1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or https://opensource.org/licenses/CDDL-1.0. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 25 * LLNL-CODE-403049. 26 * 27 * ZFS volume emulation driver. 28 * 29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 30 * Volumes are accessed through the symbolic links named: 31 * 32 * /dev/<pool_name>/<dataset_name> 33 * 34 * Volumes are persistent through reboot and module load. No user command 35 * needs to be run before opening and using a device. 36 * 37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 38 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 40 */ 41 42 /* 43 * Note on locking of zvol state structures. 44 * 45 * These structures are used to maintain internal state used to emulate block 46 * devices on top of zvols. In particular, management of device minor number 47 * operations - create, remove, rename, and set_snapdev - involves access to 48 * these structures. The zvol_state_lock is primarily used to protect the 49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 50 * of the zvol_state_t structures, as well as to make sure that when the 51 * time comes to remove the structure from the list, it is not in use, and 52 * therefore, it can be taken off zvol_state_list and freed. 53 * 54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 55 * e.g. for the duration of receive and rollback operations. This lock can be 56 * held for significant periods of time. Given that it is undesirable to hold 57 * mutexes for long periods of time, the following lock ordering applies: 58 * - take zvol_state_lock if necessary, to protect zvol_state_list 59 * - take zv_suspend_lock if necessary, by the code path in question 60 * - take zv_state_lock to protect zvol_state_t 61 * 62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 63 * single-threaded (to preserve order of minor operations), and are executed 64 * through the zvol_task_cb that dispatches the specific operations. Therefore, 65 * these operations are serialized per pool. Consequently, we can be certain 66 * that for a given zvol, there is only one operation at a time in progress. 67 * That is why one can be sure that first, zvol_state_t for a given zvol is 68 * allocated and placed on zvol_state_list, and then other minor operations 69 * for this zvol are going to proceed in the order of issue. 70 * 71 */ 72 73 #include <sys/dataset_kstats.h> 74 #include <sys/dbuf.h> 75 #include <sys/dmu_traverse.h> 76 #include <sys/dsl_dataset.h> 77 #include <sys/dsl_prop.h> 78 #include <sys/dsl_dir.h> 79 #include <sys/zap.h> 80 #include <sys/zfeature.h> 81 #include <sys/zil_impl.h> 82 #include <sys/dmu_tx.h> 83 #include <sys/zio.h> 84 #include <sys/zfs_rlock.h> 85 #include <sys/spa_impl.h> 86 #include <sys/zvol.h> 87 #include <sys/zvol_impl.h> 88 89 unsigned int zvol_inhibit_dev = 0; 90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 91 92 struct hlist_head *zvol_htable; 93 static list_t zvol_state_list; 94 krwlock_t zvol_state_lock; 95 96 typedef enum { 97 ZVOL_ASYNC_REMOVE_MINORS, 98 ZVOL_ASYNC_RENAME_MINORS, 99 ZVOL_ASYNC_SET_SNAPDEV, 100 ZVOL_ASYNC_SET_VOLMODE, 101 ZVOL_ASYNC_MAX 102 } zvol_async_op_t; 103 104 typedef struct { 105 zvol_async_op_t op; 106 char name1[MAXNAMELEN]; 107 char name2[MAXNAMELEN]; 108 uint64_t value; 109 } zvol_task_t; 110 111 uint64_t 112 zvol_name_hash(const char *name) 113 { 114 int i; 115 uint64_t crc = -1ULL; 116 const uint8_t *p = (const uint8_t *)name; 117 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 118 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) { 119 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 120 } 121 return (crc); 122 } 123 124 /* 125 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 126 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 127 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 128 * before zv_state_lock. The mode argument indicates the mode (including none) 129 * for zv_suspend_lock to be taken. 130 */ 131 zvol_state_t * 132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 133 { 134 zvol_state_t *zv; 135 struct hlist_node *p = NULL; 136 137 rw_enter(&zvol_state_lock, RW_READER); 138 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 139 zv = hlist_entry(p, zvol_state_t, zv_hlink); 140 mutex_enter(&zv->zv_state_lock); 141 if (zv->zv_hash == hash && 142 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) { 143 /* 144 * this is the right zvol, take the locks in the 145 * right order 146 */ 147 if (mode != RW_NONE && 148 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 149 mutex_exit(&zv->zv_state_lock); 150 rw_enter(&zv->zv_suspend_lock, mode); 151 mutex_enter(&zv->zv_state_lock); 152 /* 153 * zvol cannot be renamed as we continue 154 * to hold zvol_state_lock 155 */ 156 ASSERT(zv->zv_hash == hash && 157 strncmp(zv->zv_name, name, MAXNAMELEN) 158 == 0); 159 } 160 rw_exit(&zvol_state_lock); 161 return (zv); 162 } 163 mutex_exit(&zv->zv_state_lock); 164 } 165 rw_exit(&zvol_state_lock); 166 167 return (NULL); 168 } 169 170 /* 171 * Find a zvol_state_t given the name. 172 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 173 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 174 * before zv_state_lock. The mode argument indicates the mode (including none) 175 * for zv_suspend_lock to be taken. 176 */ 177 static zvol_state_t * 178 zvol_find_by_name(const char *name, int mode) 179 { 180 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 181 } 182 183 /* 184 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 185 */ 186 void 187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 188 { 189 zfs_creat_t *zct = arg; 190 nvlist_t *nvprops = zct->zct_props; 191 int error; 192 uint64_t volblocksize, volsize; 193 194 VERIFY(nvlist_lookup_uint64(nvprops, 195 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 196 if (nvlist_lookup_uint64(nvprops, 197 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 198 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 199 200 /* 201 * These properties must be removed from the list so the generic 202 * property setting step won't apply to them. 203 */ 204 VERIFY(nvlist_remove_all(nvprops, 205 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 206 (void) nvlist_remove_all(nvprops, 207 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 208 209 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 210 DMU_OT_NONE, 0, tx); 211 ASSERT(error == 0); 212 213 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 214 DMU_OT_NONE, 0, tx); 215 ASSERT(error == 0); 216 217 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 218 ASSERT(error == 0); 219 } 220 221 /* 222 * ZFS_IOC_OBJSET_STATS entry point. 223 */ 224 int 225 zvol_get_stats(objset_t *os, nvlist_t *nv) 226 { 227 int error; 228 dmu_object_info_t *doi; 229 uint64_t val; 230 231 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 232 if (error) 233 return (SET_ERROR(error)); 234 235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 236 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 237 error = dmu_object_info(os, ZVOL_OBJ, doi); 238 239 if (error == 0) { 240 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 241 doi->doi_data_block_size); 242 } 243 244 kmem_free(doi, sizeof (dmu_object_info_t)); 245 246 return (SET_ERROR(error)); 247 } 248 249 /* 250 * Sanity check volume size. 251 */ 252 int 253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 254 { 255 if (volsize == 0) 256 return (SET_ERROR(EINVAL)); 257 258 if (volsize % blocksize != 0) 259 return (SET_ERROR(EINVAL)); 260 261 #ifdef _ILP32 262 if (volsize - 1 > SPEC_MAXOFFSET_T) 263 return (SET_ERROR(EOVERFLOW)); 264 #endif 265 return (0); 266 } 267 268 /* 269 * Ensure the zap is flushed then inform the VFS of the capacity change. 270 */ 271 static int 272 zvol_update_volsize(uint64_t volsize, objset_t *os) 273 { 274 dmu_tx_t *tx; 275 int error; 276 uint64_t txg; 277 278 tx = dmu_tx_create(os); 279 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 280 dmu_tx_mark_netfree(tx); 281 error = dmu_tx_assign(tx, TXG_WAIT); 282 if (error) { 283 dmu_tx_abort(tx); 284 return (SET_ERROR(error)); 285 } 286 txg = dmu_tx_get_txg(tx); 287 288 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 289 &volsize, tx); 290 dmu_tx_commit(tx); 291 292 txg_wait_synced(dmu_objset_pool(os), txg); 293 294 if (error == 0) 295 error = dmu_free_long_range(os, 296 ZVOL_OBJ, volsize, DMU_OBJECT_END); 297 298 return (error); 299 } 300 301 /* 302 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 303 * size will result in a udev "change" event being generated. 304 */ 305 int 306 zvol_set_volsize(const char *name, uint64_t volsize) 307 { 308 objset_t *os = NULL; 309 uint64_t readonly; 310 int error; 311 boolean_t owned = B_FALSE; 312 313 error = dsl_prop_get_integer(name, 314 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 315 if (error != 0) 316 return (SET_ERROR(error)); 317 if (readonly) 318 return (SET_ERROR(EROFS)); 319 320 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 321 322 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 323 RW_READ_HELD(&zv->zv_suspend_lock))); 324 325 if (zv == NULL || zv->zv_objset == NULL) { 326 if (zv != NULL) 327 rw_exit(&zv->zv_suspend_lock); 328 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 329 FTAG, &os)) != 0) { 330 if (zv != NULL) 331 mutex_exit(&zv->zv_state_lock); 332 return (SET_ERROR(error)); 333 } 334 owned = B_TRUE; 335 if (zv != NULL) 336 zv->zv_objset = os; 337 } else { 338 os = zv->zv_objset; 339 } 340 341 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 342 343 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 344 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 345 goto out; 346 347 error = zvol_update_volsize(volsize, os); 348 if (error == 0 && zv != NULL) { 349 zv->zv_volsize = volsize; 350 zv->zv_changed = 1; 351 } 352 out: 353 kmem_free(doi, sizeof (dmu_object_info_t)); 354 355 if (owned) { 356 dmu_objset_disown(os, B_TRUE, FTAG); 357 if (zv != NULL) 358 zv->zv_objset = NULL; 359 } else { 360 rw_exit(&zv->zv_suspend_lock); 361 } 362 363 if (zv != NULL) 364 mutex_exit(&zv->zv_state_lock); 365 366 if (error == 0 && zv != NULL) 367 zvol_os_update_volsize(zv, volsize); 368 369 return (SET_ERROR(error)); 370 } 371 372 /* 373 * Sanity check volume block size. 374 */ 375 int 376 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 377 { 378 /* Record sizes above 128k need the feature to be enabled */ 379 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 380 spa_t *spa; 381 int error; 382 383 if ((error = spa_open(name, &spa, FTAG)) != 0) 384 return (error); 385 386 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 387 spa_close(spa, FTAG); 388 return (SET_ERROR(ENOTSUP)); 389 } 390 391 /* 392 * We don't allow setting the property above 1MB, 393 * unless the tunable has been changed. 394 */ 395 if (volblocksize > zfs_max_recordsize) 396 return (SET_ERROR(EDOM)); 397 398 spa_close(spa, FTAG); 399 } 400 401 if (volblocksize < SPA_MINBLOCKSIZE || 402 volblocksize > SPA_MAXBLOCKSIZE || 403 !ISP2(volblocksize)) 404 return (SET_ERROR(EDOM)); 405 406 return (0); 407 } 408 409 /* 410 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 411 * implement DKIOCFREE/free-long-range. 412 */ 413 static int 414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 415 { 416 zvol_state_t *zv = arg1; 417 lr_truncate_t *lr = arg2; 418 uint64_t offset, length; 419 420 if (byteswap) 421 byteswap_uint64_array(lr, sizeof (*lr)); 422 423 offset = lr->lr_offset; 424 length = lr->lr_length; 425 426 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 427 dmu_tx_mark_netfree(tx); 428 int error = dmu_tx_assign(tx, TXG_WAIT); 429 if (error != 0) { 430 dmu_tx_abort(tx); 431 } else { 432 (void) zil_replaying(zv->zv_zilog, tx); 433 dmu_tx_commit(tx); 434 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 435 length); 436 } 437 438 return (error); 439 } 440 441 /* 442 * Replay a TX_WRITE ZIL transaction that didn't get committed 443 * after a system failure 444 */ 445 static int 446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 447 { 448 zvol_state_t *zv = arg1; 449 lr_write_t *lr = arg2; 450 objset_t *os = zv->zv_objset; 451 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 452 uint64_t offset, length; 453 dmu_tx_t *tx; 454 int error; 455 456 if (byteswap) 457 byteswap_uint64_array(lr, sizeof (*lr)); 458 459 offset = lr->lr_offset; 460 length = lr->lr_length; 461 462 /* If it's a dmu_sync() block, write the whole block */ 463 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 464 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 465 if (length < blocksize) { 466 offset -= offset % blocksize; 467 length = blocksize; 468 } 469 } 470 471 tx = dmu_tx_create(os); 472 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 473 error = dmu_tx_assign(tx, TXG_WAIT); 474 if (error) { 475 dmu_tx_abort(tx); 476 } else { 477 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 478 (void) zil_replaying(zv->zv_zilog, tx); 479 dmu_tx_commit(tx); 480 } 481 482 return (error); 483 } 484 485 static int 486 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 487 { 488 (void) arg1, (void) arg2, (void) byteswap; 489 return (SET_ERROR(ENOTSUP)); 490 } 491 492 /* 493 * Callback vectors for replaying records. 494 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 495 */ 496 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 497 zvol_replay_err, /* no such transaction type */ 498 zvol_replay_err, /* TX_CREATE */ 499 zvol_replay_err, /* TX_MKDIR */ 500 zvol_replay_err, /* TX_MKXATTR */ 501 zvol_replay_err, /* TX_SYMLINK */ 502 zvol_replay_err, /* TX_REMOVE */ 503 zvol_replay_err, /* TX_RMDIR */ 504 zvol_replay_err, /* TX_LINK */ 505 zvol_replay_err, /* TX_RENAME */ 506 zvol_replay_write, /* TX_WRITE */ 507 zvol_replay_truncate, /* TX_TRUNCATE */ 508 zvol_replay_err, /* TX_SETATTR */ 509 zvol_replay_err, /* TX_ACL */ 510 zvol_replay_err, /* TX_CREATE_ATTR */ 511 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 512 zvol_replay_err, /* TX_MKDIR_ACL */ 513 zvol_replay_err, /* TX_MKDIR_ATTR */ 514 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 515 zvol_replay_err, /* TX_WRITE2 */ 516 zvol_replay_err, /* TX_SETSAXATTR */ 517 zvol_replay_err, /* TX_RENAME_EXCHANGE */ 518 zvol_replay_err, /* TX_RENAME_WHITEOUT */ 519 }; 520 521 /* 522 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 523 * 524 * We store data in the log buffers if it's small enough. 525 * Otherwise we will later flush the data out via dmu_sync(). 526 */ 527 static const ssize_t zvol_immediate_write_sz = 32768; 528 529 void 530 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 531 uint64_t size, int sync) 532 { 533 uint32_t blocksize = zv->zv_volblocksize; 534 zilog_t *zilog = zv->zv_zilog; 535 itx_wr_state_t write_state; 536 uint64_t sz = size; 537 538 if (zil_replaying(zilog, tx)) 539 return; 540 541 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 542 write_state = WR_INDIRECT; 543 else if (!spa_has_slogs(zilog->zl_spa) && 544 size >= blocksize && blocksize > zvol_immediate_write_sz) 545 write_state = WR_INDIRECT; 546 else if (sync) 547 write_state = WR_COPIED; 548 else 549 write_state = WR_NEED_COPY; 550 551 while (size) { 552 itx_t *itx; 553 lr_write_t *lr; 554 itx_wr_state_t wr_state = write_state; 555 ssize_t len = size; 556 557 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 558 wr_state = WR_NEED_COPY; 559 else if (wr_state == WR_INDIRECT) 560 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 561 562 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 563 (wr_state == WR_COPIED ? len : 0)); 564 lr = (lr_write_t *)&itx->itx_lr; 565 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn, 566 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) { 567 zil_itx_destroy(itx); 568 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 569 lr = (lr_write_t *)&itx->itx_lr; 570 wr_state = WR_NEED_COPY; 571 } 572 573 itx->itx_wr_state = wr_state; 574 lr->lr_foid = ZVOL_OBJ; 575 lr->lr_offset = offset; 576 lr->lr_length = len; 577 lr->lr_blkoff = 0; 578 BP_ZERO(&lr->lr_blkptr); 579 580 itx->itx_private = zv; 581 itx->itx_sync = sync; 582 583 (void) zil_itx_assign(zilog, itx, tx); 584 585 offset += len; 586 size -= len; 587 } 588 589 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) { 590 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg); 591 } 592 } 593 594 /* 595 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 596 */ 597 void 598 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len, 599 boolean_t sync) 600 { 601 itx_t *itx; 602 lr_truncate_t *lr; 603 zilog_t *zilog = zv->zv_zilog; 604 605 if (zil_replaying(zilog, tx)) 606 return; 607 608 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 609 lr = (lr_truncate_t *)&itx->itx_lr; 610 lr->lr_foid = ZVOL_OBJ; 611 lr->lr_offset = off; 612 lr->lr_length = len; 613 614 itx->itx_sync = sync; 615 zil_itx_assign(zilog, itx, tx); 616 } 617 618 619 static void 620 zvol_get_done(zgd_t *zgd, int error) 621 { 622 (void) error; 623 if (zgd->zgd_db) 624 dmu_buf_rele(zgd->zgd_db, zgd); 625 626 zfs_rangelock_exit(zgd->zgd_lr); 627 628 kmem_free(zgd, sizeof (zgd_t)); 629 } 630 631 /* 632 * Get data to generate a TX_WRITE intent log record. 633 */ 634 int 635 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 636 struct lwb *lwb, zio_t *zio) 637 { 638 zvol_state_t *zv = arg; 639 uint64_t offset = lr->lr_offset; 640 uint64_t size = lr->lr_length; 641 dmu_buf_t *db; 642 zgd_t *zgd; 643 int error; 644 645 ASSERT3P(lwb, !=, NULL); 646 ASSERT3P(zio, !=, NULL); 647 ASSERT3U(size, !=, 0); 648 649 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 650 zgd->zgd_lwb = lwb; 651 652 /* 653 * Write records come in two flavors: immediate and indirect. 654 * For small writes it's cheaper to store the data with the 655 * log record (immediate); for large writes it's cheaper to 656 * sync the data and get a pointer to it (indirect) so that 657 * we don't have to write the data twice. 658 */ 659 if (buf != NULL) { /* immediate write */ 660 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 661 size, RL_READER); 662 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 663 DMU_READ_NO_PREFETCH); 664 } else { /* indirect write */ 665 /* 666 * Have to lock the whole block to ensure when it's written out 667 * and its checksum is being calculated that no one can change 668 * the data. Contrarily to zfs_get_data we need not re-check 669 * blocksize after we get the lock because it cannot be changed. 670 */ 671 size = zv->zv_volblocksize; 672 offset = P2ALIGN_TYPED(offset, size, uint64_t); 673 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 674 size, RL_READER); 675 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db, 676 DMU_READ_NO_PREFETCH); 677 if (error == 0) { 678 blkptr_t *bp = &lr->lr_blkptr; 679 680 zgd->zgd_db = db; 681 zgd->zgd_bp = bp; 682 683 ASSERT(db != NULL); 684 ASSERT(db->db_offset == offset); 685 ASSERT(db->db_size == size); 686 687 error = dmu_sync(zio, lr->lr_common.lrc_txg, 688 zvol_get_done, zgd); 689 690 if (error == 0) 691 return (0); 692 } 693 } 694 695 zvol_get_done(zgd, error); 696 697 return (SET_ERROR(error)); 698 } 699 700 /* 701 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 702 */ 703 704 void 705 zvol_insert(zvol_state_t *zv) 706 { 707 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 708 list_insert_head(&zvol_state_list, zv); 709 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 710 } 711 712 /* 713 * Simply remove the zvol from to list of zvols. 714 */ 715 static void 716 zvol_remove(zvol_state_t *zv) 717 { 718 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 719 list_remove(&zvol_state_list, zv); 720 hlist_del(&zv->zv_hlink); 721 } 722 723 /* 724 * Setup zv after we just own the zv->objset 725 */ 726 static int 727 zvol_setup_zv(zvol_state_t *zv) 728 { 729 uint64_t volsize; 730 int error; 731 uint64_t ro; 732 objset_t *os = zv->zv_objset; 733 734 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 735 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 736 737 zv->zv_zilog = NULL; 738 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 739 740 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 741 if (error) 742 return (SET_ERROR(error)); 743 744 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 745 if (error) 746 return (SET_ERROR(error)); 747 748 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 749 if (error) 750 return (SET_ERROR(error)); 751 752 zvol_os_set_capacity(zv, volsize >> 9); 753 zv->zv_volsize = volsize; 754 755 if (ro || dmu_objset_is_snapshot(os) || 756 !spa_writeable(dmu_objset_spa(os))) { 757 zvol_os_set_disk_ro(zv, 1); 758 zv->zv_flags |= ZVOL_RDONLY; 759 } else { 760 zvol_os_set_disk_ro(zv, 0); 761 zv->zv_flags &= ~ZVOL_RDONLY; 762 } 763 return (0); 764 } 765 766 /* 767 * Shutdown every zv_objset related stuff except zv_objset itself. 768 * The is the reverse of zvol_setup_zv. 769 */ 770 static void 771 zvol_shutdown_zv(zvol_state_t *zv) 772 { 773 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 774 RW_LOCK_HELD(&zv->zv_suspend_lock)); 775 776 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 777 ASSERT(zv->zv_zilog != NULL); 778 zil_close(zv->zv_zilog); 779 } 780 781 zv->zv_zilog = NULL; 782 783 dnode_rele(zv->zv_dn, zv); 784 zv->zv_dn = NULL; 785 786 /* 787 * Evict cached data. We must write out any dirty data before 788 * disowning the dataset. 789 */ 790 if (zv->zv_flags & ZVOL_WRITTEN_TO) 791 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 792 (void) dmu_objset_evict_dbufs(zv->zv_objset); 793 } 794 795 /* 796 * return the proper tag for rollback and recv 797 */ 798 void * 799 zvol_tag(zvol_state_t *zv) 800 { 801 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 802 return (zv->zv_open_count > 0 ? zv : NULL); 803 } 804 805 /* 806 * Suspend the zvol for recv and rollback. 807 */ 808 zvol_state_t * 809 zvol_suspend(const char *name) 810 { 811 zvol_state_t *zv; 812 813 zv = zvol_find_by_name(name, RW_WRITER); 814 815 if (zv == NULL) 816 return (NULL); 817 818 /* block all I/O, release in zvol_resume. */ 819 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 820 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 821 822 atomic_inc(&zv->zv_suspend_ref); 823 824 if (zv->zv_open_count > 0) 825 zvol_shutdown_zv(zv); 826 827 /* 828 * do not hold zv_state_lock across suspend/resume to 829 * avoid locking up zvol lookups 830 */ 831 mutex_exit(&zv->zv_state_lock); 832 833 /* zv_suspend_lock is released in zvol_resume() */ 834 return (zv); 835 } 836 837 int 838 zvol_resume(zvol_state_t *zv) 839 { 840 int error = 0; 841 842 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 843 844 mutex_enter(&zv->zv_state_lock); 845 846 if (zv->zv_open_count > 0) { 847 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 848 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 849 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 850 dmu_objset_rele(zv->zv_objset, zv); 851 852 error = zvol_setup_zv(zv); 853 } 854 855 mutex_exit(&zv->zv_state_lock); 856 857 rw_exit(&zv->zv_suspend_lock); 858 /* 859 * We need this because we don't hold zvol_state_lock while releasing 860 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 861 * zv_suspend_lock to determine it is safe to free because rwlock is 862 * not inherent atomic. 863 */ 864 atomic_dec(&zv->zv_suspend_ref); 865 866 return (SET_ERROR(error)); 867 } 868 869 int 870 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 871 { 872 objset_t *os; 873 int error; 874 875 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 876 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 877 ASSERT(mutex_owned(&spa_namespace_lock)); 878 879 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 880 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 881 if (error) 882 return (SET_ERROR(error)); 883 884 zv->zv_objset = os; 885 886 error = zvol_setup_zv(zv); 887 if (error) { 888 dmu_objset_disown(os, 1, zv); 889 zv->zv_objset = NULL; 890 } 891 892 return (error); 893 } 894 895 void 896 zvol_last_close(zvol_state_t *zv) 897 { 898 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 899 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 900 901 zvol_shutdown_zv(zv); 902 903 dmu_objset_disown(zv->zv_objset, 1, zv); 904 zv->zv_objset = NULL; 905 } 906 907 typedef struct minors_job { 908 list_t *list; 909 list_node_t link; 910 /* input */ 911 char *name; 912 /* output */ 913 int error; 914 } minors_job_t; 915 916 /* 917 * Prefetch zvol dnodes for the minors_job 918 */ 919 static void 920 zvol_prefetch_minors_impl(void *arg) 921 { 922 minors_job_t *job = arg; 923 char *dsname = job->name; 924 objset_t *os = NULL; 925 926 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 927 FTAG, &os); 928 if (job->error == 0) { 929 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ); 930 dmu_objset_disown(os, B_TRUE, FTAG); 931 } 932 } 933 934 /* 935 * Mask errors to continue dmu_objset_find() traversal 936 */ 937 static int 938 zvol_create_snap_minor_cb(const char *dsname, void *arg) 939 { 940 minors_job_t *j = arg; 941 list_t *minors_list = j->list; 942 const char *name = j->name; 943 944 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 945 946 /* skip the designated dataset */ 947 if (name && strcmp(dsname, name) == 0) 948 return (0); 949 950 /* at this point, the dsname should name a snapshot */ 951 if (strchr(dsname, '@') == 0) { 952 dprintf("zvol_create_snap_minor_cb(): " 953 "%s is not a snapshot name\n", dsname); 954 } else { 955 minors_job_t *job; 956 char *n = kmem_strdup(dsname); 957 if (n == NULL) 958 return (0); 959 960 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 961 job->name = n; 962 job->list = minors_list; 963 job->error = 0; 964 list_insert_tail(minors_list, job); 965 /* don't care if dispatch fails, because job->error is 0 */ 966 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 967 TQ_SLEEP); 968 } 969 970 return (0); 971 } 972 973 /* 974 * If spa_keystore_load_wkey() is called for an encrypted zvol, 975 * we need to look for any clones also using the key. This function 976 * is "best effort" - so we just skip over it if there are failures. 977 */ 978 static void 979 zvol_add_clones(const char *dsname, list_t *minors_list) 980 { 981 /* Also check if it has clones */ 982 dsl_dir_t *dd = NULL; 983 dsl_pool_t *dp = NULL; 984 985 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 986 return; 987 988 if (!spa_feature_is_enabled(dp->dp_spa, 989 SPA_FEATURE_ENCRYPTION)) 990 goto out; 991 992 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 993 goto out; 994 995 if (dsl_dir_phys(dd)->dd_clones == 0) 996 goto out; 997 998 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 999 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP); 1000 objset_t *mos = dd->dd_pool->dp_meta_objset; 1001 1002 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1003 zap_cursor_retrieve(zc, za) == 0; 1004 zap_cursor_advance(zc)) { 1005 dsl_dataset_t *clone; 1006 minors_job_t *job; 1007 1008 if (dsl_dataset_hold_obj(dd->dd_pool, 1009 za->za_first_integer, FTAG, &clone) == 0) { 1010 1011 char name[ZFS_MAX_DATASET_NAME_LEN]; 1012 dsl_dataset_name(clone, name); 1013 1014 char *n = kmem_strdup(name); 1015 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1016 job->name = n; 1017 job->list = minors_list; 1018 job->error = 0; 1019 list_insert_tail(minors_list, job); 1020 1021 dsl_dataset_rele(clone, FTAG); 1022 } 1023 } 1024 zap_cursor_fini(zc); 1025 kmem_free(za, sizeof (zap_attribute_t)); 1026 kmem_free(zc, sizeof (zap_cursor_t)); 1027 1028 out: 1029 if (dd != NULL) 1030 dsl_dir_rele(dd, FTAG); 1031 dsl_pool_rele(dp, FTAG); 1032 } 1033 1034 /* 1035 * Mask errors to continue dmu_objset_find() traversal 1036 */ 1037 static int 1038 zvol_create_minors_cb(const char *dsname, void *arg) 1039 { 1040 uint64_t snapdev; 1041 int error; 1042 list_t *minors_list = arg; 1043 1044 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1045 1046 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1047 if (error) 1048 return (0); 1049 1050 /* 1051 * Given the name and the 'snapdev' property, create device minor nodes 1052 * with the linkages to zvols/snapshots as needed. 1053 * If the name represents a zvol, create a minor node for the zvol, then 1054 * check if its snapshots are 'visible', and if so, iterate over the 1055 * snapshots and create device minor nodes for those. 1056 */ 1057 if (strchr(dsname, '@') == 0) { 1058 minors_job_t *job; 1059 char *n = kmem_strdup(dsname); 1060 if (n == NULL) 1061 return (0); 1062 1063 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1064 job->name = n; 1065 job->list = minors_list; 1066 job->error = 0; 1067 list_insert_tail(minors_list, job); 1068 /* don't care if dispatch fails, because job->error is 0 */ 1069 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1070 TQ_SLEEP); 1071 1072 zvol_add_clones(dsname, minors_list); 1073 1074 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1075 /* 1076 * traverse snapshots only, do not traverse children, 1077 * and skip the 'dsname' 1078 */ 1079 error = dmu_objset_find(dsname, 1080 zvol_create_snap_minor_cb, (void *)job, 1081 DS_FIND_SNAPSHOTS); 1082 } 1083 } else { 1084 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1085 dsname); 1086 } 1087 1088 return (0); 1089 } 1090 1091 /* 1092 * Create minors for the specified dataset, including children and snapshots. 1093 * Pay attention to the 'snapdev' property and iterate over the snapshots 1094 * only if they are 'visible'. This approach allows one to assure that the 1095 * snapshot metadata is read from disk only if it is needed. 1096 * 1097 * The name can represent a dataset to be recursively scanned for zvols and 1098 * their snapshots, or a single zvol snapshot. If the name represents a 1099 * dataset, the scan is performed in two nested stages: 1100 * - scan the dataset for zvols, and 1101 * - for each zvol, create a minor node, then check if the zvol's snapshots 1102 * are 'visible', and only then iterate over the snapshots if needed 1103 * 1104 * If the name represents a snapshot, a check is performed if the snapshot is 1105 * 'visible' (which also verifies that the parent is a zvol), and if so, 1106 * a minor node for that snapshot is created. 1107 */ 1108 void 1109 zvol_create_minors_recursive(const char *name) 1110 { 1111 list_t minors_list; 1112 minors_job_t *job; 1113 1114 if (zvol_inhibit_dev) 1115 return; 1116 1117 /* 1118 * This is the list for prefetch jobs. Whenever we found a match 1119 * during dmu_objset_find, we insert a minors_job to the list and do 1120 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1121 * any lock because all list operation is done on the current thread. 1122 * 1123 * We will use this list to do zvol_os_create_minor after prefetch 1124 * so we don't have to traverse using dmu_objset_find again. 1125 */ 1126 list_create(&minors_list, sizeof (minors_job_t), 1127 offsetof(minors_job_t, link)); 1128 1129 1130 if (strchr(name, '@') != NULL) { 1131 uint64_t snapdev; 1132 1133 int error = dsl_prop_get_integer(name, "snapdev", 1134 &snapdev, NULL); 1135 1136 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1137 (void) zvol_os_create_minor(name); 1138 } else { 1139 fstrans_cookie_t cookie = spl_fstrans_mark(); 1140 (void) dmu_objset_find(name, zvol_create_minors_cb, 1141 &minors_list, DS_FIND_CHILDREN); 1142 spl_fstrans_unmark(cookie); 1143 } 1144 1145 taskq_wait_outstanding(system_taskq, 0); 1146 1147 /* 1148 * Prefetch is completed, we can do zvol_os_create_minor 1149 * sequentially. 1150 */ 1151 while ((job = list_head(&minors_list)) != NULL) { 1152 list_remove(&minors_list, job); 1153 if (!job->error) 1154 (void) zvol_os_create_minor(job->name); 1155 kmem_strfree(job->name); 1156 kmem_free(job, sizeof (minors_job_t)); 1157 } 1158 1159 list_destroy(&minors_list); 1160 } 1161 1162 void 1163 zvol_create_minor(const char *name) 1164 { 1165 /* 1166 * Note: the dsl_pool_config_lock must not be held. 1167 * Minor node creation needs to obtain the zvol_state_lock. 1168 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1169 * config lock. Therefore, we can't have the config lock now if 1170 * we are going to wait for the zvol_state_lock, because it 1171 * would be a lock order inversion which could lead to deadlock. 1172 */ 1173 1174 if (zvol_inhibit_dev) 1175 return; 1176 1177 if (strchr(name, '@') != NULL) { 1178 uint64_t snapdev; 1179 1180 int error = dsl_prop_get_integer(name, 1181 "snapdev", &snapdev, NULL); 1182 1183 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1184 (void) zvol_os_create_minor(name); 1185 } else { 1186 (void) zvol_os_create_minor(name); 1187 } 1188 } 1189 1190 /* 1191 * Remove minors for specified dataset including children and snapshots. 1192 */ 1193 1194 static void 1195 zvol_free_task(void *arg) 1196 { 1197 zvol_os_free(arg); 1198 } 1199 1200 void 1201 zvol_remove_minors_impl(const char *name) 1202 { 1203 zvol_state_t *zv, *zv_next; 1204 int namelen = ((name) ? strlen(name) : 0); 1205 taskqid_t t; 1206 list_t free_list; 1207 1208 if (zvol_inhibit_dev) 1209 return; 1210 1211 list_create(&free_list, sizeof (zvol_state_t), 1212 offsetof(zvol_state_t, zv_next)); 1213 1214 rw_enter(&zvol_state_lock, RW_WRITER); 1215 1216 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1217 zv_next = list_next(&zvol_state_list, zv); 1218 1219 mutex_enter(&zv->zv_state_lock); 1220 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1221 (strncmp(zv->zv_name, name, namelen) == 0 && 1222 (zv->zv_name[namelen] == '/' || 1223 zv->zv_name[namelen] == '@'))) { 1224 /* 1225 * By holding zv_state_lock here, we guarantee that no 1226 * one is currently using this zv 1227 */ 1228 1229 /* If in use, leave alone */ 1230 if (zv->zv_open_count > 0 || 1231 atomic_read(&zv->zv_suspend_ref)) { 1232 mutex_exit(&zv->zv_state_lock); 1233 continue; 1234 } 1235 1236 zvol_remove(zv); 1237 1238 /* 1239 * Cleared while holding zvol_state_lock as a writer 1240 * which will prevent zvol_open() from opening it. 1241 */ 1242 zvol_os_clear_private(zv); 1243 1244 /* Drop zv_state_lock before zvol_free() */ 1245 mutex_exit(&zv->zv_state_lock); 1246 1247 /* Try parallel zv_free, if failed do it in place */ 1248 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1249 TQ_SLEEP); 1250 if (t == TASKQID_INVALID) 1251 list_insert_head(&free_list, zv); 1252 } else { 1253 mutex_exit(&zv->zv_state_lock); 1254 } 1255 } 1256 rw_exit(&zvol_state_lock); 1257 1258 /* Drop zvol_state_lock before calling zvol_free() */ 1259 while ((zv = list_head(&free_list)) != NULL) { 1260 list_remove(&free_list, zv); 1261 zvol_os_free(zv); 1262 } 1263 } 1264 1265 /* Remove minor for this specific volume only */ 1266 static void 1267 zvol_remove_minor_impl(const char *name) 1268 { 1269 zvol_state_t *zv = NULL, *zv_next; 1270 1271 if (zvol_inhibit_dev) 1272 return; 1273 1274 rw_enter(&zvol_state_lock, RW_WRITER); 1275 1276 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1277 zv_next = list_next(&zvol_state_list, zv); 1278 1279 mutex_enter(&zv->zv_state_lock); 1280 if (strcmp(zv->zv_name, name) == 0) { 1281 /* 1282 * By holding zv_state_lock here, we guarantee that no 1283 * one is currently using this zv 1284 */ 1285 1286 /* If in use, leave alone */ 1287 if (zv->zv_open_count > 0 || 1288 atomic_read(&zv->zv_suspend_ref)) { 1289 mutex_exit(&zv->zv_state_lock); 1290 continue; 1291 } 1292 zvol_remove(zv); 1293 1294 zvol_os_clear_private(zv); 1295 mutex_exit(&zv->zv_state_lock); 1296 break; 1297 } else { 1298 mutex_exit(&zv->zv_state_lock); 1299 } 1300 } 1301 1302 /* Drop zvol_state_lock before calling zvol_free() */ 1303 rw_exit(&zvol_state_lock); 1304 1305 if (zv != NULL) 1306 zvol_os_free(zv); 1307 } 1308 1309 /* 1310 * Rename minors for specified dataset including children and snapshots. 1311 */ 1312 static void 1313 zvol_rename_minors_impl(const char *oldname, const char *newname) 1314 { 1315 zvol_state_t *zv, *zv_next; 1316 int oldnamelen; 1317 1318 if (zvol_inhibit_dev) 1319 return; 1320 1321 oldnamelen = strlen(oldname); 1322 1323 rw_enter(&zvol_state_lock, RW_READER); 1324 1325 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1326 zv_next = list_next(&zvol_state_list, zv); 1327 1328 mutex_enter(&zv->zv_state_lock); 1329 1330 if (strcmp(zv->zv_name, oldname) == 0) { 1331 zvol_os_rename_minor(zv, newname); 1332 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1333 (zv->zv_name[oldnamelen] == '/' || 1334 zv->zv_name[oldnamelen] == '@')) { 1335 char *name = kmem_asprintf("%s%c%s", newname, 1336 zv->zv_name[oldnamelen], 1337 zv->zv_name + oldnamelen + 1); 1338 zvol_os_rename_minor(zv, name); 1339 kmem_strfree(name); 1340 } 1341 1342 mutex_exit(&zv->zv_state_lock); 1343 } 1344 1345 rw_exit(&zvol_state_lock); 1346 } 1347 1348 typedef struct zvol_snapdev_cb_arg { 1349 uint64_t snapdev; 1350 } zvol_snapdev_cb_arg_t; 1351 1352 static int 1353 zvol_set_snapdev_cb(const char *dsname, void *param) 1354 { 1355 zvol_snapdev_cb_arg_t *arg = param; 1356 1357 if (strchr(dsname, '@') == NULL) 1358 return (0); 1359 1360 switch (arg->snapdev) { 1361 case ZFS_SNAPDEV_VISIBLE: 1362 (void) zvol_os_create_minor(dsname); 1363 break; 1364 case ZFS_SNAPDEV_HIDDEN: 1365 (void) zvol_remove_minor_impl(dsname); 1366 break; 1367 } 1368 1369 return (0); 1370 } 1371 1372 static void 1373 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1374 { 1375 zvol_snapdev_cb_arg_t arg = {snapdev}; 1376 fstrans_cookie_t cookie = spl_fstrans_mark(); 1377 /* 1378 * The zvol_set_snapdev_sync() sets snapdev appropriately 1379 * in the dataset hierarchy. Here, we only scan snapshots. 1380 */ 1381 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1382 spl_fstrans_unmark(cookie); 1383 } 1384 1385 static void 1386 zvol_set_volmode_impl(char *name, uint64_t volmode) 1387 { 1388 fstrans_cookie_t cookie; 1389 uint64_t old_volmode; 1390 zvol_state_t *zv; 1391 1392 if (strchr(name, '@') != NULL) 1393 return; 1394 1395 /* 1396 * It's unfortunate we need to remove minors before we create new ones: 1397 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1398 * could be different when we set, for instance, volmode from "geom" 1399 * to "dev" (or vice versa). 1400 */ 1401 zv = zvol_find_by_name(name, RW_NONE); 1402 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1403 return; 1404 if (zv != NULL) { 1405 old_volmode = zv->zv_volmode; 1406 mutex_exit(&zv->zv_state_lock); 1407 if (old_volmode == volmode) 1408 return; 1409 zvol_wait_close(zv); 1410 } 1411 cookie = spl_fstrans_mark(); 1412 switch (volmode) { 1413 case ZFS_VOLMODE_NONE: 1414 (void) zvol_remove_minor_impl(name); 1415 break; 1416 case ZFS_VOLMODE_GEOM: 1417 case ZFS_VOLMODE_DEV: 1418 (void) zvol_remove_minor_impl(name); 1419 (void) zvol_os_create_minor(name); 1420 break; 1421 case ZFS_VOLMODE_DEFAULT: 1422 (void) zvol_remove_minor_impl(name); 1423 if (zvol_volmode == ZFS_VOLMODE_NONE) 1424 break; 1425 else /* if zvol_volmode is invalid defaults to "geom" */ 1426 (void) zvol_os_create_minor(name); 1427 break; 1428 } 1429 spl_fstrans_unmark(cookie); 1430 } 1431 1432 static zvol_task_t * 1433 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1434 uint64_t value) 1435 { 1436 zvol_task_t *task; 1437 1438 /* Never allow tasks on hidden names. */ 1439 if (name1[0] == '$') 1440 return (NULL); 1441 1442 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1443 task->op = op; 1444 task->value = value; 1445 1446 strlcpy(task->name1, name1, MAXNAMELEN); 1447 if (name2 != NULL) 1448 strlcpy(task->name2, name2, MAXNAMELEN); 1449 1450 return (task); 1451 } 1452 1453 static void 1454 zvol_task_free(zvol_task_t *task) 1455 { 1456 kmem_free(task, sizeof (zvol_task_t)); 1457 } 1458 1459 /* 1460 * The worker thread function performed asynchronously. 1461 */ 1462 static void 1463 zvol_task_cb(void *arg) 1464 { 1465 zvol_task_t *task = arg; 1466 1467 switch (task->op) { 1468 case ZVOL_ASYNC_REMOVE_MINORS: 1469 zvol_remove_minors_impl(task->name1); 1470 break; 1471 case ZVOL_ASYNC_RENAME_MINORS: 1472 zvol_rename_minors_impl(task->name1, task->name2); 1473 break; 1474 case ZVOL_ASYNC_SET_SNAPDEV: 1475 zvol_set_snapdev_impl(task->name1, task->value); 1476 break; 1477 case ZVOL_ASYNC_SET_VOLMODE: 1478 zvol_set_volmode_impl(task->name1, task->value); 1479 break; 1480 default: 1481 VERIFY(0); 1482 break; 1483 } 1484 1485 zvol_task_free(task); 1486 } 1487 1488 typedef struct zvol_set_prop_int_arg { 1489 const char *zsda_name; 1490 uint64_t zsda_value; 1491 zprop_source_t zsda_source; 1492 dmu_tx_t *zsda_tx; 1493 } zvol_set_prop_int_arg_t; 1494 1495 /* 1496 * Sanity check the dataset for safe use by the sync task. No additional 1497 * conditions are imposed. 1498 */ 1499 static int 1500 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx) 1501 { 1502 zvol_set_prop_int_arg_t *zsda = arg; 1503 dsl_pool_t *dp = dmu_tx_pool(tx); 1504 dsl_dir_t *dd; 1505 int error; 1506 1507 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1508 if (error != 0) 1509 return (error); 1510 1511 dsl_dir_rele(dd, FTAG); 1512 1513 return (error); 1514 } 1515 1516 static int 1517 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1518 { 1519 (void) arg; 1520 char dsname[MAXNAMELEN]; 1521 zvol_task_t *task; 1522 uint64_t snapdev; 1523 1524 dsl_dataset_name(ds, dsname); 1525 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0) 1526 return (0); 1527 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev); 1528 if (task == NULL) 1529 return (0); 1530 1531 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1532 task, TQ_SLEEP); 1533 return (0); 1534 } 1535 1536 /* 1537 * Traverse all child datasets and apply snapdev appropriately. 1538 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1539 * dataset and read the effective "snapdev" on every child in the callback 1540 * function: this is because the value is not guaranteed to be the same in the 1541 * whole dataset hierarchy. 1542 */ 1543 static void 1544 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx) 1545 { 1546 zvol_set_prop_int_arg_t *zsda = arg; 1547 dsl_pool_t *dp = dmu_tx_pool(tx); 1548 dsl_dir_t *dd; 1549 dsl_dataset_t *ds; 1550 int error; 1551 1552 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1553 zsda->zsda_tx = tx; 1554 1555 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1556 if (error == 0) { 1557 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV), 1558 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1559 &zsda->zsda_value, zsda->zsda_tx); 1560 dsl_dataset_rele(ds, FTAG); 1561 } 1562 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb, 1563 zsda, DS_FIND_CHILDREN); 1564 1565 dsl_dir_rele(dd, FTAG); 1566 } 1567 1568 int 1569 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev) 1570 { 1571 zvol_set_prop_int_arg_t zsda; 1572 1573 zsda.zsda_name = ddname; 1574 zsda.zsda_source = source; 1575 zsda.zsda_value = snapdev; 1576 1577 return (dsl_sync_task(ddname, zvol_set_snapdev_check, 1578 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1579 } 1580 1581 /* 1582 * Sanity check the dataset for safe use by the sync task. No additional 1583 * conditions are imposed. 1584 */ 1585 static int 1586 zvol_set_volmode_check(void *arg, dmu_tx_t *tx) 1587 { 1588 zvol_set_prop_int_arg_t *zsda = arg; 1589 dsl_pool_t *dp = dmu_tx_pool(tx); 1590 dsl_dir_t *dd; 1591 int error; 1592 1593 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1594 if (error != 0) 1595 return (error); 1596 1597 dsl_dir_rele(dd, FTAG); 1598 1599 return (error); 1600 } 1601 1602 static int 1603 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1604 { 1605 (void) arg; 1606 char dsname[MAXNAMELEN]; 1607 zvol_task_t *task; 1608 uint64_t volmode; 1609 1610 dsl_dataset_name(ds, dsname); 1611 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0) 1612 return (0); 1613 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode); 1614 if (task == NULL) 1615 return (0); 1616 1617 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1618 task, TQ_SLEEP); 1619 return (0); 1620 } 1621 1622 /* 1623 * Traverse all child datasets and apply volmode appropriately. 1624 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1625 * dataset and read the effective "volmode" on every child in the callback 1626 * function: this is because the value is not guaranteed to be the same in the 1627 * whole dataset hierarchy. 1628 */ 1629 static void 1630 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx) 1631 { 1632 zvol_set_prop_int_arg_t *zsda = arg; 1633 dsl_pool_t *dp = dmu_tx_pool(tx); 1634 dsl_dir_t *dd; 1635 dsl_dataset_t *ds; 1636 int error; 1637 1638 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1639 zsda->zsda_tx = tx; 1640 1641 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1642 if (error == 0) { 1643 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE), 1644 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1645 &zsda->zsda_value, zsda->zsda_tx); 1646 dsl_dataset_rele(ds, FTAG); 1647 } 1648 1649 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb, 1650 zsda, DS_FIND_CHILDREN); 1651 1652 dsl_dir_rele(dd, FTAG); 1653 } 1654 1655 int 1656 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode) 1657 { 1658 zvol_set_prop_int_arg_t zsda; 1659 1660 zsda.zsda_name = ddname; 1661 zsda.zsda_source = source; 1662 zsda.zsda_value = volmode; 1663 1664 return (dsl_sync_task(ddname, zvol_set_volmode_check, 1665 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1666 } 1667 1668 void 1669 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 1670 { 1671 zvol_task_t *task; 1672 taskqid_t id; 1673 1674 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 1675 if (task == NULL) 1676 return; 1677 1678 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1679 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1680 taskq_wait_id(spa->spa_zvol_taskq, id); 1681 } 1682 1683 void 1684 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 1685 boolean_t async) 1686 { 1687 zvol_task_t *task; 1688 taskqid_t id; 1689 1690 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 1691 if (task == NULL) 1692 return; 1693 1694 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 1695 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 1696 taskq_wait_id(spa->spa_zvol_taskq, id); 1697 } 1698 1699 boolean_t 1700 zvol_is_zvol(const char *name) 1701 { 1702 1703 return (zvol_os_is_zvol(name)); 1704 } 1705 1706 int 1707 zvol_init_impl(void) 1708 { 1709 int i; 1710 1711 list_create(&zvol_state_list, sizeof (zvol_state_t), 1712 offsetof(zvol_state_t, zv_next)); 1713 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 1714 1715 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 1716 KM_SLEEP); 1717 for (i = 0; i < ZVOL_HT_SIZE; i++) 1718 INIT_HLIST_HEAD(&zvol_htable[i]); 1719 1720 return (0); 1721 } 1722 1723 void 1724 zvol_fini_impl(void) 1725 { 1726 zvol_remove_minors_impl(NULL); 1727 1728 /* 1729 * The call to "zvol_remove_minors_impl" may dispatch entries to 1730 * the system_taskq, but it doesn't wait for those entries to 1731 * complete before it returns. Thus, we must wait for all of the 1732 * removals to finish, before we can continue. 1733 */ 1734 taskq_wait_outstanding(system_taskq, 0); 1735 1736 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 1737 list_destroy(&zvol_state_list); 1738 rw_destroy(&zvol_state_lock); 1739 } 1740