xref: /freebsd/sys/contrib/zlib/inftrees.c (revision 97759ccc715c4b365432c16d763c50eecfcb1100)
1 /* inftrees.c -- generate Huffman trees for efficient decoding
2  * Copyright (C) 1995-2023 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 #include "zutil.h"
7 #include "inftrees.h"
8 
9 #define MAXBITS 15
10 
11 const char inflate_copyright[] =
12    " inflate 1.3 Copyright 1995-2023 Mark Adler ";
13 /*
14   If you use the zlib library in a product, an acknowledgment is welcome
15   in the documentation of your product. If for some reason you cannot
16   include such an acknowledgment, I would appreciate that you keep this
17   copyright string in the executable of your product.
18  */
19 
20 /*
21    Build a set of tables to decode the provided canonical Huffman code.
22    The code lengths are lens[0..codes-1].  The result starts at *table,
23    whose indices are 0..2^bits-1.  work is a writable array of at least
24    lens shorts, which is used as a work area.  type is the type of code
25    to be generated, CODES, LENS, or DISTS.  On return, zero is success,
26    -1 is an invalid code, and +1 means that ENOUGH isn't enough.  table
27    on return points to the next available entry's address.  bits is the
28    requested root table index bits, and on return it is the actual root
29    table index bits.  It will differ if the request is greater than the
30    longest code or if it is less than the shortest code.
31  */
32 int ZLIB_INTERNAL inflate_table(codetype type, unsigned short FAR *lens,
33                                 unsigned codes, code FAR * FAR *table,
34                                 unsigned FAR *bits, unsigned short FAR *work) {
35     unsigned len;               /* a code's length in bits */
36     unsigned sym;               /* index of code symbols */
37     unsigned min, max;          /* minimum and maximum code lengths */
38     unsigned root;              /* number of index bits for root table */
39     unsigned curr;              /* number of index bits for current table */
40     unsigned drop;              /* code bits to drop for sub-table */
41     int left;                   /* number of prefix codes available */
42     unsigned used;              /* code entries in table used */
43     unsigned huff;              /* Huffman code */
44     unsigned incr;              /* for incrementing code, index */
45     unsigned fill;              /* index for replicating entries */
46     unsigned low;               /* low bits for current root entry */
47     unsigned mask;              /* mask for low root bits */
48     code here;                  /* table entry for duplication */
49     code FAR *next;             /* next available space in table */
50     const unsigned short FAR *base;     /* base value table to use */
51     const unsigned short FAR *extra;    /* extra bits table to use */
52     unsigned match;             /* use base and extra for symbol >= match */
53     unsigned short count[MAXBITS+1];    /* number of codes of each length */
54     unsigned short offs[MAXBITS+1];     /* offsets in table for each length */
55     static const unsigned short lbase[31] = { /* Length codes 257..285 base */
56         3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
57         35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
58     static const unsigned short lext[31] = { /* Length codes 257..285 extra */
59         16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 18, 18,
60         19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 16, 198, 203};
61     static const unsigned short dbase[32] = { /* Distance codes 0..29 base */
62         1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
63         257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
64         8193, 12289, 16385, 24577, 0, 0};
65     static const unsigned short dext[32] = { /* Distance codes 0..29 extra */
66         16, 16, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22,
67         23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
68         28, 28, 29, 29, 64, 64};
69 
70     /*
71        Process a set of code lengths to create a canonical Huffman code.  The
72        code lengths are lens[0..codes-1].  Each length corresponds to the
73        symbols 0..codes-1.  The Huffman code is generated by first sorting the
74        symbols by length from short to long, and retaining the symbol order
75        for codes with equal lengths.  Then the code starts with all zero bits
76        for the first code of the shortest length, and the codes are integer
77        increments for the same length, and zeros are appended as the length
78        increases.  For the deflate format, these bits are stored backwards
79        from their more natural integer increment ordering, and so when the
80        decoding tables are built in the large loop below, the integer codes
81        are incremented backwards.
82 
83        This routine assumes, but does not check, that all of the entries in
84        lens[] are in the range 0..MAXBITS.  The caller must assure this.
85        1..MAXBITS is interpreted as that code length.  zero means that that
86        symbol does not occur in this code.
87 
88        The codes are sorted by computing a count of codes for each length,
89        creating from that a table of starting indices for each length in the
90        sorted table, and then entering the symbols in order in the sorted
91        table.  The sorted table is work[], with that space being provided by
92        the caller.
93 
94        The length counts are used for other purposes as well, i.e. finding
95        the minimum and maximum length codes, determining if there are any
96        codes at all, checking for a valid set of lengths, and looking ahead
97        at length counts to determine sub-table sizes when building the
98        decoding tables.
99      */
100 
101     /* accumulate lengths for codes (assumes lens[] all in 0..MAXBITS) */
102     for (len = 0; len <= MAXBITS; len++)
103         count[len] = 0;
104     for (sym = 0; sym < codes; sym++)
105         count[lens[sym]]++;
106 
107     /* bound code lengths, force root to be within code lengths */
108     root = *bits;
109     for (max = MAXBITS; max >= 1; max--)
110         if (count[max] != 0) break;
111     if (root > max) root = max;
112     if (max == 0) {                     /* no symbols to code at all */
113         here.op = (unsigned char)64;    /* invalid code marker */
114         here.bits = (unsigned char)1;
115         here.val = (unsigned short)0;
116         *(*table)++ = here;             /* make a table to force an error */
117         *(*table)++ = here;
118         *bits = 1;
119         return 0;     /* no symbols, but wait for decoding to report error */
120     }
121     for (min = 1; min < max; min++)
122         if (count[min] != 0) break;
123     if (root < min) root = min;
124 
125     /* check for an over-subscribed or incomplete set of lengths */
126     left = 1;
127     for (len = 1; len <= MAXBITS; len++) {
128         left <<= 1;
129         left -= count[len];
130         if (left < 0) return -1;        /* over-subscribed */
131     }
132     if (left > 0 && (type == CODES || max != 1))
133         return -1;                      /* incomplete set */
134 
135     /* generate offsets into symbol table for each length for sorting */
136     offs[1] = 0;
137     for (len = 1; len < MAXBITS; len++)
138         offs[len + 1] = offs[len] + count[len];
139 
140     /* sort symbols by length, by symbol order within each length */
141     for (sym = 0; sym < codes; sym++)
142         if (lens[sym] != 0) work[offs[lens[sym]]++] = (unsigned short)sym;
143 
144     /*
145        Create and fill in decoding tables.  In this loop, the table being
146        filled is at next and has curr index bits.  The code being used is huff
147        with length len.  That code is converted to an index by dropping drop
148        bits off of the bottom.  For codes where len is less than drop + curr,
149        those top drop + curr - len bits are incremented through all values to
150        fill the table with replicated entries.
151 
152        root is the number of index bits for the root table.  When len exceeds
153        root, sub-tables are created pointed to by the root entry with an index
154        of the low root bits of huff.  This is saved in low to check for when a
155        new sub-table should be started.  drop is zero when the root table is
156        being filled, and drop is root when sub-tables are being filled.
157 
158        When a new sub-table is needed, it is necessary to look ahead in the
159        code lengths to determine what size sub-table is needed.  The length
160        counts are used for this, and so count[] is decremented as codes are
161        entered in the tables.
162 
163        used keeps track of how many table entries have been allocated from the
164        provided *table space.  It is checked for LENS and DIST tables against
165        the constants ENOUGH_LENS and ENOUGH_DISTS to guard against changes in
166        the initial root table size constants.  See the comments in inftrees.h
167        for more information.
168 
169        sym increments through all symbols, and the loop terminates when
170        all codes of length max, i.e. all codes, have been processed.  This
171        routine permits incomplete codes, so another loop after this one fills
172        in the rest of the decoding tables with invalid code markers.
173      */
174 
175     /* set up for code type */
176     switch (type) {
177     case CODES:
178         base = extra = work;    /* dummy value--not used */
179         match = 20;
180         break;
181     case LENS:
182         base = lbase;
183         extra = lext;
184         match = 257;
185         break;
186     default:    /* DISTS */
187         base = dbase;
188         extra = dext;
189         match = 0;
190     }
191 
192     /* initialize state for loop */
193     huff = 0;                   /* starting code */
194     sym = 0;                    /* starting code symbol */
195     len = min;                  /* starting code length */
196     next = *table;              /* current table to fill in */
197     curr = root;                /* current table index bits */
198     drop = 0;                   /* current bits to drop from code for index */
199     low = (unsigned)(-1);       /* trigger new sub-table when len > root */
200     used = 1U << root;          /* use root table entries */
201     mask = used - 1;            /* mask for comparing low */
202 
203     /* check available table space */
204     if ((type == LENS && used > ENOUGH_LENS) ||
205         (type == DISTS && used > ENOUGH_DISTS))
206         return 1;
207 
208     /* process all codes and make table entries */
209     for (;;) {
210         /* create table entry */
211         here.bits = (unsigned char)(len - drop);
212         if (work[sym] + 1U < match) {
213             here.op = (unsigned char)0;
214             here.val = work[sym];
215         }
216         else if (work[sym] >= match) {
217             here.op = (unsigned char)(extra[work[sym] - match]);
218             here.val = base[work[sym] - match];
219         }
220         else {
221             here.op = (unsigned char)(32 + 64);         /* end of block */
222             here.val = 0;
223         }
224 
225         /* replicate for those indices with low len bits equal to huff */
226         incr = 1U << (len - drop);
227         fill = 1U << curr;
228         min = fill;                 /* save offset to next table */
229         do {
230             fill -= incr;
231             next[(huff >> drop) + fill] = here;
232         } while (fill != 0);
233 
234         /* backwards increment the len-bit code huff */
235         incr = 1U << (len - 1);
236         while (huff & incr)
237             incr >>= 1;
238         if (incr != 0) {
239             huff &= incr - 1;
240             huff += incr;
241         }
242         else
243             huff = 0;
244 
245         /* go to next symbol, update count, len */
246         sym++;
247         if (--(count[len]) == 0) {
248             if (len == max) break;
249             len = lens[work[sym]];
250         }
251 
252         /* create new sub-table if needed */
253         if (len > root && (huff & mask) != low) {
254             /* if first time, transition to sub-tables */
255             if (drop == 0)
256                 drop = root;
257 
258             /* increment past last table */
259             next += min;            /* here min is 1 << curr */
260 
261             /* determine length of next table */
262             curr = len - drop;
263             left = (int)(1 << curr);
264             while (curr + drop < max) {
265                 left -= count[curr + drop];
266                 if (left <= 0) break;
267                 curr++;
268                 left <<= 1;
269             }
270 
271             /* check for enough space */
272             used += 1U << curr;
273             if ((type == LENS && used > ENOUGH_LENS) ||
274                 (type == DISTS && used > ENOUGH_DISTS))
275                 return 1;
276 
277             /* point entry in root table to sub-table */
278             low = huff & mask;
279             (*table)[low].op = (unsigned char)curr;
280             (*table)[low].bits = (unsigned char)root;
281             (*table)[low].val = (unsigned short)(next - *table);
282         }
283     }
284 
285     /* fill in remaining table entry if code is incomplete (guaranteed to have
286        at most one remaining entry, since if the code is incomplete, the
287        maximum code length that was allowed to get this far is one bit) */
288     if (huff != 0) {
289         here.op = (unsigned char)64;            /* invalid code marker */
290         here.bits = (unsigned char)(len - drop);
291         here.val = (unsigned short)0;
292         next[huff] = here;
293     }
294 
295     /* set return parameters */
296     *table += used;
297     *bits = root;
298     return 0;
299 }
300