1 /* 2 * BSD 3-Clause New License (https://spdx.org/licenses/BSD-3-Clause.html) 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are met: 6 * 7 * 1. Redistributions of source code must retain the above copyright notice, 8 * this list of conditions and the following disclaimer. 9 * 10 * 2. Redistributions in binary form must reproduce the above copyright notice, 11 * this list of conditions and the following disclaimer in the documentation 12 * and/or other materials provided with the distribution. 13 * 14 * 3. Neither the name of the copyright holder nor the names of its 15 * contributors may be used to endorse or promote products derived from this 16 * software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * Copyright (c) 2016-2018, Klara Inc. 33 * Copyright (c) 2016-2018, Allan Jude 34 * Copyright (c) 2018-2020, Sebastian Gottschall 35 * Copyright (c) 2019-2020, Michael Niewöhner 36 * Copyright (c) 2020, The FreeBSD Foundation [1] 37 * 38 * [1] Portions of this software were developed by Allan Jude 39 * under sponsorship from the FreeBSD Foundation. 40 */ 41 42 #include <sys/param.h> 43 #include <sys/sysmacros.h> 44 #include <sys/zfs_context.h> 45 #include <sys/zio_compress.h> 46 #include <sys/spa.h> 47 #include <sys/zstd/zstd.h> 48 49 #define ZSTD_STATIC_LINKING_ONLY 50 #include "lib/zstd.h" 51 #include "lib/zstd_errors.h" 52 53 kstat_t *zstd_ksp = NULL; 54 55 typedef struct zstd_stats { 56 kstat_named_t zstd_stat_alloc_fail; 57 kstat_named_t zstd_stat_alloc_fallback; 58 kstat_named_t zstd_stat_com_alloc_fail; 59 kstat_named_t zstd_stat_dec_alloc_fail; 60 kstat_named_t zstd_stat_com_inval; 61 kstat_named_t zstd_stat_dec_inval; 62 kstat_named_t zstd_stat_dec_header_inval; 63 kstat_named_t zstd_stat_com_fail; 64 kstat_named_t zstd_stat_dec_fail; 65 kstat_named_t zstd_stat_buffers; 66 kstat_named_t zstd_stat_size; 67 } zstd_stats_t; 68 69 static zstd_stats_t zstd_stats = { 70 { "alloc_fail", KSTAT_DATA_UINT64 }, 71 { "alloc_fallback", KSTAT_DATA_UINT64 }, 72 { "compress_alloc_fail", KSTAT_DATA_UINT64 }, 73 { "decompress_alloc_fail", KSTAT_DATA_UINT64 }, 74 { "compress_level_invalid", KSTAT_DATA_UINT64 }, 75 { "decompress_level_invalid", KSTAT_DATA_UINT64 }, 76 { "decompress_header_invalid", KSTAT_DATA_UINT64 }, 77 { "compress_failed", KSTAT_DATA_UINT64 }, 78 { "decompress_failed", KSTAT_DATA_UINT64 }, 79 { "buffers", KSTAT_DATA_UINT64 }, 80 { "size", KSTAT_DATA_UINT64 }, 81 }; 82 83 /* Enums describing the allocator type specified by kmem_type in zstd_kmem */ 84 enum zstd_kmem_type { 85 ZSTD_KMEM_UNKNOWN = 0, 86 /* Allocation type using kmem_vmalloc */ 87 ZSTD_KMEM_DEFAULT, 88 /* Pool based allocation using mempool_alloc */ 89 ZSTD_KMEM_POOL, 90 /* Reserved fallback memory for decompression only */ 91 ZSTD_KMEM_DCTX, 92 ZSTD_KMEM_COUNT, 93 }; 94 95 /* Structure for pooled memory objects */ 96 struct zstd_pool { 97 void *mem; 98 size_t size; 99 kmutex_t barrier; 100 hrtime_t timeout; 101 }; 102 103 /* Global structure for handling memory allocations */ 104 struct zstd_kmem { 105 enum zstd_kmem_type kmem_type; 106 size_t kmem_size; 107 struct zstd_pool *pool; 108 }; 109 110 /* Fallback memory structure used for decompression only if memory runs out */ 111 struct zstd_fallback_mem { 112 size_t mem_size; 113 void *mem; 114 kmutex_t barrier; 115 }; 116 117 struct zstd_levelmap { 118 int16_t zstd_level; 119 enum zio_zstd_levels level; 120 }; 121 122 /* 123 * ZSTD memory handlers 124 * 125 * For decompression we use a different handler which also provides fallback 126 * memory allocation in case memory runs out. 127 * 128 * The ZSTD handlers were split up for the most simplified implementation. 129 */ 130 static void *zstd_alloc(void *opaque, size_t size); 131 static void *zstd_dctx_alloc(void *opaque, size_t size); 132 static void zstd_free(void *opaque, void *ptr); 133 134 /* Compression memory handler */ 135 static const ZSTD_customMem zstd_malloc = { 136 zstd_alloc, 137 zstd_free, 138 NULL, 139 }; 140 141 /* Decompression memory handler */ 142 static const ZSTD_customMem zstd_dctx_malloc = { 143 zstd_dctx_alloc, 144 zstd_free, 145 NULL, 146 }; 147 148 /* Level map for converting ZFS internal levels to ZSTD levels and vice versa */ 149 static struct zstd_levelmap zstd_levels[] = { 150 {ZIO_ZSTD_LEVEL_1, ZIO_ZSTD_LEVEL_1}, 151 {ZIO_ZSTD_LEVEL_2, ZIO_ZSTD_LEVEL_2}, 152 {ZIO_ZSTD_LEVEL_3, ZIO_ZSTD_LEVEL_3}, 153 {ZIO_ZSTD_LEVEL_4, ZIO_ZSTD_LEVEL_4}, 154 {ZIO_ZSTD_LEVEL_5, ZIO_ZSTD_LEVEL_5}, 155 {ZIO_ZSTD_LEVEL_6, ZIO_ZSTD_LEVEL_6}, 156 {ZIO_ZSTD_LEVEL_7, ZIO_ZSTD_LEVEL_7}, 157 {ZIO_ZSTD_LEVEL_8, ZIO_ZSTD_LEVEL_8}, 158 {ZIO_ZSTD_LEVEL_9, ZIO_ZSTD_LEVEL_9}, 159 {ZIO_ZSTD_LEVEL_10, ZIO_ZSTD_LEVEL_10}, 160 {ZIO_ZSTD_LEVEL_11, ZIO_ZSTD_LEVEL_11}, 161 {ZIO_ZSTD_LEVEL_12, ZIO_ZSTD_LEVEL_12}, 162 {ZIO_ZSTD_LEVEL_13, ZIO_ZSTD_LEVEL_13}, 163 {ZIO_ZSTD_LEVEL_14, ZIO_ZSTD_LEVEL_14}, 164 {ZIO_ZSTD_LEVEL_15, ZIO_ZSTD_LEVEL_15}, 165 {ZIO_ZSTD_LEVEL_16, ZIO_ZSTD_LEVEL_16}, 166 {ZIO_ZSTD_LEVEL_17, ZIO_ZSTD_LEVEL_17}, 167 {ZIO_ZSTD_LEVEL_18, ZIO_ZSTD_LEVEL_18}, 168 {ZIO_ZSTD_LEVEL_19, ZIO_ZSTD_LEVEL_19}, 169 {-1, ZIO_ZSTD_LEVEL_FAST_1}, 170 {-2, ZIO_ZSTD_LEVEL_FAST_2}, 171 {-3, ZIO_ZSTD_LEVEL_FAST_3}, 172 {-4, ZIO_ZSTD_LEVEL_FAST_4}, 173 {-5, ZIO_ZSTD_LEVEL_FAST_5}, 174 {-6, ZIO_ZSTD_LEVEL_FAST_6}, 175 {-7, ZIO_ZSTD_LEVEL_FAST_7}, 176 {-8, ZIO_ZSTD_LEVEL_FAST_8}, 177 {-9, ZIO_ZSTD_LEVEL_FAST_9}, 178 {-10, ZIO_ZSTD_LEVEL_FAST_10}, 179 {-20, ZIO_ZSTD_LEVEL_FAST_20}, 180 {-30, ZIO_ZSTD_LEVEL_FAST_30}, 181 {-40, ZIO_ZSTD_LEVEL_FAST_40}, 182 {-50, ZIO_ZSTD_LEVEL_FAST_50}, 183 {-60, ZIO_ZSTD_LEVEL_FAST_60}, 184 {-70, ZIO_ZSTD_LEVEL_FAST_70}, 185 {-80, ZIO_ZSTD_LEVEL_FAST_80}, 186 {-90, ZIO_ZSTD_LEVEL_FAST_90}, 187 {-100, ZIO_ZSTD_LEVEL_FAST_100}, 188 {-500, ZIO_ZSTD_LEVEL_FAST_500}, 189 {-1000, ZIO_ZSTD_LEVEL_FAST_1000}, 190 }; 191 192 /* 193 * This variable represents the maximum count of the pool based on the number 194 * of CPUs plus some buffer. We default to cpu count * 4, see init_zstd. 195 */ 196 static int pool_count = 16; 197 198 #define ZSTD_POOL_MAX pool_count 199 #define ZSTD_POOL_TIMEOUT 60 * 2 200 201 static struct zstd_fallback_mem zstd_dctx_fallback; 202 static struct zstd_pool *zstd_mempool_cctx; 203 static struct zstd_pool *zstd_mempool_dctx; 204 205 /* 206 * Try to get a cached allocated buffer from memory pool or allocate a new one 207 * if necessary. If a object is older than 2 minutes and does not fit the 208 * requested size, it will be released and a new cached entry will be allocated. 209 * If other pooled objects are detected without being used for 2 minutes, they 210 * will be released, too. 211 * 212 * The concept is that high frequency memory allocations of bigger objects are 213 * expensive. So if a lot of work is going on, allocations will be kept for a 214 * while and can be reused in that time frame. 215 * 216 * The scheduled release will be updated every time a object is reused. 217 */ 218 static void * 219 zstd_mempool_alloc(struct zstd_pool *zstd_mempool, size_t size) 220 { 221 struct zstd_pool *pool; 222 struct zstd_kmem *mem = NULL; 223 224 if (!zstd_mempool) { 225 return (NULL); 226 } 227 228 /* Seek for preallocated memory slot and free obsolete slots */ 229 for (int i = 0; i < ZSTD_POOL_MAX; i++) { 230 pool = &zstd_mempool[i]; 231 /* 232 * This lock is simply a marker for a pool object beeing in use. 233 * If it's already hold, it will be skipped. 234 * 235 * We need to create it before checking it to avoid race 236 * conditions caused by running in a threaded context. 237 * 238 * The lock is later released by zstd_mempool_free. 239 */ 240 if (mutex_tryenter(&pool->barrier)) { 241 /* 242 * Check if objects fits the size, if so we take it and 243 * update the timestamp. 244 */ 245 if (size && !mem && pool->mem && size <= pool->size) { 246 pool->timeout = gethrestime_sec() + 247 ZSTD_POOL_TIMEOUT; 248 mem = pool->mem; 249 continue; 250 } 251 252 /* Free memory if unused object older than 2 minutes */ 253 if (pool->mem && gethrestime_sec() > pool->timeout) { 254 vmem_free(pool->mem, pool->size); 255 ZSTDSTAT_SUB(zstd_stat_buffers, 1); 256 ZSTDSTAT_SUB(zstd_stat_size, pool->size); 257 pool->mem = NULL; 258 pool->size = 0; 259 pool->timeout = 0; 260 } 261 262 mutex_exit(&pool->barrier); 263 } 264 } 265 266 if (!size || mem) { 267 return (mem); 268 } 269 270 /* 271 * If no preallocated slot was found, try to fill in a new one. 272 * 273 * We run a similar algorithm twice here to avoid pool fragmentation. 274 * The first one may generate holes in the list if objects get released. 275 * We always make sure that these holes get filled instead of adding new 276 * allocations constantly at the end. 277 */ 278 for (int i = 0; i < ZSTD_POOL_MAX; i++) { 279 pool = &zstd_mempool[i]; 280 if (mutex_tryenter(&pool->barrier)) { 281 /* Object is free, try to allocate new one */ 282 if (!pool->mem) { 283 mem = vmem_alloc(size, KM_SLEEP); 284 if (mem) { 285 ZSTDSTAT_ADD(zstd_stat_buffers, 1); 286 ZSTDSTAT_ADD(zstd_stat_size, size); 287 pool->mem = mem; 288 pool->size = size; 289 /* Keep track for later release */ 290 mem->pool = pool; 291 mem->kmem_type = ZSTD_KMEM_POOL; 292 mem->kmem_size = size; 293 } 294 } 295 296 if (size <= pool->size) { 297 /* Update timestamp */ 298 pool->timeout = gethrestime_sec() + 299 ZSTD_POOL_TIMEOUT; 300 301 return (pool->mem); 302 } 303 304 mutex_exit(&pool->barrier); 305 } 306 } 307 308 /* 309 * If the pool is full or the allocation failed, try lazy allocation 310 * instead. 311 */ 312 if (!mem) { 313 mem = vmem_alloc(size, KM_NOSLEEP); 314 if (mem) { 315 mem->pool = NULL; 316 mem->kmem_type = ZSTD_KMEM_DEFAULT; 317 mem->kmem_size = size; 318 } 319 } 320 321 return (mem); 322 } 323 324 /* Mark object as released by releasing the barrier mutex */ 325 static void 326 zstd_mempool_free(struct zstd_kmem *z) 327 { 328 mutex_exit(&z->pool->barrier); 329 } 330 331 /* Convert ZFS internal enum to ZSTD level */ 332 static int 333 zstd_enum_to_level(enum zio_zstd_levels level, int16_t *zstd_level) 334 { 335 if (level > 0 && level <= ZIO_ZSTD_LEVEL_19) { 336 *zstd_level = zstd_levels[level - 1].zstd_level; 337 return (0); 338 } 339 if (level >= ZIO_ZSTD_LEVEL_FAST_1 && 340 level <= ZIO_ZSTD_LEVEL_FAST_1000) { 341 *zstd_level = zstd_levels[level - ZIO_ZSTD_LEVEL_FAST_1 342 + ZIO_ZSTD_LEVEL_19].zstd_level; 343 return (0); 344 } 345 346 /* Invalid/unknown zfs compression enum - this should never happen. */ 347 return (1); 348 } 349 350 /* Compress block using zstd */ 351 size_t 352 zfs_zstd_compress(void *s_start, void *d_start, size_t s_len, size_t d_len, 353 int level) 354 { 355 size_t c_len; 356 int16_t zstd_level; 357 zfs_zstdhdr_t *hdr; 358 ZSTD_CCtx *cctx; 359 360 hdr = (zfs_zstdhdr_t *)d_start; 361 362 /* Skip compression if the specified level is invalid */ 363 if (zstd_enum_to_level(level, &zstd_level)) { 364 ZSTDSTAT_BUMP(zstd_stat_com_inval); 365 return (s_len); 366 } 367 368 ASSERT3U(d_len, >=, sizeof (*hdr)); 369 ASSERT3U(d_len, <=, s_len); 370 ASSERT3U(zstd_level, !=, 0); 371 372 cctx = ZSTD_createCCtx_advanced(zstd_malloc); 373 374 /* 375 * Out of kernel memory, gently fall through - this will disable 376 * compression in zio_compress_data 377 */ 378 if (!cctx) { 379 ZSTDSTAT_BUMP(zstd_stat_com_alloc_fail); 380 return (s_len); 381 } 382 383 /* Set the compression level */ 384 ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, zstd_level); 385 386 /* Use the "magicless" zstd header which saves us 4 header bytes */ 387 ZSTD_CCtx_setParameter(cctx, ZSTD_c_format, ZSTD_f_zstd1_magicless); 388 389 /* 390 * Disable redundant checksum calculation and content size storage since 391 * this is already done by ZFS itself. 392 */ 393 ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 0); 394 ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, 0); 395 396 c_len = ZSTD_compress2(cctx, 397 hdr->data, 398 d_len - sizeof (*hdr), 399 s_start, s_len); 400 401 ZSTD_freeCCtx(cctx); 402 403 /* Error in the compression routine, disable compression. */ 404 if (ZSTD_isError(c_len)) { 405 /* 406 * If we are aborting the compression because the saves are 407 * too small, that is not a failure. Everything else is a 408 * failure, so increment the compression failure counter. 409 */ 410 if (ZSTD_getErrorCode(c_len) != ZSTD_error_dstSize_tooSmall) { 411 ZSTDSTAT_BUMP(zstd_stat_com_fail); 412 } 413 return (s_len); 414 } 415 416 /* 417 * Encode the compressed buffer size at the start. We'll need this in 418 * decompression to counter the effects of padding which might be added 419 * to the compressed buffer and which, if unhandled, would confuse the 420 * hell out of our decompression function. 421 */ 422 hdr->c_len = BE_32(c_len); 423 424 /* 425 * Check version for overflow. 426 * The limit of 24 bits must not be exceeded. This allows a maximum 427 * version 1677.72.15 which we don't expect to be ever reached. 428 */ 429 ASSERT3U(ZSTD_VERSION_NUMBER, <=, 0xFFFFFF); 430 431 /* 432 * Encode the compression level as well. We may need to know the 433 * original compression level if compressed_arc is disabled, to match 434 * the compression settings to write this block to the L2ARC. 435 * 436 * Encode the actual level, so if the enum changes in the future, we 437 * will be compatible. 438 * 439 * The upper 24 bits store the ZSTD version to be able to provide 440 * future compatibility, since new versions might enhance the 441 * compression algorithm in a way, where the compressed data will 442 * change. 443 * 444 * As soon as such incompatibility occurs, handling code needs to be 445 * added, differentiating between the versions. 446 */ 447 hdr->version = ZSTD_VERSION_NUMBER; 448 hdr->level = level; 449 hdr->raw_version_level = BE_32(hdr->raw_version_level); 450 451 return (c_len + sizeof (*hdr)); 452 } 453 454 /* Decompress block using zstd and return its stored level */ 455 int 456 zfs_zstd_decompress_level(void *s_start, void *d_start, size_t s_len, 457 size_t d_len, uint8_t *level) 458 { 459 ZSTD_DCtx *dctx; 460 size_t result; 461 int16_t zstd_level; 462 uint32_t c_len; 463 const zfs_zstdhdr_t *hdr; 464 zfs_zstdhdr_t hdr_copy; 465 466 hdr = (const zfs_zstdhdr_t *)s_start; 467 c_len = BE_32(hdr->c_len); 468 469 /* 470 * Make a copy instead of directly converting the header, since we must 471 * not modify the original data that may be used again later. 472 */ 473 hdr_copy.raw_version_level = BE_32(hdr->raw_version_level); 474 475 /* 476 * NOTE: We ignore the ZSTD version for now. As soon as any 477 * incompatibility occurrs, it has to be handled accordingly. 478 * The version can be accessed via `hdr_copy.version`. 479 */ 480 481 /* 482 * Convert and check the level 483 * An invalid level is a strong indicator for data corruption! In such 484 * case return an error so the upper layers can try to fix it. 485 */ 486 if (zstd_enum_to_level(hdr_copy.level, &zstd_level)) { 487 ZSTDSTAT_BUMP(zstd_stat_dec_inval); 488 return (1); 489 } 490 491 ASSERT3U(d_len, >=, s_len); 492 ASSERT3U(hdr_copy.level, !=, ZIO_COMPLEVEL_INHERIT); 493 494 /* Invalid compressed buffer size encoded at start */ 495 if (c_len + sizeof (*hdr) > s_len) { 496 ZSTDSTAT_BUMP(zstd_stat_dec_header_inval); 497 return (1); 498 } 499 500 dctx = ZSTD_createDCtx_advanced(zstd_dctx_malloc); 501 if (!dctx) { 502 ZSTDSTAT_BUMP(zstd_stat_dec_alloc_fail); 503 return (1); 504 } 505 506 /* Set header type to "magicless" */ 507 ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, ZSTD_f_zstd1_magicless); 508 509 /* Decompress the data and release the context */ 510 result = ZSTD_decompressDCtx(dctx, d_start, d_len, hdr->data, c_len); 511 ZSTD_freeDCtx(dctx); 512 513 /* 514 * Returns 0 on success (decompression function returned non-negative) 515 * and non-zero on failure (decompression function returned negative. 516 */ 517 if (ZSTD_isError(result)) { 518 ZSTDSTAT_BUMP(zstd_stat_dec_fail); 519 return (1); 520 } 521 522 if (level) { 523 *level = hdr_copy.level; 524 } 525 526 return (0); 527 } 528 529 /* Decompress datablock using zstd */ 530 int 531 zfs_zstd_decompress(void *s_start, void *d_start, size_t s_len, size_t d_len, 532 int level __maybe_unused) 533 { 534 535 return (zfs_zstd_decompress_level(s_start, d_start, s_len, d_len, 536 NULL)); 537 } 538 539 /* Allocator for zstd compression context using mempool_allocator */ 540 static void * 541 zstd_alloc(void *opaque __maybe_unused, size_t size) 542 { 543 size_t nbytes = sizeof (struct zstd_kmem) + size; 544 struct zstd_kmem *z = NULL; 545 546 z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_cctx, nbytes); 547 548 if (!z) { 549 ZSTDSTAT_BUMP(zstd_stat_alloc_fail); 550 return (NULL); 551 } 552 553 return ((void*)z + (sizeof (struct zstd_kmem))); 554 } 555 556 /* 557 * Allocator for zstd decompression context using mempool_allocator with 558 * fallback to reserved memory if allocation fails 559 */ 560 static void * 561 zstd_dctx_alloc(void *opaque __maybe_unused, size_t size) 562 { 563 size_t nbytes = sizeof (struct zstd_kmem) + size; 564 struct zstd_kmem *z = NULL; 565 enum zstd_kmem_type type = ZSTD_KMEM_DEFAULT; 566 567 z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_dctx, nbytes); 568 if (!z) { 569 /* Try harder, decompression shall not fail */ 570 z = vmem_alloc(nbytes, KM_SLEEP); 571 if (z) { 572 z->pool = NULL; 573 } 574 ZSTDSTAT_BUMP(zstd_stat_alloc_fail); 575 } else { 576 return ((void*)z + (sizeof (struct zstd_kmem))); 577 } 578 579 /* Fallback if everything fails */ 580 if (!z) { 581 /* 582 * Barrier since we only can handle it in a single thread. All 583 * other following threads need to wait here until decompression 584 * is completed. zstd_free will release this barrier later. 585 */ 586 mutex_enter(&zstd_dctx_fallback.barrier); 587 588 z = zstd_dctx_fallback.mem; 589 type = ZSTD_KMEM_DCTX; 590 ZSTDSTAT_BUMP(zstd_stat_alloc_fallback); 591 } 592 593 /* Allocation should always be successful */ 594 if (!z) { 595 return (NULL); 596 } 597 598 z->kmem_type = type; 599 z->kmem_size = nbytes; 600 601 return ((void*)z + (sizeof (struct zstd_kmem))); 602 } 603 604 /* Free allocated memory by its specific type */ 605 static void 606 zstd_free(void *opaque __maybe_unused, void *ptr) 607 { 608 struct zstd_kmem *z = (ptr - sizeof (struct zstd_kmem)); 609 enum zstd_kmem_type type; 610 611 ASSERT3U(z->kmem_type, <, ZSTD_KMEM_COUNT); 612 ASSERT3U(z->kmem_type, >, ZSTD_KMEM_UNKNOWN); 613 614 type = z->kmem_type; 615 switch (type) { 616 case ZSTD_KMEM_DEFAULT: 617 vmem_free(z, z->kmem_size); 618 break; 619 case ZSTD_KMEM_POOL: 620 zstd_mempool_free(z); 621 break; 622 case ZSTD_KMEM_DCTX: 623 mutex_exit(&zstd_dctx_fallback.barrier); 624 break; 625 default: 626 break; 627 } 628 } 629 630 /* Allocate fallback memory to ensure safe decompression */ 631 static void __init 632 create_fallback_mem(struct zstd_fallback_mem *mem, size_t size) 633 { 634 mem->mem_size = size; 635 mem->mem = vmem_zalloc(mem->mem_size, KM_SLEEP); 636 mutex_init(&mem->barrier, NULL, MUTEX_DEFAULT, NULL); 637 } 638 639 /* Initialize memory pool barrier mutexes */ 640 static void __init 641 zstd_mempool_init(void) 642 { 643 zstd_mempool_cctx = (struct zstd_pool *) 644 kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP); 645 zstd_mempool_dctx = (struct zstd_pool *) 646 kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP); 647 648 for (int i = 0; i < ZSTD_POOL_MAX; i++) { 649 mutex_init(&zstd_mempool_cctx[i].barrier, NULL, 650 MUTEX_DEFAULT, NULL); 651 mutex_init(&zstd_mempool_dctx[i].barrier, NULL, 652 MUTEX_DEFAULT, NULL); 653 } 654 } 655 656 /* Initialize zstd-related memory handling */ 657 static int __init 658 zstd_meminit(void) 659 { 660 zstd_mempool_init(); 661 662 /* 663 * Estimate the size of the fallback decompression context. 664 * The expected size on x64 with current ZSTD should be about 160 KB. 665 */ 666 create_fallback_mem(&zstd_dctx_fallback, 667 P2ROUNDUP(ZSTD_estimateDCtxSize() + sizeof (struct zstd_kmem), 668 PAGESIZE)); 669 670 return (0); 671 } 672 673 /* Release object from pool and free memory */ 674 static void __exit 675 release_pool(struct zstd_pool *pool) 676 { 677 mutex_destroy(&pool->barrier); 678 vmem_free(pool->mem, pool->size); 679 pool->mem = NULL; 680 pool->size = 0; 681 } 682 683 /* Release memory pool objects */ 684 static void __exit 685 zstd_mempool_deinit(void) 686 { 687 for (int i = 0; i < ZSTD_POOL_MAX; i++) { 688 release_pool(&zstd_mempool_cctx[i]); 689 release_pool(&zstd_mempool_dctx[i]); 690 } 691 692 kmem_free(zstd_mempool_dctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool)); 693 kmem_free(zstd_mempool_cctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool)); 694 zstd_mempool_dctx = NULL; 695 zstd_mempool_cctx = NULL; 696 } 697 698 /* release unused memory from pool */ 699 700 void 701 zfs_zstd_cache_reap_now(void) 702 { 703 704 /* 705 * Short-circuit if there are no buffers to begin with. 706 */ 707 if (ZSTDSTAT(zstd_stat_buffers) == 0) 708 return; 709 710 /* 711 * calling alloc with zero size seeks 712 * and releases old unused objects 713 */ 714 zstd_mempool_alloc(zstd_mempool_cctx, 0); 715 zstd_mempool_alloc(zstd_mempool_dctx, 0); 716 } 717 718 extern int __init 719 zstd_init(void) 720 { 721 /* Set pool size by using maximum sane thread count * 4 */ 722 pool_count = (boot_ncpus * 4); 723 zstd_meminit(); 724 725 /* Initialize kstat */ 726 zstd_ksp = kstat_create("zfs", 0, "zstd", "misc", 727 KSTAT_TYPE_NAMED, sizeof (zstd_stats) / sizeof (kstat_named_t), 728 KSTAT_FLAG_VIRTUAL); 729 if (zstd_ksp != NULL) { 730 zstd_ksp->ks_data = &zstd_stats; 731 kstat_install(zstd_ksp); 732 } 733 734 return (0); 735 } 736 737 extern void __exit 738 zstd_fini(void) 739 { 740 /* Deinitialize kstat */ 741 if (zstd_ksp != NULL) { 742 kstat_delete(zstd_ksp); 743 zstd_ksp = NULL; 744 } 745 746 /* Release fallback memory */ 747 vmem_free(zstd_dctx_fallback.mem, zstd_dctx_fallback.mem_size); 748 mutex_destroy(&zstd_dctx_fallback.barrier); 749 750 /* Deinit memory pool */ 751 zstd_mempool_deinit(); 752 } 753 754 #if defined(_KERNEL) 755 module_init(zstd_init); 756 module_exit(zstd_fini); 757 758 ZFS_MODULE_DESCRIPTION("ZSTD Compression for ZFS"); 759 ZFS_MODULE_LICENSE("Dual BSD/GPL"); 760 ZFS_MODULE_VERSION(ZSTD_VERSION_STRING); 761 762 EXPORT_SYMBOL(zfs_zstd_compress); 763 EXPORT_SYMBOL(zfs_zstd_decompress_level); 764 EXPORT_SYMBOL(zfs_zstd_decompress); 765 EXPORT_SYMBOL(zfs_zstd_cache_reap_now); 766 #endif 767