1 /* 2 * Copyright (c) Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Dependencies ======= */ 13 #include "zstd_deps.h" /* size_t */ 14 #include "debug.h" /* assert */ 15 #include "zstd_internal.h" /* ZSTD_customMalloc, ZSTD_customFree */ 16 #include "pool.h" 17 18 /* ====== Compiler specifics ====== */ 19 #if defined(_MSC_VER) 20 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 21 #endif 22 23 24 #ifdef ZSTD_MULTITHREAD 25 26 #include "threading.h" /* pthread adaptation */ 27 28 /* A job is a function and an opaque argument */ 29 typedef struct POOL_job_s { 30 POOL_function function; 31 void *opaque; 32 } POOL_job; 33 34 struct POOL_ctx_s { 35 ZSTD_customMem customMem; 36 /* Keep track of the threads */ 37 ZSTD_pthread_t* threads; 38 size_t threadCapacity; 39 size_t threadLimit; 40 41 /* The queue is a circular buffer */ 42 POOL_job *queue; 43 size_t queueHead; 44 size_t queueTail; 45 size_t queueSize; 46 47 /* The number of threads working on jobs */ 48 size_t numThreadsBusy; 49 /* Indicates if the queue is empty */ 50 int queueEmpty; 51 52 /* The mutex protects the queue */ 53 ZSTD_pthread_mutex_t queueMutex; 54 /* Condition variable for pushers to wait on when the queue is full */ 55 ZSTD_pthread_cond_t queuePushCond; 56 /* Condition variables for poppers to wait on when the queue is empty */ 57 ZSTD_pthread_cond_t queuePopCond; 58 /* Indicates if the queue is shutting down */ 59 int shutdown; 60 }; 61 62 /* POOL_thread() : 63 * Work thread for the thread pool. 64 * Waits for jobs and executes them. 65 * @returns : NULL on failure else non-null. 66 */ 67 static void* POOL_thread(void* opaque) { 68 POOL_ctx* const ctx = (POOL_ctx*)opaque; 69 if (!ctx) { return NULL; } 70 for (;;) { 71 /* Lock the mutex and wait for a non-empty queue or until shutdown */ 72 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 73 74 while ( ctx->queueEmpty 75 || (ctx->numThreadsBusy >= ctx->threadLimit) ) { 76 if (ctx->shutdown) { 77 /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), 78 * a few threads will be shutdown while !queueEmpty, 79 * but enough threads will remain active to finish the queue */ 80 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 81 return opaque; 82 } 83 ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); 84 } 85 /* Pop a job off the queue */ 86 { POOL_job const job = ctx->queue[ctx->queueHead]; 87 ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; 88 ctx->numThreadsBusy++; 89 ctx->queueEmpty = (ctx->queueHead == ctx->queueTail); 90 /* Unlock the mutex, signal a pusher, and run the job */ 91 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 92 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 93 94 job.function(job.opaque); 95 96 /* If the intended queue size was 0, signal after finishing job */ 97 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 98 ctx->numThreadsBusy--; 99 if (ctx->queueSize == 1) { 100 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 101 } 102 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 103 } 104 } /* for (;;) */ 105 assert(0); /* Unreachable */ 106 } 107 108 /* ZSTD_createThreadPool() : public access point */ 109 POOL_ctx* ZSTD_createThreadPool(size_t numThreads) { 110 return POOL_create (numThreads, 0); 111 } 112 113 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 114 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 115 } 116 117 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, 118 ZSTD_customMem customMem) 119 { 120 POOL_ctx* ctx; 121 /* Check parameters */ 122 if (!numThreads) { return NULL; } 123 /* Allocate the context and zero initialize */ 124 ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem); 125 if (!ctx) { return NULL; } 126 /* Initialize the job queue. 127 * It needs one extra space since one space is wasted to differentiate 128 * empty and full queues. 129 */ 130 ctx->queueSize = queueSize + 1; 131 ctx->queue = (POOL_job*)ZSTD_customMalloc(ctx->queueSize * sizeof(POOL_job), customMem); 132 ctx->queueHead = 0; 133 ctx->queueTail = 0; 134 ctx->numThreadsBusy = 0; 135 ctx->queueEmpty = 1; 136 { 137 int error = 0; 138 error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); 139 error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); 140 error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); 141 if (error) { POOL_free(ctx); return NULL; } 142 } 143 ctx->shutdown = 0; 144 /* Allocate space for the thread handles */ 145 ctx->threads = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), customMem); 146 ctx->threadCapacity = 0; 147 ctx->customMem = customMem; 148 /* Check for errors */ 149 if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } 150 /* Initialize the threads */ 151 { size_t i; 152 for (i = 0; i < numThreads; ++i) { 153 if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { 154 ctx->threadCapacity = i; 155 POOL_free(ctx); 156 return NULL; 157 } } 158 ctx->threadCapacity = numThreads; 159 ctx->threadLimit = numThreads; 160 } 161 return ctx; 162 } 163 164 /*! POOL_join() : 165 Shutdown the queue, wake any sleeping threads, and join all of the threads. 166 */ 167 static void POOL_join(POOL_ctx* ctx) { 168 /* Shut down the queue */ 169 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 170 ctx->shutdown = 1; 171 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 172 /* Wake up sleeping threads */ 173 ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); 174 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 175 /* Join all of the threads */ 176 { size_t i; 177 for (i = 0; i < ctx->threadCapacity; ++i) { 178 ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */ 179 } } 180 } 181 182 void POOL_free(POOL_ctx *ctx) { 183 if (!ctx) { return; } 184 POOL_join(ctx); 185 ZSTD_pthread_mutex_destroy(&ctx->queueMutex); 186 ZSTD_pthread_cond_destroy(&ctx->queuePushCond); 187 ZSTD_pthread_cond_destroy(&ctx->queuePopCond); 188 ZSTD_customFree(ctx->queue, ctx->customMem); 189 ZSTD_customFree(ctx->threads, ctx->customMem); 190 ZSTD_customFree(ctx, ctx->customMem); 191 } 192 193 void ZSTD_freeThreadPool (ZSTD_threadPool* pool) { 194 POOL_free (pool); 195 } 196 197 size_t POOL_sizeof(const POOL_ctx* ctx) { 198 if (ctx==NULL) return 0; /* supports sizeof NULL */ 199 return sizeof(*ctx) 200 + ctx->queueSize * sizeof(POOL_job) 201 + ctx->threadCapacity * sizeof(ZSTD_pthread_t); 202 } 203 204 205 /* @return : 0 on success, 1 on error */ 206 static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) 207 { 208 if (numThreads <= ctx->threadCapacity) { 209 if (!numThreads) return 1; 210 ctx->threadLimit = numThreads; 211 return 0; 212 } 213 /* numThreads > threadCapacity */ 214 { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customMalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); 215 if (!threadPool) return 1; 216 /* replace existing thread pool */ 217 ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool)); 218 ZSTD_customFree(ctx->threads, ctx->customMem); 219 ctx->threads = threadPool; 220 /* Initialize additional threads */ 221 { size_t threadId; 222 for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { 223 if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { 224 ctx->threadCapacity = threadId; 225 return 1; 226 } } 227 } } 228 /* successfully expanded */ 229 ctx->threadCapacity = numThreads; 230 ctx->threadLimit = numThreads; 231 return 0; 232 } 233 234 /* @return : 0 on success, 1 on error */ 235 int POOL_resize(POOL_ctx* ctx, size_t numThreads) 236 { 237 int result; 238 if (ctx==NULL) return 1; 239 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 240 result = POOL_resize_internal(ctx, numThreads); 241 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 242 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 243 return result; 244 } 245 246 /** 247 * Returns 1 if the queue is full and 0 otherwise. 248 * 249 * When queueSize is 1 (pool was created with an intended queueSize of 0), 250 * then a queue is empty if there is a thread free _and_ no job is waiting. 251 */ 252 static int isQueueFull(POOL_ctx const* ctx) { 253 if (ctx->queueSize > 1) { 254 return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); 255 } else { 256 return (ctx->numThreadsBusy == ctx->threadLimit) || 257 !ctx->queueEmpty; 258 } 259 } 260 261 262 static void 263 POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) 264 { 265 POOL_job const job = {function, opaque}; 266 assert(ctx != NULL); 267 if (ctx->shutdown) return; 268 269 ctx->queueEmpty = 0; 270 ctx->queue[ctx->queueTail] = job; 271 ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; 272 ZSTD_pthread_cond_signal(&ctx->queuePopCond); 273 } 274 275 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) 276 { 277 assert(ctx != NULL); 278 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 279 /* Wait until there is space in the queue for the new job */ 280 while (isQueueFull(ctx) && (!ctx->shutdown)) { 281 ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); 282 } 283 POOL_add_internal(ctx, function, opaque); 284 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 285 } 286 287 288 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) 289 { 290 assert(ctx != NULL); 291 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 292 if (isQueueFull(ctx)) { 293 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 294 return 0; 295 } 296 POOL_add_internal(ctx, function, opaque); 297 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 298 return 1; 299 } 300 301 302 #else /* ZSTD_MULTITHREAD not defined */ 303 304 /* ========================== */ 305 /* No multi-threading support */ 306 /* ========================== */ 307 308 309 /* We don't need any data, but if it is empty, malloc() might return NULL. */ 310 struct POOL_ctx_s { 311 int dummy; 312 }; 313 static POOL_ctx g_poolCtx; 314 315 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 316 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 317 } 318 319 POOL_ctx* 320 POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) 321 { 322 (void)numThreads; 323 (void)queueSize; 324 (void)customMem; 325 return &g_poolCtx; 326 } 327 328 void POOL_free(POOL_ctx* ctx) { 329 assert(!ctx || ctx == &g_poolCtx); 330 (void)ctx; 331 } 332 333 int POOL_resize(POOL_ctx* ctx, size_t numThreads) { 334 (void)ctx; (void)numThreads; 335 return 0; 336 } 337 338 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { 339 (void)ctx; 340 function(opaque); 341 } 342 343 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { 344 (void)ctx; 345 function(opaque); 346 return 1; 347 } 348 349 size_t POOL_sizeof(const POOL_ctx* ctx) { 350 if (ctx==NULL) return 0; /* supports sizeof NULL */ 351 assert(ctx == &g_poolCtx); 352 return sizeof(*ctx); 353 } 354 355 #endif /* ZSTD_MULTITHREAD */ 356