xref: /freebsd/sys/contrib/openzfs/module/zfs/zvol.c (revision bdcbfde31e8e9b343f113a1956384bdf30d1ed62)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23  * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24  * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25  * LLNL-CODE-403049.
26  *
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/<pool_name>/<dataset_name>
33  *
34  * Volumes are persistent through reboot and module load.  No user command
35  * needs to be run before opening and using a device.
36  *
37  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
38  * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39  * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40  */
41 
42 /*
43  * Note on locking of zvol state structures.
44  *
45  * These structures are used to maintain internal state used to emulate block
46  * devices on top of zvols. In particular, management of device minor number
47  * operations - create, remove, rename, and set_snapdev - involves access to
48  * these structures. The zvol_state_lock is primarily used to protect the
49  * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50  * of the zvol_state_t structures, as well as to make sure that when the
51  * time comes to remove the structure from the list, it is not in use, and
52  * therefore, it can be taken off zvol_state_list and freed.
53  *
54  * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55  * e.g. for the duration of receive and rollback operations. This lock can be
56  * held for significant periods of time. Given that it is undesirable to hold
57  * mutexes for long periods of time, the following lock ordering applies:
58  * - take zvol_state_lock if necessary, to protect zvol_state_list
59  * - take zv_suspend_lock if necessary, by the code path in question
60  * - take zv_state_lock to protect zvol_state_t
61  *
62  * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63  * single-threaded (to preserve order of minor operations), and are executed
64  * through the zvol_task_cb that dispatches the specific operations. Therefore,
65  * these operations are serialized per pool. Consequently, we can be certain
66  * that for a given zvol, there is only one operation at a time in progress.
67  * That is why one can be sure that first, zvol_state_t for a given zvol is
68  * allocated and placed on zvol_state_list, and then other minor operations
69  * for this zvol are going to proceed in the order of issue.
70  *
71  */
72 
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88 
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91 
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 
96 typedef enum {
97 	ZVOL_ASYNC_REMOVE_MINORS,
98 	ZVOL_ASYNC_RENAME_MINORS,
99 	ZVOL_ASYNC_SET_SNAPDEV,
100 	ZVOL_ASYNC_SET_VOLMODE,
101 	ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103 
104 typedef struct {
105 	zvol_async_op_t op;
106 	char name1[MAXNAMELEN];
107 	char name2[MAXNAMELEN];
108 	uint64_t value;
109 } zvol_task_t;
110 
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 	int i;
115 	uint64_t crc = -1ULL;
116 	const uint8_t *p = (const uint8_t *)name;
117 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 	for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
119 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
120 	}
121 	return (crc);
122 }
123 
124 /*
125  * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128  * before zv_state_lock. The mode argument indicates the mode (including none)
129  * for zv_suspend_lock to be taken.
130  */
131 zvol_state_t *
132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
133 {
134 	zvol_state_t *zv;
135 	struct hlist_node *p = NULL;
136 
137 	rw_enter(&zvol_state_lock, RW_READER);
138 	hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 		zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 		mutex_enter(&zv->zv_state_lock);
141 		if (zv->zv_hash == hash &&
142 		    strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
143 			/*
144 			 * this is the right zvol, take the locks in the
145 			 * right order
146 			 */
147 			if (mode != RW_NONE &&
148 			    !rw_tryenter(&zv->zv_suspend_lock, mode)) {
149 				mutex_exit(&zv->zv_state_lock);
150 				rw_enter(&zv->zv_suspend_lock, mode);
151 				mutex_enter(&zv->zv_state_lock);
152 				/*
153 				 * zvol cannot be renamed as we continue
154 				 * to hold zvol_state_lock
155 				 */
156 				ASSERT(zv->zv_hash == hash &&
157 				    strncmp(zv->zv_name, name, MAXNAMELEN)
158 				    == 0);
159 			}
160 			rw_exit(&zvol_state_lock);
161 			return (zv);
162 		}
163 		mutex_exit(&zv->zv_state_lock);
164 	}
165 	rw_exit(&zvol_state_lock);
166 
167 	return (NULL);
168 }
169 
170 /*
171  * Find a zvol_state_t given the name.
172  * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173  * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174  * before zv_state_lock. The mode argument indicates the mode (including none)
175  * for zv_suspend_lock to be taken.
176  */
177 static zvol_state_t *
178 zvol_find_by_name(const char *name, int mode)
179 {
180 	return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
181 }
182 
183 /*
184  * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
185  */
186 void
187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
188 {
189 	zfs_creat_t *zct = arg;
190 	nvlist_t *nvprops = zct->zct_props;
191 	int error;
192 	uint64_t volblocksize, volsize;
193 
194 	VERIFY(nvlist_lookup_uint64(nvprops,
195 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
196 	if (nvlist_lookup_uint64(nvprops,
197 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
198 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
199 
200 	/*
201 	 * These properties must be removed from the list so the generic
202 	 * property setting step won't apply to them.
203 	 */
204 	VERIFY(nvlist_remove_all(nvprops,
205 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
206 	(void) nvlist_remove_all(nvprops,
207 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
208 
209 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
210 	    DMU_OT_NONE, 0, tx);
211 	ASSERT(error == 0);
212 
213 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
214 	    DMU_OT_NONE, 0, tx);
215 	ASSERT(error == 0);
216 
217 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
218 	ASSERT(error == 0);
219 }
220 
221 /*
222  * ZFS_IOC_OBJSET_STATS entry point.
223  */
224 int
225 zvol_get_stats(objset_t *os, nvlist_t *nv)
226 {
227 	int error;
228 	dmu_object_info_t *doi;
229 	uint64_t val;
230 
231 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
232 	if (error)
233 		return (SET_ERROR(error));
234 
235 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
236 	doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
237 	error = dmu_object_info(os, ZVOL_OBJ, doi);
238 
239 	if (error == 0) {
240 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
241 		    doi->doi_data_block_size);
242 	}
243 
244 	kmem_free(doi, sizeof (dmu_object_info_t));
245 
246 	return (SET_ERROR(error));
247 }
248 
249 /*
250  * Sanity check volume size.
251  */
252 int
253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
254 {
255 	if (volsize == 0)
256 		return (SET_ERROR(EINVAL));
257 
258 	if (volsize % blocksize != 0)
259 		return (SET_ERROR(EINVAL));
260 
261 #ifdef _ILP32
262 	if (volsize - 1 > SPEC_MAXOFFSET_T)
263 		return (SET_ERROR(EOVERFLOW));
264 #endif
265 	return (0);
266 }
267 
268 /*
269  * Ensure the zap is flushed then inform the VFS of the capacity change.
270  */
271 static int
272 zvol_update_volsize(uint64_t volsize, objset_t *os)
273 {
274 	dmu_tx_t *tx;
275 	int error;
276 	uint64_t txg;
277 
278 	tx = dmu_tx_create(os);
279 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
280 	dmu_tx_mark_netfree(tx);
281 	error = dmu_tx_assign(tx, TXG_WAIT);
282 	if (error) {
283 		dmu_tx_abort(tx);
284 		return (SET_ERROR(error));
285 	}
286 	txg = dmu_tx_get_txg(tx);
287 
288 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
289 	    &volsize, tx);
290 	dmu_tx_commit(tx);
291 
292 	txg_wait_synced(dmu_objset_pool(os), txg);
293 
294 	if (error == 0)
295 		error = dmu_free_long_range(os,
296 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
297 
298 	return (error);
299 }
300 
301 /*
302  * Set ZFS_PROP_VOLSIZE set entry point.  Note that modifying the volume
303  * size will result in a udev "change" event being generated.
304  */
305 int
306 zvol_set_volsize(const char *name, uint64_t volsize)
307 {
308 	objset_t *os = NULL;
309 	uint64_t readonly;
310 	int error;
311 	boolean_t owned = B_FALSE;
312 
313 	error = dsl_prop_get_integer(name,
314 	    zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
315 	if (error != 0)
316 		return (SET_ERROR(error));
317 	if (readonly)
318 		return (SET_ERROR(EROFS));
319 
320 	zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
321 
322 	ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
323 	    RW_READ_HELD(&zv->zv_suspend_lock)));
324 
325 	if (zv == NULL || zv->zv_objset == NULL) {
326 		if (zv != NULL)
327 			rw_exit(&zv->zv_suspend_lock);
328 		if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
329 		    FTAG, &os)) != 0) {
330 			if (zv != NULL)
331 				mutex_exit(&zv->zv_state_lock);
332 			return (SET_ERROR(error));
333 		}
334 		owned = B_TRUE;
335 		if (zv != NULL)
336 			zv->zv_objset = os;
337 	} else {
338 		os = zv->zv_objset;
339 	}
340 
341 	dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
342 
343 	if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
344 	    (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
345 		goto out;
346 
347 	error = zvol_update_volsize(volsize, os);
348 	if (error == 0 && zv != NULL) {
349 		zv->zv_volsize = volsize;
350 		zv->zv_changed = 1;
351 	}
352 out:
353 	kmem_free(doi, sizeof (dmu_object_info_t));
354 
355 	if (owned) {
356 		dmu_objset_disown(os, B_TRUE, FTAG);
357 		if (zv != NULL)
358 			zv->zv_objset = NULL;
359 	} else {
360 		rw_exit(&zv->zv_suspend_lock);
361 	}
362 
363 	if (zv != NULL)
364 		mutex_exit(&zv->zv_state_lock);
365 
366 	if (error == 0 && zv != NULL)
367 		zvol_os_update_volsize(zv, volsize);
368 
369 	return (SET_ERROR(error));
370 }
371 
372 /*
373  * Update volthreading.
374  */
375 int
376 zvol_set_volthreading(const char *name, boolean_t value)
377 {
378 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
379 	if (zv == NULL)
380 		return (ENOENT);
381 	zv->zv_threading = value;
382 	mutex_exit(&zv->zv_state_lock);
383 	return (0);
384 }
385 
386 /*
387  * Update zvol ro property.
388  */
389 int
390 zvol_set_ro(const char *name, boolean_t value)
391 {
392 	zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
393 	if (zv == NULL)
394 		return (-1);
395 	if (value) {
396 		zvol_os_set_disk_ro(zv, 1);
397 		zv->zv_flags |= ZVOL_RDONLY;
398 	} else {
399 		zvol_os_set_disk_ro(zv, 0);
400 		zv->zv_flags &= ~ZVOL_RDONLY;
401 	}
402 	mutex_exit(&zv->zv_state_lock);
403 	return (0);
404 }
405 
406 /*
407  * Sanity check volume block size.
408  */
409 int
410 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
411 {
412 	/* Record sizes above 128k need the feature to be enabled */
413 	if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
414 		spa_t *spa;
415 		int error;
416 
417 		if ((error = spa_open(name, &spa, FTAG)) != 0)
418 			return (error);
419 
420 		if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
421 			spa_close(spa, FTAG);
422 			return (SET_ERROR(ENOTSUP));
423 		}
424 
425 		/*
426 		 * We don't allow setting the property above 1MB,
427 		 * unless the tunable has been changed.
428 		 */
429 		if (volblocksize > zfs_max_recordsize)
430 			return (SET_ERROR(EDOM));
431 
432 		spa_close(spa, FTAG);
433 	}
434 
435 	if (volblocksize < SPA_MINBLOCKSIZE ||
436 	    volblocksize > SPA_MAXBLOCKSIZE ||
437 	    !ISP2(volblocksize))
438 		return (SET_ERROR(EDOM));
439 
440 	return (0);
441 }
442 
443 /*
444  * Replay a TX_TRUNCATE ZIL transaction if asked.  TX_TRUNCATE is how we
445  * implement DKIOCFREE/free-long-range.
446  */
447 static int
448 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
449 {
450 	zvol_state_t *zv = arg1;
451 	lr_truncate_t *lr = arg2;
452 	uint64_t offset, length;
453 
454 	if (byteswap)
455 		byteswap_uint64_array(lr, sizeof (*lr));
456 
457 	offset = lr->lr_offset;
458 	length = lr->lr_length;
459 
460 	dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
461 	dmu_tx_mark_netfree(tx);
462 	int error = dmu_tx_assign(tx, TXG_WAIT);
463 	if (error != 0) {
464 		dmu_tx_abort(tx);
465 	} else {
466 		(void) zil_replaying(zv->zv_zilog, tx);
467 		dmu_tx_commit(tx);
468 		error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
469 		    length);
470 	}
471 
472 	return (error);
473 }
474 
475 /*
476  * Replay a TX_WRITE ZIL transaction that didn't get committed
477  * after a system failure
478  */
479 static int
480 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
481 {
482 	zvol_state_t *zv = arg1;
483 	lr_write_t *lr = arg2;
484 	objset_t *os = zv->zv_objset;
485 	char *data = (char *)(lr + 1);  /* data follows lr_write_t */
486 	uint64_t offset, length;
487 	dmu_tx_t *tx;
488 	int error;
489 
490 	if (byteswap)
491 		byteswap_uint64_array(lr, sizeof (*lr));
492 
493 	offset = lr->lr_offset;
494 	length = lr->lr_length;
495 
496 	/* If it's a dmu_sync() block, write the whole block */
497 	if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
498 		uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
499 		if (length < blocksize) {
500 			offset -= offset % blocksize;
501 			length = blocksize;
502 		}
503 	}
504 
505 	tx = dmu_tx_create(os);
506 	dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
507 	error = dmu_tx_assign(tx, TXG_WAIT);
508 	if (error) {
509 		dmu_tx_abort(tx);
510 	} else {
511 		dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
512 		(void) zil_replaying(zv->zv_zilog, tx);
513 		dmu_tx_commit(tx);
514 	}
515 
516 	return (error);
517 }
518 
519 /*
520  * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
521  * after a system failure.
522  *
523  * TODO: For now we drop block cloning transations for ZVOLs as they are
524  *       unsupported, but we still need to inform BRT about that as we
525  *       claimed them during pool import.
526  *       This situation can occur when we try to import a pool from a ZFS
527  *       version supporting block cloning for ZVOLs into a system that
528  *       has this ZFS version, that doesn't support block cloning for ZVOLs.
529  */
530 static int
531 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
532 {
533 	char name[ZFS_MAX_DATASET_NAME_LEN];
534 	zvol_state_t *zv = arg1;
535 	objset_t *os = zv->zv_objset;
536 	lr_clone_range_t *lr = arg2;
537 	blkptr_t *bp;
538 	dmu_tx_t *tx;
539 	spa_t *spa;
540 	uint_t ii;
541 	int error;
542 
543 	dmu_objset_name(os, name);
544 	cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
545 	    name);
546 
547 	if (byteswap)
548 		byteswap_uint64_array(lr, sizeof (*lr));
549 
550 	tx = dmu_tx_create(os);
551 	error = dmu_tx_assign(tx, TXG_WAIT);
552 	if (error) {
553 		dmu_tx_abort(tx);
554 		return (error);
555 	}
556 
557 	spa = os->os_spa;
558 
559 	for (ii = 0; ii < lr->lr_nbps; ii++) {
560 		bp = &lr->lr_bps[ii];
561 
562 		if (!BP_IS_HOLE(bp)) {
563 			zio_free(spa, dmu_tx_get_txg(tx), bp);
564 		}
565 	}
566 
567 	(void) zil_replaying(zv->zv_zilog, tx);
568 	dmu_tx_commit(tx);
569 
570 	return (0);
571 }
572 
573 static int
574 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
575 {
576 	(void) arg1, (void) arg2, (void) byteswap;
577 	return (SET_ERROR(ENOTSUP));
578 }
579 
580 /*
581  * Callback vectors for replaying records.
582  * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
583  */
584 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
585 	zvol_replay_err,	/* no such transaction type */
586 	zvol_replay_err,	/* TX_CREATE */
587 	zvol_replay_err,	/* TX_MKDIR */
588 	zvol_replay_err,	/* TX_MKXATTR */
589 	zvol_replay_err,	/* TX_SYMLINK */
590 	zvol_replay_err,	/* TX_REMOVE */
591 	zvol_replay_err,	/* TX_RMDIR */
592 	zvol_replay_err,	/* TX_LINK */
593 	zvol_replay_err,	/* TX_RENAME */
594 	zvol_replay_write,	/* TX_WRITE */
595 	zvol_replay_truncate,	/* TX_TRUNCATE */
596 	zvol_replay_err,	/* TX_SETATTR */
597 	zvol_replay_err,	/* TX_ACL */
598 	zvol_replay_err,	/* TX_CREATE_ATTR */
599 	zvol_replay_err,	/* TX_CREATE_ACL_ATTR */
600 	zvol_replay_err,	/* TX_MKDIR_ACL */
601 	zvol_replay_err,	/* TX_MKDIR_ATTR */
602 	zvol_replay_err,	/* TX_MKDIR_ACL_ATTR */
603 	zvol_replay_err,	/* TX_WRITE2 */
604 	zvol_replay_err,	/* TX_SETSAXATTR */
605 	zvol_replay_err,	/* TX_RENAME_EXCHANGE */
606 	zvol_replay_err,	/* TX_RENAME_WHITEOUT */
607 	zvol_replay_clone_range	/* TX_CLONE_RANGE */
608 };
609 
610 /*
611  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
612  *
613  * We store data in the log buffers if it's small enough.
614  * Otherwise we will later flush the data out via dmu_sync().
615  */
616 static const ssize_t zvol_immediate_write_sz = 32768;
617 
618 void
619 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
620     uint64_t size, boolean_t commit)
621 {
622 	uint32_t blocksize = zv->zv_volblocksize;
623 	zilog_t *zilog = zv->zv_zilog;
624 	itx_wr_state_t write_state;
625 	uint64_t sz = size;
626 
627 	if (zil_replaying(zilog, tx))
628 		return;
629 
630 	if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
631 		write_state = WR_INDIRECT;
632 	else if (!spa_has_slogs(zilog->zl_spa) &&
633 	    size >= blocksize && blocksize > zvol_immediate_write_sz)
634 		write_state = WR_INDIRECT;
635 	else if (commit)
636 		write_state = WR_COPIED;
637 	else
638 		write_state = WR_NEED_COPY;
639 
640 	while (size) {
641 		itx_t *itx;
642 		lr_write_t *lr;
643 		itx_wr_state_t wr_state = write_state;
644 		ssize_t len = size;
645 
646 		if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
647 			wr_state = WR_NEED_COPY;
648 		else if (wr_state == WR_INDIRECT)
649 			len = MIN(blocksize - P2PHASE(offset, blocksize), size);
650 
651 		itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
652 		    (wr_state == WR_COPIED ? len : 0));
653 		lr = (lr_write_t *)&itx->itx_lr;
654 		if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
655 		    offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
656 			zil_itx_destroy(itx);
657 			itx = zil_itx_create(TX_WRITE, sizeof (*lr));
658 			lr = (lr_write_t *)&itx->itx_lr;
659 			wr_state = WR_NEED_COPY;
660 		}
661 
662 		itx->itx_wr_state = wr_state;
663 		lr->lr_foid = ZVOL_OBJ;
664 		lr->lr_offset = offset;
665 		lr->lr_length = len;
666 		lr->lr_blkoff = 0;
667 		BP_ZERO(&lr->lr_blkptr);
668 
669 		itx->itx_private = zv;
670 
671 		(void) zil_itx_assign(zilog, itx, tx);
672 
673 		offset += len;
674 		size -= len;
675 	}
676 
677 	if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
678 		dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
679 	}
680 }
681 
682 /*
683  * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
684  */
685 void
686 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
687 {
688 	itx_t *itx;
689 	lr_truncate_t *lr;
690 	zilog_t *zilog = zv->zv_zilog;
691 
692 	if (zil_replaying(zilog, tx))
693 		return;
694 
695 	itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
696 	lr = (lr_truncate_t *)&itx->itx_lr;
697 	lr->lr_foid = ZVOL_OBJ;
698 	lr->lr_offset = off;
699 	lr->lr_length = len;
700 
701 	zil_itx_assign(zilog, itx, tx);
702 }
703 
704 
705 static void
706 zvol_get_done(zgd_t *zgd, int error)
707 {
708 	(void) error;
709 	if (zgd->zgd_db)
710 		dmu_buf_rele(zgd->zgd_db, zgd);
711 
712 	zfs_rangelock_exit(zgd->zgd_lr);
713 
714 	kmem_free(zgd, sizeof (zgd_t));
715 }
716 
717 /*
718  * Get data to generate a TX_WRITE intent log record.
719  */
720 int
721 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
722     struct lwb *lwb, zio_t *zio)
723 {
724 	zvol_state_t *zv = arg;
725 	uint64_t offset = lr->lr_offset;
726 	uint64_t size = lr->lr_length;
727 	dmu_buf_t *db;
728 	zgd_t *zgd;
729 	int error;
730 
731 	ASSERT3P(lwb, !=, NULL);
732 	ASSERT3U(size, !=, 0);
733 
734 	zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
735 	zgd->zgd_lwb = lwb;
736 
737 	/*
738 	 * Write records come in two flavors: immediate and indirect.
739 	 * For small writes it's cheaper to store the data with the
740 	 * log record (immediate); for large writes it's cheaper to
741 	 * sync the data and get a pointer to it (indirect) so that
742 	 * we don't have to write the data twice.
743 	 */
744 	if (buf != NULL) { /* immediate write */
745 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
746 		    size, RL_READER);
747 		error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
748 		    DMU_READ_NO_PREFETCH);
749 	} else { /* indirect write */
750 		ASSERT3P(zio, !=, NULL);
751 		/*
752 		 * Have to lock the whole block to ensure when it's written out
753 		 * and its checksum is being calculated that no one can change
754 		 * the data. Contrarily to zfs_get_data we need not re-check
755 		 * blocksize after we get the lock because it cannot be changed.
756 		 */
757 		size = zv->zv_volblocksize;
758 		offset = P2ALIGN_TYPED(offset, size, uint64_t);
759 		zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
760 		    size, RL_READER);
761 		error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
762 		    &db);
763 		if (error == 0) {
764 			blkptr_t *bp = &lr->lr_blkptr;
765 
766 			zgd->zgd_db = db;
767 			zgd->zgd_bp = bp;
768 
769 			ASSERT(db != NULL);
770 			ASSERT(db->db_offset == offset);
771 			ASSERT(db->db_size == size);
772 
773 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
774 			    zvol_get_done, zgd);
775 
776 			if (error == 0)
777 				return (0);
778 		}
779 	}
780 
781 	zvol_get_done(zgd, error);
782 
783 	return (SET_ERROR(error));
784 }
785 
786 /*
787  * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
788  */
789 
790 void
791 zvol_insert(zvol_state_t *zv)
792 {
793 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
794 	list_insert_head(&zvol_state_list, zv);
795 	hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
796 }
797 
798 /*
799  * Simply remove the zvol from to list of zvols.
800  */
801 static void
802 zvol_remove(zvol_state_t *zv)
803 {
804 	ASSERT(RW_WRITE_HELD(&zvol_state_lock));
805 	list_remove(&zvol_state_list, zv);
806 	hlist_del(&zv->zv_hlink);
807 }
808 
809 /*
810  * Setup zv after we just own the zv->objset
811  */
812 static int
813 zvol_setup_zv(zvol_state_t *zv)
814 {
815 	uint64_t volsize;
816 	int error;
817 	uint64_t ro;
818 	objset_t *os = zv->zv_objset;
819 
820 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
821 	ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
822 
823 	zv->zv_zilog = NULL;
824 	zv->zv_flags &= ~ZVOL_WRITTEN_TO;
825 
826 	error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
827 	if (error)
828 		return (SET_ERROR(error));
829 
830 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
831 	if (error)
832 		return (SET_ERROR(error));
833 
834 	error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
835 	if (error)
836 		return (SET_ERROR(error));
837 
838 	zvol_os_set_capacity(zv, volsize >> 9);
839 	zv->zv_volsize = volsize;
840 
841 	if (ro || dmu_objset_is_snapshot(os) ||
842 	    !spa_writeable(dmu_objset_spa(os))) {
843 		zvol_os_set_disk_ro(zv, 1);
844 		zv->zv_flags |= ZVOL_RDONLY;
845 	} else {
846 		zvol_os_set_disk_ro(zv, 0);
847 		zv->zv_flags &= ~ZVOL_RDONLY;
848 	}
849 	return (0);
850 }
851 
852 /*
853  * Shutdown every zv_objset related stuff except zv_objset itself.
854  * The is the reverse of zvol_setup_zv.
855  */
856 static void
857 zvol_shutdown_zv(zvol_state_t *zv)
858 {
859 	ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
860 	    RW_LOCK_HELD(&zv->zv_suspend_lock));
861 
862 	if (zv->zv_flags & ZVOL_WRITTEN_TO) {
863 		ASSERT(zv->zv_zilog != NULL);
864 		zil_close(zv->zv_zilog);
865 	}
866 
867 	zv->zv_zilog = NULL;
868 
869 	dnode_rele(zv->zv_dn, zv);
870 	zv->zv_dn = NULL;
871 
872 	/*
873 	 * Evict cached data. We must write out any dirty data before
874 	 * disowning the dataset.
875 	 */
876 	if (zv->zv_flags & ZVOL_WRITTEN_TO)
877 		txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
878 	(void) dmu_objset_evict_dbufs(zv->zv_objset);
879 }
880 
881 /*
882  * return the proper tag for rollback and recv
883  */
884 void *
885 zvol_tag(zvol_state_t *zv)
886 {
887 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
888 	return (zv->zv_open_count > 0 ? zv : NULL);
889 }
890 
891 /*
892  * Suspend the zvol for recv and rollback.
893  */
894 zvol_state_t *
895 zvol_suspend(const char *name)
896 {
897 	zvol_state_t *zv;
898 
899 	zv = zvol_find_by_name(name, RW_WRITER);
900 
901 	if (zv == NULL)
902 		return (NULL);
903 
904 	/* block all I/O, release in zvol_resume. */
905 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
906 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
907 
908 	atomic_inc(&zv->zv_suspend_ref);
909 
910 	if (zv->zv_open_count > 0)
911 		zvol_shutdown_zv(zv);
912 
913 	/*
914 	 * do not hold zv_state_lock across suspend/resume to
915 	 * avoid locking up zvol lookups
916 	 */
917 	mutex_exit(&zv->zv_state_lock);
918 
919 	/* zv_suspend_lock is released in zvol_resume() */
920 	return (zv);
921 }
922 
923 int
924 zvol_resume(zvol_state_t *zv)
925 {
926 	int error = 0;
927 
928 	ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
929 
930 	mutex_enter(&zv->zv_state_lock);
931 
932 	if (zv->zv_open_count > 0) {
933 		VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
934 		VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
935 		VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
936 		dmu_objset_rele(zv->zv_objset, zv);
937 
938 		error = zvol_setup_zv(zv);
939 	}
940 
941 	mutex_exit(&zv->zv_state_lock);
942 
943 	rw_exit(&zv->zv_suspend_lock);
944 	/*
945 	 * We need this because we don't hold zvol_state_lock while releasing
946 	 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
947 	 * zv_suspend_lock to determine it is safe to free because rwlock is
948 	 * not inherent atomic.
949 	 */
950 	atomic_dec(&zv->zv_suspend_ref);
951 
952 	return (SET_ERROR(error));
953 }
954 
955 int
956 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
957 {
958 	objset_t *os;
959 	int error;
960 
961 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
962 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
963 	ASSERT(mutex_owned(&spa_namespace_lock));
964 
965 	boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
966 	error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
967 	if (error)
968 		return (SET_ERROR(error));
969 
970 	zv->zv_objset = os;
971 
972 	error = zvol_setup_zv(zv);
973 	if (error) {
974 		dmu_objset_disown(os, 1, zv);
975 		zv->zv_objset = NULL;
976 	}
977 
978 	return (error);
979 }
980 
981 void
982 zvol_last_close(zvol_state_t *zv)
983 {
984 	ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
985 	ASSERT(MUTEX_HELD(&zv->zv_state_lock));
986 
987 	zvol_shutdown_zv(zv);
988 
989 	dmu_objset_disown(zv->zv_objset, 1, zv);
990 	zv->zv_objset = NULL;
991 }
992 
993 typedef struct minors_job {
994 	list_t *list;
995 	list_node_t link;
996 	/* input */
997 	char *name;
998 	/* output */
999 	int error;
1000 } minors_job_t;
1001 
1002 /*
1003  * Prefetch zvol dnodes for the minors_job
1004  */
1005 static void
1006 zvol_prefetch_minors_impl(void *arg)
1007 {
1008 	minors_job_t *job = arg;
1009 	char *dsname = job->name;
1010 	objset_t *os = NULL;
1011 
1012 	job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1013 	    FTAG, &os);
1014 	if (job->error == 0) {
1015 		dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
1016 		dmu_objset_disown(os, B_TRUE, FTAG);
1017 	}
1018 }
1019 
1020 /*
1021  * Mask errors to continue dmu_objset_find() traversal
1022  */
1023 static int
1024 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1025 {
1026 	minors_job_t *j = arg;
1027 	list_t *minors_list = j->list;
1028 	const char *name = j->name;
1029 
1030 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1031 
1032 	/* skip the designated dataset */
1033 	if (name && strcmp(dsname, name) == 0)
1034 		return (0);
1035 
1036 	/* at this point, the dsname should name a snapshot */
1037 	if (strchr(dsname, '@') == 0) {
1038 		dprintf("zvol_create_snap_minor_cb(): "
1039 		    "%s is not a snapshot name\n", dsname);
1040 	} else {
1041 		minors_job_t *job;
1042 		char *n = kmem_strdup(dsname);
1043 		if (n == NULL)
1044 			return (0);
1045 
1046 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1047 		job->name = n;
1048 		job->list = minors_list;
1049 		job->error = 0;
1050 		list_insert_tail(minors_list, job);
1051 		/* don't care if dispatch fails, because job->error is 0 */
1052 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1053 		    TQ_SLEEP);
1054 	}
1055 
1056 	return (0);
1057 }
1058 
1059 /*
1060  * If spa_keystore_load_wkey() is called for an encrypted zvol,
1061  * we need to look for any clones also using the key. This function
1062  * is "best effort" - so we just skip over it if there are failures.
1063  */
1064 static void
1065 zvol_add_clones(const char *dsname, list_t *minors_list)
1066 {
1067 	/* Also check if it has clones */
1068 	dsl_dir_t *dd = NULL;
1069 	dsl_pool_t *dp = NULL;
1070 
1071 	if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1072 		return;
1073 
1074 	if (!spa_feature_is_enabled(dp->dp_spa,
1075 	    SPA_FEATURE_ENCRYPTION))
1076 		goto out;
1077 
1078 	if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1079 		goto out;
1080 
1081 	if (dsl_dir_phys(dd)->dd_clones == 0)
1082 		goto out;
1083 
1084 	zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1085 	zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1086 	objset_t *mos = dd->dd_pool->dp_meta_objset;
1087 
1088 	for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1089 	    zap_cursor_retrieve(zc, za) == 0;
1090 	    zap_cursor_advance(zc)) {
1091 		dsl_dataset_t *clone;
1092 		minors_job_t *job;
1093 
1094 		if (dsl_dataset_hold_obj(dd->dd_pool,
1095 		    za->za_first_integer, FTAG, &clone) == 0) {
1096 
1097 			char name[ZFS_MAX_DATASET_NAME_LEN];
1098 			dsl_dataset_name(clone, name);
1099 
1100 			char *n = kmem_strdup(name);
1101 			job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1102 			job->name = n;
1103 			job->list = minors_list;
1104 			job->error = 0;
1105 			list_insert_tail(minors_list, job);
1106 
1107 			dsl_dataset_rele(clone, FTAG);
1108 		}
1109 	}
1110 	zap_cursor_fini(zc);
1111 	kmem_free(za, sizeof (zap_attribute_t));
1112 	kmem_free(zc, sizeof (zap_cursor_t));
1113 
1114 out:
1115 	if (dd != NULL)
1116 		dsl_dir_rele(dd, FTAG);
1117 	dsl_pool_rele(dp, FTAG);
1118 }
1119 
1120 /*
1121  * Mask errors to continue dmu_objset_find() traversal
1122  */
1123 static int
1124 zvol_create_minors_cb(const char *dsname, void *arg)
1125 {
1126 	uint64_t snapdev;
1127 	int error;
1128 	list_t *minors_list = arg;
1129 
1130 	ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1131 
1132 	error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1133 	if (error)
1134 		return (0);
1135 
1136 	/*
1137 	 * Given the name and the 'snapdev' property, create device minor nodes
1138 	 * with the linkages to zvols/snapshots as needed.
1139 	 * If the name represents a zvol, create a minor node for the zvol, then
1140 	 * check if its snapshots are 'visible', and if so, iterate over the
1141 	 * snapshots and create device minor nodes for those.
1142 	 */
1143 	if (strchr(dsname, '@') == 0) {
1144 		minors_job_t *job;
1145 		char *n = kmem_strdup(dsname);
1146 		if (n == NULL)
1147 			return (0);
1148 
1149 		job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1150 		job->name = n;
1151 		job->list = minors_list;
1152 		job->error = 0;
1153 		list_insert_tail(minors_list, job);
1154 		/* don't care if dispatch fails, because job->error is 0 */
1155 		taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1156 		    TQ_SLEEP);
1157 
1158 		zvol_add_clones(dsname, minors_list);
1159 
1160 		if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1161 			/*
1162 			 * traverse snapshots only, do not traverse children,
1163 			 * and skip the 'dsname'
1164 			 */
1165 			(void) dmu_objset_find(dsname,
1166 			    zvol_create_snap_minor_cb, (void *)job,
1167 			    DS_FIND_SNAPSHOTS);
1168 		}
1169 	} else {
1170 		dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1171 		    dsname);
1172 	}
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Create minors for the specified dataset, including children and snapshots.
1179  * Pay attention to the 'snapdev' property and iterate over the snapshots
1180  * only if they are 'visible'. This approach allows one to assure that the
1181  * snapshot metadata is read from disk only if it is needed.
1182  *
1183  * The name can represent a dataset to be recursively scanned for zvols and
1184  * their snapshots, or a single zvol snapshot. If the name represents a
1185  * dataset, the scan is performed in two nested stages:
1186  * - scan the dataset for zvols, and
1187  * - for each zvol, create a minor node, then check if the zvol's snapshots
1188  *   are 'visible', and only then iterate over the snapshots if needed
1189  *
1190  * If the name represents a snapshot, a check is performed if the snapshot is
1191  * 'visible' (which also verifies that the parent is a zvol), and if so,
1192  * a minor node for that snapshot is created.
1193  */
1194 void
1195 zvol_create_minors_recursive(const char *name)
1196 {
1197 	list_t minors_list;
1198 	minors_job_t *job;
1199 
1200 	if (zvol_inhibit_dev)
1201 		return;
1202 
1203 	/*
1204 	 * This is the list for prefetch jobs. Whenever we found a match
1205 	 * during dmu_objset_find, we insert a minors_job to the list and do
1206 	 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1207 	 * any lock because all list operation is done on the current thread.
1208 	 *
1209 	 * We will use this list to do zvol_os_create_minor after prefetch
1210 	 * so we don't have to traverse using dmu_objset_find again.
1211 	 */
1212 	list_create(&minors_list, sizeof (minors_job_t),
1213 	    offsetof(minors_job_t, link));
1214 
1215 
1216 	if (strchr(name, '@') != NULL) {
1217 		uint64_t snapdev;
1218 
1219 		int error = dsl_prop_get_integer(name, "snapdev",
1220 		    &snapdev, NULL);
1221 
1222 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1223 			(void) zvol_os_create_minor(name);
1224 	} else {
1225 		fstrans_cookie_t cookie = spl_fstrans_mark();
1226 		(void) dmu_objset_find(name, zvol_create_minors_cb,
1227 		    &minors_list, DS_FIND_CHILDREN);
1228 		spl_fstrans_unmark(cookie);
1229 	}
1230 
1231 	taskq_wait_outstanding(system_taskq, 0);
1232 
1233 	/*
1234 	 * Prefetch is completed, we can do zvol_os_create_minor
1235 	 * sequentially.
1236 	 */
1237 	while ((job = list_remove_head(&minors_list)) != NULL) {
1238 		if (!job->error)
1239 			(void) zvol_os_create_minor(job->name);
1240 		kmem_strfree(job->name);
1241 		kmem_free(job, sizeof (minors_job_t));
1242 	}
1243 
1244 	list_destroy(&minors_list);
1245 }
1246 
1247 void
1248 zvol_create_minor(const char *name)
1249 {
1250 	/*
1251 	 * Note: the dsl_pool_config_lock must not be held.
1252 	 * Minor node creation needs to obtain the zvol_state_lock.
1253 	 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1254 	 * config lock.  Therefore, we can't have the config lock now if
1255 	 * we are going to wait for the zvol_state_lock, because it
1256 	 * would be a lock order inversion which could lead to deadlock.
1257 	 */
1258 
1259 	if (zvol_inhibit_dev)
1260 		return;
1261 
1262 	if (strchr(name, '@') != NULL) {
1263 		uint64_t snapdev;
1264 
1265 		int error = dsl_prop_get_integer(name,
1266 		    "snapdev", &snapdev, NULL);
1267 
1268 		if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1269 			(void) zvol_os_create_minor(name);
1270 	} else {
1271 		(void) zvol_os_create_minor(name);
1272 	}
1273 }
1274 
1275 /*
1276  * Remove minors for specified dataset including children and snapshots.
1277  */
1278 
1279 static void
1280 zvol_free_task(void *arg)
1281 {
1282 	zvol_os_free(arg);
1283 }
1284 
1285 void
1286 zvol_remove_minors_impl(const char *name)
1287 {
1288 	zvol_state_t *zv, *zv_next;
1289 	int namelen = ((name) ? strlen(name) : 0);
1290 	taskqid_t t;
1291 	list_t free_list;
1292 
1293 	if (zvol_inhibit_dev)
1294 		return;
1295 
1296 	list_create(&free_list, sizeof (zvol_state_t),
1297 	    offsetof(zvol_state_t, zv_next));
1298 
1299 	rw_enter(&zvol_state_lock, RW_WRITER);
1300 
1301 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1302 		zv_next = list_next(&zvol_state_list, zv);
1303 
1304 		mutex_enter(&zv->zv_state_lock);
1305 		if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1306 		    (strncmp(zv->zv_name, name, namelen) == 0 &&
1307 		    (zv->zv_name[namelen] == '/' ||
1308 		    zv->zv_name[namelen] == '@'))) {
1309 			/*
1310 			 * By holding zv_state_lock here, we guarantee that no
1311 			 * one is currently using this zv
1312 			 */
1313 
1314 			/* If in use, leave alone */
1315 			if (zv->zv_open_count > 0 ||
1316 			    atomic_read(&zv->zv_suspend_ref)) {
1317 				mutex_exit(&zv->zv_state_lock);
1318 				continue;
1319 			}
1320 
1321 			zvol_remove(zv);
1322 
1323 			/*
1324 			 * Cleared while holding zvol_state_lock as a writer
1325 			 * which will prevent zvol_open() from opening it.
1326 			 */
1327 			zvol_os_clear_private(zv);
1328 
1329 			/* Drop zv_state_lock before zvol_free() */
1330 			mutex_exit(&zv->zv_state_lock);
1331 
1332 			/* Try parallel zv_free, if failed do it in place */
1333 			t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1334 			    TQ_SLEEP);
1335 			if (t == TASKQID_INVALID)
1336 				list_insert_head(&free_list, zv);
1337 		} else {
1338 			mutex_exit(&zv->zv_state_lock);
1339 		}
1340 	}
1341 	rw_exit(&zvol_state_lock);
1342 
1343 	/* Drop zvol_state_lock before calling zvol_free() */
1344 	while ((zv = list_remove_head(&free_list)) != NULL)
1345 		zvol_os_free(zv);
1346 }
1347 
1348 /* Remove minor for this specific volume only */
1349 static void
1350 zvol_remove_minor_impl(const char *name)
1351 {
1352 	zvol_state_t *zv = NULL, *zv_next;
1353 
1354 	if (zvol_inhibit_dev)
1355 		return;
1356 
1357 	rw_enter(&zvol_state_lock, RW_WRITER);
1358 
1359 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1360 		zv_next = list_next(&zvol_state_list, zv);
1361 
1362 		mutex_enter(&zv->zv_state_lock);
1363 		if (strcmp(zv->zv_name, name) == 0) {
1364 			/*
1365 			 * By holding zv_state_lock here, we guarantee that no
1366 			 * one is currently using this zv
1367 			 */
1368 
1369 			/* If in use, leave alone */
1370 			if (zv->zv_open_count > 0 ||
1371 			    atomic_read(&zv->zv_suspend_ref)) {
1372 				mutex_exit(&zv->zv_state_lock);
1373 				continue;
1374 			}
1375 			zvol_remove(zv);
1376 
1377 			zvol_os_clear_private(zv);
1378 			mutex_exit(&zv->zv_state_lock);
1379 			break;
1380 		} else {
1381 			mutex_exit(&zv->zv_state_lock);
1382 		}
1383 	}
1384 
1385 	/* Drop zvol_state_lock before calling zvol_free() */
1386 	rw_exit(&zvol_state_lock);
1387 
1388 	if (zv != NULL)
1389 		zvol_os_free(zv);
1390 }
1391 
1392 /*
1393  * Rename minors for specified dataset including children and snapshots.
1394  */
1395 static void
1396 zvol_rename_minors_impl(const char *oldname, const char *newname)
1397 {
1398 	zvol_state_t *zv, *zv_next;
1399 	int oldnamelen;
1400 
1401 	if (zvol_inhibit_dev)
1402 		return;
1403 
1404 	oldnamelen = strlen(oldname);
1405 
1406 	rw_enter(&zvol_state_lock, RW_READER);
1407 
1408 	for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1409 		zv_next = list_next(&zvol_state_list, zv);
1410 
1411 		mutex_enter(&zv->zv_state_lock);
1412 
1413 		if (strcmp(zv->zv_name, oldname) == 0) {
1414 			zvol_os_rename_minor(zv, newname);
1415 		} else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1416 		    (zv->zv_name[oldnamelen] == '/' ||
1417 		    zv->zv_name[oldnamelen] == '@')) {
1418 			char *name = kmem_asprintf("%s%c%s", newname,
1419 			    zv->zv_name[oldnamelen],
1420 			    zv->zv_name + oldnamelen + 1);
1421 			zvol_os_rename_minor(zv, name);
1422 			kmem_strfree(name);
1423 		}
1424 
1425 		mutex_exit(&zv->zv_state_lock);
1426 	}
1427 
1428 	rw_exit(&zvol_state_lock);
1429 }
1430 
1431 typedef struct zvol_snapdev_cb_arg {
1432 	uint64_t snapdev;
1433 } zvol_snapdev_cb_arg_t;
1434 
1435 static int
1436 zvol_set_snapdev_cb(const char *dsname, void *param)
1437 {
1438 	zvol_snapdev_cb_arg_t *arg = param;
1439 
1440 	if (strchr(dsname, '@') == NULL)
1441 		return (0);
1442 
1443 	switch (arg->snapdev) {
1444 		case ZFS_SNAPDEV_VISIBLE:
1445 			(void) zvol_os_create_minor(dsname);
1446 			break;
1447 		case ZFS_SNAPDEV_HIDDEN:
1448 			(void) zvol_remove_minor_impl(dsname);
1449 			break;
1450 	}
1451 
1452 	return (0);
1453 }
1454 
1455 static void
1456 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1457 {
1458 	zvol_snapdev_cb_arg_t arg = {snapdev};
1459 	fstrans_cookie_t cookie = spl_fstrans_mark();
1460 	/*
1461 	 * The zvol_set_snapdev_sync() sets snapdev appropriately
1462 	 * in the dataset hierarchy. Here, we only scan snapshots.
1463 	 */
1464 	dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1465 	spl_fstrans_unmark(cookie);
1466 }
1467 
1468 static void
1469 zvol_set_volmode_impl(char *name, uint64_t volmode)
1470 {
1471 	fstrans_cookie_t cookie;
1472 	uint64_t old_volmode;
1473 	zvol_state_t *zv;
1474 
1475 	if (strchr(name, '@') != NULL)
1476 		return;
1477 
1478 	/*
1479 	 * It's unfortunate we need to remove minors before we create new ones:
1480 	 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1481 	 * could be different when we set, for instance, volmode from "geom"
1482 	 * to "dev" (or vice versa).
1483 	 */
1484 	zv = zvol_find_by_name(name, RW_NONE);
1485 	if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1486 			return;
1487 	if (zv != NULL) {
1488 		old_volmode = zv->zv_volmode;
1489 		mutex_exit(&zv->zv_state_lock);
1490 		if (old_volmode == volmode)
1491 			return;
1492 		zvol_wait_close(zv);
1493 	}
1494 	cookie = spl_fstrans_mark();
1495 	switch (volmode) {
1496 		case ZFS_VOLMODE_NONE:
1497 			(void) zvol_remove_minor_impl(name);
1498 			break;
1499 		case ZFS_VOLMODE_GEOM:
1500 		case ZFS_VOLMODE_DEV:
1501 			(void) zvol_remove_minor_impl(name);
1502 			(void) zvol_os_create_minor(name);
1503 			break;
1504 		case ZFS_VOLMODE_DEFAULT:
1505 			(void) zvol_remove_minor_impl(name);
1506 			if (zvol_volmode == ZFS_VOLMODE_NONE)
1507 				break;
1508 			else /* if zvol_volmode is invalid defaults to "geom" */
1509 				(void) zvol_os_create_minor(name);
1510 			break;
1511 	}
1512 	spl_fstrans_unmark(cookie);
1513 }
1514 
1515 static zvol_task_t *
1516 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1517     uint64_t value)
1518 {
1519 	zvol_task_t *task;
1520 
1521 	/* Never allow tasks on hidden names. */
1522 	if (name1[0] == '$')
1523 		return (NULL);
1524 
1525 	task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1526 	task->op = op;
1527 	task->value = value;
1528 
1529 	strlcpy(task->name1, name1, MAXNAMELEN);
1530 	if (name2 != NULL)
1531 		strlcpy(task->name2, name2, MAXNAMELEN);
1532 
1533 	return (task);
1534 }
1535 
1536 static void
1537 zvol_task_free(zvol_task_t *task)
1538 {
1539 	kmem_free(task, sizeof (zvol_task_t));
1540 }
1541 
1542 /*
1543  * The worker thread function performed asynchronously.
1544  */
1545 static void
1546 zvol_task_cb(void *arg)
1547 {
1548 	zvol_task_t *task = arg;
1549 
1550 	switch (task->op) {
1551 	case ZVOL_ASYNC_REMOVE_MINORS:
1552 		zvol_remove_minors_impl(task->name1);
1553 		break;
1554 	case ZVOL_ASYNC_RENAME_MINORS:
1555 		zvol_rename_minors_impl(task->name1, task->name2);
1556 		break;
1557 	case ZVOL_ASYNC_SET_SNAPDEV:
1558 		zvol_set_snapdev_impl(task->name1, task->value);
1559 		break;
1560 	case ZVOL_ASYNC_SET_VOLMODE:
1561 		zvol_set_volmode_impl(task->name1, task->value);
1562 		break;
1563 	default:
1564 		VERIFY(0);
1565 		break;
1566 	}
1567 
1568 	zvol_task_free(task);
1569 }
1570 
1571 typedef struct zvol_set_prop_int_arg {
1572 	const char *zsda_name;
1573 	uint64_t zsda_value;
1574 	zprop_source_t zsda_source;
1575 	zfs_prop_t zsda_prop;
1576 	dmu_tx_t *zsda_tx;
1577 } zvol_set_prop_int_arg_t;
1578 
1579 /*
1580  * Sanity check the dataset for safe use by the sync task.  No additional
1581  * conditions are imposed.
1582  */
1583 static int
1584 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1585 {
1586 	zvol_set_prop_int_arg_t *zsda = arg;
1587 	dsl_pool_t *dp = dmu_tx_pool(tx);
1588 	dsl_dir_t *dd;
1589 	int error;
1590 
1591 	error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1592 	if (error != 0)
1593 		return (error);
1594 
1595 	dsl_dir_rele(dd, FTAG);
1596 
1597 	return (error);
1598 }
1599 
1600 static int
1601 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1602 {
1603 	zvol_set_prop_int_arg_t *zsda = arg;
1604 	char dsname[MAXNAMELEN];
1605 	zvol_task_t *task;
1606 	uint64_t prop;
1607 
1608 	const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1609 	dsl_dataset_name(ds, dsname);
1610 
1611 	if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1612 		return (0);
1613 
1614 	switch (zsda->zsda_prop) {
1615 		case ZFS_PROP_VOLMODE:
1616 			task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1617 			    NULL, prop);
1618 			break;
1619 		case ZFS_PROP_SNAPDEV:
1620 			task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1621 			    NULL, prop);
1622 			break;
1623 		default:
1624 			task = NULL;
1625 			break;
1626 	}
1627 
1628 	if (task == NULL)
1629 		return (0);
1630 
1631 	(void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1632 	    task, TQ_SLEEP);
1633 	return (0);
1634 }
1635 
1636 /*
1637  * Traverse all child datasets and apply the property appropriately.
1638  * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1639  * dataset and read the effective "property" on every child in the callback
1640  * function: this is because the value is not guaranteed to be the same in the
1641  * whole dataset hierarchy.
1642  */
1643 static void
1644 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1645 {
1646 	zvol_set_prop_int_arg_t *zsda = arg;
1647 	dsl_pool_t *dp = dmu_tx_pool(tx);
1648 	dsl_dir_t *dd;
1649 	dsl_dataset_t *ds;
1650 	int error;
1651 
1652 	VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1653 	zsda->zsda_tx = tx;
1654 
1655 	error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1656 	if (error == 0) {
1657 		dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1658 		    zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1659 		    &zsda->zsda_value, zsda->zsda_tx);
1660 		dsl_dataset_rele(ds, FTAG);
1661 	}
1662 
1663 	dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1664 	    zsda, DS_FIND_CHILDREN);
1665 
1666 	dsl_dir_rele(dd, FTAG);
1667 }
1668 
1669 int
1670 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1671     uint64_t val)
1672 {
1673 	zvol_set_prop_int_arg_t zsda;
1674 
1675 	zsda.zsda_name = ddname;
1676 	zsda.zsda_source = source;
1677 	zsda.zsda_value = val;
1678 	zsda.zsda_prop = prop;
1679 
1680 	return (dsl_sync_task(ddname, zvol_set_common_check,
1681 	    zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1682 }
1683 
1684 void
1685 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1686 {
1687 	zvol_task_t *task;
1688 	taskqid_t id;
1689 
1690 	task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1691 	if (task == NULL)
1692 		return;
1693 
1694 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1695 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1696 		taskq_wait_id(spa->spa_zvol_taskq, id);
1697 }
1698 
1699 void
1700 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1701     boolean_t async)
1702 {
1703 	zvol_task_t *task;
1704 	taskqid_t id;
1705 
1706 	task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1707 	if (task == NULL)
1708 		return;
1709 
1710 	id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1711 	if ((async == B_FALSE) && (id != TASKQID_INVALID))
1712 		taskq_wait_id(spa->spa_zvol_taskq, id);
1713 }
1714 
1715 boolean_t
1716 zvol_is_zvol(const char *name)
1717 {
1718 
1719 	return (zvol_os_is_zvol(name));
1720 }
1721 
1722 int
1723 zvol_init_impl(void)
1724 {
1725 	int i;
1726 
1727 	list_create(&zvol_state_list, sizeof (zvol_state_t),
1728 	    offsetof(zvol_state_t, zv_next));
1729 	rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1730 
1731 	zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1732 	    KM_SLEEP);
1733 	for (i = 0; i < ZVOL_HT_SIZE; i++)
1734 		INIT_HLIST_HEAD(&zvol_htable[i]);
1735 
1736 	return (0);
1737 }
1738 
1739 void
1740 zvol_fini_impl(void)
1741 {
1742 	zvol_remove_minors_impl(NULL);
1743 
1744 	/*
1745 	 * The call to "zvol_remove_minors_impl" may dispatch entries to
1746 	 * the system_taskq, but it doesn't wait for those entries to
1747 	 * complete before it returns. Thus, we must wait for all of the
1748 	 * removals to finish, before we can continue.
1749 	 */
1750 	taskq_wait_outstanding(system_taskq, 0);
1751 
1752 	kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1753 	list_destroy(&zvol_state_list);
1754 	rw_destroy(&zvol_state_lock);
1755 }
1756