1 /* 2 * Copyright (c) 2016-present, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Dependencies ======= */ 13 #include <stddef.h> /* size_t */ 14 #include "debug.h" /* assert */ 15 #include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */ 16 #include "pool.h" 17 18 /* ====== Compiler specifics ====== */ 19 #if defined(_MSC_VER) 20 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 21 #endif 22 23 24 #ifdef ZSTD_MULTITHREAD 25 26 #include "threading.h" /* pthread adaptation */ 27 28 /* A job is a function and an opaque argument */ 29 typedef struct POOL_job_s { 30 POOL_function function; 31 void *opaque; 32 } POOL_job; 33 34 struct POOL_ctx_s { 35 ZSTD_customMem customMem; 36 /* Keep track of the threads */ 37 ZSTD_pthread_t* threads; 38 size_t threadCapacity; 39 size_t threadLimit; 40 41 /* The queue is a circular buffer */ 42 POOL_job *queue; 43 size_t queueHead; 44 size_t queueTail; 45 size_t queueSize; 46 47 /* The number of threads working on jobs */ 48 size_t numThreadsBusy; 49 /* Indicates if the queue is empty */ 50 int queueEmpty; 51 52 /* The mutex protects the queue */ 53 ZSTD_pthread_mutex_t queueMutex; 54 /* Condition variable for pushers to wait on when the queue is full */ 55 ZSTD_pthread_cond_t queuePushCond; 56 /* Condition variables for poppers to wait on when the queue is empty */ 57 ZSTD_pthread_cond_t queuePopCond; 58 /* Indicates if the queue is shutting down */ 59 int shutdown; 60 }; 61 62 /* POOL_thread() : 63 * Work thread for the thread pool. 64 * Waits for jobs and executes them. 65 * @returns : NULL on failure else non-null. 66 */ 67 static void* POOL_thread(void* opaque) { 68 POOL_ctx* const ctx = (POOL_ctx*)opaque; 69 if (!ctx) { return NULL; } 70 for (;;) { 71 /* Lock the mutex and wait for a non-empty queue or until shutdown */ 72 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 73 74 while ( ctx->queueEmpty 75 || (ctx->numThreadsBusy >= ctx->threadLimit) ) { 76 if (ctx->shutdown) { 77 /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), 78 * a few threads will be shutdown while !queueEmpty, 79 * but enough threads will remain active to finish the queue */ 80 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 81 return opaque; 82 } 83 ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); 84 } 85 /* Pop a job off the queue */ 86 { POOL_job const job = ctx->queue[ctx->queueHead]; 87 ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; 88 ctx->numThreadsBusy++; 89 ctx->queueEmpty = ctx->queueHead == ctx->queueTail; 90 /* Unlock the mutex, signal a pusher, and run the job */ 91 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 92 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 93 94 job.function(job.opaque); 95 96 /* If the intended queue size was 0, signal after finishing job */ 97 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 98 ctx->numThreadsBusy--; 99 if (ctx->queueSize == 1) { 100 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 101 } 102 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 103 } 104 } /* for (;;) */ 105 assert(0); /* Unreachable */ 106 } 107 108 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 109 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 110 } 111 112 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, 113 ZSTD_customMem customMem) { 114 POOL_ctx* ctx; 115 /* Check parameters */ 116 if (!numThreads) { return NULL; } 117 /* Allocate the context and zero initialize */ 118 ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem); 119 if (!ctx) { return NULL; } 120 /* Initialize the job queue. 121 * It needs one extra space since one space is wasted to differentiate 122 * empty and full queues. 123 */ 124 ctx->queueSize = queueSize + 1; 125 ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem); 126 ctx->queueHead = 0; 127 ctx->queueTail = 0; 128 ctx->numThreadsBusy = 0; 129 ctx->queueEmpty = 1; 130 (void)ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); 131 (void)ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); 132 (void)ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); 133 ctx->shutdown = 0; 134 /* Allocate space for the thread handles */ 135 ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem); 136 ctx->threadCapacity = 0; 137 ctx->customMem = customMem; 138 /* Check for errors */ 139 if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } 140 /* Initialize the threads */ 141 { size_t i; 142 for (i = 0; i < numThreads; ++i) { 143 if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { 144 ctx->threadCapacity = i; 145 POOL_free(ctx); 146 return NULL; 147 } } 148 ctx->threadCapacity = numThreads; 149 ctx->threadLimit = numThreads; 150 } 151 return ctx; 152 } 153 154 /*! POOL_join() : 155 Shutdown the queue, wake any sleeping threads, and join all of the threads. 156 */ 157 static void POOL_join(POOL_ctx* ctx) { 158 /* Shut down the queue */ 159 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 160 ctx->shutdown = 1; 161 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 162 /* Wake up sleeping threads */ 163 ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); 164 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 165 /* Join all of the threads */ 166 { size_t i; 167 for (i = 0; i < ctx->threadCapacity; ++i) { 168 ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */ 169 } } 170 } 171 172 void POOL_free(POOL_ctx *ctx) { 173 if (!ctx) { return; } 174 POOL_join(ctx); 175 ZSTD_pthread_mutex_destroy(&ctx->queueMutex); 176 ZSTD_pthread_cond_destroy(&ctx->queuePushCond); 177 ZSTD_pthread_cond_destroy(&ctx->queuePopCond); 178 ZSTD_free(ctx->queue, ctx->customMem); 179 ZSTD_free(ctx->threads, ctx->customMem); 180 ZSTD_free(ctx, ctx->customMem); 181 } 182 183 184 185 size_t POOL_sizeof(POOL_ctx *ctx) { 186 if (ctx==NULL) return 0; /* supports sizeof NULL */ 187 return sizeof(*ctx) 188 + ctx->queueSize * sizeof(POOL_job) 189 + ctx->threadCapacity * sizeof(ZSTD_pthread_t); 190 } 191 192 193 /* @return : 0 on success, 1 on error */ 194 static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) 195 { 196 if (numThreads <= ctx->threadCapacity) { 197 if (!numThreads) return 1; 198 ctx->threadLimit = numThreads; 199 return 0; 200 } 201 /* numThreads > threadCapacity */ 202 { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); 203 if (!threadPool) return 1; 204 /* replace existing thread pool */ 205 memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool)); 206 ZSTD_free(ctx->threads, ctx->customMem); 207 ctx->threads = threadPool; 208 /* Initialize additional threads */ 209 { size_t threadId; 210 for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { 211 if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { 212 ctx->threadCapacity = threadId; 213 return 1; 214 } } 215 } } 216 /* successfully expanded */ 217 ctx->threadCapacity = numThreads; 218 ctx->threadLimit = numThreads; 219 return 0; 220 } 221 222 /* @return : 0 on success, 1 on error */ 223 int POOL_resize(POOL_ctx* ctx, size_t numThreads) 224 { 225 int result; 226 if (ctx==NULL) return 1; 227 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 228 result = POOL_resize_internal(ctx, numThreads); 229 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 230 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 231 return result; 232 } 233 234 /** 235 * Returns 1 if the queue is full and 0 otherwise. 236 * 237 * When queueSize is 1 (pool was created with an intended queueSize of 0), 238 * then a queue is empty if there is a thread free _and_ no job is waiting. 239 */ 240 static int isQueueFull(POOL_ctx const* ctx) { 241 if (ctx->queueSize > 1) { 242 return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); 243 } else { 244 return (ctx->numThreadsBusy == ctx->threadLimit) || 245 !ctx->queueEmpty; 246 } 247 } 248 249 250 static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) 251 { 252 POOL_job const job = {function, opaque}; 253 assert(ctx != NULL); 254 if (ctx->shutdown) return; 255 256 ctx->queueEmpty = 0; 257 ctx->queue[ctx->queueTail] = job; 258 ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; 259 ZSTD_pthread_cond_signal(&ctx->queuePopCond); 260 } 261 262 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) 263 { 264 assert(ctx != NULL); 265 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 266 /* Wait until there is space in the queue for the new job */ 267 while (isQueueFull(ctx) && (!ctx->shutdown)) { 268 ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); 269 } 270 POOL_add_internal(ctx, function, opaque); 271 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 272 } 273 274 275 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) 276 { 277 assert(ctx != NULL); 278 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 279 if (isQueueFull(ctx)) { 280 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 281 return 0; 282 } 283 POOL_add_internal(ctx, function, opaque); 284 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 285 return 1; 286 } 287 288 289 #else /* ZSTD_MULTITHREAD not defined */ 290 291 /* ========================== */ 292 /* No multi-threading support */ 293 /* ========================== */ 294 295 296 /* We don't need any data, but if it is empty, malloc() might return NULL. */ 297 struct POOL_ctx_s { 298 int dummy; 299 }; 300 static POOL_ctx g_ctx; 301 302 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 303 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 304 } 305 306 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { 307 (void)numThreads; 308 (void)queueSize; 309 (void)customMem; 310 return &g_ctx; 311 } 312 313 void POOL_free(POOL_ctx* ctx) { 314 assert(!ctx || ctx == &g_ctx); 315 (void)ctx; 316 } 317 318 int POOL_resize(POOL_ctx* ctx, size_t numThreads) { 319 (void)ctx; (void)numThreads; 320 return 0; 321 } 322 323 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { 324 (void)ctx; 325 function(opaque); 326 } 327 328 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { 329 (void)ctx; 330 function(opaque); 331 return 1; 332 } 333 334 size_t POOL_sizeof(POOL_ctx* ctx) { 335 if (ctx==NULL) return 0; /* supports sizeof NULL */ 336 assert(ctx == &g_ctx); 337 return sizeof(*ctx); 338 } 339 340 #endif /* ZSTD_MULTITHREAD */ 341