xref: /freebsd/sys/contrib/zlib/adler32.c (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 /* adler32.c -- compute the Adler-32 checksum of a data stream
2  * Copyright (C) 1995-2011, 2016 Mark Adler
3  * For conditions of distribution and use, see copyright notice in zlib.h
4  */
5 
6 /* @(#) $Id$ */
7 
8 #include "zutil.h"
9 
10 #define BASE 65521U     /* largest prime smaller than 65536 */
11 #define NMAX 5552
12 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
13 
14 #define DO1(buf,i)  {adler += (buf)[i]; sum2 += adler;}
15 #define DO2(buf,i)  DO1(buf,i); DO1(buf,i+1);
16 #define DO4(buf,i)  DO2(buf,i); DO2(buf,i+2);
17 #define DO8(buf,i)  DO4(buf,i); DO4(buf,i+4);
18 #define DO16(buf)   DO8(buf,0); DO8(buf,8);
19 
20 /* use NO_DIVIDE if your processor does not do division in hardware --
21    try it both ways to see which is faster */
22 #ifdef NO_DIVIDE
23 /* note that this assumes BASE is 65521, where 65536 % 65521 == 15
24    (thank you to John Reiser for pointing this out) */
25 #  define CHOP(a) \
26     do { \
27         unsigned long tmp = a >> 16; \
28         a &= 0xffffUL; \
29         a += (tmp << 4) - tmp; \
30     } while (0)
31 #  define MOD28(a) \
32     do { \
33         CHOP(a); \
34         if (a >= BASE) a -= BASE; \
35     } while (0)
36 #  define MOD(a) \
37     do { \
38         CHOP(a); \
39         MOD28(a); \
40     } while (0)
41 #  define MOD63(a) \
42     do { /* this assumes a is not negative */ \
43         z_off64_t tmp = a >> 32; \
44         a &= 0xffffffffL; \
45         a += (tmp << 8) - (tmp << 5) + tmp; \
46         tmp = a >> 16; \
47         a &= 0xffffL; \
48         a += (tmp << 4) - tmp; \
49         tmp = a >> 16; \
50         a &= 0xffffL; \
51         a += (tmp << 4) - tmp; \
52         if (a >= BASE) a -= BASE; \
53     } while (0)
54 #else
55 #  define MOD(a) a %= BASE
56 #  define MOD28(a) a %= BASE
57 #  define MOD63(a) a %= BASE
58 #endif
59 
60 /* ========================================================================= */
61 uLong ZEXPORT adler32_z(uLong adler, const Bytef *buf, z_size_t len) {
62     unsigned long sum2;
63     unsigned n;
64 
65     /* split Adler-32 into component sums */
66     sum2 = (adler >> 16) & 0xffff;
67     adler &= 0xffff;
68 
69     /* in case user likes doing a byte at a time, keep it fast */
70     if (len == 1) {
71         adler += buf[0];
72         if (adler >= BASE)
73             adler -= BASE;
74         sum2 += adler;
75         if (sum2 >= BASE)
76             sum2 -= BASE;
77         return adler | (sum2 << 16);
78     }
79 
80     /* initial Adler-32 value (deferred check for len == 1 speed) */
81     if (buf == Z_NULL)
82         return 1L;
83 
84     /* in case short lengths are provided, keep it somewhat fast */
85     if (len < 16) {
86         while (len--) {
87             adler += *buf++;
88             sum2 += adler;
89         }
90         if (adler >= BASE)
91             adler -= BASE;
92         MOD28(sum2);            /* only added so many BASE's */
93         return adler | (sum2 << 16);
94     }
95 
96     /* do length NMAX blocks -- requires just one modulo operation */
97     while (len >= NMAX) {
98         len -= NMAX;
99         n = NMAX / 16;          /* NMAX is divisible by 16 */
100         do {
101             DO16(buf);          /* 16 sums unrolled */
102             buf += 16;
103         } while (--n);
104         MOD(adler);
105         MOD(sum2);
106     }
107 
108     /* do remaining bytes (less than NMAX, still just one modulo) */
109     if (len) {                  /* avoid modulos if none remaining */
110         while (len >= 16) {
111             len -= 16;
112             DO16(buf);
113             buf += 16;
114         }
115         while (len--) {
116             adler += *buf++;
117             sum2 += adler;
118         }
119         MOD(adler);
120         MOD(sum2);
121     }
122 
123     /* return recombined sums */
124     return adler | (sum2 << 16);
125 }
126 
127 /* ========================================================================= */
128 uLong ZEXPORT adler32(uLong adler, const Bytef *buf, uInt len) {
129     return adler32_z(adler, buf, len);
130 }
131 
132 /* ========================================================================= */
133 local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2) {
134     unsigned long sum1;
135     unsigned long sum2;
136     unsigned rem;
137 
138     /* for negative len, return invalid adler32 as a clue for debugging */
139     if (len2 < 0)
140         return 0xffffffffUL;
141 
142     /* the derivation of this formula is left as an exercise for the reader */
143     MOD63(len2);                /* assumes len2 >= 0 */
144     rem = (unsigned)len2;
145     sum1 = adler1 & 0xffff;
146     sum2 = rem * sum1;
147     MOD(sum2);
148     sum1 += (adler2 & 0xffff) + BASE - 1;
149     sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
150     if (sum1 >= BASE) sum1 -= BASE;
151     if (sum1 >= BASE) sum1 -= BASE;
152     if (sum2 >= ((unsigned long)BASE << 1)) sum2 -= ((unsigned long)BASE << 1);
153     if (sum2 >= BASE) sum2 -= BASE;
154     return sum1 | (sum2 << 16);
155 }
156 
157 /* ========================================================================= */
158 uLong ZEXPORT adler32_combine(uLong adler1, uLong adler2, z_off_t len2) {
159     return adler32_combine_(adler1, adler2, len2);
160 }
161 
162 uLong ZEXPORT adler32_combine64(uLong adler1, uLong adler2, z_off64_t len2) {
163     return adler32_combine_(adler1, adler2, len2);
164 }
165