1 /* 2 * Copyright (c) 2016-2020, Yann Collet, Facebook, Inc. 3 * All rights reserved. 4 * 5 * This source code is licensed under both the BSD-style license (found in the 6 * LICENSE file in the root directory of this source tree) and the GPLv2 (found 7 * in the COPYING file in the root directory of this source tree). 8 * You may select, at your option, one of the above-listed licenses. 9 */ 10 11 12 /* ====== Dependencies ======= */ 13 #include <stddef.h> /* size_t */ 14 #include "debug.h" /* assert */ 15 #include "zstd_internal.h" /* ZSTD_malloc, ZSTD_free */ 16 #include "pool.h" 17 18 /* ====== Compiler specifics ====== */ 19 #if defined(_MSC_VER) 20 # pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */ 21 #endif 22 23 24 #ifdef ZSTD_MULTITHREAD 25 26 #include "threading.h" /* pthread adaptation */ 27 28 /* A job is a function and an opaque argument */ 29 typedef struct POOL_job_s { 30 POOL_function function; 31 void *opaque; 32 } POOL_job; 33 34 struct POOL_ctx_s { 35 ZSTD_customMem customMem; 36 /* Keep track of the threads */ 37 ZSTD_pthread_t* threads; 38 size_t threadCapacity; 39 size_t threadLimit; 40 41 /* The queue is a circular buffer */ 42 POOL_job *queue; 43 size_t queueHead; 44 size_t queueTail; 45 size_t queueSize; 46 47 /* The number of threads working on jobs */ 48 size_t numThreadsBusy; 49 /* Indicates if the queue is empty */ 50 int queueEmpty; 51 52 /* The mutex protects the queue */ 53 ZSTD_pthread_mutex_t queueMutex; 54 /* Condition variable for pushers to wait on when the queue is full */ 55 ZSTD_pthread_cond_t queuePushCond; 56 /* Condition variables for poppers to wait on when the queue is empty */ 57 ZSTD_pthread_cond_t queuePopCond; 58 /* Indicates if the queue is shutting down */ 59 int shutdown; 60 }; 61 62 /* POOL_thread() : 63 * Work thread for the thread pool. 64 * Waits for jobs and executes them. 65 * @returns : NULL on failure else non-null. 66 */ 67 static void* POOL_thread(void* opaque) { 68 POOL_ctx* const ctx = (POOL_ctx*)opaque; 69 if (!ctx) { return NULL; } 70 for (;;) { 71 /* Lock the mutex and wait for a non-empty queue or until shutdown */ 72 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 73 74 while ( ctx->queueEmpty 75 || (ctx->numThreadsBusy >= ctx->threadLimit) ) { 76 if (ctx->shutdown) { 77 /* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit), 78 * a few threads will be shutdown while !queueEmpty, 79 * but enough threads will remain active to finish the queue */ 80 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 81 return opaque; 82 } 83 ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex); 84 } 85 /* Pop a job off the queue */ 86 { POOL_job const job = ctx->queue[ctx->queueHead]; 87 ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize; 88 ctx->numThreadsBusy++; 89 ctx->queueEmpty = ctx->queueHead == ctx->queueTail; 90 /* Unlock the mutex, signal a pusher, and run the job */ 91 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 92 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 93 94 job.function(job.opaque); 95 96 /* If the intended queue size was 0, signal after finishing job */ 97 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 98 ctx->numThreadsBusy--; 99 if (ctx->queueSize == 1) { 100 ZSTD_pthread_cond_signal(&ctx->queuePushCond); 101 } 102 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 103 } 104 } /* for (;;) */ 105 assert(0); /* Unreachable */ 106 } 107 108 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 109 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 110 } 111 112 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, 113 ZSTD_customMem customMem) { 114 POOL_ctx* ctx; 115 /* Check parameters */ 116 if (!numThreads) { return NULL; } 117 /* Allocate the context and zero initialize */ 118 ctx = (POOL_ctx*)ZSTD_calloc(sizeof(POOL_ctx), customMem); 119 if (!ctx) { return NULL; } 120 /* Initialize the job queue. 121 * It needs one extra space since one space is wasted to differentiate 122 * empty and full queues. 123 */ 124 ctx->queueSize = queueSize + 1; 125 ctx->queue = (POOL_job*)ZSTD_malloc(ctx->queueSize * sizeof(POOL_job), customMem); 126 ctx->queueHead = 0; 127 ctx->queueTail = 0; 128 ctx->numThreadsBusy = 0; 129 ctx->queueEmpty = 1; 130 { 131 int error = 0; 132 error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL); 133 error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL); 134 error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL); 135 if (error) { POOL_free(ctx); return NULL; } 136 } 137 ctx->shutdown = 0; 138 /* Allocate space for the thread handles */ 139 ctx->threads = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), customMem); 140 ctx->threadCapacity = 0; 141 ctx->customMem = customMem; 142 /* Check for errors */ 143 if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; } 144 /* Initialize the threads */ 145 { size_t i; 146 for (i = 0; i < numThreads; ++i) { 147 if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) { 148 ctx->threadCapacity = i; 149 POOL_free(ctx); 150 return NULL; 151 } } 152 ctx->threadCapacity = numThreads; 153 ctx->threadLimit = numThreads; 154 } 155 return ctx; 156 } 157 158 /*! POOL_join() : 159 Shutdown the queue, wake any sleeping threads, and join all of the threads. 160 */ 161 static void POOL_join(POOL_ctx* ctx) { 162 /* Shut down the queue */ 163 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 164 ctx->shutdown = 1; 165 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 166 /* Wake up sleeping threads */ 167 ZSTD_pthread_cond_broadcast(&ctx->queuePushCond); 168 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 169 /* Join all of the threads */ 170 { size_t i; 171 for (i = 0; i < ctx->threadCapacity; ++i) { 172 ZSTD_pthread_join(ctx->threads[i], NULL); /* note : could fail */ 173 } } 174 } 175 176 void POOL_free(POOL_ctx *ctx) { 177 if (!ctx) { return; } 178 POOL_join(ctx); 179 ZSTD_pthread_mutex_destroy(&ctx->queueMutex); 180 ZSTD_pthread_cond_destroy(&ctx->queuePushCond); 181 ZSTD_pthread_cond_destroy(&ctx->queuePopCond); 182 ZSTD_free(ctx->queue, ctx->customMem); 183 ZSTD_free(ctx->threads, ctx->customMem); 184 ZSTD_free(ctx, ctx->customMem); 185 } 186 187 188 189 size_t POOL_sizeof(POOL_ctx *ctx) { 190 if (ctx==NULL) return 0; /* supports sizeof NULL */ 191 return sizeof(*ctx) 192 + ctx->queueSize * sizeof(POOL_job) 193 + ctx->threadCapacity * sizeof(ZSTD_pthread_t); 194 } 195 196 197 /* @return : 0 on success, 1 on error */ 198 static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads) 199 { 200 if (numThreads <= ctx->threadCapacity) { 201 if (!numThreads) return 1; 202 ctx->threadLimit = numThreads; 203 return 0; 204 } 205 /* numThreads > threadCapacity */ 206 { ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_malloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem); 207 if (!threadPool) return 1; 208 /* replace existing thread pool */ 209 memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(*threadPool)); 210 ZSTD_free(ctx->threads, ctx->customMem); 211 ctx->threads = threadPool; 212 /* Initialize additional threads */ 213 { size_t threadId; 214 for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) { 215 if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) { 216 ctx->threadCapacity = threadId; 217 return 1; 218 } } 219 } } 220 /* successfully expanded */ 221 ctx->threadCapacity = numThreads; 222 ctx->threadLimit = numThreads; 223 return 0; 224 } 225 226 /* @return : 0 on success, 1 on error */ 227 int POOL_resize(POOL_ctx* ctx, size_t numThreads) 228 { 229 int result; 230 if (ctx==NULL) return 1; 231 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 232 result = POOL_resize_internal(ctx, numThreads); 233 ZSTD_pthread_cond_broadcast(&ctx->queuePopCond); 234 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 235 return result; 236 } 237 238 /** 239 * Returns 1 if the queue is full and 0 otherwise. 240 * 241 * When queueSize is 1 (pool was created with an intended queueSize of 0), 242 * then a queue is empty if there is a thread free _and_ no job is waiting. 243 */ 244 static int isQueueFull(POOL_ctx const* ctx) { 245 if (ctx->queueSize > 1) { 246 return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize); 247 } else { 248 return (ctx->numThreadsBusy == ctx->threadLimit) || 249 !ctx->queueEmpty; 250 } 251 } 252 253 254 static void POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque) 255 { 256 POOL_job const job = {function, opaque}; 257 assert(ctx != NULL); 258 if (ctx->shutdown) return; 259 260 ctx->queueEmpty = 0; 261 ctx->queue[ctx->queueTail] = job; 262 ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize; 263 ZSTD_pthread_cond_signal(&ctx->queuePopCond); 264 } 265 266 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) 267 { 268 assert(ctx != NULL); 269 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 270 /* Wait until there is space in the queue for the new job */ 271 while (isQueueFull(ctx) && (!ctx->shutdown)) { 272 ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex); 273 } 274 POOL_add_internal(ctx, function, opaque); 275 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 276 } 277 278 279 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) 280 { 281 assert(ctx != NULL); 282 ZSTD_pthread_mutex_lock(&ctx->queueMutex); 283 if (isQueueFull(ctx)) { 284 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 285 return 0; 286 } 287 POOL_add_internal(ctx, function, opaque); 288 ZSTD_pthread_mutex_unlock(&ctx->queueMutex); 289 return 1; 290 } 291 292 293 #else /* ZSTD_MULTITHREAD not defined */ 294 295 /* ========================== */ 296 /* No multi-threading support */ 297 /* ========================== */ 298 299 300 /* We don't need any data, but if it is empty, malloc() might return NULL. */ 301 struct POOL_ctx_s { 302 int dummy; 303 }; 304 static POOL_ctx g_ctx; 305 306 POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) { 307 return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem); 308 } 309 310 POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem) { 311 (void)numThreads; 312 (void)queueSize; 313 (void)customMem; 314 return &g_ctx; 315 } 316 317 void POOL_free(POOL_ctx* ctx) { 318 assert(!ctx || ctx == &g_ctx); 319 (void)ctx; 320 } 321 322 int POOL_resize(POOL_ctx* ctx, size_t numThreads) { 323 (void)ctx; (void)numThreads; 324 return 0; 325 } 326 327 void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) { 328 (void)ctx; 329 function(opaque); 330 } 331 332 int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) { 333 (void)ctx; 334 function(opaque); 335 return 1; 336 } 337 338 size_t POOL_sizeof(POOL_ctx* ctx) { 339 if (ctx==NULL) return 0; /* supports sizeof NULL */ 340 assert(ctx == &g_ctx); 341 return sizeof(*ctx); 342 } 343 344 #endif /* ZSTD_MULTITHREAD */ 345