1 // SPDX-License-Identifier: CDDL-1.0 2 /* 3 * CDDL HEADER START 4 * 5 * The contents of this file are subject to the terms of the 6 * Common Development and Distribution License (the "License"). 7 * You may not use this file except in compliance with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or https://opensource.org/licenses/CDDL-1.0. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC. 24 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). 25 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>. 26 * LLNL-CODE-403049. 27 * 28 * ZFS volume emulation driver. 29 * 30 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes. 31 * Volumes are accessed through the symbolic links named: 32 * 33 * /dev/<pool_name>/<dataset_name> 34 * 35 * Volumes are persistent through reboot and module load. No user command 36 * needs to be run before opening and using a device. 37 * 38 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 39 * Copyright (c) 2016 Actifio, Inc. All rights reserved. 40 * Copyright (c) 2012, 2019 by Delphix. All rights reserved. 41 * Copyright (c) 2024, Klara, Inc. 42 */ 43 44 /* 45 * Note on locking of zvol state structures. 46 * 47 * These structures are used to maintain internal state used to emulate block 48 * devices on top of zvols. In particular, management of device minor number 49 * operations - create, remove, rename, and set_snapdev - involves access to 50 * these structures. The zvol_state_lock is primarily used to protect the 51 * zvol_state_list. The zv->zv_state_lock is used to protect the contents 52 * of the zvol_state_t structures, as well as to make sure that when the 53 * time comes to remove the structure from the list, it is not in use, and 54 * therefore, it can be taken off zvol_state_list and freed. 55 * 56 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol, 57 * e.g. for the duration of receive and rollback operations. This lock can be 58 * held for significant periods of time. Given that it is undesirable to hold 59 * mutexes for long periods of time, the following lock ordering applies: 60 * - take zvol_state_lock if necessary, to protect zvol_state_list 61 * - take zv_suspend_lock if necessary, by the code path in question 62 * - take zv_state_lock to protect zvol_state_t 63 * 64 * The minor operations are issued to spa->spa_zvol_taskq queues, that are 65 * single-threaded (to preserve order of minor operations), and are executed 66 * through the zvol_task_cb that dispatches the specific operations. Therefore, 67 * these operations are serialized per pool. Consequently, we can be certain 68 * that for a given zvol, there is only one operation at a time in progress. 69 * That is why one can be sure that first, zvol_state_t for a given zvol is 70 * allocated and placed on zvol_state_list, and then other minor operations 71 * for this zvol are going to proceed in the order of issue. 72 * 73 */ 74 75 #include <sys/dataset_kstats.h> 76 #include <sys/dbuf.h> 77 #include <sys/dmu_traverse.h> 78 #include <sys/dsl_dataset.h> 79 #include <sys/dsl_prop.h> 80 #include <sys/dsl_dir.h> 81 #include <sys/zap.h> 82 #include <sys/zfeature.h> 83 #include <sys/zil_impl.h> 84 #include <sys/dmu_tx.h> 85 #include <sys/zio.h> 86 #include <sys/zfs_rlock.h> 87 #include <sys/spa_impl.h> 88 #include <sys/zvol.h> 89 #include <sys/zvol_impl.h> 90 91 unsigned int zvol_inhibit_dev = 0; 92 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM; 93 unsigned int zvol_threads = 0; 94 unsigned int zvol_num_taskqs = 0; 95 unsigned int zvol_request_sync = 0; 96 97 struct hlist_head *zvol_htable; 98 static list_t zvol_state_list; 99 krwlock_t zvol_state_lock; 100 extern int zfs_bclone_wait_dirty; 101 zv_taskq_t zvol_taskqs; 102 103 typedef enum { 104 ZVOL_ASYNC_REMOVE_MINORS, 105 ZVOL_ASYNC_RENAME_MINORS, 106 ZVOL_ASYNC_SET_SNAPDEV, 107 ZVOL_ASYNC_SET_VOLMODE, 108 ZVOL_ASYNC_MAX 109 } zvol_async_op_t; 110 111 typedef struct { 112 zvol_async_op_t op; 113 char name1[MAXNAMELEN]; 114 char name2[MAXNAMELEN]; 115 uint64_t value; 116 } zvol_task_t; 117 118 zv_request_task_t * 119 zv_request_task_create(zv_request_t zvr) 120 { 121 zv_request_task_t *task; 122 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP); 123 taskq_init_ent(&task->ent); 124 task->zvr = zvr; 125 return (task); 126 } 127 128 void 129 zv_request_task_free(zv_request_task_t *task) 130 { 131 kmem_free(task, sizeof (*task)); 132 } 133 134 uint64_t 135 zvol_name_hash(const char *name) 136 { 137 uint64_t crc = -1ULL; 138 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 139 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++) 140 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF]; 141 return (crc); 142 } 143 144 /* 145 * Find a zvol_state_t given the name and hash generated by zvol_name_hash. 146 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 147 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 148 * before zv_state_lock. The mode argument indicates the mode (including none) 149 * for zv_suspend_lock to be taken. 150 */ 151 zvol_state_t * 152 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode) 153 { 154 zvol_state_t *zv; 155 struct hlist_node *p = NULL; 156 157 rw_enter(&zvol_state_lock, RW_READER); 158 hlist_for_each(p, ZVOL_HT_HEAD(hash)) { 159 zv = hlist_entry(p, zvol_state_t, zv_hlink); 160 mutex_enter(&zv->zv_state_lock); 161 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) { 162 /* 163 * this is the right zvol, take the locks in the 164 * right order 165 */ 166 if (mode != RW_NONE && 167 !rw_tryenter(&zv->zv_suspend_lock, mode)) { 168 mutex_exit(&zv->zv_state_lock); 169 rw_enter(&zv->zv_suspend_lock, mode); 170 mutex_enter(&zv->zv_state_lock); 171 /* 172 * zvol cannot be renamed as we continue 173 * to hold zvol_state_lock 174 */ 175 ASSERT(zv->zv_hash == hash && 176 strcmp(zv->zv_name, name) == 0); 177 } 178 rw_exit(&zvol_state_lock); 179 return (zv); 180 } 181 mutex_exit(&zv->zv_state_lock); 182 } 183 rw_exit(&zvol_state_lock); 184 185 return (NULL); 186 } 187 188 /* 189 * Find a zvol_state_t given the name. 190 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise, 191 * return (NULL) without the taking locks. The zv_suspend_lock is always taken 192 * before zv_state_lock. The mode argument indicates the mode (including none) 193 * for zv_suspend_lock to be taken. 194 */ 195 static zvol_state_t * 196 zvol_find_by_name(const char *name, int mode) 197 { 198 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode)); 199 } 200 201 /* 202 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation. 203 */ 204 void 205 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 206 { 207 zfs_creat_t *zct = arg; 208 nvlist_t *nvprops = zct->zct_props; 209 int error; 210 uint64_t volblocksize, volsize; 211 212 VERIFY(nvlist_lookup_uint64(nvprops, 213 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0); 214 if (nvlist_lookup_uint64(nvprops, 215 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0) 216 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE); 217 218 /* 219 * These properties must be removed from the list so the generic 220 * property setting step won't apply to them. 221 */ 222 VERIFY(nvlist_remove_all(nvprops, 223 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0); 224 (void) nvlist_remove_all(nvprops, 225 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE)); 226 227 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize, 228 DMU_OT_NONE, 0, tx); 229 ASSERT(error == 0); 230 231 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP, 232 DMU_OT_NONE, 0, tx); 233 ASSERT(error == 0); 234 235 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx); 236 ASSERT(error == 0); 237 } 238 239 /* 240 * ZFS_IOC_OBJSET_STATS entry point. 241 */ 242 int 243 zvol_get_stats(objset_t *os, nvlist_t *nv) 244 { 245 int error; 246 dmu_object_info_t *doi; 247 uint64_t val; 248 249 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val); 250 if (error) 251 return (SET_ERROR(error)); 252 253 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val); 254 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP); 255 error = dmu_object_info(os, ZVOL_OBJ, doi); 256 257 if (error == 0) { 258 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE, 259 doi->doi_data_block_size); 260 } 261 262 kmem_free(doi, sizeof (dmu_object_info_t)); 263 264 return (SET_ERROR(error)); 265 } 266 267 /* 268 * Sanity check volume size. 269 */ 270 int 271 zvol_check_volsize(uint64_t volsize, uint64_t blocksize) 272 { 273 if (volsize == 0) 274 return (SET_ERROR(EINVAL)); 275 276 if (volsize % blocksize != 0) 277 return (SET_ERROR(EINVAL)); 278 279 #ifdef _ILP32 280 if (volsize - 1 > SPEC_MAXOFFSET_T) 281 return (SET_ERROR(EOVERFLOW)); 282 #endif 283 return (0); 284 } 285 286 /* 287 * Ensure the zap is flushed then inform the VFS of the capacity change. 288 */ 289 static int 290 zvol_update_volsize(uint64_t volsize, objset_t *os) 291 { 292 dmu_tx_t *tx; 293 int error; 294 uint64_t txg; 295 296 tx = dmu_tx_create(os); 297 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL); 298 dmu_tx_mark_netfree(tx); 299 error = dmu_tx_assign(tx, DMU_TX_WAIT); 300 if (error) { 301 dmu_tx_abort(tx); 302 return (SET_ERROR(error)); 303 } 304 txg = dmu_tx_get_txg(tx); 305 306 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, 307 &volsize, tx); 308 dmu_tx_commit(tx); 309 310 txg_wait_synced(dmu_objset_pool(os), txg); 311 312 if (error == 0) 313 error = dmu_free_long_range(os, 314 ZVOL_OBJ, volsize, DMU_OBJECT_END); 315 316 return (error); 317 } 318 319 /* 320 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume 321 * size will result in a udev "change" event being generated. 322 */ 323 int 324 zvol_set_volsize(const char *name, uint64_t volsize) 325 { 326 objset_t *os = NULL; 327 uint64_t readonly; 328 int error; 329 boolean_t owned = B_FALSE; 330 331 error = dsl_prop_get_integer(name, 332 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL); 333 if (error != 0) 334 return (SET_ERROR(error)); 335 if (readonly) 336 return (SET_ERROR(EROFS)); 337 338 zvol_state_t *zv = zvol_find_by_name(name, RW_READER); 339 340 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) && 341 RW_READ_HELD(&zv->zv_suspend_lock))); 342 343 if (zv == NULL || zv->zv_objset == NULL) { 344 if (zv != NULL) 345 rw_exit(&zv->zv_suspend_lock); 346 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE, 347 FTAG, &os)) != 0) { 348 if (zv != NULL) 349 mutex_exit(&zv->zv_state_lock); 350 return (SET_ERROR(error)); 351 } 352 owned = B_TRUE; 353 if (zv != NULL) 354 zv->zv_objset = os; 355 } else { 356 os = zv->zv_objset; 357 } 358 359 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP); 360 361 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) || 362 (error = zvol_check_volsize(volsize, doi->doi_data_block_size))) 363 goto out; 364 365 error = zvol_update_volsize(volsize, os); 366 if (error == 0 && zv != NULL) { 367 zv->zv_volsize = volsize; 368 zv->zv_changed = 1; 369 } 370 out: 371 kmem_free(doi, sizeof (dmu_object_info_t)); 372 373 if (owned) { 374 dmu_objset_disown(os, B_TRUE, FTAG); 375 if (zv != NULL) 376 zv->zv_objset = NULL; 377 } else { 378 rw_exit(&zv->zv_suspend_lock); 379 } 380 381 if (zv != NULL) 382 mutex_exit(&zv->zv_state_lock); 383 384 if (error == 0 && zv != NULL) 385 zvol_os_update_volsize(zv, volsize); 386 387 return (SET_ERROR(error)); 388 } 389 390 /* 391 * Update volthreading. 392 */ 393 int 394 zvol_set_volthreading(const char *name, boolean_t value) 395 { 396 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 397 if (zv == NULL) 398 return (ENOENT); 399 zv->zv_threading = value; 400 mutex_exit(&zv->zv_state_lock); 401 return (0); 402 } 403 404 /* 405 * Update zvol ro property. 406 */ 407 int 408 zvol_set_ro(const char *name, boolean_t value) 409 { 410 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE); 411 if (zv == NULL) 412 return (-1); 413 if (value) { 414 zvol_os_set_disk_ro(zv, 1); 415 zv->zv_flags |= ZVOL_RDONLY; 416 } else { 417 zvol_os_set_disk_ro(zv, 0); 418 zv->zv_flags &= ~ZVOL_RDONLY; 419 } 420 mutex_exit(&zv->zv_state_lock); 421 return (0); 422 } 423 424 /* 425 * Sanity check volume block size. 426 */ 427 int 428 zvol_check_volblocksize(const char *name, uint64_t volblocksize) 429 { 430 /* Record sizes above 128k need the feature to be enabled */ 431 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) { 432 spa_t *spa; 433 int error; 434 435 if ((error = spa_open(name, &spa, FTAG)) != 0) 436 return (error); 437 438 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) { 439 spa_close(spa, FTAG); 440 return (SET_ERROR(ENOTSUP)); 441 } 442 443 /* 444 * We don't allow setting the property above 1MB, 445 * unless the tunable has been changed. 446 */ 447 if (volblocksize > zfs_max_recordsize) 448 return (SET_ERROR(EDOM)); 449 450 spa_close(spa, FTAG); 451 } 452 453 if (volblocksize < SPA_MINBLOCKSIZE || 454 volblocksize > SPA_MAXBLOCKSIZE || 455 !ISP2(volblocksize)) 456 return (SET_ERROR(EDOM)); 457 458 return (0); 459 } 460 461 /* 462 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we 463 * implement DKIOCFREE/free-long-range. 464 */ 465 static int 466 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 467 { 468 zvol_state_t *zv = arg1; 469 lr_truncate_t *lr = arg2; 470 uint64_t offset, length; 471 472 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 473 474 if (byteswap) 475 byteswap_uint64_array(lr, sizeof (*lr)); 476 477 offset = lr->lr_offset; 478 length = lr->lr_length; 479 480 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset); 481 dmu_tx_mark_netfree(tx); 482 int error = dmu_tx_assign(tx, DMU_TX_WAIT); 483 if (error != 0) { 484 dmu_tx_abort(tx); 485 } else { 486 (void) zil_replaying(zv->zv_zilog, tx); 487 dmu_tx_commit(tx); 488 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, 489 length); 490 } 491 492 return (error); 493 } 494 495 /* 496 * Replay a TX_WRITE ZIL transaction that didn't get committed 497 * after a system failure 498 */ 499 static int 500 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap) 501 { 502 zvol_state_t *zv = arg1; 503 lr_write_t *lr = arg2; 504 objset_t *os = zv->zv_objset; 505 char *data = (char *)(lr + 1); /* data follows lr_write_t */ 506 uint64_t offset, length; 507 dmu_tx_t *tx; 508 int error; 509 510 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 511 512 if (byteswap) 513 byteswap_uint64_array(lr, sizeof (*lr)); 514 515 offset = lr->lr_offset; 516 length = lr->lr_length; 517 518 /* If it's a dmu_sync() block, write the whole block */ 519 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 520 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 521 if (length < blocksize) { 522 offset -= offset % blocksize; 523 length = blocksize; 524 } 525 } 526 527 tx = dmu_tx_create(os); 528 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length); 529 error = dmu_tx_assign(tx, DMU_TX_WAIT); 530 if (error) { 531 dmu_tx_abort(tx); 532 } else { 533 dmu_write(os, ZVOL_OBJ, offset, length, data, tx); 534 (void) zil_replaying(zv->zv_zilog, tx); 535 dmu_tx_commit(tx); 536 } 537 538 return (error); 539 } 540 541 /* 542 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed 543 * after a system failure 544 */ 545 static int 546 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap) 547 { 548 zvol_state_t *zv = arg1; 549 lr_clone_range_t *lr = arg2; 550 objset_t *os = zv->zv_objset; 551 dmu_tx_t *tx; 552 int error; 553 uint64_t blksz; 554 uint64_t off; 555 uint64_t len; 556 557 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr)); 558 ASSERT3U(lr->lr_common.lrc_reclen, >=, offsetof(lr_clone_range_t, 559 lr_bps[lr->lr_nbps])); 560 561 if (byteswap) 562 byteswap_uint64_array(lr, sizeof (*lr)); 563 564 ASSERT(spa_feature_is_enabled(dmu_objset_spa(os), 565 SPA_FEATURE_BLOCK_CLONING)); 566 567 off = lr->lr_offset; 568 len = lr->lr_length; 569 blksz = lr->lr_blksz; 570 571 if ((off % blksz) != 0) { 572 return (SET_ERROR(EINVAL)); 573 } 574 575 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 576 if (error != 0 || !zv->zv_dn) 577 return (error); 578 tx = dmu_tx_create(os); 579 dmu_tx_hold_clone_by_dnode(tx, zv->zv_dn, off, len); 580 error = dmu_tx_assign(tx, DMU_TX_WAIT); 581 if (error != 0) { 582 dmu_tx_abort(tx); 583 goto out; 584 } 585 error = dmu_brt_clone(zv->zv_objset, ZVOL_OBJ, off, len, 586 tx, lr->lr_bps, lr->lr_nbps); 587 if (error != 0) { 588 dmu_tx_commit(tx); 589 goto out; 590 } 591 592 /* 593 * zil_replaying() not only check if we are replaying ZIL, but also 594 * updates the ZIL header to record replay progress. 595 */ 596 VERIFY(zil_replaying(zv->zv_zilog, tx)); 597 dmu_tx_commit(tx); 598 599 out: 600 dnode_rele(zv->zv_dn, zv); 601 zv->zv_dn = NULL; 602 return (error); 603 } 604 605 int 606 zvol_clone_range(zvol_state_t *zv_src, uint64_t inoff, zvol_state_t *zv_dst, 607 uint64_t outoff, uint64_t len) 608 { 609 zilog_t *zilog_dst; 610 zfs_locked_range_t *inlr, *outlr; 611 objset_t *inos, *outos; 612 dmu_tx_t *tx; 613 blkptr_t *bps; 614 size_t maxblocks; 615 int error = EINVAL; 616 617 rw_enter(&zv_dst->zv_suspend_lock, RW_READER); 618 if (zv_dst->zv_zilog == NULL) { 619 rw_exit(&zv_dst->zv_suspend_lock); 620 rw_enter(&zv_dst->zv_suspend_lock, RW_WRITER); 621 if (zv_dst->zv_zilog == NULL) { 622 zv_dst->zv_zilog = zil_open(zv_dst->zv_objset, 623 zvol_get_data, &zv_dst->zv_kstat.dk_zil_sums); 624 zv_dst->zv_flags |= ZVOL_WRITTEN_TO; 625 VERIFY0((zv_dst->zv_zilog->zl_header->zh_flags & 626 ZIL_REPLAY_NEEDED)); 627 } 628 rw_downgrade(&zv_dst->zv_suspend_lock); 629 } 630 if (zv_src != zv_dst) 631 rw_enter(&zv_src->zv_suspend_lock, RW_READER); 632 633 inos = zv_src->zv_objset; 634 outos = zv_dst->zv_objset; 635 636 /* 637 * Sanity checks 638 */ 639 if (!spa_feature_is_enabled(dmu_objset_spa(outos), 640 SPA_FEATURE_BLOCK_CLONING)) { 641 error = EOPNOTSUPP; 642 goto out; 643 } 644 if (dmu_objset_spa(inos) != dmu_objset_spa(outos)) { 645 error = EXDEV; 646 goto out; 647 } 648 if (inos->os_encrypted != outos->os_encrypted) { 649 error = EXDEV; 650 goto out; 651 } 652 if (zv_src->zv_volblocksize != zv_dst->zv_volblocksize) { 653 error = EINVAL; 654 goto out; 655 } 656 if (inoff >= zv_src->zv_volsize || outoff >= zv_dst->zv_volsize) { 657 error = 0; 658 goto out; 659 } 660 661 /* 662 * Do not read beyond boundary 663 */ 664 if (len > zv_src->zv_volsize - inoff) 665 len = zv_src->zv_volsize - inoff; 666 if (len > zv_dst->zv_volsize - outoff) 667 len = zv_dst->zv_volsize - outoff; 668 if (len == 0) { 669 error = 0; 670 goto out; 671 } 672 673 /* 674 * No overlapping if we are cloning within the same file 675 */ 676 if (zv_src == zv_dst) { 677 if (inoff < outoff + len && outoff < inoff + len) { 678 error = EINVAL; 679 goto out; 680 } 681 } 682 683 /* 684 * Offsets and length must be at block boundaries 685 */ 686 if ((inoff % zv_src->zv_volblocksize) != 0 || 687 (outoff % zv_dst->zv_volblocksize) != 0) { 688 error = EINVAL; 689 goto out; 690 } 691 692 /* 693 * Length must be multiple of block size 694 */ 695 if ((len % zv_src->zv_volblocksize) != 0) { 696 error = EINVAL; 697 goto out; 698 } 699 700 zilog_dst = zv_dst->zv_zilog; 701 maxblocks = zil_max_log_data(zilog_dst, sizeof (lr_clone_range_t)) / 702 sizeof (bps[0]); 703 bps = vmem_alloc(sizeof (bps[0]) * maxblocks, KM_SLEEP); 704 /* 705 * Maintain predictable lock order. 706 */ 707 if (zv_src < zv_dst || (zv_src == zv_dst && inoff < outoff)) { 708 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len, 709 RL_READER); 710 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len, 711 RL_WRITER); 712 } else { 713 outlr = zfs_rangelock_enter(&zv_dst->zv_rangelock, outoff, len, 714 RL_WRITER); 715 inlr = zfs_rangelock_enter(&zv_src->zv_rangelock, inoff, len, 716 RL_READER); 717 } 718 719 while (len > 0) { 720 uint64_t size, last_synced_txg; 721 size_t nbps = maxblocks; 722 size = MIN(zv_src->zv_volblocksize * maxblocks, len); 723 last_synced_txg = spa_last_synced_txg( 724 dmu_objset_spa(zv_src->zv_objset)); 725 error = dmu_read_l0_bps(zv_src->zv_objset, ZVOL_OBJ, inoff, 726 size, bps, &nbps); 727 if (error != 0) { 728 /* 729 * If we are trying to clone a block that was created 730 * in the current transaction group, the error will be 731 * EAGAIN here. Based on zfs_bclone_wait_dirty either 732 * return a shortened range to the caller so it can 733 * fallback, or wait for the next TXG and check again. 734 */ 735 if (error == EAGAIN && zfs_bclone_wait_dirty) { 736 txg_wait_synced(dmu_objset_pool 737 (zv_src->zv_objset), last_synced_txg + 1); 738 continue; 739 } 740 break; 741 } 742 743 tx = dmu_tx_create(zv_dst->zv_objset); 744 dmu_tx_hold_clone_by_dnode(tx, zv_dst->zv_dn, outoff, size); 745 error = dmu_tx_assign(tx, DMU_TX_WAIT); 746 if (error != 0) { 747 dmu_tx_abort(tx); 748 break; 749 } 750 error = dmu_brt_clone(zv_dst->zv_objset, ZVOL_OBJ, outoff, size, 751 tx, bps, nbps); 752 if (error != 0) { 753 dmu_tx_commit(tx); 754 break; 755 } 756 zvol_log_clone_range(zilog_dst, tx, TX_CLONE_RANGE, outoff, 757 size, zv_src->zv_volblocksize, bps, nbps); 758 dmu_tx_commit(tx); 759 inoff += size; 760 outoff += size; 761 len -= size; 762 } 763 vmem_free(bps, sizeof (bps[0]) * maxblocks); 764 zfs_rangelock_exit(outlr); 765 zfs_rangelock_exit(inlr); 766 if (error == 0 && zv_dst->zv_objset->os_sync == ZFS_SYNC_ALWAYS) { 767 zil_commit(zilog_dst, ZVOL_OBJ); 768 } 769 out: 770 if (zv_src != zv_dst) 771 rw_exit(&zv_src->zv_suspend_lock); 772 rw_exit(&zv_dst->zv_suspend_lock); 773 return (SET_ERROR(error)); 774 } 775 776 /* 777 * Handles TX_CLONE_RANGE transactions. 778 */ 779 void 780 zvol_log_clone_range(zilog_t *zilog, dmu_tx_t *tx, int txtype, uint64_t off, 781 uint64_t len, uint64_t blksz, const blkptr_t *bps, size_t nbps) 782 { 783 itx_t *itx; 784 lr_clone_range_t *lr; 785 uint64_t partlen, max_log_data; 786 size_t partnbps; 787 788 if (zil_replaying(zilog, tx)) 789 return; 790 791 max_log_data = zil_max_log_data(zilog, sizeof (lr_clone_range_t)); 792 793 while (nbps > 0) { 794 partnbps = MIN(nbps, max_log_data / sizeof (bps[0])); 795 partlen = partnbps * blksz; 796 ASSERT3U(partlen, <, len + blksz); 797 partlen = MIN(partlen, len); 798 799 itx = zil_itx_create(txtype, 800 sizeof (*lr) + sizeof (bps[0]) * partnbps); 801 lr = (lr_clone_range_t *)&itx->itx_lr; 802 lr->lr_foid = ZVOL_OBJ; 803 lr->lr_offset = off; 804 lr->lr_length = partlen; 805 lr->lr_blksz = blksz; 806 lr->lr_nbps = partnbps; 807 memcpy(lr->lr_bps, bps, sizeof (bps[0]) * partnbps); 808 809 zil_itx_assign(zilog, itx, tx); 810 811 bps += partnbps; 812 ASSERT3U(nbps, >=, partnbps); 813 nbps -= partnbps; 814 off += partlen; 815 ASSERT3U(len, >=, partlen); 816 len -= partlen; 817 } 818 } 819 820 static int 821 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap) 822 { 823 (void) arg1, (void) arg2, (void) byteswap; 824 return (SET_ERROR(ENOTSUP)); 825 } 826 827 /* 828 * Callback vectors for replaying records. 829 * Only TX_WRITE and TX_TRUNCATE are needed for zvol. 830 */ 831 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = { 832 zvol_replay_err, /* no such transaction type */ 833 zvol_replay_err, /* TX_CREATE */ 834 zvol_replay_err, /* TX_MKDIR */ 835 zvol_replay_err, /* TX_MKXATTR */ 836 zvol_replay_err, /* TX_SYMLINK */ 837 zvol_replay_err, /* TX_REMOVE */ 838 zvol_replay_err, /* TX_RMDIR */ 839 zvol_replay_err, /* TX_LINK */ 840 zvol_replay_err, /* TX_RENAME */ 841 zvol_replay_write, /* TX_WRITE */ 842 zvol_replay_truncate, /* TX_TRUNCATE */ 843 zvol_replay_err, /* TX_SETATTR */ 844 zvol_replay_err, /* TX_ACL_V0 */ 845 zvol_replay_err, /* TX_ACL */ 846 zvol_replay_err, /* TX_CREATE_ACL */ 847 zvol_replay_err, /* TX_CREATE_ATTR */ 848 zvol_replay_err, /* TX_CREATE_ACL_ATTR */ 849 zvol_replay_err, /* TX_MKDIR_ACL */ 850 zvol_replay_err, /* TX_MKDIR_ATTR */ 851 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */ 852 zvol_replay_err, /* TX_WRITE2 */ 853 zvol_replay_err, /* TX_SETSAXATTR */ 854 zvol_replay_err, /* TX_RENAME_EXCHANGE */ 855 zvol_replay_err, /* TX_RENAME_WHITEOUT */ 856 zvol_replay_clone_range, /* TX_CLONE_RANGE */ 857 }; 858 859 /* 860 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions. 861 * 862 * We store data in the log buffers if it's small enough. 863 * Otherwise we will later flush the data out via dmu_sync(). 864 */ 865 static const ssize_t zvol_immediate_write_sz = 32768; 866 867 void 868 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset, 869 uint64_t size, boolean_t commit) 870 { 871 uint32_t blocksize = zv->zv_volblocksize; 872 zilog_t *zilog = zv->zv_zilog; 873 itx_wr_state_t write_state; 874 uint64_t log_size = 0; 875 876 if (zil_replaying(zilog, tx)) 877 return; 878 879 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT) 880 write_state = WR_INDIRECT; 881 else if (!spa_has_slogs(zilog->zl_spa) && 882 size >= blocksize && blocksize > zvol_immediate_write_sz) 883 write_state = WR_INDIRECT; 884 else if (commit) 885 write_state = WR_COPIED; 886 else 887 write_state = WR_NEED_COPY; 888 889 while (size) { 890 itx_t *itx; 891 lr_write_t *lr; 892 itx_wr_state_t wr_state = write_state; 893 ssize_t len = size; 894 895 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog)) 896 wr_state = WR_NEED_COPY; 897 else if (wr_state == WR_INDIRECT) 898 len = MIN(blocksize - P2PHASE(offset, blocksize), size); 899 900 itx = zil_itx_create(TX_WRITE, sizeof (*lr) + 901 (wr_state == WR_COPIED ? len : 0)); 902 lr = (lr_write_t *)&itx->itx_lr; 903 if (wr_state == WR_COPIED && 904 dmu_read_by_dnode(zv->zv_dn, offset, len, lr + 1, 905 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING) != 0) { 906 zil_itx_destroy(itx); 907 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 908 lr = (lr_write_t *)&itx->itx_lr; 909 wr_state = WR_NEED_COPY; 910 } 911 912 log_size += itx->itx_size; 913 if (wr_state == WR_NEED_COPY) 914 log_size += len; 915 916 itx->itx_wr_state = wr_state; 917 lr->lr_foid = ZVOL_OBJ; 918 lr->lr_offset = offset; 919 lr->lr_length = len; 920 lr->lr_blkoff = 0; 921 BP_ZERO(&lr->lr_blkptr); 922 923 itx->itx_private = zv; 924 925 (void) zil_itx_assign(zilog, itx, tx); 926 927 offset += len; 928 size -= len; 929 } 930 931 dsl_pool_wrlog_count(zilog->zl_dmu_pool, log_size, tx->tx_txg); 932 } 933 934 /* 935 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE. 936 */ 937 void 938 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len) 939 { 940 itx_t *itx; 941 lr_truncate_t *lr; 942 zilog_t *zilog = zv->zv_zilog; 943 944 if (zil_replaying(zilog, tx)) 945 return; 946 947 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 948 lr = (lr_truncate_t *)&itx->itx_lr; 949 lr->lr_foid = ZVOL_OBJ; 950 lr->lr_offset = off; 951 lr->lr_length = len; 952 953 zil_itx_assign(zilog, itx, tx); 954 } 955 956 957 static void 958 zvol_get_done(zgd_t *zgd, int error) 959 { 960 (void) error; 961 if (zgd->zgd_db) 962 dmu_buf_rele(zgd->zgd_db, zgd); 963 964 zfs_rangelock_exit(zgd->zgd_lr); 965 966 kmem_free(zgd, sizeof (zgd_t)); 967 } 968 969 /* 970 * Get data to generate a TX_WRITE intent log record. 971 */ 972 int 973 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf, 974 struct lwb *lwb, zio_t *zio) 975 { 976 zvol_state_t *zv = arg; 977 uint64_t offset = lr->lr_offset; 978 uint64_t size = lr->lr_length; 979 dmu_buf_t *db; 980 zgd_t *zgd; 981 int error; 982 983 ASSERT3P(lwb, !=, NULL); 984 ASSERT3U(size, !=, 0); 985 986 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 987 zgd->zgd_lwb = lwb; 988 989 /* 990 * Write records come in two flavors: immediate and indirect. 991 * For small writes it's cheaper to store the data with the 992 * log record (immediate); for large writes it's cheaper to 993 * sync the data and get a pointer to it (indirect) so that 994 * we don't have to write the data twice. 995 */ 996 if (buf != NULL) { /* immediate write */ 997 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 998 size, RL_READER); 999 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf, 1000 DMU_READ_NO_PREFETCH | DMU_KEEP_CACHING); 1001 } else { /* indirect write */ 1002 ASSERT3P(zio, !=, NULL); 1003 /* 1004 * Have to lock the whole block to ensure when it's written out 1005 * and its checksum is being calculated that no one can change 1006 * the data. Contrarily to zfs_get_data we need not re-check 1007 * blocksize after we get the lock because it cannot be changed. 1008 */ 1009 size = zv->zv_volblocksize; 1010 offset = P2ALIGN_TYPED(offset, size, uint64_t); 1011 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset, 1012 size, RL_READER); 1013 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd, 1014 &db); 1015 if (error == 0) { 1016 blkptr_t *bp = &lr->lr_blkptr; 1017 1018 zgd->zgd_db = db; 1019 zgd->zgd_bp = bp; 1020 1021 ASSERT(db != NULL); 1022 ASSERT(db->db_offset == offset); 1023 ASSERT(db->db_size == size); 1024 1025 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1026 zvol_get_done, zgd); 1027 1028 if (error == 0) 1029 return (0); 1030 } 1031 } 1032 1033 zvol_get_done(zgd, error); 1034 1035 return (SET_ERROR(error)); 1036 } 1037 1038 /* 1039 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable. 1040 */ 1041 1042 void 1043 zvol_insert(zvol_state_t *zv) 1044 { 1045 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 1046 list_insert_head(&zvol_state_list, zv); 1047 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash)); 1048 } 1049 1050 /* 1051 * Simply remove the zvol from to list of zvols. 1052 */ 1053 static void 1054 zvol_remove(zvol_state_t *zv) 1055 { 1056 ASSERT(RW_WRITE_HELD(&zvol_state_lock)); 1057 list_remove(&zvol_state_list, zv); 1058 hlist_del(&zv->zv_hlink); 1059 } 1060 1061 /* 1062 * Setup zv after we just own the zv->objset 1063 */ 1064 static int 1065 zvol_setup_zv(zvol_state_t *zv) 1066 { 1067 uint64_t volsize; 1068 int error; 1069 uint64_t ro; 1070 objset_t *os = zv->zv_objset; 1071 1072 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1073 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock)); 1074 1075 zv->zv_zilog = NULL; 1076 zv->zv_flags &= ~ZVOL_WRITTEN_TO; 1077 1078 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL); 1079 if (error) 1080 return (SET_ERROR(error)); 1081 1082 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize); 1083 if (error) 1084 return (SET_ERROR(error)); 1085 1086 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn); 1087 if (error) 1088 return (SET_ERROR(error)); 1089 1090 zvol_os_set_capacity(zv, volsize >> 9); 1091 zv->zv_volsize = volsize; 1092 1093 if (ro || dmu_objset_is_snapshot(os) || 1094 !spa_writeable(dmu_objset_spa(os))) { 1095 zvol_os_set_disk_ro(zv, 1); 1096 zv->zv_flags |= ZVOL_RDONLY; 1097 } else { 1098 zvol_os_set_disk_ro(zv, 0); 1099 zv->zv_flags &= ~ZVOL_RDONLY; 1100 } 1101 return (0); 1102 } 1103 1104 /* 1105 * Shutdown every zv_objset related stuff except zv_objset itself. 1106 * The is the reverse of zvol_setup_zv. 1107 */ 1108 static void 1109 zvol_shutdown_zv(zvol_state_t *zv) 1110 { 1111 ASSERT(MUTEX_HELD(&zv->zv_state_lock) && 1112 RW_LOCK_HELD(&zv->zv_suspend_lock)); 1113 1114 if (zv->zv_flags & ZVOL_WRITTEN_TO) { 1115 ASSERT(zv->zv_zilog != NULL); 1116 zil_close(zv->zv_zilog); 1117 } 1118 1119 zv->zv_zilog = NULL; 1120 1121 dnode_rele(zv->zv_dn, zv); 1122 zv->zv_dn = NULL; 1123 1124 /* 1125 * Evict cached data. We must write out any dirty data before 1126 * disowning the dataset. 1127 */ 1128 if (zv->zv_flags & ZVOL_WRITTEN_TO) 1129 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0); 1130 (void) dmu_objset_evict_dbufs(zv->zv_objset); 1131 } 1132 1133 /* 1134 * return the proper tag for rollback and recv 1135 */ 1136 void * 1137 zvol_tag(zvol_state_t *zv) 1138 { 1139 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 1140 return (zv->zv_open_count > 0 ? zv : NULL); 1141 } 1142 1143 /* 1144 * Suspend the zvol for recv and rollback. 1145 */ 1146 zvol_state_t * 1147 zvol_suspend(const char *name) 1148 { 1149 zvol_state_t *zv; 1150 1151 zv = zvol_find_by_name(name, RW_WRITER); 1152 1153 if (zv == NULL) 1154 return (NULL); 1155 1156 /* block all I/O, release in zvol_resume. */ 1157 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1158 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 1159 1160 atomic_inc(&zv->zv_suspend_ref); 1161 1162 if (zv->zv_open_count > 0) 1163 zvol_shutdown_zv(zv); 1164 1165 /* 1166 * do not hold zv_state_lock across suspend/resume to 1167 * avoid locking up zvol lookups 1168 */ 1169 mutex_exit(&zv->zv_state_lock); 1170 1171 /* zv_suspend_lock is released in zvol_resume() */ 1172 return (zv); 1173 } 1174 1175 int 1176 zvol_resume(zvol_state_t *zv) 1177 { 1178 int error = 0; 1179 1180 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock)); 1181 1182 mutex_enter(&zv->zv_state_lock); 1183 1184 if (zv->zv_open_count > 0) { 1185 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset)); 1186 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv); 1187 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset)); 1188 dmu_objset_rele(zv->zv_objset, zv); 1189 1190 error = zvol_setup_zv(zv); 1191 } 1192 1193 mutex_exit(&zv->zv_state_lock); 1194 1195 rw_exit(&zv->zv_suspend_lock); 1196 /* 1197 * We need this because we don't hold zvol_state_lock while releasing 1198 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check 1199 * zv_suspend_lock to determine it is safe to free because rwlock is 1200 * not inherent atomic. 1201 */ 1202 atomic_dec(&zv->zv_suspend_ref); 1203 1204 if (zv->zv_flags & ZVOL_REMOVING) 1205 cv_broadcast(&zv->zv_removing_cv); 1206 1207 return (SET_ERROR(error)); 1208 } 1209 1210 int 1211 zvol_first_open(zvol_state_t *zv, boolean_t readonly) 1212 { 1213 objset_t *os; 1214 int error; 1215 1216 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 1217 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1218 ASSERT(mutex_owned(&spa_namespace_lock)); 1219 1220 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL)); 1221 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os); 1222 if (error) 1223 return (SET_ERROR(error)); 1224 1225 zv->zv_objset = os; 1226 1227 error = zvol_setup_zv(zv); 1228 if (error) { 1229 dmu_objset_disown(os, 1, zv); 1230 zv->zv_objset = NULL; 1231 } 1232 1233 return (error); 1234 } 1235 1236 void 1237 zvol_last_close(zvol_state_t *zv) 1238 { 1239 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock)); 1240 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1241 1242 if (zv->zv_flags & ZVOL_REMOVING) 1243 cv_broadcast(&zv->zv_removing_cv); 1244 1245 zvol_shutdown_zv(zv); 1246 1247 dmu_objset_disown(zv->zv_objset, 1, zv); 1248 zv->zv_objset = NULL; 1249 } 1250 1251 typedef struct minors_job { 1252 list_t *list; 1253 list_node_t link; 1254 /* input */ 1255 char *name; 1256 /* output */ 1257 int error; 1258 } minors_job_t; 1259 1260 /* 1261 * Prefetch zvol dnodes for the minors_job 1262 */ 1263 static void 1264 zvol_prefetch_minors_impl(void *arg) 1265 { 1266 minors_job_t *job = arg; 1267 char *dsname = job->name; 1268 objset_t *os = NULL; 1269 1270 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE, 1271 FTAG, &os); 1272 if (job->error == 0) { 1273 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ); 1274 dmu_objset_disown(os, B_TRUE, FTAG); 1275 } 1276 } 1277 1278 /* 1279 * Mask errors to continue dmu_objset_find() traversal 1280 */ 1281 static int 1282 zvol_create_snap_minor_cb(const char *dsname, void *arg) 1283 { 1284 minors_job_t *j = arg; 1285 list_t *minors_list = j->list; 1286 const char *name = j->name; 1287 1288 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1289 1290 /* skip the designated dataset */ 1291 if (name && strcmp(dsname, name) == 0) 1292 return (0); 1293 1294 /* at this point, the dsname should name a snapshot */ 1295 if (strchr(dsname, '@') == 0) { 1296 dprintf("zvol_create_snap_minor_cb(): " 1297 "%s is not a snapshot name\n", dsname); 1298 } else { 1299 minors_job_t *job; 1300 char *n = kmem_strdup(dsname); 1301 if (n == NULL) 1302 return (0); 1303 1304 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1305 job->name = n; 1306 job->list = minors_list; 1307 job->error = 0; 1308 list_insert_tail(minors_list, job); 1309 /* don't care if dispatch fails, because job->error is 0 */ 1310 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1311 TQ_SLEEP); 1312 } 1313 1314 return (0); 1315 } 1316 1317 /* 1318 * If spa_keystore_load_wkey() is called for an encrypted zvol, 1319 * we need to look for any clones also using the key. This function 1320 * is "best effort" - so we just skip over it if there are failures. 1321 */ 1322 static void 1323 zvol_add_clones(const char *dsname, list_t *minors_list) 1324 { 1325 /* Also check if it has clones */ 1326 dsl_dir_t *dd = NULL; 1327 dsl_pool_t *dp = NULL; 1328 1329 if (dsl_pool_hold(dsname, FTAG, &dp) != 0) 1330 return; 1331 1332 if (!spa_feature_is_enabled(dp->dp_spa, 1333 SPA_FEATURE_ENCRYPTION)) 1334 goto out; 1335 1336 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0) 1337 goto out; 1338 1339 if (dsl_dir_phys(dd)->dd_clones == 0) 1340 goto out; 1341 1342 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP); 1343 zap_attribute_t *za = zap_attribute_alloc(); 1344 objset_t *mos = dd->dd_pool->dp_meta_objset; 1345 1346 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones); 1347 zap_cursor_retrieve(zc, za) == 0; 1348 zap_cursor_advance(zc)) { 1349 dsl_dataset_t *clone; 1350 minors_job_t *job; 1351 1352 if (dsl_dataset_hold_obj(dd->dd_pool, 1353 za->za_first_integer, FTAG, &clone) == 0) { 1354 1355 char name[ZFS_MAX_DATASET_NAME_LEN]; 1356 dsl_dataset_name(clone, name); 1357 1358 char *n = kmem_strdup(name); 1359 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1360 job->name = n; 1361 job->list = minors_list; 1362 job->error = 0; 1363 list_insert_tail(minors_list, job); 1364 1365 dsl_dataset_rele(clone, FTAG); 1366 } 1367 } 1368 zap_cursor_fini(zc); 1369 zap_attribute_free(za); 1370 kmem_free(zc, sizeof (zap_cursor_t)); 1371 1372 out: 1373 if (dd != NULL) 1374 dsl_dir_rele(dd, FTAG); 1375 dsl_pool_rele(dp, FTAG); 1376 } 1377 1378 /* 1379 * Mask errors to continue dmu_objset_find() traversal 1380 */ 1381 static int 1382 zvol_create_minors_cb(const char *dsname, void *arg) 1383 { 1384 uint64_t snapdev; 1385 int error; 1386 list_t *minors_list = arg; 1387 1388 ASSERT0(MUTEX_HELD(&spa_namespace_lock)); 1389 1390 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL); 1391 if (error) 1392 return (0); 1393 1394 /* 1395 * Given the name and the 'snapdev' property, create device minor nodes 1396 * with the linkages to zvols/snapshots as needed. 1397 * If the name represents a zvol, create a minor node for the zvol, then 1398 * check if its snapshots are 'visible', and if so, iterate over the 1399 * snapshots and create device minor nodes for those. 1400 */ 1401 if (strchr(dsname, '@') == 0) { 1402 minors_job_t *job; 1403 char *n = kmem_strdup(dsname); 1404 if (n == NULL) 1405 return (0); 1406 1407 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP); 1408 job->name = n; 1409 job->list = minors_list; 1410 job->error = 0; 1411 list_insert_tail(minors_list, job); 1412 /* don't care if dispatch fails, because job->error is 0 */ 1413 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job, 1414 TQ_SLEEP); 1415 1416 zvol_add_clones(dsname, minors_list); 1417 1418 if (snapdev == ZFS_SNAPDEV_VISIBLE) { 1419 /* 1420 * traverse snapshots only, do not traverse children, 1421 * and skip the 'dsname' 1422 */ 1423 (void) dmu_objset_find(dsname, 1424 zvol_create_snap_minor_cb, (void *)job, 1425 DS_FIND_SNAPSHOTS); 1426 } 1427 } else { 1428 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n", 1429 dsname); 1430 } 1431 1432 return (0); 1433 } 1434 1435 /* 1436 * Create minors for the specified dataset, including children and snapshots. 1437 * Pay attention to the 'snapdev' property and iterate over the snapshots 1438 * only if they are 'visible'. This approach allows one to assure that the 1439 * snapshot metadata is read from disk only if it is needed. 1440 * 1441 * The name can represent a dataset to be recursively scanned for zvols and 1442 * their snapshots, or a single zvol snapshot. If the name represents a 1443 * dataset, the scan is performed in two nested stages: 1444 * - scan the dataset for zvols, and 1445 * - for each zvol, create a minor node, then check if the zvol's snapshots 1446 * are 'visible', and only then iterate over the snapshots if needed 1447 * 1448 * If the name represents a snapshot, a check is performed if the snapshot is 1449 * 'visible' (which also verifies that the parent is a zvol), and if so, 1450 * a minor node for that snapshot is created. 1451 */ 1452 void 1453 zvol_create_minors_recursive(const char *name) 1454 { 1455 list_t minors_list; 1456 minors_job_t *job; 1457 1458 if (zvol_inhibit_dev) 1459 return; 1460 1461 /* 1462 * This is the list for prefetch jobs. Whenever we found a match 1463 * during dmu_objset_find, we insert a minors_job to the list and do 1464 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need 1465 * any lock because all list operation is done on the current thread. 1466 * 1467 * We will use this list to do zvol_os_create_minor after prefetch 1468 * so we don't have to traverse using dmu_objset_find again. 1469 */ 1470 list_create(&minors_list, sizeof (minors_job_t), 1471 offsetof(minors_job_t, link)); 1472 1473 1474 if (strchr(name, '@') != NULL) { 1475 uint64_t snapdev; 1476 1477 int error = dsl_prop_get_integer(name, "snapdev", 1478 &snapdev, NULL); 1479 1480 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1481 (void) zvol_os_create_minor(name); 1482 } else { 1483 fstrans_cookie_t cookie = spl_fstrans_mark(); 1484 (void) dmu_objset_find(name, zvol_create_minors_cb, 1485 &minors_list, DS_FIND_CHILDREN); 1486 spl_fstrans_unmark(cookie); 1487 } 1488 1489 taskq_wait_outstanding(system_taskq, 0); 1490 1491 /* 1492 * Prefetch is completed, we can do zvol_os_create_minor 1493 * sequentially. 1494 */ 1495 while ((job = list_remove_head(&minors_list)) != NULL) { 1496 if (!job->error) 1497 (void) zvol_os_create_minor(job->name); 1498 kmem_strfree(job->name); 1499 kmem_free(job, sizeof (minors_job_t)); 1500 } 1501 1502 list_destroy(&minors_list); 1503 } 1504 1505 void 1506 zvol_create_minor(const char *name) 1507 { 1508 /* 1509 * Note: the dsl_pool_config_lock must not be held. 1510 * Minor node creation needs to obtain the zvol_state_lock. 1511 * zvol_open() obtains the zvol_state_lock and then the dsl pool 1512 * config lock. Therefore, we can't have the config lock now if 1513 * we are going to wait for the zvol_state_lock, because it 1514 * would be a lock order inversion which could lead to deadlock. 1515 */ 1516 1517 if (zvol_inhibit_dev) 1518 return; 1519 1520 if (strchr(name, '@') != NULL) { 1521 uint64_t snapdev; 1522 1523 int error = dsl_prop_get_integer(name, 1524 "snapdev", &snapdev, NULL); 1525 1526 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE) 1527 (void) zvol_os_create_minor(name); 1528 } else { 1529 (void) zvol_os_create_minor(name); 1530 } 1531 } 1532 1533 /* 1534 * Remove minors for specified dataset including children and snapshots. 1535 */ 1536 1537 /* 1538 * Remove the minor for a given zvol. This will do it all: 1539 * - flag the zvol for removal, so new requests are rejected 1540 * - wait until outstanding requests are completed 1541 * - remove it from lists 1542 * - free it 1543 * It's also usable as a taskq task, and smells nice too. 1544 */ 1545 static void 1546 zvol_remove_minor_task(void *arg) 1547 { 1548 zvol_state_t *zv = (zvol_state_t *)arg; 1549 1550 ASSERT(!RW_LOCK_HELD(&zvol_state_lock)); 1551 ASSERT(!MUTEX_HELD(&zv->zv_state_lock)); 1552 1553 mutex_enter(&zv->zv_state_lock); 1554 while (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { 1555 zv->zv_flags |= ZVOL_REMOVING; 1556 cv_wait(&zv->zv_removing_cv, &zv->zv_state_lock); 1557 } 1558 mutex_exit(&zv->zv_state_lock); 1559 1560 rw_enter(&zvol_state_lock, RW_WRITER); 1561 mutex_enter(&zv->zv_state_lock); 1562 1563 zvol_remove(zv); 1564 zvol_os_clear_private(zv); 1565 1566 mutex_exit(&zv->zv_state_lock); 1567 rw_exit(&zvol_state_lock); 1568 1569 zvol_os_free(zv); 1570 } 1571 1572 static void 1573 zvol_free_task(void *arg) 1574 { 1575 zvol_os_free(arg); 1576 } 1577 1578 void 1579 zvol_remove_minors_impl(const char *name) 1580 { 1581 zvol_state_t *zv, *zv_next; 1582 int namelen = ((name) ? strlen(name) : 0); 1583 taskqid_t t; 1584 list_t delay_list, free_list; 1585 1586 if (zvol_inhibit_dev) 1587 return; 1588 1589 list_create(&delay_list, sizeof (zvol_state_t), 1590 offsetof(zvol_state_t, zv_next)); 1591 list_create(&free_list, sizeof (zvol_state_t), 1592 offsetof(zvol_state_t, zv_next)); 1593 1594 rw_enter(&zvol_state_lock, RW_WRITER); 1595 1596 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1597 zv_next = list_next(&zvol_state_list, zv); 1598 1599 mutex_enter(&zv->zv_state_lock); 1600 if (name == NULL || strcmp(zv->zv_name, name) == 0 || 1601 (strncmp(zv->zv_name, name, namelen) == 0 && 1602 (zv->zv_name[namelen] == '/' || 1603 zv->zv_name[namelen] == '@'))) { 1604 /* 1605 * By holding zv_state_lock here, we guarantee that no 1606 * one is currently using this zv 1607 */ 1608 1609 /* 1610 * If in use, try to throw everyone off and try again 1611 * later. 1612 */ 1613 if (zv->zv_open_count > 0 || 1614 atomic_read(&zv->zv_suspend_ref)) { 1615 zv->zv_flags |= ZVOL_REMOVING; 1616 t = taskq_dispatch( 1617 zv->zv_objset->os_spa->spa_zvol_taskq, 1618 zvol_remove_minor_task, zv, TQ_SLEEP); 1619 if (t == TASKQID_INVALID) { 1620 /* 1621 * Couldn't create the task, so we'll 1622 * do it in place once the loop is 1623 * finished. 1624 */ 1625 list_insert_head(&delay_list, zv); 1626 } 1627 mutex_exit(&zv->zv_state_lock); 1628 continue; 1629 } 1630 1631 zvol_remove(zv); 1632 1633 /* 1634 * Cleared while holding zvol_state_lock as a writer 1635 * which will prevent zvol_open() from opening it. 1636 */ 1637 zvol_os_clear_private(zv); 1638 1639 /* Drop zv_state_lock before zvol_free() */ 1640 mutex_exit(&zv->zv_state_lock); 1641 1642 /* Try parallel zv_free, if failed do it in place */ 1643 t = taskq_dispatch(system_taskq, zvol_free_task, zv, 1644 TQ_SLEEP); 1645 if (t == TASKQID_INVALID) 1646 list_insert_head(&free_list, zv); 1647 } else { 1648 mutex_exit(&zv->zv_state_lock); 1649 } 1650 } 1651 rw_exit(&zvol_state_lock); 1652 1653 /* Wait for zvols that we couldn't create a remove task for */ 1654 while ((zv = list_remove_head(&delay_list)) != NULL) 1655 zvol_remove_minor_task(zv); 1656 1657 /* Free any that we couldn't free in parallel earlier */ 1658 while ((zv = list_remove_head(&free_list)) != NULL) 1659 zvol_os_free(zv); 1660 } 1661 1662 /* Remove minor for this specific volume only */ 1663 static void 1664 zvol_remove_minor_impl(const char *name) 1665 { 1666 zvol_state_t *zv = NULL, *zv_next; 1667 1668 if (zvol_inhibit_dev) 1669 return; 1670 1671 rw_enter(&zvol_state_lock, RW_WRITER); 1672 1673 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1674 zv_next = list_next(&zvol_state_list, zv); 1675 1676 mutex_enter(&zv->zv_state_lock); 1677 if (strcmp(zv->zv_name, name) == 0) 1678 /* Found, leave the the loop with zv_lock held */ 1679 break; 1680 mutex_exit(&zv->zv_state_lock); 1681 } 1682 1683 if (zv == NULL) { 1684 rw_exit(&zvol_state_lock); 1685 return; 1686 } 1687 1688 ASSERT(MUTEX_HELD(&zv->zv_state_lock)); 1689 1690 if (zv->zv_open_count > 0 || atomic_read(&zv->zv_suspend_ref)) { 1691 /* 1692 * In use, so try to throw everyone off, then wait 1693 * until finished. 1694 */ 1695 zv->zv_flags |= ZVOL_REMOVING; 1696 mutex_exit(&zv->zv_state_lock); 1697 rw_exit(&zvol_state_lock); 1698 zvol_remove_minor_task(zv); 1699 return; 1700 } 1701 1702 zvol_remove(zv); 1703 zvol_os_clear_private(zv); 1704 1705 mutex_exit(&zv->zv_state_lock); 1706 rw_exit(&zvol_state_lock); 1707 1708 zvol_os_free(zv); 1709 } 1710 1711 /* 1712 * Rename minors for specified dataset including children and snapshots. 1713 */ 1714 static void 1715 zvol_rename_minors_impl(const char *oldname, const char *newname) 1716 { 1717 zvol_state_t *zv, *zv_next; 1718 int oldnamelen; 1719 1720 if (zvol_inhibit_dev) 1721 return; 1722 1723 oldnamelen = strlen(oldname); 1724 1725 rw_enter(&zvol_state_lock, RW_READER); 1726 1727 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) { 1728 zv_next = list_next(&zvol_state_list, zv); 1729 1730 mutex_enter(&zv->zv_state_lock); 1731 1732 if (strcmp(zv->zv_name, oldname) == 0) { 1733 zvol_os_rename_minor(zv, newname); 1734 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 && 1735 (zv->zv_name[oldnamelen] == '/' || 1736 zv->zv_name[oldnamelen] == '@')) { 1737 char *name = kmem_asprintf("%s%c%s", newname, 1738 zv->zv_name[oldnamelen], 1739 zv->zv_name + oldnamelen + 1); 1740 zvol_os_rename_minor(zv, name); 1741 kmem_strfree(name); 1742 } 1743 1744 mutex_exit(&zv->zv_state_lock); 1745 } 1746 1747 rw_exit(&zvol_state_lock); 1748 } 1749 1750 typedef struct zvol_snapdev_cb_arg { 1751 uint64_t snapdev; 1752 } zvol_snapdev_cb_arg_t; 1753 1754 static int 1755 zvol_set_snapdev_cb(const char *dsname, void *param) 1756 { 1757 zvol_snapdev_cb_arg_t *arg = param; 1758 1759 if (strchr(dsname, '@') == NULL) 1760 return (0); 1761 1762 switch (arg->snapdev) { 1763 case ZFS_SNAPDEV_VISIBLE: 1764 (void) zvol_os_create_minor(dsname); 1765 break; 1766 case ZFS_SNAPDEV_HIDDEN: 1767 (void) zvol_remove_minor_impl(dsname); 1768 break; 1769 } 1770 1771 return (0); 1772 } 1773 1774 static void 1775 zvol_set_snapdev_impl(char *name, uint64_t snapdev) 1776 { 1777 zvol_snapdev_cb_arg_t arg = {snapdev}; 1778 fstrans_cookie_t cookie = spl_fstrans_mark(); 1779 /* 1780 * The zvol_set_snapdev_sync() sets snapdev appropriately 1781 * in the dataset hierarchy. Here, we only scan snapshots. 1782 */ 1783 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS); 1784 spl_fstrans_unmark(cookie); 1785 } 1786 1787 static void 1788 zvol_set_volmode_impl(char *name, uint64_t volmode) 1789 { 1790 fstrans_cookie_t cookie; 1791 uint64_t old_volmode; 1792 zvol_state_t *zv; 1793 1794 if (strchr(name, '@') != NULL) 1795 return; 1796 1797 /* 1798 * It's unfortunate we need to remove minors before we create new ones: 1799 * this is necessary because our backing gendisk (zvol_state->zv_disk) 1800 * could be different when we set, for instance, volmode from "geom" 1801 * to "dev" (or vice versa). 1802 */ 1803 zv = zvol_find_by_name(name, RW_NONE); 1804 if (zv == NULL && volmode == ZFS_VOLMODE_NONE) 1805 return; 1806 if (zv != NULL) { 1807 old_volmode = zv->zv_volmode; 1808 mutex_exit(&zv->zv_state_lock); 1809 if (old_volmode == volmode) 1810 return; 1811 zvol_wait_close(zv); 1812 } 1813 cookie = spl_fstrans_mark(); 1814 switch (volmode) { 1815 case ZFS_VOLMODE_NONE: 1816 (void) zvol_remove_minor_impl(name); 1817 break; 1818 case ZFS_VOLMODE_GEOM: 1819 case ZFS_VOLMODE_DEV: 1820 (void) zvol_remove_minor_impl(name); 1821 (void) zvol_os_create_minor(name); 1822 break; 1823 case ZFS_VOLMODE_DEFAULT: 1824 (void) zvol_remove_minor_impl(name); 1825 if (zvol_volmode == ZFS_VOLMODE_NONE) 1826 break; 1827 else /* if zvol_volmode is invalid defaults to "geom" */ 1828 (void) zvol_os_create_minor(name); 1829 break; 1830 } 1831 spl_fstrans_unmark(cookie); 1832 } 1833 1834 static zvol_task_t * 1835 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2, 1836 uint64_t value) 1837 { 1838 zvol_task_t *task; 1839 1840 /* Never allow tasks on hidden names. */ 1841 if (name1[0] == '$') 1842 return (NULL); 1843 1844 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP); 1845 task->op = op; 1846 task->value = value; 1847 1848 strlcpy(task->name1, name1, sizeof (task->name1)); 1849 if (name2 != NULL) 1850 strlcpy(task->name2, name2, sizeof (task->name2)); 1851 1852 return (task); 1853 } 1854 1855 static void 1856 zvol_task_free(zvol_task_t *task) 1857 { 1858 kmem_free(task, sizeof (zvol_task_t)); 1859 } 1860 1861 /* 1862 * The worker thread function performed asynchronously. 1863 */ 1864 static void 1865 zvol_task_cb(void *arg) 1866 { 1867 zvol_task_t *task = arg; 1868 1869 switch (task->op) { 1870 case ZVOL_ASYNC_REMOVE_MINORS: 1871 zvol_remove_minors_impl(task->name1); 1872 break; 1873 case ZVOL_ASYNC_RENAME_MINORS: 1874 zvol_rename_minors_impl(task->name1, task->name2); 1875 break; 1876 case ZVOL_ASYNC_SET_SNAPDEV: 1877 zvol_set_snapdev_impl(task->name1, task->value); 1878 break; 1879 case ZVOL_ASYNC_SET_VOLMODE: 1880 zvol_set_volmode_impl(task->name1, task->value); 1881 break; 1882 default: 1883 VERIFY(0); 1884 break; 1885 } 1886 1887 zvol_task_free(task); 1888 } 1889 1890 typedef struct zvol_set_prop_int_arg { 1891 const char *zsda_name; 1892 uint64_t zsda_value; 1893 zprop_source_t zsda_source; 1894 zfs_prop_t zsda_prop; 1895 } zvol_set_prop_int_arg_t; 1896 1897 /* 1898 * Sanity check the dataset for safe use by the sync task. No additional 1899 * conditions are imposed. 1900 */ 1901 static int 1902 zvol_set_common_check(void *arg, dmu_tx_t *tx) 1903 { 1904 zvol_set_prop_int_arg_t *zsda = arg; 1905 dsl_pool_t *dp = dmu_tx_pool(tx); 1906 dsl_dir_t *dd; 1907 int error; 1908 1909 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL); 1910 if (error != 0) 1911 return (error); 1912 1913 dsl_dir_rele(dd, FTAG); 1914 1915 return (error); 1916 } 1917 1918 static int 1919 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg) 1920 { 1921 zvol_set_prop_int_arg_t *zsda = arg; 1922 char dsname[ZFS_MAX_DATASET_NAME_LEN]; 1923 zvol_task_t *task; 1924 uint64_t prop; 1925 1926 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop); 1927 dsl_dataset_name(ds, dsname); 1928 1929 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0) 1930 return (0); 1931 1932 switch (zsda->zsda_prop) { 1933 case ZFS_PROP_VOLMODE: 1934 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, 1935 NULL, prop); 1936 break; 1937 case ZFS_PROP_SNAPDEV: 1938 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, 1939 NULL, prop); 1940 break; 1941 default: 1942 task = NULL; 1943 break; 1944 } 1945 1946 if (task == NULL) 1947 return (0); 1948 1949 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb, 1950 task, TQ_SLEEP); 1951 return (0); 1952 } 1953 1954 /* 1955 * Traverse all child datasets and apply the property appropriately. 1956 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel 1957 * dataset and read the effective "property" on every child in the callback 1958 * function: this is because the value is not guaranteed to be the same in the 1959 * whole dataset hierarchy. 1960 */ 1961 static void 1962 zvol_set_common_sync(void *arg, dmu_tx_t *tx) 1963 { 1964 zvol_set_prop_int_arg_t *zsda = arg; 1965 dsl_pool_t *dp = dmu_tx_pool(tx); 1966 dsl_dir_t *dd; 1967 dsl_dataset_t *ds; 1968 int error; 1969 1970 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL)); 1971 1972 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds); 1973 if (error == 0) { 1974 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop), 1975 zsda->zsda_source, sizeof (zsda->zsda_value), 1, 1976 &zsda->zsda_value, tx); 1977 dsl_dataset_rele(ds, FTAG); 1978 } 1979 1980 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb, 1981 zsda, DS_FIND_CHILDREN); 1982 1983 dsl_dir_rele(dd, FTAG); 1984 } 1985 1986 int 1987 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source, 1988 uint64_t val) 1989 { 1990 zvol_set_prop_int_arg_t zsda; 1991 1992 zsda.zsda_name = ddname; 1993 zsda.zsda_source = source; 1994 zsda.zsda_value = val; 1995 zsda.zsda_prop = prop; 1996 1997 return (dsl_sync_task(ddname, zvol_set_common_check, 1998 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE)); 1999 } 2000 2001 void 2002 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async) 2003 { 2004 zvol_task_t *task; 2005 taskqid_t id; 2006 2007 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL); 2008 if (task == NULL) 2009 return; 2010 2011 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 2012 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 2013 taskq_wait_id(spa->spa_zvol_taskq, id); 2014 } 2015 2016 void 2017 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2, 2018 boolean_t async) 2019 { 2020 zvol_task_t *task; 2021 taskqid_t id; 2022 2023 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL); 2024 if (task == NULL) 2025 return; 2026 2027 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP); 2028 if ((async == B_FALSE) && (id != TASKQID_INVALID)) 2029 taskq_wait_id(spa->spa_zvol_taskq, id); 2030 } 2031 2032 boolean_t 2033 zvol_is_zvol(const char *name) 2034 { 2035 2036 return (zvol_os_is_zvol(name)); 2037 } 2038 2039 int 2040 zvol_init_impl(void) 2041 { 2042 int i; 2043 2044 /* 2045 * zvol_threads is the module param the user passes in. 2046 * 2047 * zvol_actual_threads is what we use internally, since the user can 2048 * pass zvol_thread = 0 to mean "use all the CPUs" (the default). 2049 */ 2050 static unsigned int zvol_actual_threads; 2051 2052 if (zvol_threads == 0) { 2053 /* 2054 * See dde9380a1 for why 32 was chosen here. This should 2055 * probably be refined to be some multiple of the number 2056 * of CPUs. 2057 */ 2058 zvol_actual_threads = MAX(max_ncpus, 32); 2059 } else { 2060 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024); 2061 } 2062 2063 /* 2064 * Use at least 32 zvol_threads but for many core system, 2065 * prefer 6 threads per taskq, but no more taskqs 2066 * than threads in them on large systems. 2067 * 2068 * taskq total 2069 * cpus taskqs threads threads 2070 * ------- ------- ------- ------- 2071 * 1 1 32 32 2072 * 2 1 32 32 2073 * 4 1 32 32 2074 * 8 2 16 32 2075 * 16 3 11 33 2076 * 32 5 7 35 2077 * 64 8 8 64 2078 * 128 11 12 132 2079 * 256 16 16 256 2080 */ 2081 zv_taskq_t *ztqs = &zvol_taskqs; 2082 int num_tqs = MIN(max_ncpus, zvol_num_taskqs); 2083 if (num_tqs == 0) { 2084 num_tqs = 1 + max_ncpus / 6; 2085 while (num_tqs * num_tqs > zvol_actual_threads) 2086 num_tqs--; 2087 } 2088 2089 int per_tq_thread = zvol_actual_threads / num_tqs; 2090 if (per_tq_thread * num_tqs < zvol_actual_threads) 2091 per_tq_thread++; 2092 2093 ztqs->tqs_cnt = num_tqs; 2094 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP); 2095 2096 for (uint_t i = 0; i < num_tqs; i++) { 2097 char name[32]; 2098 (void) snprintf(name, sizeof (name), "%s_tq-%u", 2099 ZVOL_DRIVER, i); 2100 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread, 2101 maxclsyspri, per_tq_thread, INT_MAX, 2102 TASKQ_PREPOPULATE | TASKQ_DYNAMIC); 2103 if (ztqs->tqs_taskq[i] == NULL) { 2104 for (int j = i - 1; j >= 0; j--) 2105 taskq_destroy(ztqs->tqs_taskq[j]); 2106 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * 2107 sizeof (taskq_t *)); 2108 ztqs->tqs_taskq = NULL; 2109 return (SET_ERROR(ENOMEM)); 2110 } 2111 } 2112 2113 list_create(&zvol_state_list, sizeof (zvol_state_t), 2114 offsetof(zvol_state_t, zv_next)); 2115 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL); 2116 2117 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head), 2118 KM_SLEEP); 2119 for (i = 0; i < ZVOL_HT_SIZE; i++) 2120 INIT_HLIST_HEAD(&zvol_htable[i]); 2121 2122 return (0); 2123 } 2124 2125 void 2126 zvol_fini_impl(void) 2127 { 2128 zv_taskq_t *ztqs = &zvol_taskqs; 2129 2130 zvol_remove_minors_impl(NULL); 2131 2132 /* 2133 * The call to "zvol_remove_minors_impl" may dispatch entries to 2134 * the system_taskq, but it doesn't wait for those entries to 2135 * complete before it returns. Thus, we must wait for all of the 2136 * removals to finish, before we can continue. 2137 */ 2138 taskq_wait_outstanding(system_taskq, 0); 2139 2140 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head)); 2141 list_destroy(&zvol_state_list); 2142 rw_destroy(&zvol_state_lock); 2143 2144 if (ztqs->tqs_taskq == NULL) { 2145 ASSERT3U(ztqs->tqs_cnt, ==, 0); 2146 } else { 2147 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) { 2148 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL); 2149 taskq_destroy(ztqs->tqs_taskq[i]); 2150 } 2151 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * 2152 sizeof (taskq_t *)); 2153 ztqs->tqs_taskq = NULL; 2154 } 2155 } 2156 2157 ZFS_MODULE_PARAM(zfs_vol, zvol_, inhibit_dev, UINT, ZMOD_RW, 2158 "Do not create zvol device nodes"); 2159 ZFS_MODULE_PARAM(zfs_vol, zvol_, threads, UINT, ZMOD_RW, 2160 "Number of threads for I/O requests. Set to 0 to use all active CPUs"); 2161 ZFS_MODULE_PARAM(zfs_vol, zvol_, num_taskqs, UINT, ZMOD_RW, 2162 "Number of zvol taskqs"); 2163 ZFS_MODULE_PARAM(zfs_vol, zvol_, request_sync, UINT, ZMOD_RW, 2164 "Synchronously handle bio requests"); 2165