1 /* trees.c -- output deflated data using Huffman coding 2 * Copyright (C) 1995-2021 Jean-loup Gailly 3 * detect_data_type() function provided freely by Cosmin Truta, 2006 4 * For conditions of distribution and use, see copyright notice in zlib.h 5 */ 6 7 /* 8 * ALGORITHM 9 * 10 * The "deflation" process uses several Huffman trees. The more 11 * common source values are represented by shorter bit sequences. 12 * 13 * Each code tree is stored in a compressed form which is itself 14 * a Huffman encoding of the lengths of all the code strings (in 15 * ascending order by source values). The actual code strings are 16 * reconstructed from the lengths in the inflate process, as described 17 * in the deflate specification. 18 * 19 * REFERENCES 20 * 21 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification". 22 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc 23 * 24 * Storer, James A. 25 * Data Compression: Methods and Theory, pp. 49-50. 26 * Computer Science Press, 1988. ISBN 0-7167-8156-5. 27 * 28 * Sedgewick, R. 29 * Algorithms, p290. 30 * Addison-Wesley, 1983. ISBN 0-201-06672-6. 31 */ 32 33 /* @(#) $Id$ */ 34 35 /* #define GEN_TREES_H */ 36 37 #include "deflate.h" 38 39 #ifdef ZLIB_DEBUG 40 # include <ctype.h> 41 #endif 42 43 /* =========================================================================== 44 * Constants 45 */ 46 47 #define MAX_BL_BITS 7 48 /* Bit length codes must not exceed MAX_BL_BITS bits */ 49 50 #define END_BLOCK 256 51 /* end of block literal code */ 52 53 #define REP_3_6 16 54 /* repeat previous bit length 3-6 times (2 bits of repeat count) */ 55 56 #define REPZ_3_10 17 57 /* repeat a zero length 3-10 times (3 bits of repeat count) */ 58 59 #define REPZ_11_138 18 60 /* repeat a zero length 11-138 times (7 bits of repeat count) */ 61 62 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */ 63 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0}; 64 65 local const int extra_dbits[D_CODES] /* extra bits for each distance code */ 66 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13}; 67 68 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */ 69 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7}; 70 71 local const uch bl_order[BL_CODES] 72 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15}; 73 /* The lengths of the bit length codes are sent in order of decreasing 74 * probability, to avoid transmitting the lengths for unused bit length codes. 75 */ 76 77 /* =========================================================================== 78 * Local data. These are initialized only once. 79 */ 80 81 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */ 82 83 #if defined(GEN_TREES_H) || !defined(STDC) 84 /* non ANSI compilers may not accept trees.h */ 85 86 local ct_data static_ltree[L_CODES+2]; 87 /* The static literal tree. Since the bit lengths are imposed, there is no 88 * need for the L_CODES extra codes used during heap construction. However 89 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init 90 * below). 91 */ 92 93 local ct_data static_dtree[D_CODES]; 94 /* The static distance tree. (Actually a trivial tree since all codes use 95 * 5 bits.) 96 */ 97 98 uch _dist_code[DIST_CODE_LEN]; 99 /* Distance codes. The first 256 values correspond to the distances 100 * 3 .. 258, the last 256 values correspond to the top 8 bits of 101 * the 15 bit distances. 102 */ 103 104 uch _length_code[MAX_MATCH-MIN_MATCH+1]; 105 /* length code for each normalized match length (0 == MIN_MATCH) */ 106 107 local int base_length[LENGTH_CODES]; 108 /* First normalized length for each code (0 = MIN_MATCH) */ 109 110 local int base_dist[D_CODES]; 111 /* First normalized distance for each code (0 = distance of 1) */ 112 113 #else 114 # include "trees.h" 115 #endif /* GEN_TREES_H */ 116 117 struct static_tree_desc_s { 118 const ct_data *static_tree; /* static tree or NULL */ 119 const intf *extra_bits; /* extra bits for each code or NULL */ 120 int extra_base; /* base index for extra_bits */ 121 int elems; /* max number of elements in the tree */ 122 int max_length; /* max bit length for the codes */ 123 }; 124 125 #ifdef NO_INIT_GLOBAL_POINTERS 126 # define TCONST 127 #else 128 # define TCONST const 129 #endif 130 131 local TCONST static_tree_desc static_l_desc = 132 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS}; 133 134 local TCONST static_tree_desc static_d_desc = 135 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS}; 136 137 local TCONST static_tree_desc static_bl_desc = 138 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS}; 139 140 /* =========================================================================== 141 * Output a short LSB first on the stream. 142 * IN assertion: there is enough room in pendingBuf. 143 */ 144 #define put_short(s, w) { \ 145 put_byte(s, (uch)((w) & 0xff)); \ 146 put_byte(s, (uch)((ush)(w) >> 8)); \ 147 } 148 149 /* =========================================================================== 150 * Reverse the first len bits of a code, using straightforward code (a faster 151 * method would use a table) 152 * IN assertion: 1 <= len <= 15 153 */ 154 local unsigned bi_reverse(unsigned code, int len) { 155 register unsigned res = 0; 156 do { 157 res |= code & 1; 158 code >>= 1, res <<= 1; 159 } while (--len > 0); 160 return res >> 1; 161 } 162 163 /* =========================================================================== 164 * Flush the bit buffer, keeping at most 7 bits in it. 165 */ 166 local void bi_flush(deflate_state *s) { 167 if (s->bi_valid == 16) { 168 put_short(s, s->bi_buf); 169 s->bi_buf = 0; 170 s->bi_valid = 0; 171 } else if (s->bi_valid >= 8) { 172 put_byte(s, (Byte)s->bi_buf); 173 s->bi_buf >>= 8; 174 s->bi_valid -= 8; 175 } 176 } 177 178 /* =========================================================================== 179 * Flush the bit buffer and align the output on a byte boundary 180 */ 181 local void bi_windup(deflate_state *s) { 182 if (s->bi_valid > 8) { 183 put_short(s, s->bi_buf); 184 } else if (s->bi_valid > 0) { 185 put_byte(s, (Byte)s->bi_buf); 186 } 187 s->bi_buf = 0; 188 s->bi_valid = 0; 189 #ifdef ZLIB_DEBUG 190 s->bits_sent = (s->bits_sent + 7) & ~7; 191 #endif 192 } 193 194 /* =========================================================================== 195 * Generate the codes for a given tree and bit counts (which need not be 196 * optimal). 197 * IN assertion: the array bl_count contains the bit length statistics for 198 * the given tree and the field len is set for all tree elements. 199 * OUT assertion: the field code is set for all tree elements of non 200 * zero code length. 201 */ 202 local void gen_codes(ct_data *tree, int max_code, ushf *bl_count) { 203 ush next_code[MAX_BITS+1]; /* next code value for each bit length */ 204 unsigned code = 0; /* running code value */ 205 int bits; /* bit index */ 206 int n; /* code index */ 207 208 /* The distribution counts are first used to generate the code values 209 * without bit reversal. 210 */ 211 for (bits = 1; bits <= MAX_BITS; bits++) { 212 code = (code + bl_count[bits - 1]) << 1; 213 next_code[bits] = (ush)code; 214 } 215 /* Check that the bit counts in bl_count are consistent. The last code 216 * must be all ones. 217 */ 218 Assert (code + bl_count[MAX_BITS] - 1 == (1 << MAX_BITS) - 1, 219 "inconsistent bit counts"); 220 Tracev((stderr,"\ngen_codes: max_code %d ", max_code)); 221 222 for (n = 0; n <= max_code; n++) { 223 int len = tree[n].Len; 224 if (len == 0) continue; 225 /* Now reverse the bits */ 226 tree[n].Code = (ush)bi_reverse(next_code[len]++, len); 227 228 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ", 229 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len] - 1)); 230 } 231 } 232 233 #ifdef GEN_TREES_H 234 local void gen_trees_header(void); 235 #endif 236 237 #ifndef ZLIB_DEBUG 238 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len) 239 /* Send a code of the given tree. c and tree must not have side effects */ 240 241 #else /* !ZLIB_DEBUG */ 242 # define send_code(s, c, tree) \ 243 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \ 244 send_bits(s, tree[c].Code, tree[c].Len); } 245 #endif 246 247 /* =========================================================================== 248 * Send a value on a given number of bits. 249 * IN assertion: length <= 16 and value fits in length bits. 250 */ 251 #ifdef ZLIB_DEBUG 252 local void send_bits(deflate_state *s, int value, int length) { 253 Tracevv((stderr," l %2d v %4x ", length, value)); 254 Assert(length > 0 && length <= 15, "invalid length"); 255 s->bits_sent += (ulg)length; 256 257 /* If not enough room in bi_buf, use (valid) bits from bi_buf and 258 * (16 - bi_valid) bits from value, leaving (width - (16 - bi_valid)) 259 * unused bits in value. 260 */ 261 if (s->bi_valid > (int)Buf_size - length) { 262 s->bi_buf |= (ush)value << s->bi_valid; 263 put_short(s, s->bi_buf); 264 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid); 265 s->bi_valid += length - Buf_size; 266 } else { 267 s->bi_buf |= (ush)value << s->bi_valid; 268 s->bi_valid += length; 269 } 270 } 271 #else /* !ZLIB_DEBUG */ 272 273 #define send_bits(s, value, length) \ 274 { int len = length;\ 275 if (s->bi_valid > (int)Buf_size - len) {\ 276 int val = (int)value;\ 277 s->bi_buf |= (ush)val << s->bi_valid;\ 278 put_short(s, s->bi_buf);\ 279 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\ 280 s->bi_valid += len - Buf_size;\ 281 } else {\ 282 s->bi_buf |= (ush)(value) << s->bi_valid;\ 283 s->bi_valid += len;\ 284 }\ 285 } 286 #endif /* ZLIB_DEBUG */ 287 288 289 /* the arguments must not have side effects */ 290 291 /* =========================================================================== 292 * Initialize the various 'constant' tables. 293 */ 294 local void tr_static_init(void) { 295 #if defined(GEN_TREES_H) || !defined(STDC) 296 static int static_init_done = 0; 297 int n; /* iterates over tree elements */ 298 int bits; /* bit counter */ 299 int length; /* length value */ 300 int code; /* code value */ 301 int dist; /* distance index */ 302 ush bl_count[MAX_BITS+1]; 303 /* number of codes at each bit length for an optimal tree */ 304 305 if (static_init_done) return; 306 307 /* For some embedded targets, global variables are not initialized: */ 308 #ifdef NO_INIT_GLOBAL_POINTERS 309 static_l_desc.static_tree = static_ltree; 310 static_l_desc.extra_bits = extra_lbits; 311 static_d_desc.static_tree = static_dtree; 312 static_d_desc.extra_bits = extra_dbits; 313 static_bl_desc.extra_bits = extra_blbits; 314 #endif 315 316 /* Initialize the mapping length (0..255) -> length code (0..28) */ 317 length = 0; 318 for (code = 0; code < LENGTH_CODES-1; code++) { 319 base_length[code] = length; 320 for (n = 0; n < (1 << extra_lbits[code]); n++) { 321 _length_code[length++] = (uch)code; 322 } 323 } 324 Assert (length == 256, "tr_static_init: length != 256"); 325 /* Note that the length 255 (match length 258) can be represented 326 * in two different ways: code 284 + 5 bits or code 285, so we 327 * overwrite length_code[255] to use the best encoding: 328 */ 329 _length_code[length - 1] = (uch)code; 330 331 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */ 332 dist = 0; 333 for (code = 0 ; code < 16; code++) { 334 base_dist[code] = dist; 335 for (n = 0; n < (1 << extra_dbits[code]); n++) { 336 _dist_code[dist++] = (uch)code; 337 } 338 } 339 Assert (dist == 256, "tr_static_init: dist != 256"); 340 dist >>= 7; /* from now on, all distances are divided by 128 */ 341 for ( ; code < D_CODES; code++) { 342 base_dist[code] = dist << 7; 343 for (n = 0; n < (1 << (extra_dbits[code] - 7)); n++) { 344 _dist_code[256 + dist++] = (uch)code; 345 } 346 } 347 Assert (dist == 256, "tr_static_init: 256 + dist != 512"); 348 349 /* Construct the codes of the static literal tree */ 350 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0; 351 n = 0; 352 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++; 353 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++; 354 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++; 355 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++; 356 /* Codes 286 and 287 do not exist, but we must include them in the 357 * tree construction to get a canonical Huffman tree (longest code 358 * all ones) 359 */ 360 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count); 361 362 /* The static distance tree is trivial: */ 363 for (n = 0; n < D_CODES; n++) { 364 static_dtree[n].Len = 5; 365 static_dtree[n].Code = bi_reverse((unsigned)n, 5); 366 } 367 static_init_done = 1; 368 369 # ifdef GEN_TREES_H 370 gen_trees_header(); 371 # endif 372 #endif /* defined(GEN_TREES_H) || !defined(STDC) */ 373 } 374 375 /* =========================================================================== 376 * Generate the file trees.h describing the static trees. 377 */ 378 #ifdef GEN_TREES_H 379 # ifndef ZLIB_DEBUG 380 # include <stdio.h> 381 # endif 382 383 # define SEPARATOR(i, last, width) \ 384 ((i) == (last)? "\n};\n\n" : \ 385 ((i) % (width) == (width) - 1 ? ",\n" : ", ")) 386 387 void gen_trees_header(void) { 388 FILE *header = fopen("trees.h", "w"); 389 int i; 390 391 Assert (header != NULL, "Can't open trees.h"); 392 fprintf(header, 393 "/* header created automatically with -DGEN_TREES_H */\n\n"); 394 395 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n"); 396 for (i = 0; i < L_CODES+2; i++) { 397 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code, 398 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5)); 399 } 400 401 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n"); 402 for (i = 0; i < D_CODES; i++) { 403 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code, 404 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5)); 405 } 406 407 fprintf(header, "const uch ZLIB_INTERNAL _dist_code[DIST_CODE_LEN] = {\n"); 408 for (i = 0; i < DIST_CODE_LEN; i++) { 409 fprintf(header, "%2u%s", _dist_code[i], 410 SEPARATOR(i, DIST_CODE_LEN-1, 20)); 411 } 412 413 fprintf(header, 414 "const uch ZLIB_INTERNAL _length_code[MAX_MATCH-MIN_MATCH+1]= {\n"); 415 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) { 416 fprintf(header, "%2u%s", _length_code[i], 417 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20)); 418 } 419 420 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n"); 421 for (i = 0; i < LENGTH_CODES; i++) { 422 fprintf(header, "%1u%s", base_length[i], 423 SEPARATOR(i, LENGTH_CODES-1, 20)); 424 } 425 426 fprintf(header, "local const int base_dist[D_CODES] = {\n"); 427 for (i = 0; i < D_CODES; i++) { 428 fprintf(header, "%5u%s", base_dist[i], 429 SEPARATOR(i, D_CODES-1, 10)); 430 } 431 432 fclose(header); 433 } 434 #endif /* GEN_TREES_H */ 435 436 /* =========================================================================== 437 * Initialize a new block. 438 */ 439 local void init_block(deflate_state *s) { 440 int n; /* iterates over tree elements */ 441 442 /* Initialize the trees. */ 443 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0; 444 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0; 445 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0; 446 447 s->dyn_ltree[END_BLOCK].Freq = 1; 448 s->opt_len = s->static_len = 0L; 449 s->sym_next = s->matches = 0; 450 } 451 452 /* =========================================================================== 453 * Initialize the tree data structures for a new zlib stream. 454 */ 455 void ZLIB_INTERNAL _tr_init(deflate_state *s) { 456 tr_static_init(); 457 458 s->l_desc.dyn_tree = s->dyn_ltree; 459 s->l_desc.stat_desc = &static_l_desc; 460 461 s->d_desc.dyn_tree = s->dyn_dtree; 462 s->d_desc.stat_desc = &static_d_desc; 463 464 s->bl_desc.dyn_tree = s->bl_tree; 465 s->bl_desc.stat_desc = &static_bl_desc; 466 467 s->bi_buf = 0; 468 s->bi_valid = 0; 469 #ifdef ZLIB_DEBUG 470 s->compressed_len = 0L; 471 s->bits_sent = 0L; 472 #endif 473 474 /* Initialize the first block of the first file: */ 475 init_block(s); 476 } 477 478 #define SMALLEST 1 479 /* Index within the heap array of least frequent node in the Huffman tree */ 480 481 482 /* =========================================================================== 483 * Remove the smallest element from the heap and recreate the heap with 484 * one less element. Updates heap and heap_len. 485 */ 486 #define pqremove(s, tree, top) \ 487 {\ 488 top = s->heap[SMALLEST]; \ 489 s->heap[SMALLEST] = s->heap[s->heap_len--]; \ 490 pqdownheap(s, tree, SMALLEST); \ 491 } 492 493 /* =========================================================================== 494 * Compares to subtrees, using the tree depth as tie breaker when 495 * the subtrees have equal frequency. This minimizes the worst case length. 496 */ 497 #define smaller(tree, n, m, depth) \ 498 (tree[n].Freq < tree[m].Freq || \ 499 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m])) 500 501 /* =========================================================================== 502 * Restore the heap property by moving down the tree starting at node k, 503 * exchanging a node with the smallest of its two sons if necessary, stopping 504 * when the heap property is re-established (each father smaller than its 505 * two sons). 506 */ 507 local void pqdownheap(deflate_state *s, ct_data *tree, int k) { 508 int v = s->heap[k]; 509 int j = k << 1; /* left son of k */ 510 while (j <= s->heap_len) { 511 /* Set j to the smallest of the two sons: */ 512 if (j < s->heap_len && 513 smaller(tree, s->heap[j + 1], s->heap[j], s->depth)) { 514 j++; 515 } 516 /* Exit if v is smaller than both sons */ 517 if (smaller(tree, v, s->heap[j], s->depth)) break; 518 519 /* Exchange v with the smallest son */ 520 s->heap[k] = s->heap[j]; k = j; 521 522 /* And continue down the tree, setting j to the left son of k */ 523 j <<= 1; 524 } 525 s->heap[k] = v; 526 } 527 528 /* =========================================================================== 529 * Compute the optimal bit lengths for a tree and update the total bit length 530 * for the current block. 531 * IN assertion: the fields freq and dad are set, heap[heap_max] and 532 * above are the tree nodes sorted by increasing frequency. 533 * OUT assertions: the field len is set to the optimal bit length, the 534 * array bl_count contains the frequencies for each bit length. 535 * The length opt_len is updated; static_len is also updated if stree is 536 * not null. 537 */ 538 local void gen_bitlen(deflate_state *s, tree_desc *desc) { 539 ct_data *tree = desc->dyn_tree; 540 int max_code = desc->max_code; 541 const ct_data *stree = desc->stat_desc->static_tree; 542 const intf *extra = desc->stat_desc->extra_bits; 543 int base = desc->stat_desc->extra_base; 544 int max_length = desc->stat_desc->max_length; 545 int h; /* heap index */ 546 int n, m; /* iterate over the tree elements */ 547 int bits; /* bit length */ 548 int xbits; /* extra bits */ 549 ush f; /* frequency */ 550 int overflow = 0; /* number of elements with bit length too large */ 551 552 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0; 553 554 /* In a first pass, compute the optimal bit lengths (which may 555 * overflow in the case of the bit length tree). 556 */ 557 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */ 558 559 for (h = s->heap_max + 1; h < HEAP_SIZE; h++) { 560 n = s->heap[h]; 561 bits = tree[tree[n].Dad].Len + 1; 562 if (bits > max_length) bits = max_length, overflow++; 563 tree[n].Len = (ush)bits; 564 /* We overwrite tree[n].Dad which is no longer needed */ 565 566 if (n > max_code) continue; /* not a leaf node */ 567 568 s->bl_count[bits]++; 569 xbits = 0; 570 if (n >= base) xbits = extra[n - base]; 571 f = tree[n].Freq; 572 s->opt_len += (ulg)f * (unsigned)(bits + xbits); 573 if (stree) s->static_len += (ulg)f * (unsigned)(stree[n].Len + xbits); 574 } 575 if (overflow == 0) return; 576 577 Tracev((stderr,"\nbit length overflow\n")); 578 /* This happens for example on obj2 and pic of the Calgary corpus */ 579 580 /* Find the first bit length which could increase: */ 581 do { 582 bits = max_length - 1; 583 while (s->bl_count[bits] == 0) bits--; 584 s->bl_count[bits]--; /* move one leaf down the tree */ 585 s->bl_count[bits + 1] += 2; /* move one overflow item as its brother */ 586 s->bl_count[max_length]--; 587 /* The brother of the overflow item also moves one step up, 588 * but this does not affect bl_count[max_length] 589 */ 590 overflow -= 2; 591 } while (overflow > 0); 592 593 /* Now recompute all bit lengths, scanning in increasing frequency. 594 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all 595 * lengths instead of fixing only the wrong ones. This idea is taken 596 * from 'ar' written by Haruhiko Okumura.) 597 */ 598 for (bits = max_length; bits != 0; bits--) { 599 n = s->bl_count[bits]; 600 while (n != 0) { 601 m = s->heap[--h]; 602 if (m > max_code) continue; 603 if ((unsigned) tree[m].Len != (unsigned) bits) { 604 Tracev((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits)); 605 s->opt_len += ((ulg)bits - tree[m].Len) * tree[m].Freq; 606 tree[m].Len = (ush)bits; 607 } 608 n--; 609 } 610 } 611 } 612 613 #ifdef DUMP_BL_TREE 614 # include <stdio.h> 615 #endif 616 617 /* =========================================================================== 618 * Construct one Huffman tree and assigns the code bit strings and lengths. 619 * Update the total bit length for the current block. 620 * IN assertion: the field freq is set for all tree elements. 621 * OUT assertions: the fields len and code are set to the optimal bit length 622 * and corresponding code. The length opt_len is updated; static_len is 623 * also updated if stree is not null. The field max_code is set. 624 */ 625 local void build_tree(deflate_state *s, tree_desc *desc) { 626 ct_data *tree = desc->dyn_tree; 627 const ct_data *stree = desc->stat_desc->static_tree; 628 int elems = desc->stat_desc->elems; 629 int n, m; /* iterate over heap elements */ 630 int max_code = -1; /* largest code with non zero frequency */ 631 int node; /* new node being created */ 632 633 /* Construct the initial heap, with least frequent element in 634 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n + 1]. 635 * heap[0] is not used. 636 */ 637 s->heap_len = 0, s->heap_max = HEAP_SIZE; 638 639 for (n = 0; n < elems; n++) { 640 if (tree[n].Freq != 0) { 641 s->heap[++(s->heap_len)] = max_code = n; 642 s->depth[n] = 0; 643 } else { 644 tree[n].Len = 0; 645 } 646 } 647 648 /* The pkzip format requires that at least one distance code exists, 649 * and that at least one bit should be sent even if there is only one 650 * possible code. So to avoid special checks later on we force at least 651 * two codes of non zero frequency. 652 */ 653 while (s->heap_len < 2) { 654 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0); 655 tree[node].Freq = 1; 656 s->depth[node] = 0; 657 s->opt_len--; if (stree) s->static_len -= stree[node].Len; 658 /* node is 0 or 1 so it does not have extra bits */ 659 } 660 desc->max_code = max_code; 661 662 /* The elements heap[heap_len/2 + 1 .. heap_len] are leaves of the tree, 663 * establish sub-heaps of increasing lengths: 664 */ 665 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n); 666 667 /* Construct the Huffman tree by repeatedly combining the least two 668 * frequent nodes. 669 */ 670 node = elems; /* next internal node of the tree */ 671 do { 672 pqremove(s, tree, n); /* n = node of least frequency */ 673 m = s->heap[SMALLEST]; /* m = node of next least frequency */ 674 675 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */ 676 s->heap[--(s->heap_max)] = m; 677 678 /* Create a new node father of n and m */ 679 tree[node].Freq = tree[n].Freq + tree[m].Freq; 680 s->depth[node] = (uch)((s->depth[n] >= s->depth[m] ? 681 s->depth[n] : s->depth[m]) + 1); 682 tree[n].Dad = tree[m].Dad = (ush)node; 683 #ifdef DUMP_BL_TREE 684 if (tree == s->bl_tree) { 685 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)", 686 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq); 687 } 688 #endif 689 /* and insert the new node in the heap */ 690 s->heap[SMALLEST] = node++; 691 pqdownheap(s, tree, SMALLEST); 692 693 } while (s->heap_len >= 2); 694 695 s->heap[--(s->heap_max)] = s->heap[SMALLEST]; 696 697 /* At this point, the fields freq and dad are set. We can now 698 * generate the bit lengths. 699 */ 700 gen_bitlen(s, (tree_desc *)desc); 701 702 /* The field len is now set, we can generate the bit codes */ 703 gen_codes ((ct_data *)tree, max_code, s->bl_count); 704 } 705 706 /* =========================================================================== 707 * Scan a literal or distance tree to determine the frequencies of the codes 708 * in the bit length tree. 709 */ 710 local void scan_tree(deflate_state *s, ct_data *tree, int max_code) { 711 int n; /* iterates over all tree elements */ 712 int prevlen = -1; /* last emitted length */ 713 int curlen; /* length of current code */ 714 int nextlen = tree[0].Len; /* length of next code */ 715 int count = 0; /* repeat count of the current code */ 716 int max_count = 7; /* max repeat count */ 717 int min_count = 4; /* min repeat count */ 718 719 if (nextlen == 0) max_count = 138, min_count = 3; 720 tree[max_code + 1].Len = (ush)0xffff; /* guard */ 721 722 for (n = 0; n <= max_code; n++) { 723 curlen = nextlen; nextlen = tree[n + 1].Len; 724 if (++count < max_count && curlen == nextlen) { 725 continue; 726 } else if (count < min_count) { 727 s->bl_tree[curlen].Freq += count; 728 } else if (curlen != 0) { 729 if (curlen != prevlen) s->bl_tree[curlen].Freq++; 730 s->bl_tree[REP_3_6].Freq++; 731 } else if (count <= 10) { 732 s->bl_tree[REPZ_3_10].Freq++; 733 } else { 734 s->bl_tree[REPZ_11_138].Freq++; 735 } 736 count = 0; prevlen = curlen; 737 if (nextlen == 0) { 738 max_count = 138, min_count = 3; 739 } else if (curlen == nextlen) { 740 max_count = 6, min_count = 3; 741 } else { 742 max_count = 7, min_count = 4; 743 } 744 } 745 } 746 747 /* =========================================================================== 748 * Send a literal or distance tree in compressed form, using the codes in 749 * bl_tree. 750 */ 751 local void send_tree(deflate_state *s, ct_data *tree, int max_code) { 752 int n; /* iterates over all tree elements */ 753 int prevlen = -1; /* last emitted length */ 754 int curlen; /* length of current code */ 755 int nextlen = tree[0].Len; /* length of next code */ 756 int count = 0; /* repeat count of the current code */ 757 int max_count = 7; /* max repeat count */ 758 int min_count = 4; /* min repeat count */ 759 760 /* tree[max_code + 1].Len = -1; */ /* guard already set */ 761 if (nextlen == 0) max_count = 138, min_count = 3; 762 763 for (n = 0; n <= max_code; n++) { 764 curlen = nextlen; nextlen = tree[n + 1].Len; 765 if (++count < max_count && curlen == nextlen) { 766 continue; 767 } else if (count < min_count) { 768 do { send_code(s, curlen, s->bl_tree); } while (--count != 0); 769 770 } else if (curlen != 0) { 771 if (curlen != prevlen) { 772 send_code(s, curlen, s->bl_tree); count--; 773 } 774 Assert(count >= 3 && count <= 6, " 3_6?"); 775 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count - 3, 2); 776 777 } else if (count <= 10) { 778 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count - 3, 3); 779 780 } else { 781 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count - 11, 7); 782 } 783 count = 0; prevlen = curlen; 784 if (nextlen == 0) { 785 max_count = 138, min_count = 3; 786 } else if (curlen == nextlen) { 787 max_count = 6, min_count = 3; 788 } else { 789 max_count = 7, min_count = 4; 790 } 791 } 792 } 793 794 /* =========================================================================== 795 * Construct the Huffman tree for the bit lengths and return the index in 796 * bl_order of the last bit length code to send. 797 */ 798 local int build_bl_tree(deflate_state *s) { 799 int max_blindex; /* index of last bit length code of non zero freq */ 800 801 /* Determine the bit length frequencies for literal and distance trees */ 802 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code); 803 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code); 804 805 /* Build the bit length tree: */ 806 build_tree(s, (tree_desc *)(&(s->bl_desc))); 807 /* opt_len now includes the length of the tree representations, except the 808 * lengths of the bit lengths codes and the 5 + 5 + 4 bits for the counts. 809 */ 810 811 /* Determine the number of bit length codes to send. The pkzip format 812 * requires that at least 4 bit length codes be sent. (appnote.txt says 813 * 3 but the actual value used is 4.) 814 */ 815 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) { 816 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break; 817 } 818 /* Update opt_len to include the bit length tree and counts */ 819 s->opt_len += 3*((ulg)max_blindex + 1) + 5 + 5 + 4; 820 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld", 821 s->opt_len, s->static_len)); 822 823 return max_blindex; 824 } 825 826 /* =========================================================================== 827 * Send the header for a block using dynamic Huffman trees: the counts, the 828 * lengths of the bit length codes, the literal tree and the distance tree. 829 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. 830 */ 831 local void send_all_trees(deflate_state *s, int lcodes, int dcodes, 832 int blcodes) { 833 int rank; /* index in bl_order */ 834 835 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes"); 836 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES, 837 "too many codes"); 838 Tracev((stderr, "\nbl counts: ")); 839 send_bits(s, lcodes - 257, 5); /* not +255 as stated in appnote.txt */ 840 send_bits(s, dcodes - 1, 5); 841 send_bits(s, blcodes - 4, 4); /* not -3 as stated in appnote.txt */ 842 for (rank = 0; rank < blcodes; rank++) { 843 Tracev((stderr, "\nbl code %2d ", bl_order[rank])); 844 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3); 845 } 846 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent)); 847 848 send_tree(s, (ct_data *)s->dyn_ltree, lcodes - 1); /* literal tree */ 849 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent)); 850 851 send_tree(s, (ct_data *)s->dyn_dtree, dcodes - 1); /* distance tree */ 852 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent)); 853 } 854 855 /* =========================================================================== 856 * Send a stored block 857 */ 858 void ZLIB_INTERNAL _tr_stored_block(deflate_state *s, charf *buf, 859 ulg stored_len, int last) { 860 send_bits(s, (STORED_BLOCK<<1) + last, 3); /* send block type */ 861 bi_windup(s); /* align on byte boundary */ 862 put_short(s, (ush)stored_len); 863 put_short(s, (ush)~stored_len); 864 if (stored_len) 865 zmemcpy(s->pending_buf + s->pending, (Bytef *)buf, stored_len); 866 s->pending += stored_len; 867 #ifdef ZLIB_DEBUG 868 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L; 869 s->compressed_len += (stored_len + 4) << 3; 870 s->bits_sent += 2*16; 871 s->bits_sent += stored_len << 3; 872 #endif 873 } 874 875 /* =========================================================================== 876 * Flush the bits in the bit buffer to pending output (leaves at most 7 bits) 877 */ 878 void ZLIB_INTERNAL _tr_flush_bits(deflate_state *s) { 879 bi_flush(s); 880 } 881 882 /* =========================================================================== 883 * Send one empty static block to give enough lookahead for inflate. 884 * This takes 10 bits, of which 7 may remain in the bit buffer. 885 */ 886 void ZLIB_INTERNAL _tr_align(deflate_state *s) { 887 send_bits(s, STATIC_TREES<<1, 3); 888 send_code(s, END_BLOCK, static_ltree); 889 #ifdef ZLIB_DEBUG 890 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */ 891 #endif 892 bi_flush(s); 893 } 894 895 /* =========================================================================== 896 * Send the block data compressed using the given Huffman trees 897 */ 898 local void compress_block(deflate_state *s, const ct_data *ltree, 899 const ct_data *dtree) { 900 unsigned dist; /* distance of matched string */ 901 int lc; /* match length or unmatched char (if dist == 0) */ 902 unsigned sx = 0; /* running index in sym_buf */ 903 unsigned code; /* the code to send */ 904 int extra; /* number of extra bits to send */ 905 906 if (s->sym_next != 0) do { 907 dist = s->sym_buf[sx++] & 0xff; 908 dist += (unsigned)(s->sym_buf[sx++] & 0xff) << 8; 909 lc = s->sym_buf[sx++]; 910 if (dist == 0) { 911 send_code(s, lc, ltree); /* send a literal byte */ 912 Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 913 } else { 914 /* Here, lc is the match length - MIN_MATCH */ 915 code = _length_code[lc]; 916 send_code(s, code + LITERALS + 1, ltree); /* send length code */ 917 extra = extra_lbits[code]; 918 if (extra != 0) { 919 lc -= base_length[code]; 920 send_bits(s, lc, extra); /* send the extra length bits */ 921 } 922 dist--; /* dist is now the match distance - 1 */ 923 code = d_code(dist); 924 Assert (code < D_CODES, "bad d_code"); 925 926 send_code(s, code, dtree); /* send the distance code */ 927 extra = extra_dbits[code]; 928 if (extra != 0) { 929 dist -= (unsigned)base_dist[code]; 930 send_bits(s, dist, extra); /* send the extra distance bits */ 931 } 932 } /* literal or match pair ? */ 933 934 /* Check that the overlay between pending_buf and sym_buf is ok: */ 935 Assert(s->pending < s->lit_bufsize + sx, "pendingBuf overflow"); 936 937 } while (sx < s->sym_next); 938 939 send_code(s, END_BLOCK, ltree); 940 } 941 942 /* =========================================================================== 943 * Check if the data type is TEXT or BINARY, using the following algorithm: 944 * - TEXT if the two conditions below are satisfied: 945 * a) There are no non-portable control characters belonging to the 946 * "block list" (0..6, 14..25, 28..31). 947 * b) There is at least one printable character belonging to the 948 * "allow list" (9 {TAB}, 10 {LF}, 13 {CR}, 32..255). 949 * - BINARY otherwise. 950 * - The following partially-portable control characters form a 951 * "gray list" that is ignored in this detection algorithm: 952 * (7 {BEL}, 8 {BS}, 11 {VT}, 12 {FF}, 26 {SUB}, 27 {ESC}). 953 * IN assertion: the fields Freq of dyn_ltree are set. 954 */ 955 local int detect_data_type(deflate_state *s) { 956 /* block_mask is the bit mask of block-listed bytes 957 * set bits 0..6, 14..25, and 28..31 958 * 0xf3ffc07f = binary 11110011111111111100000001111111 959 */ 960 unsigned long block_mask = 0xf3ffc07fUL; 961 int n; 962 963 /* Check for non-textual ("block-listed") bytes. */ 964 for (n = 0; n <= 31; n++, block_mask >>= 1) 965 if ((block_mask & 1) && (s->dyn_ltree[n].Freq != 0)) 966 return Z_BINARY; 967 968 /* Check for textual ("allow-listed") bytes. */ 969 if (s->dyn_ltree[9].Freq != 0 || s->dyn_ltree[10].Freq != 0 970 || s->dyn_ltree[13].Freq != 0) 971 return Z_TEXT; 972 for (n = 32; n < LITERALS; n++) 973 if (s->dyn_ltree[n].Freq != 0) 974 return Z_TEXT; 975 976 /* There are no "block-listed" or "allow-listed" bytes: 977 * this stream either is empty or has tolerated ("gray-listed") bytes only. 978 */ 979 return Z_BINARY; 980 } 981 982 /* =========================================================================== 983 * Determine the best encoding for the current block: dynamic trees, static 984 * trees or store, and write out the encoded block. 985 */ 986 void ZLIB_INTERNAL _tr_flush_block(deflate_state *s, charf *buf, 987 ulg stored_len, int last) { 988 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */ 989 int max_blindex = 0; /* index of last bit length code of non zero freq */ 990 991 /* Build the Huffman trees unless a stored block is forced */ 992 if (s->level > 0) { 993 994 /* Check if the file is binary or text */ 995 if (s->strm->data_type == Z_UNKNOWN) 996 s->strm->data_type = detect_data_type(s); 997 998 /* Construct the literal and distance trees */ 999 build_tree(s, (tree_desc *)(&(s->l_desc))); 1000 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len, 1001 s->static_len)); 1002 1003 build_tree(s, (tree_desc *)(&(s->d_desc))); 1004 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len, 1005 s->static_len)); 1006 /* At this point, opt_len and static_len are the total bit lengths of 1007 * the compressed block data, excluding the tree representations. 1008 */ 1009 1010 /* Build the bit length tree for the above two trees, and get the index 1011 * in bl_order of the last bit length code to send. 1012 */ 1013 max_blindex = build_bl_tree(s); 1014 1015 /* Determine the best encoding. Compute the block lengths in bytes. */ 1016 opt_lenb = (s->opt_len + 3 + 7) >> 3; 1017 static_lenb = (s->static_len + 3 + 7) >> 3; 1018 1019 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ", 1020 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len, 1021 s->sym_next / 3)); 1022 1023 #ifndef FORCE_STATIC 1024 if (static_lenb <= opt_lenb || s->strategy == Z_FIXED) 1025 #endif 1026 opt_lenb = static_lenb; 1027 1028 } else { 1029 Assert(buf != (char*)0, "lost buf"); 1030 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */ 1031 } 1032 1033 #ifdef FORCE_STORED 1034 if (buf != (char*)0) { /* force stored block */ 1035 #else 1036 if (stored_len + 4 <= opt_lenb && buf != (char*)0) { 1037 /* 4: two words for the lengths */ 1038 #endif 1039 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. 1040 * Otherwise we can't have processed more than WSIZE input bytes since 1041 * the last block flush, because compression would have been 1042 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to 1043 * transform a block into a stored block. 1044 */ 1045 _tr_stored_block(s, buf, stored_len, last); 1046 1047 } else if (static_lenb == opt_lenb) { 1048 send_bits(s, (STATIC_TREES<<1) + last, 3); 1049 compress_block(s, (const ct_data *)static_ltree, 1050 (const ct_data *)static_dtree); 1051 #ifdef ZLIB_DEBUG 1052 s->compressed_len += 3 + s->static_len; 1053 #endif 1054 } else { 1055 send_bits(s, (DYN_TREES<<1) + last, 3); 1056 send_all_trees(s, s->l_desc.max_code + 1, s->d_desc.max_code + 1, 1057 max_blindex + 1); 1058 compress_block(s, (const ct_data *)s->dyn_ltree, 1059 (const ct_data *)s->dyn_dtree); 1060 #ifdef ZLIB_DEBUG 1061 s->compressed_len += 3 + s->opt_len; 1062 #endif 1063 } 1064 Assert (s->compressed_len == s->bits_sent, "bad compressed size"); 1065 /* The above check is made mod 2^32, for files larger than 512 MB 1066 * and uLong implemented on 32 bits. 1067 */ 1068 init_block(s); 1069 1070 if (last) { 1071 bi_windup(s); 1072 #ifdef ZLIB_DEBUG 1073 s->compressed_len += 7; /* align on byte boundary */ 1074 #endif 1075 } 1076 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len >> 3, 1077 s->compressed_len - 7*last)); 1078 } 1079 1080 /* =========================================================================== 1081 * Save the match info and tally the frequency counts. Return true if 1082 * the current block must be flushed. 1083 */ 1084 int ZLIB_INTERNAL _tr_tally(deflate_state *s, unsigned dist, unsigned lc) { 1085 s->sym_buf[s->sym_next++] = (uch)dist; 1086 s->sym_buf[s->sym_next++] = (uch)(dist >> 8); 1087 s->sym_buf[s->sym_next++] = (uch)lc; 1088 if (dist == 0) { 1089 /* lc is the unmatched char */ 1090 s->dyn_ltree[lc].Freq++; 1091 } else { 1092 s->matches++; 1093 /* Here, lc is the match length - MIN_MATCH */ 1094 dist--; /* dist = match distance - 1 */ 1095 Assert((ush)dist < (ush)MAX_DIST(s) && 1096 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) && 1097 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match"); 1098 1099 s->dyn_ltree[_length_code[lc] + LITERALS + 1].Freq++; 1100 s->dyn_dtree[d_code(dist)].Freq++; 1101 } 1102 return (s->sym_next == s->sym_end); 1103 } 1104