xref: /freebsd/sys/contrib/zstd/lib/common/xxhash.c (revision 4b50c451720d8b427757a6da1dd2bb4c52cd9e35)
1 /*
2 *  xxHash - Fast Hash algorithm
3 *  Copyright (C) 2012-2016, Yann Collet
4 *
5 *  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 *  Redistribution and use in source and binary forms, with or without
8 *  modification, are permitted provided that the following conditions are
9 *  met:
10 *
11 *  * Redistributions of source code must retain the above copyright
12 *  notice, this list of conditions and the following disclaimer.
13 *  * Redistributions in binary form must reproduce the above
14 *  copyright notice, this list of conditions and the following disclaimer
15 *  in the documentation and/or other materials provided with the
16 *  distribution.
17 *
18 *  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 *  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 *  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 *  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 *  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 *  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 *  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 *  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 *  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 *  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 *  You can contact the author at :
31 *  - xxHash homepage: http://www.xxhash.com
32 *  - xxHash source repository : https://github.com/Cyan4973/xxHash
33 */
34 
35 
36 /* *************************************
37 *  Tuning parameters
38 ***************************************/
39 /*!XXH_FORCE_MEMORY_ACCESS :
40  * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
41  * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
42  * The below switch allow to select different access method for improved performance.
43  * Method 0 (default) : use `memcpy()`. Safe and portable.
44  * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
45  *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
46  * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
47  *            It can generate buggy code on targets which do not support unaligned memory accesses.
48  *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
49  * See http://stackoverflow.com/a/32095106/646947 for details.
50  * Prefer these methods in priority order (0 > 1 > 2)
51  */
52 #ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
53 #  if defined(__GNUC__) && ( defined(__ARM_ARCH_6__) || defined(__ARM_ARCH_6J__) || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6Z__) || defined(__ARM_ARCH_6ZK__) || defined(__ARM_ARCH_6T2__) )
54 #    define XXH_FORCE_MEMORY_ACCESS 2
55 #  elif (defined(__INTEL_COMPILER) && !defined(WIN32)) || \
56   (defined(__GNUC__) && ( defined(__ARM_ARCH_7__) || defined(__ARM_ARCH_7A__) || defined(__ARM_ARCH_7R__) || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7S__) )) || \
57   defined(__ICCARM__)
58 #    define XXH_FORCE_MEMORY_ACCESS 1
59 #  endif
60 #endif
61 
62 /*!XXH_ACCEPT_NULL_INPUT_POINTER :
63  * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
64  * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
65  * By default, this option is disabled. To enable it, uncomment below define :
66  */
67 /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
68 
69 /*!XXH_FORCE_NATIVE_FORMAT :
70  * By default, xxHash library provides endian-independent Hash values, based on little-endian convention.
71  * Results are therefore identical for little-endian and big-endian CPU.
72  * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
73  * Should endian-independence be of no importance for your application, you may set the #define below to 1,
74  * to improve speed for Big-endian CPU.
75  * This option has no impact on Little_Endian CPU.
76  */
77 #ifndef XXH_FORCE_NATIVE_FORMAT   /* can be defined externally */
78 #  define XXH_FORCE_NATIVE_FORMAT 0
79 #endif
80 
81 /*!XXH_FORCE_ALIGN_CHECK :
82  * This is a minor performance trick, only useful with lots of very small keys.
83  * It means : check for aligned/unaligned input.
84  * The check costs one initial branch per hash; set to 0 when the input data
85  * is guaranteed to be aligned.
86  */
87 #ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
88 #  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
89 #    define XXH_FORCE_ALIGN_CHECK 0
90 #  else
91 #    define XXH_FORCE_ALIGN_CHECK 1
92 #  endif
93 #endif
94 
95 
96 /* *************************************
97 *  Includes & Memory related functions
98 ***************************************/
99 /* Modify the local functions below should you wish to use some other memory routines */
100 /* for malloc(), free() */
101 #include <stdlib.h>
102 #include <stddef.h>     /* size_t */
103 static void* XXH_malloc(size_t s) { return malloc(s); }
104 static void  XXH_free  (void* p)  { free(p); }
105 /* for memcpy() */
106 #include <string.h>
107 static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }
108 
109 #ifndef XXH_STATIC_LINKING_ONLY
110 #  define XXH_STATIC_LINKING_ONLY
111 #endif
112 #include "xxhash.h"
113 
114 
115 /* *************************************
116 *  Compiler Specific Options
117 ***************************************/
118 #if defined (__GNUC__) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
119 #  define INLINE_KEYWORD inline
120 #else
121 #  define INLINE_KEYWORD
122 #endif
123 
124 #if defined(__GNUC__) || defined(__ICCARM__)
125 #  define FORCE_INLINE_ATTR __attribute__((always_inline))
126 #elif defined(_MSC_VER)
127 #  define FORCE_INLINE_ATTR __forceinline
128 #else
129 #  define FORCE_INLINE_ATTR
130 #endif
131 
132 #define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR
133 
134 
135 #ifdef _MSC_VER
136 #  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
137 #endif
138 
139 
140 /* *************************************
141 *  Basic Types
142 ***************************************/
143 #ifndef MEM_MODULE
144 # define MEM_MODULE
145 # if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
146 #   include <stdint.h>
147     typedef uint8_t  BYTE;
148     typedef uint16_t U16;
149     typedef uint32_t U32;
150     typedef  int32_t S32;
151     typedef uint64_t U64;
152 #  else
153     typedef unsigned char      BYTE;
154     typedef unsigned short     U16;
155     typedef unsigned int       U32;
156     typedef   signed int       S32;
157     typedef unsigned long long U64;   /* if your compiler doesn't support unsigned long long, replace by another 64-bit type here. Note that xxhash.h will also need to be updated. */
158 #  endif
159 #endif
160 
161 
162 #if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))
163 
164 /* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
165 static U32 XXH_read32(const void* memPtr) { return *(const U32*) memPtr; }
166 static U64 XXH_read64(const void* memPtr) { return *(const U64*) memPtr; }
167 
168 #elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))
169 
170 /* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
171 /* currently only defined for gcc and icc */
172 typedef union { U32 u32; U64 u64; } __attribute__((packed)) unalign;
173 
174 static U32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }
175 static U64 XXH_read64(const void* ptr) { return ((const unalign*)ptr)->u64; }
176 
177 #else
178 
179 /* portable and safe solution. Generally efficient.
180  * see : http://stackoverflow.com/a/32095106/646947
181  */
182 
183 static U32 XXH_read32(const void* memPtr)
184 {
185     U32 val;
186     memcpy(&val, memPtr, sizeof(val));
187     return val;
188 }
189 
190 static U64 XXH_read64(const void* memPtr)
191 {
192     U64 val;
193     memcpy(&val, memPtr, sizeof(val));
194     return val;
195 }
196 
197 #endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */
198 
199 
200 /* ****************************************
201 *  Compiler-specific Functions and Macros
202 ******************************************/
203 #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
204 
205 /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
206 #if defined(_MSC_VER)
207 #  define XXH_rotl32(x,r) _rotl(x,r)
208 #  define XXH_rotl64(x,r) _rotl64(x,r)
209 #else
210 #if defined(__ICCARM__)
211 #  include <intrinsics.h>
212 #  define XXH_rotl32(x,r) __ROR(x,(32 - r))
213 #else
214 #  define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
215 #endif
216 #  define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
217 #endif
218 
219 #if defined(_MSC_VER)     /* Visual Studio */
220 #  define XXH_swap32 _byteswap_ulong
221 #  define XXH_swap64 _byteswap_uint64
222 #elif GCC_VERSION >= 403
223 #  define XXH_swap32 __builtin_bswap32
224 #  define XXH_swap64 __builtin_bswap64
225 #else
226 static U32 XXH_swap32 (U32 x)
227 {
228     return  ((x << 24) & 0xff000000 ) |
229             ((x <<  8) & 0x00ff0000 ) |
230             ((x >>  8) & 0x0000ff00 ) |
231             ((x >> 24) & 0x000000ff );
232 }
233 static U64 XXH_swap64 (U64 x)
234 {
235     return  ((x << 56) & 0xff00000000000000ULL) |
236             ((x << 40) & 0x00ff000000000000ULL) |
237             ((x << 24) & 0x0000ff0000000000ULL) |
238             ((x << 8)  & 0x000000ff00000000ULL) |
239             ((x >> 8)  & 0x00000000ff000000ULL) |
240             ((x >> 24) & 0x0000000000ff0000ULL) |
241             ((x >> 40) & 0x000000000000ff00ULL) |
242             ((x >> 56) & 0x00000000000000ffULL);
243 }
244 #endif
245 
246 
247 /* *************************************
248 *  Architecture Macros
249 ***************************************/
250 typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
251 
252 /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
253 #ifndef XXH_CPU_LITTLE_ENDIAN
254     static const int g_one = 1;
255 #   define XXH_CPU_LITTLE_ENDIAN   (*(const char*)(&g_one))
256 #endif
257 
258 
259 /* ***************************
260 *  Memory reads
261 *****************************/
262 typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
263 
264 FORCE_INLINE_TEMPLATE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
265 {
266     if (align==XXH_unaligned)
267         return endian==XXH_littleEndian ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
268     else
269         return endian==XXH_littleEndian ? *(const U32*)ptr : XXH_swap32(*(const U32*)ptr);
270 }
271 
272 FORCE_INLINE_TEMPLATE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
273 {
274     return XXH_readLE32_align(ptr, endian, XXH_unaligned);
275 }
276 
277 static U32 XXH_readBE32(const void* ptr)
278 {
279     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
280 }
281 
282 FORCE_INLINE_TEMPLATE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
283 {
284     if (align==XXH_unaligned)
285         return endian==XXH_littleEndian ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
286     else
287         return endian==XXH_littleEndian ? *(const U64*)ptr : XXH_swap64(*(const U64*)ptr);
288 }
289 
290 FORCE_INLINE_TEMPLATE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
291 {
292     return XXH_readLE64_align(ptr, endian, XXH_unaligned);
293 }
294 
295 static U64 XXH_readBE64(const void* ptr)
296 {
297     return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
298 }
299 
300 
301 /* *************************************
302 *  Macros
303 ***************************************/
304 #define XXH_STATIC_ASSERT(c)   { enum { XXH_static_assert = 1/(int)(!!(c)) }; }    /* use only *after* variable declarations */
305 
306 
307 /* *************************************
308 *  Constants
309 ***************************************/
310 static const U32 PRIME32_1 = 2654435761U;
311 static const U32 PRIME32_2 = 2246822519U;
312 static const U32 PRIME32_3 = 3266489917U;
313 static const U32 PRIME32_4 =  668265263U;
314 static const U32 PRIME32_5 =  374761393U;
315 
316 static const U64 PRIME64_1 = 11400714785074694791ULL;
317 static const U64 PRIME64_2 = 14029467366897019727ULL;
318 static const U64 PRIME64_3 =  1609587929392839161ULL;
319 static const U64 PRIME64_4 =  9650029242287828579ULL;
320 static const U64 PRIME64_5 =  2870177450012600261ULL;
321 
322 XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }
323 
324 
325 /* **************************
326 *  Utils
327 ****************************/
328 XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* restrict dstState, const XXH32_state_t* restrict srcState)
329 {
330     memcpy(dstState, srcState, sizeof(*dstState));
331 }
332 
333 XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* restrict dstState, const XXH64_state_t* restrict srcState)
334 {
335     memcpy(dstState, srcState, sizeof(*dstState));
336 }
337 
338 
339 /* ***************************
340 *  Simple Hash Functions
341 *****************************/
342 
343 static U32 XXH32_round(U32 seed, U32 input)
344 {
345     seed += input * PRIME32_2;
346     seed  = XXH_rotl32(seed, 13);
347     seed *= PRIME32_1;
348     return seed;
349 }
350 
351 FORCE_INLINE_TEMPLATE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
352 {
353     const BYTE* p = (const BYTE*)input;
354     const BYTE* bEnd = p + len;
355     U32 h32;
356 #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
357 
358 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
359     if (p==NULL) {
360         len=0;
361         bEnd=p=(const BYTE*)(size_t)16;
362     }
363 #endif
364 
365     if (len>=16) {
366         const BYTE* const limit = bEnd - 16;
367         U32 v1 = seed + PRIME32_1 + PRIME32_2;
368         U32 v2 = seed + PRIME32_2;
369         U32 v3 = seed + 0;
370         U32 v4 = seed - PRIME32_1;
371 
372         do {
373             v1 = XXH32_round(v1, XXH_get32bits(p)); p+=4;
374             v2 = XXH32_round(v2, XXH_get32bits(p)); p+=4;
375             v3 = XXH32_round(v3, XXH_get32bits(p)); p+=4;
376             v4 = XXH32_round(v4, XXH_get32bits(p)); p+=4;
377         } while (p<=limit);
378 
379         h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
380     } else {
381         h32  = seed + PRIME32_5;
382     }
383 
384     h32 += (U32) len;
385 
386     while (p+4<=bEnd) {
387         h32 += XXH_get32bits(p) * PRIME32_3;
388         h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;
389         p+=4;
390     }
391 
392     while (p<bEnd) {
393         h32 += (*p) * PRIME32_5;
394         h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
395         p++;
396     }
397 
398     h32 ^= h32 >> 15;
399     h32 *= PRIME32_2;
400     h32 ^= h32 >> 13;
401     h32 *= PRIME32_3;
402     h32 ^= h32 >> 16;
403 
404     return h32;
405 }
406 
407 
408 XXH_PUBLIC_API unsigned int XXH32 (const void* input, size_t len, unsigned int seed)
409 {
410 #if 0
411     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
412     XXH32_CREATESTATE_STATIC(state);
413     XXH32_reset(state, seed);
414     XXH32_update(state, input, len);
415     return XXH32_digest(state);
416 #else
417     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
418 
419     if (XXH_FORCE_ALIGN_CHECK) {
420         if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
421             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
422                 return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
423             else
424                 return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
425     }   }
426 
427     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
428         return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
429     else
430         return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
431 #endif
432 }
433 
434 
435 static U64 XXH64_round(U64 acc, U64 input)
436 {
437     acc += input * PRIME64_2;
438     acc  = XXH_rotl64(acc, 31);
439     acc *= PRIME64_1;
440     return acc;
441 }
442 
443 static U64 XXH64_mergeRound(U64 acc, U64 val)
444 {
445     val  = XXH64_round(0, val);
446     acc ^= val;
447     acc  = acc * PRIME64_1 + PRIME64_4;
448     return acc;
449 }
450 
451 FORCE_INLINE_TEMPLATE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
452 {
453     const BYTE* p = (const BYTE*)input;
454     const BYTE* const bEnd = p + len;
455     U64 h64;
456 #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
457 
458 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
459     if (p==NULL) {
460         len=0;
461         bEnd=p=(const BYTE*)(size_t)32;
462     }
463 #endif
464 
465     if (len>=32) {
466         const BYTE* const limit = bEnd - 32;
467         U64 v1 = seed + PRIME64_1 + PRIME64_2;
468         U64 v2 = seed + PRIME64_2;
469         U64 v3 = seed + 0;
470         U64 v4 = seed - PRIME64_1;
471 
472         do {
473             v1 = XXH64_round(v1, XXH_get64bits(p)); p+=8;
474             v2 = XXH64_round(v2, XXH_get64bits(p)); p+=8;
475             v3 = XXH64_round(v3, XXH_get64bits(p)); p+=8;
476             v4 = XXH64_round(v4, XXH_get64bits(p)); p+=8;
477         } while (p<=limit);
478 
479         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
480         h64 = XXH64_mergeRound(h64, v1);
481         h64 = XXH64_mergeRound(h64, v2);
482         h64 = XXH64_mergeRound(h64, v3);
483         h64 = XXH64_mergeRound(h64, v4);
484 
485     } else {
486         h64  = seed + PRIME64_5;
487     }
488 
489     h64 += (U64) len;
490 
491     while (p+8<=bEnd) {
492         U64 const k1 = XXH64_round(0, XXH_get64bits(p));
493         h64 ^= k1;
494         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
495         p+=8;
496     }
497 
498     if (p+4<=bEnd) {
499         h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
500         h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
501         p+=4;
502     }
503 
504     while (p<bEnd) {
505         h64 ^= (*p) * PRIME64_5;
506         h64 = XXH_rotl64(h64, 11) * PRIME64_1;
507         p++;
508     }
509 
510     h64 ^= h64 >> 33;
511     h64 *= PRIME64_2;
512     h64 ^= h64 >> 29;
513     h64 *= PRIME64_3;
514     h64 ^= h64 >> 32;
515 
516     return h64;
517 }
518 
519 
520 XXH_PUBLIC_API unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
521 {
522 #if 0
523     /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
524     XXH64_CREATESTATE_STATIC(state);
525     XXH64_reset(state, seed);
526     XXH64_update(state, input, len);
527     return XXH64_digest(state);
528 #else
529     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
530 
531     if (XXH_FORCE_ALIGN_CHECK) {
532         if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
533             if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
534                 return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
535             else
536                 return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
537     }   }
538 
539     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
540         return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
541     else
542         return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
543 #endif
544 }
545 
546 
547 /* **************************************************
548 *  Advanced Hash Functions
549 ****************************************************/
550 
551 XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
552 {
553     return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
554 }
555 XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
556 {
557     XXH_free(statePtr);
558     return XXH_OK;
559 }
560 
561 XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
562 {
563     return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
564 }
565 XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
566 {
567     XXH_free(statePtr);
568     return XXH_OK;
569 }
570 
571 
572 /*** Hash feed ***/
573 
574 XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, unsigned int seed)
575 {
576     XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
577     memset(&state, 0, sizeof(state)-4);   /* do not write into reserved, for future removal */
578     state.v1 = seed + PRIME32_1 + PRIME32_2;
579     state.v2 = seed + PRIME32_2;
580     state.v3 = seed + 0;
581     state.v4 = seed - PRIME32_1;
582     memcpy(statePtr, &state, sizeof(state));
583     return XXH_OK;
584 }
585 
586 
587 XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, unsigned long long seed)
588 {
589     XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
590     memset(&state, 0, sizeof(state)-8);   /* do not write into reserved, for future removal */
591     state.v1 = seed + PRIME64_1 + PRIME64_2;
592     state.v2 = seed + PRIME64_2;
593     state.v3 = seed + 0;
594     state.v4 = seed - PRIME64_1;
595     memcpy(statePtr, &state, sizeof(state));
596     return XXH_OK;
597 }
598 
599 
600 FORCE_INLINE_TEMPLATE XXH_errorcode XXH32_update_endian (XXH32_state_t* state, const void* input, size_t len, XXH_endianess endian)
601 {
602     const BYTE* p = (const BYTE*)input;
603     const BYTE* const bEnd = p + len;
604 
605 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
606     if (input==NULL) return XXH_ERROR;
607 #endif
608 
609     state->total_len_32 += (unsigned)len;
610     state->large_len |= (len>=16) | (state->total_len_32>=16);
611 
612     if (state->memsize + len < 16)  {   /* fill in tmp buffer */
613         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
614         state->memsize += (unsigned)len;
615         return XXH_OK;
616     }
617 
618     if (state->memsize) {   /* some data left from previous update */
619         XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
620         {   const U32* p32 = state->mem32;
621             state->v1 = XXH32_round(state->v1, XXH_readLE32(p32, endian)); p32++;
622             state->v2 = XXH32_round(state->v2, XXH_readLE32(p32, endian)); p32++;
623             state->v3 = XXH32_round(state->v3, XXH_readLE32(p32, endian)); p32++;
624             state->v4 = XXH32_round(state->v4, XXH_readLE32(p32, endian)); p32++;
625         }
626         p += 16-state->memsize;
627         state->memsize = 0;
628     }
629 
630     if (p <= bEnd-16) {
631         const BYTE* const limit = bEnd - 16;
632         U32 v1 = state->v1;
633         U32 v2 = state->v2;
634         U32 v3 = state->v3;
635         U32 v4 = state->v4;
636 
637         do {
638             v1 = XXH32_round(v1, XXH_readLE32(p, endian)); p+=4;
639             v2 = XXH32_round(v2, XXH_readLE32(p, endian)); p+=4;
640             v3 = XXH32_round(v3, XXH_readLE32(p, endian)); p+=4;
641             v4 = XXH32_round(v4, XXH_readLE32(p, endian)); p+=4;
642         } while (p<=limit);
643 
644         state->v1 = v1;
645         state->v2 = v2;
646         state->v3 = v3;
647         state->v4 = v4;
648     }
649 
650     if (p < bEnd) {
651         XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
652         state->memsize = (unsigned)(bEnd-p);
653     }
654 
655     return XXH_OK;
656 }
657 
658 XXH_PUBLIC_API XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
659 {
660     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
661 
662     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
663         return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
664     else
665         return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
666 }
667 
668 
669 
670 FORCE_INLINE_TEMPLATE U32 XXH32_digest_endian (const XXH32_state_t* state, XXH_endianess endian)
671 {
672     const BYTE * p = (const BYTE*)state->mem32;
673     const BYTE* const bEnd = (const BYTE*)(state->mem32) + state->memsize;
674     U32 h32;
675 
676     if (state->large_len) {
677         h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
678     } else {
679         h32 = state->v3 /* == seed */ + PRIME32_5;
680     }
681 
682     h32 += state->total_len_32;
683 
684     while (p+4<=bEnd) {
685         h32 += XXH_readLE32(p, endian) * PRIME32_3;
686         h32  = XXH_rotl32(h32, 17) * PRIME32_4;
687         p+=4;
688     }
689 
690     while (p<bEnd) {
691         h32 += (*p) * PRIME32_5;
692         h32  = XXH_rotl32(h32, 11) * PRIME32_1;
693         p++;
694     }
695 
696     h32 ^= h32 >> 15;
697     h32 *= PRIME32_2;
698     h32 ^= h32 >> 13;
699     h32 *= PRIME32_3;
700     h32 ^= h32 >> 16;
701 
702     return h32;
703 }
704 
705 
706 XXH_PUBLIC_API unsigned int XXH32_digest (const XXH32_state_t* state_in)
707 {
708     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
709 
710     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
711         return XXH32_digest_endian(state_in, XXH_littleEndian);
712     else
713         return XXH32_digest_endian(state_in, XXH_bigEndian);
714 }
715 
716 
717 
718 /* **** XXH64 **** */
719 
720 FORCE_INLINE_TEMPLATE XXH_errorcode XXH64_update_endian (XXH64_state_t* state, const void* input, size_t len, XXH_endianess endian)
721 {
722     const BYTE* p = (const BYTE*)input;
723     const BYTE* const bEnd = p + len;
724 
725 #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
726     if (input==NULL) return XXH_ERROR;
727 #endif
728 
729     state->total_len += len;
730 
731     if (state->memsize + len < 32) {  /* fill in tmp buffer */
732         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
733         state->memsize += (U32)len;
734         return XXH_OK;
735     }
736 
737     if (state->memsize) {   /* tmp buffer is full */
738         XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
739         state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0, endian));
740         state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1, endian));
741         state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2, endian));
742         state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3, endian));
743         p += 32-state->memsize;
744         state->memsize = 0;
745     }
746 
747     if (p+32 <= bEnd) {
748         const BYTE* const limit = bEnd - 32;
749         U64 v1 = state->v1;
750         U64 v2 = state->v2;
751         U64 v3 = state->v3;
752         U64 v4 = state->v4;
753 
754         do {
755             v1 = XXH64_round(v1, XXH_readLE64(p, endian)); p+=8;
756             v2 = XXH64_round(v2, XXH_readLE64(p, endian)); p+=8;
757             v3 = XXH64_round(v3, XXH_readLE64(p, endian)); p+=8;
758             v4 = XXH64_round(v4, XXH_readLE64(p, endian)); p+=8;
759         } while (p<=limit);
760 
761         state->v1 = v1;
762         state->v2 = v2;
763         state->v3 = v3;
764         state->v4 = v4;
765     }
766 
767     if (p < bEnd) {
768         XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
769         state->memsize = (unsigned)(bEnd-p);
770     }
771 
772     return XXH_OK;
773 }
774 
775 XXH_PUBLIC_API XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
776 {
777     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
778 
779     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
780         return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
781     else
782         return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
783 }
784 
785 
786 
787 FORCE_INLINE_TEMPLATE U64 XXH64_digest_endian (const XXH64_state_t* state, XXH_endianess endian)
788 {
789     const BYTE * p = (const BYTE*)state->mem64;
790     const BYTE* const bEnd = (const BYTE*)state->mem64 + state->memsize;
791     U64 h64;
792 
793     if (state->total_len >= 32) {
794         U64 const v1 = state->v1;
795         U64 const v2 = state->v2;
796         U64 const v3 = state->v3;
797         U64 const v4 = state->v4;
798 
799         h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
800         h64 = XXH64_mergeRound(h64, v1);
801         h64 = XXH64_mergeRound(h64, v2);
802         h64 = XXH64_mergeRound(h64, v3);
803         h64 = XXH64_mergeRound(h64, v4);
804     } else {
805         h64  = state->v3 + PRIME64_5;
806     }
807 
808     h64 += (U64) state->total_len;
809 
810     while (p+8<=bEnd) {
811         U64 const k1 = XXH64_round(0, XXH_readLE64(p, endian));
812         h64 ^= k1;
813         h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
814         p+=8;
815     }
816 
817     if (p+4<=bEnd) {
818         h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
819         h64  = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
820         p+=4;
821     }
822 
823     while (p<bEnd) {
824         h64 ^= (*p) * PRIME64_5;
825         h64  = XXH_rotl64(h64, 11) * PRIME64_1;
826         p++;
827     }
828 
829     h64 ^= h64 >> 33;
830     h64 *= PRIME64_2;
831     h64 ^= h64 >> 29;
832     h64 *= PRIME64_3;
833     h64 ^= h64 >> 32;
834 
835     return h64;
836 }
837 
838 
839 XXH_PUBLIC_API unsigned long long XXH64_digest (const XXH64_state_t* state_in)
840 {
841     XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
842 
843     if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
844         return XXH64_digest_endian(state_in, XXH_littleEndian);
845     else
846         return XXH64_digest_endian(state_in, XXH_bigEndian);
847 }
848 
849 
850 /* **************************
851 *  Canonical representation
852 ****************************/
853 
854 /*! Default XXH result types are basic unsigned 32 and 64 bits.
855 *   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
856 *   These functions allow transformation of hash result into and from its canonical format.
857 *   This way, hash values can be written into a file or buffer, and remain comparable across different systems and programs.
858 */
859 
860 XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
861 {
862     XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
863     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
864     memcpy(dst, &hash, sizeof(*dst));
865 }
866 
867 XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
868 {
869     XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
870     if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
871     memcpy(dst, &hash, sizeof(*dst));
872 }
873 
874 XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
875 {
876     return XXH_readBE32(src);
877 }
878 
879 XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
880 {
881     return XXH_readBE64(src);
882 }
883