n++)
665         nbPerRank[huffNode[n].nbBits]++;
666     /* determine starting value per rank */
667     {   U16 min = 0;
668         for (n=(int)maxNbBits; n>0; n--) {
669             valPerRank[n] = min;      /* get starting value within each rank */
670             min += nbPerRank[n];
671             min >>= 1;
672     }   }
673     for (n=0; n<alphabetSize; n++)
674         HUF_setNbBits(ct + huffNode[n].byte, huffNode[n].nbBits);   /* push nbBits per symbol, symbol order */
675     for (n=0; n<alphabetSize; n++)
676         HUF_setValue(ct + n, valPerRank[HUF_getNbBits(ct[n])]++);   /* assign value within rank, symbol order */
677     CTable[0] = maxNbBits;
678 }
679 
680 size_t HUF_buildCTable_wksp (HUF_CElt* CTable, const unsigned* count, U32 maxSymbolValue, U32 maxNbBits, void* workSpace, size_t wkspSize)
681 {
682     HUF_buildCTable_wksp_tables* const wksp_tables = (HUF_buildCTable_wksp_tables*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(U32));
683     nodeElt* const huffNode0 = wksp_tables->huffNodeTbl;
684     nodeElt* const huffNode = huffNode0+1;
685     int nonNullRank;
686 
687     /* safety checks */
688     if (wkspSize < sizeof(HUF_buildCTable_wksp_tables))
689       return ERROR(workSpace_tooSmall);
690     if (maxNbBits == 0) maxNbBits = HUF_TABLELOG_DEFAULT;
691     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX)
692       return ERROR(maxSymbolValue_tooLarge);
693     ZSTD_memset(huffNode0, 0, sizeof(huffNodeTable));
694 
695     /* sort, decreasing order */
696     HUF_sort(huffNode, count, maxSymbolValue, wksp_tables->rankPosition);
697 
698     /* build tree */
699     nonNullRank = HUF_buildTree(huffNode, maxSymbolValue);
700 
701     /* enforce maxTableLog */
702     maxNbBits = HUF_setMaxHeight(huffNode, (U32)nonNullRank, maxNbBits);
703     if (maxNbBits > HUF_TABLELOG_MAX) return ERROR(GENERIC);   /* check fit into table */
704 
705     HUF_buildCTableFromTree(CTable, huffNode, nonNullRank, maxSymbolValue, maxNbBits);
706 
707     return maxNbBits;
708 }
709 
710 size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue)
711 {
712     HUF_CElt const* ct = CTable + 1;
713     size_t nbBits = 0;
714     int s;
715     for (s = 0; s <= (int)maxSymbolValue; ++s) {
716         nbBits += HUF_getNbBits(ct[s]) * count[s];
717     }
718     return nbBits >> 3;
719 }
720 
721 int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue) {
722   HUF_CElt const* ct = CTable + 1;
723   int bad = 0;
724   int s;
725   for (s = 0; s <= (int)maxSymbolValue; ++s) {
726     bad |= (count[s] != 0) & (HUF_getNbBits(ct[s]) == 0);
727   }
728   return !bad;
729 }
730 
731 size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
732 
733 /** HUF_CStream_t:
734  * Huffman uses its own BIT_CStream_t implementation.
735  * There are three major differences from BIT_CStream_t:
736  *   1. HUF_addBits() takes a HUF_CElt (size_t) which is
737  *      the pair (nbBits, value) in the format:
738  *      format:
739  *        - Bits [0, 4)            = nbBits
740  *        - Bits [4, 64 - nbBits)  = 0
741  *        - Bits [64 - nbBits, 64) = value
742  *   2. The bitContainer is built from the upper bits and
743  *      right shifted. E.g. to add a new value of N bits
744  *      you right shift the bitContainer by N, then or in
745  *      the new value into the N upper bits.
746  *   3. The bitstream has two bit containers. You can add
747  *      bits to the second container and merge them into
748  *      the first container.
749  */
750 
751 #define HUF_BITS_IN_CONTAINER (sizeof(size_t) * 8)
752 
753 typedef struct {
754     size_t bitContainer[2];
755     size_t bitPos[2];
756 
757     BYTE* startPtr;
758     BYTE* ptr;
759     BYTE* endPtr;
760 } HUF_CStream_t;
761 
762 /**! HUF_initCStream():
763  * Initializes the bitstream.
764  * @returns 0 or an error code.
765  */
766 static size_t HUF_initCStream(HUF_CStream_t* bitC,
767                                   void* startPtr, size_t dstCapacity)
768 {
769     ZSTD_memset(bitC, 0, sizeof(*bitC));
770     bitC->startPtr = (BYTE*)startPtr;
771     bitC->ptr = bitC->startPtr;
772     bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer[0]);
773     if (dstCapacity <= sizeof(bitC->bitContainer[0])) return ERROR(dstSize_tooSmall);
774     return 0;
775 }
776 
777 /*! HUF_addBits():
778  * Adds the symbol stored in HUF_CElt elt to the bitstream.
779  *
780  * @param elt   The element we're adding. This is a (nbBits, value) pair.
781  *              See the HUF_CStream_t docs for the format.
782  * @param idx   Insert into the bitstream at this idx.
783  * @param kFast This is a template parameter. If the bitstream is guaranteed
784  *              to have at least 4 unused bits after this call it may be 1,
785  *              otherwise it must be 0. HUF_addBits() is faster when fast is set.
786  */
787 FORCE_INLINE_TEMPLATE void HUF_addBits(HUF_CStream_t* bitC, HUF_CElt elt, int idx, int kFast)
788 {
789     assert(idx <= 1);
790     assert(HUF_getNbBits(elt) <= HUF_TABLELOG_ABSOLUTEMAX);
791     /* This is efficient on x86-64 with BMI2 because shrx
792      * only reads the low 6 bits of the register. The compiler
793      * knows this and elides the mask. When fast is set,
794      * every operation can use the same value loaded from elt.
795      */
796     bitC->bitContainer[idx] >>= HUF_getNbBits(elt);
797     bitC->bitContainer[idx] |= kFast ? HUF_getValueFast(elt) : HUF_getValue(elt);
798     /* We only read the low 8 bits of bitC->bitPos[idx] so it
799      * doesn't matter that the high bits have noise from the value.
800      */
801     bitC->bitPos[idx] += HUF_getNbBitsFast(elt);
802     assert((bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
803     /* The last 4-bits of elt are dirty if fast is set,
804      * so we must not be overwriting bits that have already been
805      * inserted into the bit container.
806      */
807 #if DEBUGLEVEL >= 1
808     {
809         size_t const nbBits = HUF_getNbBits(elt);
810         size_t const dirtyBits = nbBits == 0 ? 0 : BIT_highbit32((U32)nbBits) + 1;
811         (void)dirtyBits;
812         /* Middle bits are 0. */
813         assert(((elt >> dirtyBits) << (dirtyBits + nbBits)) == 0);
814         /* We didn't overwrite any bits in the bit container. */
815         assert(!kFast || (bitC->bitPos[idx] & 0xFF) <= HUF_BITS_IN_CONTAINER);
816         (void)dirtyBits;
817     }
818 #endif
819 }
820 
821 FORCE_INLINE_TEMPLATE void HUF_zeroIndex1(HUF_CStream_t* bitC)
822 {
823     bitC->bitContainer[1] = 0;
824     bitC->bitPos[1] = 0;
825 }
826 
827 /*! HUF_mergeIndex1() :
828  * Merges the bit container @ index 1 into the bit container @ index 0
829  * and zeros the bit container @ index 1.
830  */
831 FORCE_INLINE_TEMPLATE void HUF_mergeIndex1(HUF_CStream_t* bitC)
832 {
833     assert((bitC->bitPos[1] & 0xFF) < HUF_BITS_IN_CONTAINER);
834     bitC->bitContainer[0] >>= (bitC->bitPos[1] & 0xFF);
835     bitC->bitContainer[0] |= bitC->bitContainer[1];
836     bitC->bitPos[0] += bitC->bitPos[1];
837     assert((bitC->bitPos[0] & 0xFF) <= HUF_BITS_IN_CONTAINER);
838 }
839 
840 /*! HUF_flushBits() :
841 * Flushes the bits in the bit container @ index 0.
842 *
843 * @post bitPos will be < 8.
844 * @param kFast If kFast is set then we must know a-priori that
845 *              the bit container will not overflow.
846 */
847 FORCE_INLINE_TEMPLATE void HUF_flushBits(HUF_CStream_t* bitC, int kFast)
848 {
849     /* The upper bits of bitPos are noisy, so we must mask by 0xFF. */
850     size_t const nbBits = bitC->bitPos[0] & 0xFF;
851     size_t const nbBytes = nbBits >> 3;
852     /* The top nbBits bits of bitContainer are the ones we need. */
853     size_t const bitContainer = bitC->bitContainer[0] >> (HUF_BITS_IN_CONTAINER - nbBits);
854     /* Mask bitPos to account for the bytes we consumed. */
855     bitC->bitPos[0] &= 7;
856     assert(nbBits > 0);
857     assert(nbBits <= sizeof(bitC->bitContainer[0]) * 8);
858     assert(bitC->ptr <= bitC->endPtr);
859     MEM_writeLEST(bitC->ptr, bitContainer);
860     bitC->ptr += nbBytes;
861     assert(!kFast || bitC->ptr <= bitC->endPtr);
862     if (!kFast && bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
863     /* bitContainer doesn't need to be modified because the leftover
864      * bits are already the top bitPos bits. And we don't care about
865      * noise in the lower values.
866      */
867 }
868 
869 /*! HUF_endMark()
870  * @returns The Huffman stream end mark: A 1-bit value = 1.
871  */
872 static HUF_CElt HUF_endMark(void)
873 {
874     HUF_CElt endMark;
875     HUF_setNbBits(&endMark, 1);
876     HUF_setValue(&endMark, 1);
877     return endMark;
878 }
879 
880 /*! HUF_closeCStream() :
881  *  @return Size of CStream, in bytes,
882  *          or 0 if it could not fit into dstBuffer */
883 static size_t HUF_closeCStream(HUF_CStream_t* bitC)
884 {
885     HUF_addBits(bitC, HUF_endMark(), /* idx */ 0, /* kFast */ 0);
886     HUF_flushBits(bitC, /* kFast */ 0);
887     {
888         size_t const nbBits = bitC->bitPos[0] & 0xFF;
889         if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
890         return (bitC->ptr - bitC->startPtr) + (nbBits > 0);
891     }
892 }
893 
894 FORCE_INLINE_TEMPLATE void
895 HUF_encodeSymbol(HUF_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable, int idx, int fast)
896 {
897     HUF_addBits(bitCPtr, CTable[symbol], idx, fast);
898 }
899 
900 FORCE_INLINE_TEMPLATE void
901 HUF_compress1X_usingCTable_internal_body_loop(HUF_CStream_t* bitC,
902                                    const BYTE* ip, size_t srcSize,
903                                    const HUF_CElt* ct,
904                                    int kUnroll, int kFastFlush, int kLastFast)
905 {
906     /* Join to kUnroll */
907     int n = (int)srcSize;
908     int rem = n % kUnroll;
909     if (rem > 0) {
910         for (; rem > 0; --rem) {
911             HUF_encodeSymbol(bitC, ip[--n], ct, 0, /* fast */ 0);
912         }
913         HUF_flushBits(bitC, kFastFlush);
914     }
915     assert(n % kUnroll == 0);
916 
917     /* Join to 2 * kUnroll */
918     if (n % (2 * kUnroll)) {
919         int u;
920         for (u = 1; u < kUnroll; ++u) {
921             HUF_encodeSymbol(bitC, ip[n - u], ct, 0, 1);
922         }
923         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, 0, kLastFast);
924         HUF_flushBits(bitC, kFastFlush);
925         n -= kUnroll;
926     }
927     assert(n % (2 * kUnroll) == 0);
928 
929     for (; n>0; n-= 2 * kUnroll) {
930         /* Encode kUnroll symbols into the bitstream @ index 0. */
931         int u;
932         for (u = 1; u < kUnroll; ++u) {
933             HUF_encodeSymbol(bitC, ip[n - u], ct, /* idx */ 0, /* fast */ 1);
934         }
935         HUF_encodeSymbol(bitC, ip[n - kUnroll], ct, /* idx */ 0, /* fast */ kLastFast);
936         HUF_flushBits(bitC, kFastFlush);
937         /* Encode kUnroll symbols into the bitstream @ index 1.
938          * This allows us to start filling the bit container
939          * without any data dependencies.
940          */
941         HUF_zeroIndex1(bitC);
942         for (u = 1; u < kUnroll; ++u) {
943             HUF_encodeSymbol(bitC, ip[n - kUnroll - u], ct, /* idx */ 1, /* fast */ 1);
944         }
945         HUF_encodeSymbol(bitC, ip[n - kUnroll - kUnroll], ct, /* idx */ 1, /* fast */ kLastFast);
946         /* Merge bitstream @ index 1 into the bitstream @ index 0 */
947         HUF_mergeIndex1(bitC);
948         HUF_flushBits(bitC, kFastFlush);
949     }
950     assert(n == 0);
951 
952 }
953 
954 /**
955  * Returns a tight upper bound on the output space needed by Huffman
956  * with 8 bytes buffer to handle over-writes. If the output is at least
957  * this large we don't need to do bounds checks during Huffman encoding.
958  */
959 static size_t HUF_tightCompressBound(size_t srcSize, size_t tableLog)
960 {
961     return ((srcSize * tableLog) >> 3) + 8;
962 }
963 
964 
965 FORCE_INLINE_TEMPLATE size_t
966 HUF_compress1X_usingCTable_internal_body(void* dst, size_t dstSize,
967                                    const void* src, size_t srcSize,
968                                    const HUF_CElt* CTable)
969 {
970     U32 const tableLog = (U32)CTable[0];
971     HUF_CElt const* ct = CTable + 1;
972     const BYTE* ip = (const BYTE*) src;
973     BYTE* const ostart = (BYTE*)dst;
974     BYTE* const oend = ostart + dstSize;
975     BYTE* op = ostart;
976     HUF_CStream_t bitC;
977 
978     /* init */
979     if (dstSize < 8) return 0;   /* not enough space to compress */
980     { size_t const initErr = HUF_initCStream(&bitC, op, (size_t)(oend-op));
981       if (HUF_isError(initErr)) return 0; }
982 
983     if (dstSize < HUF_tightCompressBound(srcSize, (size_t)tableLog) || tableLog > 11)
984         HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ MEM_32bits() ? 2 : 4, /* kFast */ 0, /* kLastFast */ 0);
985     else {
986         if (MEM_32bits()) {
987             switch (tableLog) {
988             case 11:
989                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 0);
990                 break;
991             case 10: ZSTD_FALLTHROUGH;
992             case 9: ZSTD_FALLTHROUGH;
993             case 8:
994                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 2, /* kFastFlush */ 1, /* kLastFast */ 1);
995                 break;
996             case 7: ZSTD_FALLTHROUGH;
997             default:
998                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 3, /* kFastFlush */ 1, /* kLastFast */ 1);
999                 break;
1000             }
1001         } else {
1002             switch (tableLog) {
1003             case 11:
1004                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 0);
1005                 break;
1006             case 10:
1007                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 5, /* kFastFlush */ 1, /* kLastFast */ 1);
1008                 break;
1009             case 9:
1010                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 6, /* kFastFlush */ 1, /* kLastFast */ 0);
1011                 break;
1012             case 8:
1013                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 7, /* kFastFlush */ 1, /* kLastFast */ 0);
1014                 break;
1015             case 7:
1016                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 8, /* kFastFlush */ 1, /* kLastFast */ 0);
1017                 break;
1018             case 6: ZSTD_FALLTHROUGH;
1019             default:
1020                 HUF_compress1X_usingCTable_internal_body_loop(&bitC, ip, srcSize, ct, /* kUnroll */ 9, /* kFastFlush */ 1, /* kLastFast */ 1);
1021                 break;
1022             }
1023         }
1024     }
1025     assert(bitC.ptr <= bitC.endPtr);
1026 
1027     return HUF_closeCStream(&bitC);
1028 }
1029 
1030 #if DYNAMIC_BMI2
1031 
1032 static BMI2_TARGET_ATTRIBUTE size_t
1033 HUF_compress1X_usingCTable_internal_bmi2(void* dst, size_t dstSize,
1034                                    const void* src, size_t srcSize,
1035                                    const HUF_CElt* CTable)
1036 {
1037     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1038 }
1039 
1040 static size_t
1041 HUF_compress1X_usingCTable_internal_default(void* dst, size_t dstSize,
1042                                       const void* src, size_t srcSize,
1043                                       const HUF_CElt* CTable)
1044 {
1045     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1046 }
1047 
1048 static size_t
1049 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1050                               const void* src, size_t srcSize,
1051                               const HUF_CElt* CTable, const int bmi2)
1052 {
1053     if (bmi2) {
1054         return HUF_compress1X_usingCTable_internal_bmi2(dst, dstSize, src, srcSize, CTable);
1055     }
1056     return HUF_compress1X_usingCTable_internal_default(dst, dstSize, src, srcSize, CTable);
1057 }
1058 
1059 #else
1060 
1061 static size_t
1062 HUF_compress1X_usingCTable_internal(void* dst, size_t dstSize,
1063                               const void* src, size_t srcSize,
1064                               const HUF_CElt* CTable, const int bmi2)
1065 {
1066     (void)bmi2;
1067     return HUF_compress1X_usingCTable_internal_body(dst, dstSize, src, srcSize, CTable);
1068 }
1069 
1070 #endif
1071 
1072 size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
1073 {
1074     return HUF_compress1X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
1075 }
1076 
1077 size_t HUF_compress1X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
1078 {
1079     return HUF_compress1X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
1080 }
1081 
1082 static size_t
1083 HUF_compress4X_usingCTable_internal(void* dst, size_t dstSize,
1084                               const void* src, size_t srcSize,
1085                               const HUF_CElt* CTable, int bmi2)
1086 {
1087     size_t const segmentSize = (srcSize+3)/4;   /* first 3 segments */
1088     const BYTE* ip = (const BYTE*) src;
1089     const BYTE* const iend = ip + srcSize;
1090     BYTE* const ostart = (BYTE*) dst;
1091     BYTE* const oend = ostart + dstSize;
1092     BYTE* op = ostart;
1093 
1094     if (dstSize < 6 + 1 + 1 + 1 + 8) return 0;   /* minimum space to compress successfully */
1095     if (srcSize < 12) return 0;   /* no saving possible : too small input */
1096     op += 6;   /* jumpTable */
1097 
1098     assert(op <= oend);
1099     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1100         if (cSize == 0 || cSize > 65535) return 0;
1101         MEM_writeLE16(ostart, (U16)cSize);
1102         op += cSize;
1103     }
1104 
1105     ip += segmentSize;
1106     assert(op <= oend);
1107     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1108         if (cSize == 0 || cSize > 65535) return 0;
1109         MEM_writeLE16(ostart+2, (U16)cSize);
1110         op += cSize;
1111     }
1112 
1113     ip += segmentSize;
1114     assert(op <= oend);
1115     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, segmentSize, CTable, bmi2) );
1116         if (cSize == 0 || cSize > 65535) return 0;
1117         MEM_writeLE16(ostart+4, (U16)cSize);
1118         op += cSize;
1119     }
1120 
1121     ip += segmentSize;
1122     assert(op <= oend);
1123     assert(ip <= iend);
1124     {   CHECK_V_F(cSize, HUF_compress1X_usingCTable_internal(op, (size_t)(oend-op), ip, (size_t)(iend-ip), CTable, bmi2) );
1125         if (cSize == 0 || cSize > 65535) return 0;
1126         op += cSize;
1127     }
1128 
1129     return (size_t)(op-ostart);
1130 }
1131 
1132 size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
1133 {
1134     return HUF_compress4X_usingCTable_bmi2(dst, dstSize, src, srcSize, CTable, /* bmi2 */ 0);
1135 }
1136 
1137 size_t HUF_compress4X_usingCTable_bmi2(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int bmi2)
1138 {
1139     return HUF_compress4X_usingCTable_internal(dst, dstSize, src, srcSize, CTable, bmi2);
1140 }
1141 
1142 typedef enum { HUF_singleStream, HUF_fourStreams } HUF_nbStreams_e;
1143 
1144 static size_t HUF_compressCTable_internal(
1145                 BYTE* const ostart, BYTE* op, BYTE* const oend,
1146                 const void* src, size_t srcSize,
1147                 HUF_nbStreams_e nbStreams, const HUF_CElt* CTable, const int bmi2)
1148 {
1149     size_t const cSize = (nbStreams==HUF_singleStream) ?
1150                          HUF_compress1X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2) :
1151                          HUF_compress4X_usingCTable_internal(op, (size_t)(oend - op), src, srcSize, CTable, bmi2);
1152     if (HUF_isError(cSize)) { return cSize; }
1153     if (cSize==0) { return 0; }   /* uncompressible */
1154     op += cSize;
1155     /* check compressibility */
1156     assert(op >= ostart);
1157     if ((size_t)(op-ostart) >= srcSize-1) { return 0; }
1158     return (size_t)(op-ostart);
1159 }
1160 
1161 typedef struct {
1162     unsigned count[HUF_SYMBOLVALUE_MAX + 1];
1163     HUF_CElt CTable[HUF_CTABLE_SIZE_ST(HUF_SYMBOLVALUE_MAX)];
1164     union {
1165         HUF_buildCTable_wksp_tables buildCTable_wksp;
1166         HUF_WriteCTableWksp writeCTable_wksp;
1167         U32 hist_wksp[HIST_WKSP_SIZE_U32];
1168     } wksps;
1169 } HUF_compress_tables_t;
1170 
1171 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE 4096
1172 #define SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO 10  /* Must be >= 2 */
1173 
1174 /* HUF_compress_internal() :
1175  * `workSpace_align4` must be aligned on 4-bytes boundaries,
1176  * and occupies the same space as a table of HUF_WORKSPACE_SIZE_U64 unsigned */
1177 static size_t
1178 HUF_compress_internal (void* dst, size_t dstSize,
1179                  const void* src, size_t srcSize,
1180                        unsigned maxSymbolValue, unsigned huffLog,
1181                        HUF_nbStreams_e nbStreams,
1182                        void* workSpace, size_t wkspSize,
1183                        HUF_CElt* oldHufTable, HUF_repeat* repeat, int preferRepeat,
1184                  const int bmi2, unsigned suspectUncompressible)
1185 {
1186     HUF_compress_tables_t* const table = (HUF_compress_tables_t*)HUF_alignUpWorkspace(workSpace, &wkspSize, ZSTD_ALIGNOF(size_t));
1187     BYTE* const ostart = (BYTE*)dst;
1188     BYTE* const oend = ostart + dstSize;
1189     BYTE* op = ostart;
1190 
1191     HUF_STATIC_ASSERT(sizeof(*table) + HUF_WORKSPACE_MAX_ALIGNMENT <= HUF_WORKSPACE_SIZE);
1192 
1193     /* checks & inits */
1194     if (wkspSize < sizeof(*table)) return ERROR(workSpace_tooSmall);
1195     if (!srcSize) return 0;  /* Uncompressed */
1196     if (!dstSize) return 0;  /* cannot fit anything within dst budget */
1197     if (srcSize > HUF_BLOCKSIZE_MAX) return ERROR(srcSize_wrong);   /* current block size limit */
1198     if (huffLog > HUF_TABLELOG_MAX) return ERROR(tableLog_tooLarge);
1199     if (maxSymbolValue > HUF_SYMBOLVALUE_MAX) return ERROR(maxSymbolValue_tooLarge);
1200     if (!maxSymbolValue) maxSymbolValue = HUF_SYMBOLVALUE_MAX;
1201     if (!huffLog) huffLog = HUF_TABLELOG_DEFAULT;
1202 
1203     /* Heuristic : If old table is valid, use it for small inputs */
1204     if (preferRepeat && repeat && *repeat == HUF_repeat_valid) {
1205         return HUF_compressCTable_internal(ostart, op, oend,
1206                                            src, srcSize,
1207                                            nbStreams, oldHufTable, bmi2);
1208     }
1209 
1210     /* If uncompressible data is suspected, do a smaller sampling first */
1211     DEBUG_STATIC_ASSERT(SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO >= 2);
1212     if (suspectUncompressible && srcSize >= (SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE * SUSPECT_INCOMPRESSIBLE_SAMPLE_RATIO)) {
1213         size_t largestTotal = 0;
1214         {   unsigned maxSymbolValueBegin = maxSymbolValue;
1215             CHECK_V_F(largestBegin, HIST_count_simple (table->count, &maxSymbolValueBegin, (const BYTE*)src, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1216             largestTotal += largestBegin;
1217         }
1218         {   unsigned maxSymbolValueEnd = maxSymbolValue;
1219             CHECK_V_F(largestEnd, HIST_count_simple (table->count, &maxSymbolValueEnd, (const BYTE*)src + srcSize - SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE, SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) );
1220             largestTotal += largestEnd;
1221         }
1222         if (largestTotal <= ((2 * SUSPECT_INCOMPRESSIBLE_SAMPLE_SIZE) >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
1223     }
1224 
1225     /* Scan input and build symbol stats */
1226     {   CHECK_V_F(largest, HIST_count_wksp (table->count, &maxSymbolValue, (const BYTE*)src, srcSize, table->wksps.hist_wksp, sizeof(table->wksps.hist_wksp)) );
1227         if (largest == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }   /* single symbol, rle */
1228         if (largest <= (srcSize >> 7)+4) return 0;   /* heuristic : probably not compressible enough */
1229     }
1230 
1231     /* Check validity of previous table */
1232     if ( repeat
1233       && *repeat == HUF_repeat_check
1234       && !HUF_validateCTable(oldHufTable, table->count, maxSymbolValue)) {
1235         *repeat = HUF_repeat_none;
1236     }
1237     /* Heuristic : use existing table for small inputs */
1238     if (preferRepeat && repeat && *repeat != HUF_repeat_none) {
1239         return HUF_compressCTable_internal(ostart, op, oend,
1240                                            src, srcSize,
1241                                            nbStreams, oldHufTable, bmi2);
1242     }
1243 
1244     /* Build Huffman Tree */
1245     huffLog = HUF_optimalTableLog(huffLog, srcSize, maxSymbolValue);
1246     {   size_t const maxBits = HUF_buildCTable_wksp(table->CTable, table->count,
1247                                             maxSymbolValue, huffLog,
1248                                             &table->wksps.buildCTable_wksp, sizeof(table->wksps.buildCTable_wksp));
1249         CHECK_F(maxBits);
1250         huffLog = (U32)maxBits;
1251     }
1252     /* Zero unused symbols in CTable, so we can check it for validity */
1253     {
1254         size_t const ctableSize = HUF_CTABLE_SIZE_ST(maxSymbolValue);
1255         size_t const unusedSize = sizeof(table->CTable) - ctableSize * sizeof(HUF_CElt);
1256         ZSTD_memset(table->CTable + ctableSize, 0, unusedSize);
1257     }
1258 
1259     /* Write table description header */
1260     {   CHECK_V_F(hSize, HUF_writeCTable_wksp(op, dstSize, table->CTable, maxSymbolValue, huffLog,
1261                                               &table->wksps.writeCTable_wksp, sizeof(table->wksps.writeCTable_wksp)) );
1262         /* Check if using previous huffman table is beneficial */
1263         if (repeat && *repeat != HUF_repeat_none) {
1264             size_t const oldSize = HUF_estimateCompressedSize(oldHufTable, table->count, maxSymbolValue);
1265             size_t const newSize = HUF_estimateCompressedSize(table->CTable, table->count, maxSymbolValue);
1266             if (oldSize <= hSize + newSize || hSize + 12 >= srcSize) {
1267                 return HUF_compressCTable_internal(ostart, op, oend,
1268                                                    src, srcSize,
1269                                                    nbStreams, oldHufTable, bmi2);
1270         }   }
1271 
1272         /* Use the new huffman table */
1273         if (hSize + 12ul >= srcSize) { return 0; }
1274         op += hSize;
1275         if (repeat) { *repeat = HUF_repeat_none; }
1276         if (oldHufTable)
1277             ZSTD_memcpy(oldHufTable, table->CTable, sizeof(table->CTable));  /* Save new table */
1278     }
1279     return HUF_compressCTable_internal(ostart, op, oend,
1280                                        src, srcSize,
1281                                        nbStreams, table->CTable, bmi2);
1282 }
1283 
1284 
1285 size_t HUF_compress1X_wksp (void* dst, size_t dstSize,
1286                       const void* src, size_t srcSize,
1287                       unsigned maxSymbolValue, unsigned huffLog,
1288                       void* workSpace, size_t wkspSize)
1289 {
1290     return HUF_compress_internal(dst, dstSize, src, srcSize,
1291                                  maxSymbolValue, huffLog, HUF_singleStream,
1292                                  workSpace, wkspSize,
1293                                  NULL, NULL, 0, 0 /*bmi2*/, 0);
1294 }
1295 
1296 size_t HUF_compress1X_repeat (void* dst, size_t dstSize,
1297                       const void* src, size_t srcSize,
1298                       unsigned maxSymbolValue, unsigned huffLog,
1299                       void* workSpace, size_t wkspSize,
1300                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat,
1301                       int bmi2, unsigned suspectUncompressible)
1302 {
1303     return HUF_compress_internal(dst, dstSize, src, srcSize,
1304                                  maxSymbolValue, huffLog, HUF_singleStream,
1305                                  workSpace, wkspSize, hufTable,
1306                                  repeat, preferRepeat, bmi2, suspectUncompressible);
1307 }
1308 
1309 /* HUF_compress4X_repeat():
1310  * compress input using 4 streams.
1311  * provide workspace to generate compression tables */
1312 size_t HUF_compress4X_wksp (void* dst, size_t dstSize,
1313                       const void* src, size_t srcSize,
1314                       unsigned maxSymbolValue, unsigned huffLog,
1315                       void* workSpace, size_t wkspSize)
1316 {
1317     return HUF_compress_internal(dst, dstSize, src, srcSize,
1318                                  maxSymbolValue, huffLog, HUF_fourStreams,
1319                                  workSpace, wkspSize,
1320                                  NULL, NULL, 0, 0 /*bmi2*/, 0);
1321 }
1322 
1323 /* HUF_compress4X_repeat():
1324  * compress input using 4 streams.
1325  * consider skipping quickly
1326  * re-use an existing huffman compression table */
1327 size_t HUF_compress4X_repeat (void* dst, size_t dstSize,
1328                       const void* src, size_t srcSize,
1329                       unsigned maxSymbolValue, unsigned huffLog,
1330                       void* workSpace, size_t wkspSize,
1331                       HUF_CElt* hufTable, HUF_repeat* repeat, int preferRepeat, int bmi2, unsigned suspectUncompressible)
1332 {
1333     return HUF_compress_internal(dst, dstSize, src, srcSize,
1334                                  maxSymbolValue, huffLog, HUF_fourStreams,
1335                                  workSpace, wkspSize,
1336                                  hufTable, repeat, preferRepeat, bmi2, suspectUncompressible);
1337 }
1338 
1339 #ifndef ZSTD_NO_UNUSED_FUNCTIONS
1340 /** HUF_buildCTable() :
1341  * @return : maxNbBits
1342  *  Note : count is used before tree is written, so they can safely overlap
1343  */
1344 size_t HUF_buildCTable (HUF_CElt* tree, const unsigned* count, unsigned maxSymbolValue, unsigned maxNbBits)
1345 {
1346     HUF_buildCTable_wksp_tables workspace;
1347     return HUF_buildCTable_wksp(tree, count, maxSymbolValue, maxNbBits, &workspace, sizeof(workspace));
1348 }
1349 
1350 size_t HUF_compress1X (void* dst, size_t dstSize,
1351                  const void* src, size_t srcSize,
1352                  unsigned maxSymbolValue, unsigned huffLog)
1353 {
1354     U64 workSpace[HUF_WORKSPACE_SIZE_U64];
1355     return HUF_compress1X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
1356 }
1357 
1358 size_t HUF_compress2 (void* dst, size_t dstSize,
1359                 const void* src, size_t srcSize,
1360                 unsigned maxSymbolValue, unsigned huffLog)
1361 {
1362     U64 workSpace[HUF_WORKSPACE_SIZE_U64];
1363     return HUF_compress4X_wksp(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, workSpace, sizeof(workSpace));
1364 }
1365 
1366 size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
1367 {
1368     return HUF_compress2(dst, maxDstSize, src, srcSize, 255, HUF_TABLELOG_DEFAULT);
1369 }
1370 #endif
1371