xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision fe815331bb40604ba31312acf7e4619674631777)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 
88 #include <sys/zvol_impl.h>
89 
90 
91 unsigned int zvol_inhibit_dev = 0;
92 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
93 
94 struct hlist_head *zvol_htable;
95 list_t zvol_state_list;
96 krwlock_t zvol_state_lock;
97 const zvol_platform_ops_t *ops;
98 
99 typedef enum {
100 	ZVOL_ASYNC_REMOVE_MINORS,
101 	ZVOL_ASYNC_RENAME_MINORS,
102 	ZVOL_ASYNC_SET_SNAPDEV,
103 	ZVOL_ASYNC_SET_VOLMODE,
104 	ZVOL_ASYNC_MAX
105 } zvol_async_op_t;
106 
107 typedef struct {
108 	zvol_async_op_t op;
109 	char pool[MAXNAMELEN];
110 	char name1[MAXNAMELEN];
111 	char name2[MAXNAMELEN];
112 	zprop_source_t source;
113 	uint64_t value;
114 } zvol_task_t;
115 
116 uint64_t
117 zvol_name_hash(const char *name)
118 {
119 	int i;
120 	uint64_t crc = -1ULL;
121 	const uint8_t *p = (const uint8_t *)name;
122 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
123 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
124 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
125 	}
126 	return (crc);
127 }
128 
129 /*
130  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
131  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
132  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
133  * before zv_state_lock. The mode argument indicates the mode (including none)
134  * for zv_suspend_lock to be taken.
135  */
136 zvol_state_t *
137 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
138 {
139 	zvol_state_t *zv;
140 	struct hlist_node *p = NULL;
141 
142 	rw_enter(&zvol_state_lock, RW_READER);
143 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
144 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
145 		mutex_enter(&zv->zv_state_lock);
146 		if (zv->zv_hash == hash &&
147 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
148 			/*
149 			 * this is the right zvol, take the locks in the
150 			 * right order
151 			 */
152 			if (mode != RW_NONE &&
153 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
154 				mutex_exit(&zv->zv_state_lock);
155 				rw_enter(&zv->zv_suspend_lock, mode);
156 				mutex_enter(&zv->zv_state_lock);
157 				/*
158 				 * zvol cannot be renamed as we continue
159 				 * to hold zvol_state_lock
160 				 */
161 				ASSERT(zv->zv_hash == hash &&
162 				    strncmp(zv->zv_name, name, MAXNAMELEN)
163 				    == 0);
164 			}
165 			rw_exit(&zvol_state_lock);
166 			return (zv);
167 		}
168 		mutex_exit(&zv->zv_state_lock);
169 	}
170 	rw_exit(&zvol_state_lock);
171 
172 	return (NULL);
173 }
174 
175 /*
176  * Find a zvol_state_t given the name.
177  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
178  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
179  * before zv_state_lock. The mode argument indicates the mode (including none)
180  * for zv_suspend_lock to be taken.
181  */
182 static zvol_state_t *
183 zvol_find_by_name(const char *name, int mode)
184 {
185 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
186 }
187 
188 /*
189  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
190  */
191 void
192 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
193 {
194 	zfs_creat_t *zct = arg;
195 	nvlist_t *nvprops = zct->zct_props;
196 	int error;
197 	uint64_t volblocksize, volsize;
198 
199 	VERIFY(nvlist_lookup_uint64(nvprops,
200 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
201 	if (nvlist_lookup_uint64(nvprops,
202 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
203 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
204 
205 	/*
206 	 * These properties must be removed from the list so the generic
207 	 * property setting step won't apply to them.
208 	 */
209 	VERIFY(nvlist_remove_all(nvprops,
210 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
211 	(void) nvlist_remove_all(nvprops,
212 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
213 
214 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
215 	    DMU_OT_NONE, 0, tx);
216 	ASSERT(error == 0);
217 
218 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
219 	    DMU_OT_NONE, 0, tx);
220 	ASSERT(error == 0);
221 
222 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
223 	ASSERT(error == 0);
224 }
225 
226 /*
227  * ZFS_IOC_OBJSET_STATS entry point.
228  */
229 int
230 zvol_get_stats(objset_t *os, nvlist_t *nv)
231 {
232 	int error;
233 	dmu_object_info_t *doi;
234 	uint64_t val;
235 
236 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
237 	if (error)
238 		return (SET_ERROR(error));
239 
240 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
241 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
242 	error = dmu_object_info(os, ZVOL_OBJ, doi);
243 
244 	if (error == 0) {
245 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
246 		    doi->doi_data_block_size);
247 	}
248 
249 	kmem_free(doi, sizeof (dmu_object_info_t));
250 
251 	return (SET_ERROR(error));
252 }
253 
254 /*
255  * Sanity check volume size.
256  */
257 int
258 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
259 {
260 	if (volsize == 0)
261 		return (SET_ERROR(EINVAL));
262 
263 	if (volsize % blocksize != 0)
264 		return (SET_ERROR(EINVAL));
265 
266 #ifdef _ILP32
267 	if (volsize - 1 > SPEC_MAXOFFSET_T)
268 		return (SET_ERROR(EOVERFLOW));
269 #endif
270 	return (0);
271 }
272 
273 /*
274  * Ensure the zap is flushed then inform the VFS of the capacity change.
275  */
276 static int
277 zvol_update_volsize(uint64_t volsize, objset_t *os)
278 {
279 	dmu_tx_t *tx;
280 	int error;
281 	uint64_t txg;
282 
283 	tx = dmu_tx_create(os);
284 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
285 	dmu_tx_mark_netfree(tx);
286 	error = dmu_tx_assign(tx, TXG_WAIT);
287 	if (error) {
288 		dmu_tx_abort(tx);
289 		return (SET_ERROR(error));
290 	}
291 	txg = dmu_tx_get_txg(tx);
292 
293 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
294 	    &volsize, tx);
295 	dmu_tx_commit(tx);
296 
297 	txg_wait_synced(dmu_objset_pool(os), txg);
298 
299 	if (error == 0)
300 		error = dmu_free_long_range(os,
301 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
302 
303 	return (error);
304 }
305 
306 /*
307  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
308  * size will result in a udev "change" event being generated.
309  */
310 int
311 zvol_set_volsize(const char *name, uint64_t volsize)
312 {
313 	objset_t *os = NULL;
314 	uint64_t readonly;
315 	int error;
316 	boolean_t owned = B_FALSE;
317 
318 	error = dsl_prop_get_integer(name,
319 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
320 	if (error != 0)
321 		return (SET_ERROR(error));
322 	if (readonly)
323 		return (SET_ERROR(EROFS));
324 
325 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
326 
327 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
328 	    RW_READ_HELD(&zv->zv_suspend_lock)));
329 
330 	if (zv == NULL || zv->zv_objset == NULL) {
331 		if (zv != NULL)
332 			rw_exit(&zv->zv_suspend_lock);
333 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
334 		    FTAG, &os)) != 0) {
335 			if (zv != NULL)
336 				mutex_exit(&zv->zv_state_lock);
337 			return (SET_ERROR(error));
338 		}
339 		owned = B_TRUE;
340 		if (zv != NULL)
341 			zv->zv_objset = os;
342 	} else {
343 		os = zv->zv_objset;
344 	}
345 
346 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
347 
348 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
349 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
350 		goto out;
351 
352 	error = zvol_update_volsize(volsize, os);
353 	if (error == 0 && zv != NULL) {
354 		zv->zv_volsize = volsize;
355 		zv->zv_changed = 1;
356 	}
357 out:
358 	kmem_free(doi, sizeof (dmu_object_info_t));
359 
360 	if (owned) {
361 		dmu_objset_disown(os, B_TRUE, FTAG);
362 		if (zv != NULL)
363 			zv->zv_objset = NULL;
364 	} else {
365 		rw_exit(&zv->zv_suspend_lock);
366 	}
367 
368 	if (zv != NULL)
369 		mutex_exit(&zv->zv_state_lock);
370 
371 	if (error == 0 && zv != NULL)
372 		ops->zv_update_volsize(zv, volsize);
373 
374 	return (SET_ERROR(error));
375 }
376 
377 /*
378  * Sanity check volume block size.
379  */
380 int
381 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
382 {
383 	/* Record sizes above 128k need the feature to be enabled */
384 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
385 		spa_t *spa;
386 		int error;
387 
388 		if ((error = spa_open(name, &spa, FTAG)) != 0)
389 			return (error);
390 
391 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
392 			spa_close(spa, FTAG);
393 			return (SET_ERROR(ENOTSUP));
394 		}
395 
396 		/*
397 		 * We don't allow setting the property above 1MB,
398 		 * unless the tunable has been changed.
399 		 */
400 		if (volblocksize > zfs_max_recordsize)
401 			return (SET_ERROR(EDOM));
402 
403 		spa_close(spa, FTAG);
404 	}
405 
406 	if (volblocksize < SPA_MINBLOCKSIZE ||
407 	    volblocksize > SPA_MAXBLOCKSIZE ||
408 	    !ISP2(volblocksize))
409 		return (SET_ERROR(EDOM));
410 
411 	return (0);
412 }
413 
414 /*
415  * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
416  */
417 int
418 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
419 {
420 	zvol_state_t *zv;
421 	dmu_tx_t *tx;
422 	int error;
423 
424 	zv = zvol_find_by_name(name, RW_READER);
425 
426 	if (zv == NULL)
427 		return (SET_ERROR(ENXIO));
428 
429 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
430 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
431 
432 	if (zv->zv_flags & ZVOL_RDONLY) {
433 		mutex_exit(&zv->zv_state_lock);
434 		rw_exit(&zv->zv_suspend_lock);
435 		return (SET_ERROR(EROFS));
436 	}
437 
438 	tx = dmu_tx_create(zv->zv_objset);
439 	dmu_tx_hold_bonus(tx, ZVOL_OBJ);
440 	error = dmu_tx_assign(tx, TXG_WAIT);
441 	if (error) {
442 		dmu_tx_abort(tx);
443 	} else {
444 		error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
445 		    volblocksize, 0, tx);
446 		if (error == ENOTSUP)
447 			error = SET_ERROR(EBUSY);
448 		dmu_tx_commit(tx);
449 		if (error == 0)
450 			zv->zv_volblocksize = volblocksize;
451 	}
452 
453 	mutex_exit(&zv->zv_state_lock);
454 	rw_exit(&zv->zv_suspend_lock);
455 
456 	return (SET_ERROR(error));
457 }
458 
459 /*
460  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
461  * implement DKIOCFREE/free-long-range.
462  */
463 static int
464 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
465 {
466 	zvol_state_t *zv = arg1;
467 	lr_truncate_t *lr = arg2;
468 	uint64_t offset, length;
469 
470 	if (byteswap)
471 		byteswap_uint64_array(lr, sizeof (*lr));
472 
473 	offset = lr->lr_offset;
474 	length = lr->lr_length;
475 
476 	return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
477 }
478 
479 /*
480  * Replay a TX_WRITE ZIL transaction that didn't get committed
481  * after a system failure
482  */
483 static int
484 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
485 {
486 	zvol_state_t *zv = arg1;
487 	lr_write_t *lr = arg2;
488 	objset_t *os = zv->zv_objset;
489 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
490 	uint64_t offset, length;
491 	dmu_tx_t *tx;
492 	int error;
493 
494 	if (byteswap)
495 		byteswap_uint64_array(lr, sizeof (*lr));
496 
497 	offset = lr->lr_offset;
498 	length = lr->lr_length;
499 
500 	/* If it's a dmu_sync() block, write the whole block */
501 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
502 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
503 		if (length < blocksize) {
504 			offset -= offset % blocksize;
505 			length = blocksize;
506 		}
507 	}
508 
509 	tx = dmu_tx_create(os);
510 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
511 	error = dmu_tx_assign(tx, TXG_WAIT);
512 	if (error) {
513 		dmu_tx_abort(tx);
514 	} else {
515 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
516 		dmu_tx_commit(tx);
517 	}
518 
519 	return (error);
520 }
521 
522 static int
523 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
524 {
525 	return (SET_ERROR(ENOTSUP));
526 }
527 
528 /*
529  * Callback vectors for replaying records.
530  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
531  */
532 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
533 	zvol_replay_err,	/* no such transaction type */
534 	zvol_replay_err,	/* TX_CREATE */
535 	zvol_replay_err,	/* TX_MKDIR */
536 	zvol_replay_err,	/* TX_MKXATTR */
537 	zvol_replay_err,	/* TX_SYMLINK */
538 	zvol_replay_err,	/* TX_REMOVE */
539 	zvol_replay_err,	/* TX_RMDIR */
540 	zvol_replay_err,	/* TX_LINK */
541 	zvol_replay_err,	/* TX_RENAME */
542 	zvol_replay_write,	/* TX_WRITE */
543 	zvol_replay_truncate,	/* TX_TRUNCATE */
544 	zvol_replay_err,	/* TX_SETATTR */
545 	zvol_replay_err,	/* TX_ACL */
546 	zvol_replay_err,	/* TX_CREATE_ATTR */
547 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
548 	zvol_replay_err,	/* TX_MKDIR_ACL */
549 	zvol_replay_err,	/* TX_MKDIR_ATTR */
550 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
551 	zvol_replay_err,	/* TX_WRITE2 */
552 };
553 
554 /*
555  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
556  *
557  * We store data in the log buffers if it's small enough.
558  * Otherwise we will later flush the data out via dmu_sync().
559  */
560 ssize_t zvol_immediate_write_sz = 32768;
561 
562 void
563 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
564     uint64_t size, int sync)
565 {
566 	uint32_t blocksize = zv->zv_volblocksize;
567 	zilog_t *zilog = zv->zv_zilog;
568 	itx_wr_state_t write_state;
569 
570 	if (zil_replaying(zilog, tx))
571 		return;
572 
573 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
574 		write_state = WR_INDIRECT;
575 	else if (!spa_has_slogs(zilog->zl_spa) &&
576 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
577 		write_state = WR_INDIRECT;
578 	else if (sync)
579 		write_state = WR_COPIED;
580 	else
581 		write_state = WR_NEED_COPY;
582 
583 	while (size) {
584 		itx_t *itx;
585 		lr_write_t *lr;
586 		itx_wr_state_t wr_state = write_state;
587 		ssize_t len = size;
588 
589 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
590 			wr_state = WR_NEED_COPY;
591 		else if (wr_state == WR_INDIRECT)
592 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
593 
594 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
595 		    (wr_state == WR_COPIED ? len : 0));
596 		lr = (lr_write_t *)&itx->itx_lr;
597 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
598 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
599 			zil_itx_destroy(itx);
600 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
601 			lr = (lr_write_t *)&itx->itx_lr;
602 			wr_state = WR_NEED_COPY;
603 		}
604 
605 		itx->itx_wr_state = wr_state;
606 		lr->lr_foid = ZVOL_OBJ;
607 		lr->lr_offset = offset;
608 		lr->lr_length = len;
609 		lr->lr_blkoff = 0;
610 		BP_ZERO(&lr->lr_blkptr);
611 
612 		itx->itx_private = zv;
613 		itx->itx_sync = sync;
614 
615 		(void) zil_itx_assign(zilog, itx, tx);
616 
617 		offset += len;
618 		size -= len;
619 	}
620 }
621 
622 /*
623  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
624  */
625 void
626 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
627     boolean_t sync)
628 {
629 	itx_t *itx;
630 	lr_truncate_t *lr;
631 	zilog_t *zilog = zv->zv_zilog;
632 
633 	if (zil_replaying(zilog, tx))
634 		return;
635 
636 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
637 	lr = (lr_truncate_t *)&itx->itx_lr;
638 	lr->lr_foid = ZVOL_OBJ;
639 	lr->lr_offset = off;
640 	lr->lr_length = len;
641 
642 	itx->itx_sync = sync;
643 	zil_itx_assign(zilog, itx, tx);
644 }
645 
646 
647 /* ARGSUSED */
648 static void
649 zvol_get_done(zgd_t *zgd, int error)
650 {
651 	if (zgd->zgd_db)
652 		dmu_buf_rele(zgd->zgd_db, zgd);
653 
654 	zfs_rangelock_exit(zgd->zgd_lr);
655 
656 	kmem_free(zgd, sizeof (zgd_t));
657 }
658 
659 /*
660  * Get data to generate a TX_WRITE intent log record.
661  */
662 int
663 zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
664 {
665 	zvol_state_t *zv = arg;
666 	uint64_t offset = lr->lr_offset;
667 	uint64_t size = lr->lr_length;
668 	dmu_buf_t *db;
669 	zgd_t *zgd;
670 	int error;
671 
672 	ASSERT3P(lwb, !=, NULL);
673 	ASSERT3P(zio, !=, NULL);
674 	ASSERT3U(size, !=, 0);
675 
676 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
677 	zgd->zgd_lwb = lwb;
678 
679 	/*
680 	 * Write records come in two flavors: immediate and indirect.
681 	 * For small writes it's cheaper to store the data with the
682 	 * log record (immediate); for large writes it's cheaper to
683 	 * sync the data and get a pointer to it (indirect) so that
684 	 * we don't have to write the data twice.
685 	 */
686 	if (buf != NULL) { /* immediate write */
687 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
688 		    size, RL_READER);
689 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
690 		    DMU_READ_NO_PREFETCH);
691 	} else { /* indirect write */
692 		/*
693 		 * Have to lock the whole block to ensure when it's written out
694 		 * and its checksum is being calculated that no one can change
695 		 * the data. Contrarily to zfs_get_data we need not re-check
696 		 * blocksize after we get the lock because it cannot be changed.
697 		 */
698 		size = zv->zv_volblocksize;
699 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
700 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
701 		    size, RL_READER);
702 		error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
703 		    DMU_READ_NO_PREFETCH);
704 		if (error == 0) {
705 			blkptr_t *bp = &lr->lr_blkptr;
706 
707 			zgd->zgd_db = db;
708 			zgd->zgd_bp = bp;
709 
710 			ASSERT(db != NULL);
711 			ASSERT(db->db_offset == offset);
712 			ASSERT(db->db_size == size);
713 
714 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
715 			    zvol_get_done, zgd);
716 
717 			if (error == 0)
718 				return (0);
719 		}
720 	}
721 
722 	zvol_get_done(zgd, error);
723 
724 	return (SET_ERROR(error));
725 }
726 
727 /*
728  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
729  */
730 
731 void
732 zvol_insert(zvol_state_t *zv)
733 {
734 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
735 	list_insert_head(&zvol_state_list, zv);
736 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
737 }
738 
739 /*
740  * Simply remove the zvol from to list of zvols.
741  */
742 static void
743 zvol_remove(zvol_state_t *zv)
744 {
745 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
746 	list_remove(&zvol_state_list, zv);
747 	hlist_del(&zv->zv_hlink);
748 }
749 
750 /*
751  * Setup zv after we just own the zv->objset
752  */
753 static int
754 zvol_setup_zv(zvol_state_t *zv)
755 {
756 	uint64_t volsize;
757 	int error;
758 	uint64_t ro;
759 	objset_t *os = zv->zv_objset;
760 
761 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
762 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
763 
764 	zv->zv_zilog = NULL;
765 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
766 
767 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
768 	if (error)
769 		return (SET_ERROR(error));
770 
771 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
772 	if (error)
773 		return (SET_ERROR(error));
774 
775 	error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
776 	if (error)
777 		return (SET_ERROR(error));
778 
779 	ops->zv_set_capacity(zv, volsize >> 9);
780 	zv->zv_volsize = volsize;
781 
782 	if (ro || dmu_objset_is_snapshot(os) ||
783 	    !spa_writeable(dmu_objset_spa(os))) {
784 		ops->zv_set_disk_ro(zv, 1);
785 		zv->zv_flags |= ZVOL_RDONLY;
786 	} else {
787 		ops->zv_set_disk_ro(zv, 0);
788 		zv->zv_flags &= ~ZVOL_RDONLY;
789 	}
790 	return (0);
791 }
792 
793 /*
794  * Shutdown every zv_objset related stuff except zv_objset itself.
795  * The is the reverse of zvol_setup_zv.
796  */
797 static void
798 zvol_shutdown_zv(zvol_state_t *zv)
799 {
800 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
801 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
802 
803 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
804 		ASSERT(zv->zv_zilog != NULL);
805 		zil_close(zv->zv_zilog);
806 	}
807 
808 	zv->zv_zilog = NULL;
809 
810 	dnode_rele(zv->zv_dn, FTAG);
811 	zv->zv_dn = NULL;
812 
813 	/*
814 	 * Evict cached data. We must write out any dirty data before
815 	 * disowning the dataset.
816 	 */
817 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
818 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
819 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
820 }
821 
822 /*
823  * return the proper tag for rollback and recv
824  */
825 void *
826 zvol_tag(zvol_state_t *zv)
827 {
828 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
829 	return (zv->zv_open_count > 0 ? zv : NULL);
830 }
831 
832 /*
833  * Suspend the zvol for recv and rollback.
834  */
835 zvol_state_t *
836 zvol_suspend(const char *name)
837 {
838 	zvol_state_t *zv;
839 
840 	zv = zvol_find_by_name(name, RW_WRITER);
841 
842 	if (zv == NULL)
843 		return (NULL);
844 
845 	/* block all I/O, release in zvol_resume. */
846 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
847 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
848 
849 	atomic_inc(&zv->zv_suspend_ref);
850 
851 	if (zv->zv_open_count > 0)
852 		zvol_shutdown_zv(zv);
853 
854 	/*
855 	 * do not hold zv_state_lock across suspend/resume to
856 	 * avoid locking up zvol lookups
857 	 */
858 	mutex_exit(&zv->zv_state_lock);
859 
860 	/* zv_suspend_lock is released in zvol_resume() */
861 	return (zv);
862 }
863 
864 int
865 zvol_resume(zvol_state_t *zv)
866 {
867 	int error = 0;
868 
869 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
870 
871 	mutex_enter(&zv->zv_state_lock);
872 
873 	if (zv->zv_open_count > 0) {
874 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
875 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
876 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
877 		dmu_objset_rele(zv->zv_objset, zv);
878 
879 		error = zvol_setup_zv(zv);
880 	}
881 
882 	mutex_exit(&zv->zv_state_lock);
883 
884 	rw_exit(&zv->zv_suspend_lock);
885 	/*
886 	 * We need this because we don't hold zvol_state_lock while releasing
887 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
888 	 * zv_suspend_lock to determine it is safe to free because rwlock is
889 	 * not inherent atomic.
890 	 */
891 	atomic_dec(&zv->zv_suspend_ref);
892 
893 	return (SET_ERROR(error));
894 }
895 
896 int
897 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
898 {
899 	objset_t *os;
900 	int error, locked = 0;
901 	boolean_t ro;
902 
903 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
904 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
905 
906 	/*
907 	 * In all other cases the spa_namespace_lock is taken before the
908 	 * bdev->bd_mutex lock.	 But in this case the Linux __blkdev_get()
909 	 * function calls fops->open() with the bdev->bd_mutex lock held.
910 	 * This deadlock can be easily observed with zvols used as vdevs.
911 	 *
912 	 * To avoid a potential lock inversion deadlock we preemptively
913 	 * try to take the spa_namespace_lock().  Normally it will not
914 	 * be contended and this is safe because spa_open_common() handles
915 	 * the case where the caller already holds the spa_namespace_lock.
916 	 *
917 	 * When it is contended we risk a lock inversion if we were to
918 	 * block waiting for the lock.	Luckily, the __blkdev_get()
919 	 * function allows us to return -ERESTARTSYS which will result in
920 	 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
921 	 * called again.  This process can be repeated safely until both
922 	 * locks are acquired.
923 	 */
924 	if (!mutex_owned(&spa_namespace_lock)) {
925 		locked = mutex_tryenter(&spa_namespace_lock);
926 		if (!locked)
927 			return (SET_ERROR(EINTR));
928 	}
929 
930 	ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
931 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
932 	if (error)
933 		goto out_mutex;
934 
935 	zv->zv_objset = os;
936 
937 	error = zvol_setup_zv(zv);
938 
939 	if (error) {
940 		dmu_objset_disown(os, 1, zv);
941 		zv->zv_objset = NULL;
942 	}
943 
944 out_mutex:
945 	if (locked)
946 		mutex_exit(&spa_namespace_lock);
947 	return (SET_ERROR(error));
948 }
949 
950 void
951 zvol_last_close(zvol_state_t *zv)
952 {
953 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
954 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
955 
956 	zvol_shutdown_zv(zv);
957 
958 	dmu_objset_disown(zv->zv_objset, 1, zv);
959 	zv->zv_objset = NULL;
960 }
961 
962 typedef struct minors_job {
963 	list_t *list;
964 	list_node_t link;
965 	/* input */
966 	char *name;
967 	/* output */
968 	int error;
969 } minors_job_t;
970 
971 /*
972  * Prefetch zvol dnodes for the minors_job
973  */
974 static void
975 zvol_prefetch_minors_impl(void *arg)
976 {
977 	minors_job_t *job = arg;
978 	char *dsname = job->name;
979 	objset_t *os = NULL;
980 
981 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
982 	    FTAG, &os);
983 	if (job->error == 0) {
984 		dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
985 		dmu_objset_disown(os, B_TRUE, FTAG);
986 	}
987 }
988 
989 /*
990  * Mask errors to continue dmu_objset_find() traversal
991  */
992 static int
993 zvol_create_snap_minor_cb(const char *dsname, void *arg)
994 {
995 	minors_job_t *j = arg;
996 	list_t *minors_list = j->list;
997 	const char *name = j->name;
998 
999 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1000 
1001 	/* skip the designated dataset */
1002 	if (name && strcmp(dsname, name) == 0)
1003 		return (0);
1004 
1005 	/* at this point, the dsname should name a snapshot */
1006 	if (strchr(dsname, '@') == 0) {
1007 		dprintf("zvol_create_snap_minor_cb(): "
1008 		    "%s is not a snapshot name\n", dsname);
1009 	} else {
1010 		minors_job_t *job;
1011 		char *n = kmem_strdup(dsname);
1012 		if (n == NULL)
1013 			return (0);
1014 
1015 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1016 		job->name = n;
1017 		job->list = minors_list;
1018 		job->error = 0;
1019 		list_insert_tail(minors_list, job);
1020 		/* don't care if dispatch fails, because job->error is 0 */
1021 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1022 		    TQ_SLEEP);
1023 	}
1024 
1025 	return (0);
1026 }
1027 
1028 /*
1029  * Mask errors to continue dmu_objset_find() traversal
1030  */
1031 static int
1032 zvol_create_minors_cb(const char *dsname, void *arg)
1033 {
1034 	uint64_t snapdev;
1035 	int error;
1036 	list_t *minors_list = arg;
1037 
1038 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1039 
1040 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1041 	if (error)
1042 		return (0);
1043 
1044 	/*
1045 	 * Given the name and the 'snapdev' property, create device minor nodes
1046 	 * with the linkages to zvols/snapshots as needed.
1047 	 * If the name represents a zvol, create a minor node for the zvol, then
1048 	 * check if its snapshots are 'visible', and if so, iterate over the
1049 	 * snapshots and create device minor nodes for those.
1050 	 */
1051 	if (strchr(dsname, '@') == 0) {
1052 		minors_job_t *job;
1053 		char *n = kmem_strdup(dsname);
1054 		if (n == NULL)
1055 			return (0);
1056 
1057 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1058 		job->name = n;
1059 		job->list = minors_list;
1060 		job->error = 0;
1061 		list_insert_tail(minors_list, job);
1062 		/* don't care if dispatch fails, because job->error is 0 */
1063 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1064 		    TQ_SLEEP);
1065 
1066 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1067 			/*
1068 			 * traverse snapshots only, do not traverse children,
1069 			 * and skip the 'dsname'
1070 			 */
1071 			error = dmu_objset_find(dsname,
1072 			    zvol_create_snap_minor_cb, (void *)job,
1073 			    DS_FIND_SNAPSHOTS);
1074 		}
1075 	} else {
1076 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1077 		    dsname);
1078 	}
1079 
1080 	return (0);
1081 }
1082 
1083 /*
1084  * Create minors for the specified dataset, including children and snapshots.
1085  * Pay attention to the 'snapdev' property and iterate over the snapshots
1086  * only if they are 'visible'. This approach allows one to assure that the
1087  * snapshot metadata is read from disk only if it is needed.
1088  *
1089  * The name can represent a dataset to be recursively scanned for zvols and
1090  * their snapshots, or a single zvol snapshot. If the name represents a
1091  * dataset, the scan is performed in two nested stages:
1092  * - scan the dataset for zvols, and
1093  * - for each zvol, create a minor node, then check if the zvol's snapshots
1094  *   are 'visible', and only then iterate over the snapshots if needed
1095  *
1096  * If the name represents a snapshot, a check is performed if the snapshot is
1097  * 'visible' (which also verifies that the parent is a zvol), and if so,
1098  * a minor node for that snapshot is created.
1099  */
1100 void
1101 zvol_create_minors_recursive(const char *name)
1102 {
1103 	list_t minors_list;
1104 	minors_job_t *job;
1105 
1106 	if (zvol_inhibit_dev)
1107 		return;
1108 
1109 	/*
1110 	 * This is the list for prefetch jobs. Whenever we found a match
1111 	 * during dmu_objset_find, we insert a minors_job to the list and do
1112 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1113 	 * any lock because all list operation is done on the current thread.
1114 	 *
1115 	 * We will use this list to do zvol_create_minor_impl after prefetch
1116 	 * so we don't have to traverse using dmu_objset_find again.
1117 	 */
1118 	list_create(&minors_list, sizeof (minors_job_t),
1119 	    offsetof(minors_job_t, link));
1120 
1121 
1122 	if (strchr(name, '@') != NULL) {
1123 		uint64_t snapdev;
1124 
1125 		int error = dsl_prop_get_integer(name, "snapdev",
1126 		    &snapdev, NULL);
1127 
1128 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1129 			(void) ops->zv_create_minor(name);
1130 	} else {
1131 		fstrans_cookie_t cookie = spl_fstrans_mark();
1132 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1133 		    &minors_list, DS_FIND_CHILDREN);
1134 		spl_fstrans_unmark(cookie);
1135 	}
1136 
1137 	taskq_wait_outstanding(system_taskq, 0);
1138 
1139 	/*
1140 	 * Prefetch is completed, we can do zvol_create_minor_impl
1141 	 * sequentially.
1142 	 */
1143 	while ((job = list_head(&minors_list)) != NULL) {
1144 		list_remove(&minors_list, job);
1145 		if (!job->error)
1146 			(void) ops->zv_create_minor(job->name);
1147 		kmem_strfree(job->name);
1148 		kmem_free(job, sizeof (minors_job_t));
1149 	}
1150 
1151 	list_destroy(&minors_list);
1152 }
1153 
1154 void
1155 zvol_create_minor(const char *name)
1156 {
1157 	/*
1158 	 * Note: the dsl_pool_config_lock must not be held.
1159 	 * Minor node creation needs to obtain the zvol_state_lock.
1160 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1161 	 * config lock.  Therefore, we can't have the config lock now if
1162 	 * we are going to wait for the zvol_state_lock, because it
1163 	 * would be a lock order inversion which could lead to deadlock.
1164 	 */
1165 
1166 	if (zvol_inhibit_dev)
1167 		return;
1168 
1169 	if (strchr(name, '@') != NULL) {
1170 		uint64_t snapdev;
1171 
1172 		int error = dsl_prop_get_integer(name,
1173 		    "snapdev", &snapdev, NULL);
1174 
1175 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1176 			(void) ops->zv_create_minor(name);
1177 	} else {
1178 		(void) ops->zv_create_minor(name);
1179 	}
1180 }
1181 
1182 /*
1183  * Remove minors for specified dataset including children and snapshots.
1184  */
1185 
1186 void
1187 zvol_remove_minors_impl(const char *name)
1188 {
1189 	zvol_state_t *zv, *zv_next;
1190 	int namelen = ((name) ? strlen(name) : 0);
1191 	taskqid_t t;
1192 	list_t free_list;
1193 
1194 	if (zvol_inhibit_dev)
1195 		return;
1196 
1197 	list_create(&free_list, sizeof (zvol_state_t),
1198 	    offsetof(zvol_state_t, zv_next));
1199 
1200 	rw_enter(&zvol_state_lock, RW_WRITER);
1201 
1202 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1203 		zv_next = list_next(&zvol_state_list, zv);
1204 
1205 		mutex_enter(&zv->zv_state_lock);
1206 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1207 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1208 		    (zv->zv_name[namelen] == '/' ||
1209 		    zv->zv_name[namelen] == '@'))) {
1210 			/*
1211 			 * By holding zv_state_lock here, we guarantee that no
1212 			 * one is currently using this zv
1213 			 */
1214 
1215 			/* If in use, leave alone */
1216 			if (zv->zv_open_count > 0 ||
1217 			    atomic_read(&zv->zv_suspend_ref)) {
1218 				mutex_exit(&zv->zv_state_lock);
1219 				continue;
1220 			}
1221 
1222 			zvol_remove(zv);
1223 
1224 			/*
1225 			 * Cleared while holding zvol_state_lock as a writer
1226 			 * which will prevent zvol_open() from opening it.
1227 			 */
1228 			ops->zv_clear_private(zv);
1229 
1230 			/* Drop zv_state_lock before zvol_free() */
1231 			mutex_exit(&zv->zv_state_lock);
1232 
1233 			/* Try parallel zv_free, if failed do it in place */
1234 			t = taskq_dispatch(system_taskq,
1235 			    (task_func_t *)ops->zv_free, zv, TQ_SLEEP);
1236 			if (t == TASKQID_INVALID)
1237 				list_insert_head(&free_list, zv);
1238 		} else {
1239 			mutex_exit(&zv->zv_state_lock);
1240 		}
1241 	}
1242 	rw_exit(&zvol_state_lock);
1243 
1244 	/* Drop zvol_state_lock before calling zvol_free() */
1245 	while ((zv = list_head(&free_list)) != NULL) {
1246 		list_remove(&free_list, zv);
1247 		ops->zv_free(zv);
1248 	}
1249 }
1250 
1251 /* Remove minor for this specific volume only */
1252 static void
1253 zvol_remove_minor_impl(const char *name)
1254 {
1255 	zvol_state_t *zv = NULL, *zv_next;
1256 
1257 	if (zvol_inhibit_dev)
1258 		return;
1259 
1260 	rw_enter(&zvol_state_lock, RW_WRITER);
1261 
1262 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1263 		zv_next = list_next(&zvol_state_list, zv);
1264 
1265 		mutex_enter(&zv->zv_state_lock);
1266 		if (strcmp(zv->zv_name, name) == 0) {
1267 			/*
1268 			 * By holding zv_state_lock here, we guarantee that no
1269 			 * one is currently using this zv
1270 			 */
1271 
1272 			/* If in use, leave alone */
1273 			if (zv->zv_open_count > 0 ||
1274 			    atomic_read(&zv->zv_suspend_ref)) {
1275 				mutex_exit(&zv->zv_state_lock);
1276 				continue;
1277 			}
1278 			zvol_remove(zv);
1279 
1280 			ops->zv_clear_private(zv);
1281 			mutex_exit(&zv->zv_state_lock);
1282 			break;
1283 		} else {
1284 			mutex_exit(&zv->zv_state_lock);
1285 		}
1286 	}
1287 
1288 	/* Drop zvol_state_lock before calling zvol_free() */
1289 	rw_exit(&zvol_state_lock);
1290 
1291 	if (zv != NULL)
1292 		ops->zv_free(zv);
1293 }
1294 
1295 /*
1296  * Rename minors for specified dataset including children and snapshots.
1297  */
1298 static void
1299 zvol_rename_minors_impl(const char *oldname, const char *newname)
1300 {
1301 	zvol_state_t *zv, *zv_next;
1302 	int oldnamelen, newnamelen;
1303 
1304 	if (zvol_inhibit_dev)
1305 		return;
1306 
1307 	oldnamelen = strlen(oldname);
1308 	newnamelen = strlen(newname);
1309 
1310 	rw_enter(&zvol_state_lock, RW_READER);
1311 
1312 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1313 		zv_next = list_next(&zvol_state_list, zv);
1314 
1315 		mutex_enter(&zv->zv_state_lock);
1316 
1317 		if (strcmp(zv->zv_name, oldname) == 0) {
1318 			ops->zv_rename_minor(zv, newname);
1319 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1320 		    (zv->zv_name[oldnamelen] == '/' ||
1321 		    zv->zv_name[oldnamelen] == '@')) {
1322 			char *name = kmem_asprintf("%s%c%s", newname,
1323 			    zv->zv_name[oldnamelen],
1324 			    zv->zv_name + oldnamelen + 1);
1325 			ops->zv_rename_minor(zv, name);
1326 			kmem_strfree(name);
1327 		}
1328 
1329 		mutex_exit(&zv->zv_state_lock);
1330 	}
1331 
1332 	rw_exit(&zvol_state_lock);
1333 }
1334 
1335 typedef struct zvol_snapdev_cb_arg {
1336 	uint64_t snapdev;
1337 } zvol_snapdev_cb_arg_t;
1338 
1339 static int
1340 zvol_set_snapdev_cb(const char *dsname, void *param)
1341 {
1342 	zvol_snapdev_cb_arg_t *arg = param;
1343 
1344 	if (strchr(dsname, '@') == NULL)
1345 		return (0);
1346 
1347 	switch (arg->snapdev) {
1348 		case ZFS_SNAPDEV_VISIBLE:
1349 			(void) ops->zv_create_minor(dsname);
1350 			break;
1351 		case ZFS_SNAPDEV_HIDDEN:
1352 			(void) zvol_remove_minor_impl(dsname);
1353 			break;
1354 	}
1355 
1356 	return (0);
1357 }
1358 
1359 static void
1360 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1361 {
1362 	zvol_snapdev_cb_arg_t arg = {snapdev};
1363 	fstrans_cookie_t cookie = spl_fstrans_mark();
1364 	/*
1365 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1366 	 * in the dataset hierarchy. Here, we only scan snapshots.
1367 	 */
1368 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1369 	spl_fstrans_unmark(cookie);
1370 }
1371 
1372 typedef struct zvol_volmode_cb_arg {
1373 	uint64_t volmode;
1374 } zvol_volmode_cb_arg_t;
1375 
1376 static void
1377 zvol_set_volmode_impl(char *name, uint64_t volmode)
1378 {
1379 	fstrans_cookie_t cookie = spl_fstrans_mark();
1380 
1381 	if (strchr(name, '@') != NULL)
1382 		return;
1383 
1384 	/*
1385 	 * It's unfortunate we need to remove minors before we create new ones:
1386 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1387 	 * could be different when we set, for instance, volmode from "geom"
1388 	 * to "dev" (or vice versa).
1389 	 * A possible optimization is to modify our consumers so we don't get
1390 	 * called when "volmode" does not change.
1391 	 */
1392 	switch (volmode) {
1393 		case ZFS_VOLMODE_NONE:
1394 			(void) zvol_remove_minor_impl(name);
1395 			break;
1396 		case ZFS_VOLMODE_GEOM:
1397 		case ZFS_VOLMODE_DEV:
1398 			(void) zvol_remove_minor_impl(name);
1399 			(void) ops->zv_create_minor(name);
1400 			break;
1401 		case ZFS_VOLMODE_DEFAULT:
1402 			(void) zvol_remove_minor_impl(name);
1403 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1404 				break;
1405 			else /* if zvol_volmode is invalid defaults to "geom" */
1406 				(void) ops->zv_create_minor(name);
1407 			break;
1408 	}
1409 
1410 	spl_fstrans_unmark(cookie);
1411 }
1412 
1413 static zvol_task_t *
1414 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1415     uint64_t value)
1416 {
1417 	zvol_task_t *task;
1418 	char *delim;
1419 
1420 	/* Never allow tasks on hidden names. */
1421 	if (name1[0] == '$')
1422 		return (NULL);
1423 
1424 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1425 	task->op = op;
1426 	task->value = value;
1427 	delim = strchr(name1, '/');
1428 	strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
1429 
1430 	strlcpy(task->name1, name1, MAXNAMELEN);
1431 	if (name2 != NULL)
1432 		strlcpy(task->name2, name2, MAXNAMELEN);
1433 
1434 	return (task);
1435 }
1436 
1437 static void
1438 zvol_task_free(zvol_task_t *task)
1439 {
1440 	kmem_free(task, sizeof (zvol_task_t));
1441 }
1442 
1443 /*
1444  * The worker thread function performed asynchronously.
1445  */
1446 static void
1447 zvol_task_cb(void *arg)
1448 {
1449 	zvol_task_t *task = arg;
1450 
1451 	switch (task->op) {
1452 	case ZVOL_ASYNC_REMOVE_MINORS:
1453 		zvol_remove_minors_impl(task->name1);
1454 		break;
1455 	case ZVOL_ASYNC_RENAME_MINORS:
1456 		zvol_rename_minors_impl(task->name1, task->name2);
1457 		break;
1458 	case ZVOL_ASYNC_SET_SNAPDEV:
1459 		zvol_set_snapdev_impl(task->name1, task->value);
1460 		break;
1461 	case ZVOL_ASYNC_SET_VOLMODE:
1462 		zvol_set_volmode_impl(task->name1, task->value);
1463 		break;
1464 	default:
1465 		VERIFY(0);
1466 		break;
1467 	}
1468 
1469 	zvol_task_free(task);
1470 }
1471 
1472 typedef struct zvol_set_prop_int_arg {
1473 	const char *zsda_name;
1474 	uint64_t zsda_value;
1475 	zprop_source_t zsda_source;
1476 	dmu_tx_t *zsda_tx;
1477 } zvol_set_prop_int_arg_t;
1478 
1479 /*
1480  * Sanity check the dataset for safe use by the sync task.  No additional
1481  * conditions are imposed.
1482  */
1483 static int
1484 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1485 {
1486 	zvol_set_prop_int_arg_t *zsda = arg;
1487 	dsl_pool_t *dp = dmu_tx_pool(tx);
1488 	dsl_dir_t *dd;
1489 	int error;
1490 
1491 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1492 	if (error != 0)
1493 		return (error);
1494 
1495 	dsl_dir_rele(dd, FTAG);
1496 
1497 	return (error);
1498 }
1499 
1500 /* ARGSUSED */
1501 static int
1502 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1503 {
1504 	char dsname[MAXNAMELEN];
1505 	zvol_task_t *task;
1506 	uint64_t snapdev;
1507 
1508 	dsl_dataset_name(ds, dsname);
1509 	if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1510 		return (0);
1511 	task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1512 	if (task == NULL)
1513 		return (0);
1514 
1515 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1516 	    task, TQ_SLEEP);
1517 	return (0);
1518 }
1519 
1520 /*
1521  * Traverse all child datasets and apply snapdev appropriately.
1522  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1523  * dataset and read the effective "snapdev" on every child in the callback
1524  * function: this is because the value is not guaranteed to be the same in the
1525  * whole dataset hierarchy.
1526  */
1527 static void
1528 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1529 {
1530 	zvol_set_prop_int_arg_t *zsda = arg;
1531 	dsl_pool_t *dp = dmu_tx_pool(tx);
1532 	dsl_dir_t *dd;
1533 	dsl_dataset_t *ds;
1534 	int error;
1535 
1536 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1537 	zsda->zsda_tx = tx;
1538 
1539 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1540 	if (error == 0) {
1541 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1542 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1543 		    &zsda->zsda_value, zsda->zsda_tx);
1544 		dsl_dataset_rele(ds, FTAG);
1545 	}
1546 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1547 	    zsda, DS_FIND_CHILDREN);
1548 
1549 	dsl_dir_rele(dd, FTAG);
1550 }
1551 
1552 int
1553 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1554 {
1555 	zvol_set_prop_int_arg_t zsda;
1556 
1557 	zsda.zsda_name = ddname;
1558 	zsda.zsda_source = source;
1559 	zsda.zsda_value = snapdev;
1560 
1561 	return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1562 	    zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1563 }
1564 
1565 /*
1566  * Sanity check the dataset for safe use by the sync task.  No additional
1567  * conditions are imposed.
1568  */
1569 static int
1570 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1571 {
1572 	zvol_set_prop_int_arg_t *zsda = arg;
1573 	dsl_pool_t *dp = dmu_tx_pool(tx);
1574 	dsl_dir_t *dd;
1575 	int error;
1576 
1577 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1578 	if (error != 0)
1579 		return (error);
1580 
1581 	dsl_dir_rele(dd, FTAG);
1582 
1583 	return (error);
1584 }
1585 
1586 /* ARGSUSED */
1587 static int
1588 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1589 {
1590 	char dsname[MAXNAMELEN];
1591 	zvol_task_t *task;
1592 	uint64_t volmode;
1593 
1594 	dsl_dataset_name(ds, dsname);
1595 	if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1596 		return (0);
1597 	task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1598 	if (task == NULL)
1599 		return (0);
1600 
1601 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1602 	    task, TQ_SLEEP);
1603 	return (0);
1604 }
1605 
1606 /*
1607  * Traverse all child datasets and apply volmode appropriately.
1608  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1609  * dataset and read the effective "volmode" on every child in the callback
1610  * function: this is because the value is not guaranteed to be the same in the
1611  * whole dataset hierarchy.
1612  */
1613 static void
1614 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1615 {
1616 	zvol_set_prop_int_arg_t *zsda = arg;
1617 	dsl_pool_t *dp = dmu_tx_pool(tx);
1618 	dsl_dir_t *dd;
1619 	dsl_dataset_t *ds;
1620 	int error;
1621 
1622 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1623 	zsda->zsda_tx = tx;
1624 
1625 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1626 	if (error == 0) {
1627 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1628 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1629 		    &zsda->zsda_value, zsda->zsda_tx);
1630 		dsl_dataset_rele(ds, FTAG);
1631 	}
1632 
1633 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1634 	    zsda, DS_FIND_CHILDREN);
1635 
1636 	dsl_dir_rele(dd, FTAG);
1637 }
1638 
1639 int
1640 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1641 {
1642 	zvol_set_prop_int_arg_t zsda;
1643 
1644 	zsda.zsda_name = ddname;
1645 	zsda.zsda_source = source;
1646 	zsda.zsda_value = volmode;
1647 
1648 	return (dsl_sync_task(ddname, zvol_set_volmode_check,
1649 	    zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1650 }
1651 
1652 void
1653 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1654 {
1655 	zvol_task_t *task;
1656 	taskqid_t id;
1657 
1658 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1659 	if (task == NULL)
1660 		return;
1661 
1662 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1663 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1664 		taskq_wait_id(spa->spa_zvol_taskq, id);
1665 }
1666 
1667 void
1668 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1669     boolean_t async)
1670 {
1671 	zvol_task_t *task;
1672 	taskqid_t id;
1673 
1674 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1675 	if (task == NULL)
1676 		return;
1677 
1678 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1679 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1680 		taskq_wait_id(spa->spa_zvol_taskq, id);
1681 }
1682 
1683 boolean_t
1684 zvol_is_zvol(const char *name)
1685 {
1686 
1687 	return (ops->zv_is_zvol(name));
1688 }
1689 
1690 void
1691 zvol_register_ops(const zvol_platform_ops_t *zvol_ops)
1692 {
1693 	ops = zvol_ops;
1694 }
1695 
1696 int
1697 zvol_init_impl(void)
1698 {
1699 	int i;
1700 
1701 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1702 	    offsetof(zvol_state_t, zv_next));
1703 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1704 
1705 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1706 	    KM_SLEEP);
1707 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1708 		INIT_HLIST_HEAD(&zvol_htable[i]);
1709 
1710 	return (0);
1711 }
1712 
1713 void
1714 zvol_fini_impl(void)
1715 {
1716 	zvol_remove_minors_impl(NULL);
1717 
1718 	/*
1719 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1720 	 * the system_taskq, but it doesn't wait for those entries to
1721 	 * complete before it returns. Thus, we must wait for all of the
1722 	 * removals to finish, before we can continue.
1723 	 */
1724 	taskq_wait_outstanding(system_taskq, 0);
1725 
1726 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1727 	list_destroy(&zvol_state_list);
1728 	rw_destroy(&zvol_state_lock);
1729 }
1730